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ABSTRACT  

The angle dissolving determination of the solar gain factor g() = e() + qi() of an entire 

insulation glass (IG) – as described in [1] for a two pane glass – can be generalized for IGs with a 

pane number n>2. And this lacking the possibility to refer to the thermal reaction of the inner 

panes (T1 , … , Tn) on an external signal S (solar source). 

The elevated number of inner degrees of freedom of the entire system, corresponding to the heat 

transfer coefficients (12 , … , n-1, n) and the individual absorptances (1 , … , n) can – regarding 

the response – be sufficiently represented by means of an equivalent two pane glass with absorp-

tances (A1, An) and  as global intrinsic quantities of the glazing. Whose ratio A1/An is again 

fixed by means of one single thermal measurement alone. Under knowledge of the global absorp-

tance () from an optical measurement their magnitudes (A1, An) follow. 

As an intrinsic invariant describing optics, the ratio A1/An provides the possibility of conversion 

into the response under an arbitrary other boundary condition BC (he, hi). The space these 

quantities (A1, An) leave open behind concerning an identical response onto a signal S will be 

specified. This space shows the open margin left designing a glazing.  

 

Figure 1: Node-model for a multiple glazing. The absorbed part of irradiation e appears in each pane as 
source, these represented by nodes. The theoretical considerations done with this model show that the 

information of the outer temperature elevations T1 and T3 under known experimental boundary 

conditions (he , hi) determine the branching ratio qe() / qi() under all other boundary conditions. 

INTRODUCTION: MODEL ASSUMPTIONS – THERMAL NETWORK WITH SOURCES  

The derivations given concerning the energy flows of the IGs are based on a model of a thermal 

network according to Fig. 1, in which the panes are represented by nodes:  

pc1 The nodes are characterized by their temperature elevation (T1 , … , Tn) towards the 

environment – e.g. the laboratory.  

pc2 Thermal energy exchange only takes place between directly neighboured nodes and is des-

cribed by conductances (he , 12 , … , n-1, n , hi). Those having the property that energy flow 

through them is proportional to the temperature difference over them.  

pc3 In place of the pane-nodes energy is coupled in by an external source S in extent of the 

absorptances (1 , … , n), which specify the part of S locally reaching the thermal channel. 

With these absorptances i are meant those, which are achieved resulting in the given com-

pound of panes in the IG – see EN 410 [3].  

pc4 Considered is the stationary flow equilibrium tuned in under the source S. Therefore terms in 

the equations, which describe the inner energy of the panes, can be omitted.  

(pc = preconditions). 
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ESTABLISHING THE EQUATIONS FOR A STATIONARY FLOW EQUILIBRIUM 

In a system defined as above the entries S · j in place of the nodes each can be superposed in 

their effect, resulting in a linear response T and these scaling with S. The according linear 

system of equations in an abbreviated matrix notation is: 

(1) Ti / S = Mij · j , i = (1 , … , n) , j = (1 , … , n) , n = number of panes . 

The matrix elements Mij contain the thermal quantities ij und (he, hi) by virtue of those the system 

gets rid of the irradiated energy. Linearity of T in S involves that, with a single measurement 

under a given irradiation S alone, one acquires knowledge about the system under each other. Vice 

versa with a further stationary measurement under a changed irradiation S nothing new is emerged. 

Regardless the fact that relative errors of measured variables which are scaling with S enter 

inversely proportional to S. 

Without evaluating the system of equations (1) above, for any desired n the following equation is 

valid at the system boundary, describing how this open system exchanges energy in equilibrium 

and therein gets rid of the irradiated energy: 

(2)  = he · Te / S + hi · Ti / S , global absorptance  = 1 + … + n , 

the two terms on the right side describing the secondary heat gain related to irradiation S: 

(3) qe = he · Te / S , qi = hi · Ti / S , secondary heat gain coefficients . 

The useful equation (2) is not an additional equation to the equations (1), while it can be derived 

from those – in perfect consistence. With the definitions (3) equation (2) has the shape:  

(4)  = qi + qe . 

In case the optical value () is already fixed, with (4) one knows already the sum of the two 

variables: The minimal information missing would be their branching ratio qe/qi. 

GENERAL IMPLICATIONS DERIVED FROM THE EQUATIONS REGARDING THE 

DETERMINATION OF VALUES 

cc1 So far global absorptance () is predetermined through an independent experiment – in our 

case through an optical measurement [2] – with (2) one already knows the irradiation S, that must 

have been present in the experiment, likewise one knows already the sum (4) of the two secon-

dary heat gain coefficients (qe, qi). The value S here appears implicitly in the entire evaluation.  

cc2 Nevertheless one could always take the way measuring the value S independently during the 

thermal experiment at the level of entrance of irradiation into the glazing. In this scenario the 

value  would follow with (2) and cannot be predetermined additionally. Deciding for one of 

the two ways is a matter of measuring accuracy. As we have () from a precise optical 

measurement [2], we decided for a procedure pursuant to (cc1), see [1].  

cc3 Taking both ways, would contain a certain possibility to validate the reliability of the 

measurements, also the boundary conductances (he, hi). These are modelled in their amount 

[1] and appear lately as referencing conductances in the entire evaluation procedure of the 

experiment. This seems to be a subtle point concerning the measuring error. The formal 

shape of the present discussion will show a certain diminished criticality.  

cc4 A priory knowledge of both values (1, 2) in a two pane glass under known boundaries 

(he, hi) would open the possibility to achieve knowledge of the conductance . This from an 

independent measurement of S. Measuring one temperature elevation T1/S or T2/S would 

be sufficient. The according equation given below (10) resp. (11) determines the conductance 

. According to (2) the second temperature is not independent. So, measuring the second 
temperature would here not be from a substantial usability.  

(cc = conclusions). 
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OUTER RESPONSE OF A MULTIPLE GLAZING UNDER ARBITRARY BC 

Back to the problem originated from a lacking knowledge of the individual absorptances j. The 

proposition whose validity will be shown here reads like: 

Proposition: A single measurement of the response (T1 , Tn) of a thermal network defined as 

above under a signal S and under known boundary conductances (he , hi) and known global 

conductance  determines the response under all other boundary conductances (he
N, hi

N). This is 

valid for systems of an arbitrary number of panes n. 

Deriving this proposition is not free of charge comparable with direct conclusions getting from the 

fact that responses are scaling with the signal S: The boundary conductances (he, hi) do not enter 

as a simple scaling factor. The proposition was already shown in the case n=2 [1]. In the case n>2 

now inner degrees of freedom are added.  

Anyway, regarding the response again only the outer responses (T1, Tn) are measured. It has to 

be shown additionally that the left open degrees of freedom (n>2) can be sufficiently represented 

by an equivalent two pane glass concerning the outer behaving – this under specification the 

procedure within the parameter of this representing glass can be found. 

APPROACH FOR THE SOLUTION: FIND AN EQUIVALENT TWO PANE GLASS 

In the case n=2 the proposition follows directly from (1): Two equations determine all absorp-

tances (1, 2). All temperatures are already acquired with the outer pane temperatures (T1, T2). 

An independent measurement of () ≡ 1 + 2 determines further the irradiation S.  

The additional minimal information 1/2 then would be sufficient, to determine both (1, 2). 

Indeed starting from (1) an isomorphism between this minimal information 1/2 and the 

temperature detuning T1/T2 – this interceded by (he , hi , ) – can be derived. Consequently 

complete knowledge over the system is achieved in the case n=2: 
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The ratio 1/2 herein has the status of a sufficient determining information because it is an 

intrinsic value of the glass – itself not depending on the interceding values (he, hi, ).  

Now backwards – from the once determined 1/2 – the temperature detuning (T1
N/T2

N) can be 

calculated for each other BC (he
N, hi

N). Finally the branching ratio qe
N/qi

N follows with (6) and by 

means of (4) their amounts (qe
N, qi

N): 
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Now a glass n=2 is the simplest configuration, which is just able at all – this over 1/2 – to tune 

the branching ratio qe/qi – particularly capable of an asymmetric behaviour regarding the outflows 

(qe, qi) over intrinsic quantities alone. So, if for all cases n>2 an equivalent glass n=2 could be 

found, the proposition above would be proved. In this equivalent two pane glass the absorptances 

(1 , ... , n) will have to be represented by the representing absorptances (A1, An), whose direct 

sum equals again . So, an isomorphism analogue to (5) has to be found: 
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Such an isomorphism (7) found, the procedure to determine the branching ratio qe/qi would follow 

in a fully analogue way, finally pursuant to (6). 

In the cases n>2 however the intrinsic values (1 , … , n) and (12 , … , n-1, n) strike up an 

alliance regarding the outflow of energy on both sides – resulting in a branching ratio (6). From 

both types of information only their global quantities are known: 

(8)  = 1 + … + n , global absorptance , 

(9)  = (1/12 + … + 1/n-1, n)
 - 1 , global heat transfer coefficient . 
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The temperatures of the inner panes hidden, the inner degrees of freedom are left undetermined 

within (8) and (9), of which one only knows the global amounts  and . Nevertheless the 

parameter A1/An in (7) would – according to case n=2 – represent an intrinsic invariant of the 

system, whose amount together with  = A1 + An would have a representing meaning concerning 

the response, but would now leave open a field of equivalent constellations. Therein a 

manufacturer of glazing has an open field to design a glazing with given properties. 

CONCRETE IMPLEMENTATION – DERIVATION OF THE PROPOSITION 

To derive equations (5) and (7) and to obtain the concrete shape of (A1, An) establishing the 

equations (1) is indispensable. Starting from case n=2 subsequently the case n=3 will be treated. 

The shape of the representing absorptances (A1, A3) will in substance be deduced by comparing 

the coefficients within the two cases n=2 and n=3. The generalization to arbitrary cases n follows 

by virtue of inductive conclusions: 

 In the case n=2 the equations (1) are given by: 
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Expression (11) corresponds to formula (13) in EN 410 [3] for qi. This under usage of (3) 

qi = T2/ S · hi .The quotient of (10) and (11) delivers the searched shape of (5): 
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 In the case n=3 (see Fig. 1) the equations (1) are given by: 
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The quotient of (13) and (15) for the two outer panes delivers the searched shape of (7): 
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Whereas formal identity between (12) and (16) is reached under absorptances (A1, A3), those 

approaching the searched two pane glass with an equivalent behaviour to the outside like this: 

(17) A1 = 1 + 2 · 12 / (12 + 23) = 1 + 2 · (1 - ) , 

(18) A3 = 3 + 2 · 23 / (12 + 23) = 3 + 2 ·   . 

The resulting values (A1, A3) are achieved by a prorated admixture of the inner absorptance 2 to 

the outer absorptances 1 und 3. The admixture ratio  representing the inner degree of freedom 

(0 <  <1 is weighting this contribution in proportion to 12/23. 

 First the direct sum of the quantities (Ae1, Ae3) equals the global absorptance : 

(19) A1 + A3 = 1 + 2 · 12 / (12 + 23) + 3 + 2 · 23 / (12 + 23) = 1 + 2 + 3 =  . 

 The quantities (A1, A3) and therefore their ratio A1/A3 are not sensitive to . The ratio charac-

terizing the system is found to be detached from the amount of the global value : 
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Independence from  still was a property of the invariant in the case n=2 where with 1/2 no 

thermal property at all is entering. This was given by the simple structure. In the case n=3 now the 

ratio A1/A3 has the meaning to describe the temperature detuning T1/T3 outside and this again 

detached from the global thermal property . In this sense this ratio has again an optical intrinsic 

meaning, furthermore again not depending from the BC (he, hi). 

Starting from the values (A1, A3), these once determined under a single BC, backwards by means 

of (16) the temperature detuning under each other BC (he
N, hi

N) is determined. Therewith over (6) 

the new branching ratio qe
N/qi

N is determined – interceded by the quantities (he
N, hi

N, ). The 

derivation yields this property of invariance given in A1/A3 and this by prescribing in (17) and 

(18) in which manner the invariance is kept within the constellations (8) and (9). The pane 1 + 2 

+ 3 =  contains a solution space within a glazing exposed to a signal S has an equivalent 

behaviour to the outside in the sense of indistinguishable responses. 

VALUE RANGE DISCUSSION IN THE SIMPLE BUT IMPORTANT CASE N=3 

The question concerning the shape of the value range of the absorptances j that could have been 

underlaid for a glazing under an outer measurement leading to (A1, A3) can be discussed in an 

illustrative way for the case n=3. The experimentalist or the manufacturer determines (A1, A3) 

together with the global absorptance ( = A1 + A3). The possible constellations of values (1, 2, 

3) are in first instance restricted to a pane within the positive octant given by: 

(21) 1/ + 2/ + 3/ = 1 , intercept form of the pane . 

Choosing the absorptance 2 as control variable in equations (17) and (18) under a fixed 

admixture ratio  this implies moving on straight lines, whose parametric form is given by:  

(22) 1 = A1 – 2 · (1 - ) 

(23) 3 = A3 – 2 ·   
} (0 <  <1) . 

 therein the admixture ratio:  = 23/(12 + 23) resp. 1 -  = 12 / (12 + 23) . 

In Fig. 2 the pane (21) is presented containing some straight lines in case (A1 , A3) = (0.4 , 0.2): 

 

Figure 2: For a given triple glazing () given boundary condition (he , hi) all these cases give the same 

answer (T1 , T3) to a signal S. They are indistinguishable so long as the temperature of the inner pane 

T2 – depending on the ratio  – is not accessible. 

Under admixture within (0 <  < 1) the associated straight lines subtend the permissible value 

range, in which the system purveys identical responses: Therein the admixture ratio  is 

representing the degree of freedom in case n=3, delivering the possibilities to tune in the given 

values (A1, A3) under which outer pane temperatures T2 (13) and T3 (15) do not change.  
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However the temperature T2 (14) of the inner pane changes, but it remains a hidden parameter. 

In a glazing n=3 with 2=0 the searched glass n=2 with (A1, A3) corresponds directly to (1, 3). 

In this point, where the admixture  has no repercussion, the according straight lines intersect. 

If a designer follows the strategy to have no weak link in the chain regarding the conductances ij, 

he moves on the straight line =0.5. If a designer pursues the extremal constellation of giving an 

absorptance exclusively to the inner pane – 2=0.6 in the present example – in agreement with 

(23) he would choose  = A3/2 = 0.2/0.6 = 0.333. With n=3 panes he is able now to obtain a 

desired asymmetric optical behaviour by tuning with the admixture ratio . 

EXTENDING THE RESULTS ON ARBITRARY NUMBER OF PANES N 

The arbitrary case n is attained by concluding in an inductive way, starting from the case n=3 and 

equations (17) (18). In the case n=4 the admixtures to 1 and 4 have the shape: 

(24) A1 = 1 + 2 · (1/23 + 1/34) ·  + 3 · (1/34) · 

(25) A4 = 4 + 3 · (1/12 + 1/23) ·  + 2 · (1/12) ·  }  = (1/12 + 1/23 + 1/34)
 - 1 . 

The sum of both equivalent absorptances A1 und A4 results in the correct global absorptance: 

(26) A1 + A4 = 1 + 2 + 3 + 4 =  . 

And in an analogue way the admixture of each pane j with her particular absorptance j takes 

place to both outer panes for the case of an arbitrary number of panes n. 

ERROR DISCUSSION IN THE EVALUATION FOR ENTIRE MEASUREMENT PROCEDURE 

The subtle point is given by modelling the boundary conductances (he, hi) these appearing as 

referencing resistances. Anyhow possible systematic errors compensate each other particulately in 

the ratio (16) therewith the intrinsic optical invariant A1/An gets fixed. The global absorptance 

() ≡ A1+An originating from an independent optical measurement [2] opens only just the way to 

regress on the more harmless behaving ratio A1/An. 

CONCLUSIONS 

Starting from the question, what can be found out from a glazing regarding its energetical 

behaviour, without disassembling it that means under an exclusively usage of global charac-

teristic values and available only outer responses in a steady state equilibrium, the ensemble 

acting of panes in compound could be clarified on a principal level. This inversely allows the 

manufacturer to design the global behaviour in a targeted strategy: The free scope for designing in 

principle being available as well this in a conclusive formalism, now problems of practicability 

and feasibility can be treated in a precise way.  

Regarding the response to a signal and temperature detuning of the two outer panes the proce-

dure given here is based on the search for an invariant intrinsic parameter which can be attribu-

ted to an according equivalent two pane glass. This is – as pointed out – the simplest configura-

tion showing all outer possibilities of responses, being capable of an asymmetric behaviour.  

The system based was a serial network with nodes in which linear associations between entries 

and reactions are valid. The deduced propositions are valid in the frame of the model. 

Nevertheless characteristic values based on simple minimal configurations and the appropriate 

procedure to find the parameters for the system within the model, open as well opportunities to 

understand and design systems with a higher complexity. Here i.e. the insight according to which 

the absorptances are weighted by an admixture ratio which corresponds to the two conductances 

the absorbed energy has to cover on each side.  
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