
Toward Scalable Transaction Processing

Evolution of Shore-MT

Anastasia Ailamaki Ryan Johnson† Ippokratis Pandis∗ Pınar Tözün

†University of Toronto
∗IBM Almaden Research Center

École Polytechnique Fédérale de Lausanne

ABSTRACT
Designing scalable transaction processing systems on mod-
ern multicore hardware has been a challenge for almost a
decade. The typical characteristics of transaction process-
ing workloads lead to a high degree of unbounded commu-
nication on multicores for conventional system designs.

In this tutorial, we initially present a systematic way of
eliminating scalability bottlenecks of a transaction process-
ing system, which is based on minimizing unbounded com-
munication. Then, we show several techniques that ap-
ply the presented methodology to minimize logging, lock-
ing, latching etc. related bottlenecks of transaction process-
ing systems. In parallel, we demonstrate the internals of
the Shore-MT storage manager and how they have evolved
over the years in terms of scalability on multicore hardware
through such techniques. We also teach how to use Shore-
MT with the various design options it offers through its
sophisticated application layer Shore-Kits and simple Meta-
data Frontend.

1. INTRODUCTION
In step with Moore’s Law, hardware gives us more and

more opportunities for parallelism rather than faster pro-
cessors over the recent years. Exploiting this parallelism is
crucial to utilize the available architectural resources and
enable faster software. However, designing scalable systems
that can take advantage of the underlying parallelism re-
mains as a challenging task for the software developers from
various fields.

Transaction processing systems exhibit high concurrency,
and therefore, offer a good opportunity for more parallelism.
However, the inherent communication in traditional high
performance transaction processing systems lead to scala-
bility bottlenecks on today’s multicore hardware. Increased
hardware parallelism does not automatically bring increased
performance for transaction processing. Even systems that
are able to scale very well on one generation of multicores

might fail to scale-up on the next generation [19].
In this two hour tutorial, We initially teach a clear method-

ology for scaling-up transaction processing systems on mul-
ticore hardware. More specifically, we classify three types of
communication in a typical transaction processing system:
unbounded, fixed, and cooperative [10]. We demonstrate that
the key to achieve scalability on modern hardware, especially
for transaction processing systems but also for any system
that has similar communication patterns, depends on avoid-
ing the unbounded communication points or downgrading
them into fixed or cooperative ones.

Then, we show how effective our methodology is in prac-
tice for scaling-up transaction processing systems on multi-
core hardware. We give examples of some techniques that
remove the unbounded communication step by step while
solving the problem of locking [9, 19], logging [12, 13], and
latching [20, 26] bottlenecks in a traditional transaction pro-
cessing system. We observe how the Shore-MT storage man-
ager [11, 23, 22] has evolved over the years through applying
such techniques. We present the implementation of some of
these techniques within Shore-MT, illustrating its internals
in parallel.

Finally, we introduce the two powerful application layers
of Shore-MT, Shore-Kits and Metadata Frontend. Shore-
Kits [22] has the implementation of various database work-
loads for Shore-MT as well as the interface to run Shore-MT
using its various design options, while the Metadata Fron-
tend enables creating database tables interactively and run-
ning basic ad-hoc queries and transactions on top of Shore-
MT.

The goal of this tutorial is to give guidelines for building
scalable transaction processing systems by eliminating not
all but only the unscalable communication in the system. In
addition, it teaches how to use a state-of-the-art open-source
scalable storage manager, Shore-MT, as a test-bed for future
research. The basic methodology introduced here, however,
can be applied to any software system that aims scalability
on modern multicore hardware.

Next we describe each part of our tutorial in detail.

2. ELIMINATING THE UNBOUNDED
The communication patterns usually require some form

of synchronization and serial execution that eventually lim-
its scalability. Shared-nothing approaches [7, 25] sidestep
the issue by disavowing nearly all communication and for-
bidding any form of tight coupling, while shared-everything
systems suffer from communication bottlenecks that limit

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148001641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


their scalability [11]. Since a transaction processing system
cannot always eliminate communication without giving up
important features, we must find ways to achieve scalability
while still allowing some communication.

We classify the communication patterns of a traditional
transaction processing system into three types: unbounded,
fixed, and cooperative.

Unbounded communication: This type of pattern arises
when the number of threads involved with a point of com-
munication is roughly proportional to the degree of par-
allelism in the system. No matter how efficient or infre-
quent the communication, exponentially-increasing paral-
lelism will eventually expose it as a bottleneck. Globally
shared data structures, which multiple agents update con-
currently, fall directly into this category. Used carelessly,
unbounded communication can easily dominate execution.

Fixed communication: At the other extreme of the
spectrum, fixed communication patterns involve a constant
or near-constant number of threads regardless of the degree
of parallelism. The pattern itself limits the amount of con-
tention that can arise. Grid-based simulations in scientific
computing (including several from the SPLASH-2 bench-
mark suite [27]) exemplify this type of communication, with
each simulated object communicating only with its nearest
neighbors in the grid. Peer-to-peer networks (e.g. [24]) em-
ploy near-fixed communication patterns as well. Producer-
consumer patterns, frequently arising in transaction process-
ing applications, also exhibit fixed communication.

Cooperative communication: A third kind of com-
munication pattern, which we call cooperative, arises when
threads work together to reduce contention while waiting
to access a shared resource. A canonical example of coop-
erative communication arises with a parallel LIFO queue:
pairs of push and pop requests that encounter each other in
flight can cooperate, eliminating themselves directly with-
out further need to compete for the underlying data struc-
ture [16]. Such communication is self-moderating: con-
tention increases as more threads communicate, allowing
more opportunities for cooperation that in turn reduces con-
tention. Other examples include combining trees and other
distributed algorithms.

Examining the three types of communicationsuggests that
unbounded communication is the main threat to scalabil-
ity. The other two types avoid unbounded contention, and
increased parallelism usually compensates for any loss of
single-thread performance. On the other hand, the impact
of communication on the performance and scalability of a
system depends on the communication pattern (i.e. how
many threads participate), and also on the communications
duration. Critical sections implement most communication
in shared-memory systems, so the length of each critical sec-
tion impacts performance strongly. Many unbounded com-
munication or critical sections are short in comparison with
others, and they do not appear as bottlenecks when profiling
the performance under low parallelism. They are difficult
to detect, let alone to prevent, but, the contention they in-
evitably trigger poses a serious threat to scalability. As code
bases mature and measure millions of lines of code (like all
the modern database engines) it is increasingly difficult to
go back and fix such lurking problems. It is tempting to im-
prove the performance of the system by attacking the longer
critical sections, regardless of the types of communication
they correspond to; though this approach has short term

benefits, bottlenecks usually recur. We argue that longer-
term scalability requires a focus on eliminating unbounded
communication.

This part of the tutorial takes 15 minutes. We first briefly
go over related work. Then, we describe each of the commu-
nication types in detail. Finally, we layout our methodology
for scalability, which requires a thorough understanding of a
system’s communication patterns and aims to eliminate the
unbounded communication.

3. EVOLUTION OF SHORE-MT
Shore-MT [11, 23] is an enhanced version of the SHORE

storage manager [5], whose micro-architectural behavior is
very close to the commercial systems [3]. Shore-MT adds
a multithreaded storage manager kernel to SHORE and is
particularly developed to adapt SHORE to multicore era,
mainly by focusing on eliminating the scalability bottlenecks
when running on multicore hardware.

Today, Shore-MT is one the most scalable open-source
shared-everything storage managers within a single database
node. It has been used in different research projects as a
test-bed both by the team who develops and maintains it
[9, 12, 19, 20, 21] and by other well-known teams in the
database and computer architecture communities [4, 8]. As
a result, it has evolved over the years quite extensively. Vari-
ous such proposals for improving transaction processing sys-
tems are prototyped by extending its internals. It encom-
passes many complementary design options that tackle the
unbounded communication in transaction processing, which
mainly stem from locking, logging, and latching.

Locking: Database locking operates at the logical (ap-
plication) level to enforce isolation and atomicity between
transactions. Techniques like Speculative Lock Inheritance
(SLI) [9] and data-oriented execution (DORA) [19] aim to
reduce contention due to locking. SLI achieves a perfor-
mance boost by sidestepping some of the unbounded com-
munication associated with the lock manager, but fails to ad-
dress the remaining (still-unscalable) communication. DORA,
in contrast, eliminates nearly all types of locking, replacing
both contention and overhead of centralized communication
with efficient, fixed communication via message passing.

Logging: Logging is a bastion of centralized communi-
cation in the transaction processing system. Most imple-
mentations use some variant of ARIES [14, 15], a write-
ahead logging (WAL) scheme that guarantees recoverability
in spite of repeated failures, as well as moving a signifi-
cant fraction of disk I/O off the critical path through asyn-
chronous page cleaning. Unfortunately, WAL requires every
update transaction in the system to communicate with the
log manager at least twice: one or more times to write-ahead
changes, and a final time to request a commit. Techniques
like Aether [12, 13], however, manage to consolidate log re-
quest and downgrade the unbounded communication due to
logging into a cooperative one.

Latching: Page latching operates at the physical (database
page) level to enforce the consistency of the physical data
stored on disk in the face of concurrent updates from mul-
tiple transactions. Eliminating the unbounded communi-
cation in locking and logging, surfaces the unscalable page
latching as the next scalability bottleneck. Extension of
DORA to the physical layers of the system through physi-
ological partitioning (PLP) [20, 26], can minimize the com-

2



munication due to latching, by ensuring single-threaded ac-
cess to most data structures.

This part of the tutorial is an hour. We illustrate the
internals of Shore-MT storage manager and also the code
parts from the different design options that implement the
various scalability improvements mentioned above.

4. SHORE-KITS
In order to study the behavior and challenges the stan-

dardized OLTP benchmarks pose on modern storage man-
agers, we implement them on top of Shore-MT and dis-
tribute them as a suite of database benchmarks, called Shore-
Kits. In other words, Shore-Kits [22] is an open-source suite
of OLTP benchmarks for the Shore-MT storage manager.

Shore-MT does not have an SQL front end, a query parser,
and an optimizer. Shore-Kits has the implementation of
the benchmarks in C++ using direct calls to Shore-MT’s
storage manager API, which is linked as a static library to
the executable. The transaction or query plans as well as
some of the index decisions are taken from the products of
various major database vendors. With some programming
effort and code refactoring, one can port Shore-Kits to other
storage managers by changing the API calls to match the
target storage manager’s API.

So far, Shore-Kits has four OLTP (TPC-B, TPC-C, TPC-
E [2], and TATP [17]), two OLAP (TPC-H [2] and SSB
[18]), and one hybrid (CH-benCHmark [6]) benchmarks. In
addition, the major functionality that administers the com-
munication in DORA and PLP transactions is also inside
Shore-Kits.

This part of the tutorial is 25 minutes. We first show how
to download and install Shore-MT and Shore-Kits. Then, we
examine the internals of Shore-Kits. Finally, we run Shore-
Kits with its different configuration options to see how to en-
able/disable the various techniques prototyped inside Shore-
MT.

5. METADATA FRONTEND
Despite the powerful API of Shore-Kits while implement-

ing various standardized database benchmarks, it has a lot
of overhead if one wants to run simple queries or transactions
over a simple database table. Therefore, we have recently
developed a metadata frontend for Shore-MT. It can inter-
actively switch between different databases, create or drop
tables and indexes in a database, and run ad-hoc requests.
Moreover, it provides a brief API to be able to easily wrap it
up using tools like SWIG [1]. Thus, it is straightforward to
automate the process of running simple micro-benchmarks
by writing scripts in different programming languages.

This part of the tutorial is 20 minutes. We initially demon-
strate how to use the frontend to perform simple tasks. Then,
we show how one can use different scripting languages to au-
tomatically create and run micro-benchmarks with this fron-
tend.

6. CONCLUSIONS
We teach a clear methodology to achieve scalable transac-

tion processing on multicores. Our main observation is that
not all the communication within a transaction processing
system is harmful in terms of scalability. We have to iden-
tify the unbounded communication patterns and find ways
to either completely remove them or turn them into fixed

or cooperative types of communication. Throughout this
tutorial, we demonstrate several techniques that apply this
methodology to eliminate the scalability bottlenecks (such
as locking, logging, and latching) in typical transaction pro-
cessing systems. In parallel, we present the internals and
evolution of the Shore-MT storage manager based on these
techniques, and introduce its application layers Shore-Kits
and Metadata Frontend.

7. BIOGRAPHY
Anastasia Ailamaki (anastasia.ailamaki@epfl.ch)
Anastasia Ailamaki is a Professor of Computer Sciences

at the École Polytechnique Fédérale de Lausanne (EPFL)
in Switzerland. Her research interests are in database sys-
tems and applications, and in particular (a) in strengthening
the interaction between the database software and emerging
hardware and I/O devices, and (b) in automating database
management to support computationally-demanding and de-
manding data-intensive scientific applications. She has re-
ceived a Finmeccanica endowed chair from the Computer
Science Department at Carnegie Mellon (2007), a Euro-
pean Young Investigator Award from the European Science
Foundation (2007), an Alfred P. Sloan Research Fellowship
(2005), eight best-paper awards at top conferences (2001-
2012), and an NSF CAREER award (2002). She earned her
Ph.D. in Computer Science from the University of Wisconsin-
Madison in 2000. She is a senior member of the IEEE and a
member of the ACM, and has also been a CRA-W mentor.

Ryan Johnson (ryan.johnson@cs.utoronto.ca)
Ryan Johnson is an Assistant Professor at the University

of Toronto specializing in systems aspects of database en-
gines, particularly in the context of modern hardware. He
contributed heavily to the initial development and perfor-
mance tuning of Shore-MT. He graduated with M.S. and
PhD degrees in Computer Engineering from Carnegie Mel-
lon University in 2010, after completing a B.S. in Computer
Engineering at Brigham Young University in 2004. In addi-
tion to his work with database systems, Johnson has inter-
ests in computer architecture, operating systems, compilers,
and hardware design.

Ippokratis Pandis (ipandis@us.ibm.com)
Ippokratis Pandis is a Research Staff Member (RSM) at

IBM Research - Almaden in the Advanced Database Solu-
tions group (K55G). Prior joining IBM, Ippokratis gradu-
ated from Carnegie Mellon University where he worked on
scalable transaction processing on modern hardware archi-
tectures. During the last year of his graduate studies, he was
also affiliated with the Data-Intensive Applications and Sys-
tems (DIAS) Laboratory of École Polytechnique Fédérale
de Lausanne (EPFL). His current research focuses on effi-
cient, scalable data management and he is actively involved
in IBM’s Blink Ultra (BLU) project.

Pınar Tözün (pinar.tozun@epfl.ch)

Pınar Tözün is a fourth year PhD student at École Poly-
technique Fédérale de Lausanne (EPFL) working under su-
pervision of Prof. Anastasia Ailamaki in Data-Intensive Ap-
plications and Systems (DIAS) Laboratory. Her research fo-
cuses on scalability and efficiency of transaction processing
systems on modern hardware. Before starting her PhD, she
received her BSc degree in Computer Engineering depart-
ment of Koç University in 2009 as the top student.

3



8. REFERENCES
[1] Simplified wrapper and interface generator (SWIG).

Available at http://www.swig.org.

[2] TPC transcation processing performance council.
Available at http://www.tpc.org/default.asp.

[3] A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page
layouts for relational databases on deep memory
hierarchies. VLDB J., 11(3):198–215, 2002.

[4] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos.
SLICC: Self-Assembly of Instruction Cache Collectives
for OLTP Workloads. In MICRO, pages 188–198,
2012.

[5] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up persistent applications. In
SIGMOD, pages 383–394, 1994.

[6] R. Cole, F. Funke, L. Giakoumakis, W. Guy,
A. Kemper, S. Krompass, H. Kuno, R. Nambiar,
T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas. The mixed workload
CH-benCHmark. In DBTest, pages 8:1–8:6, 2011.

[7] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-i. Hsiao, and R. Rasmussen. The
Gamma database machine project. IEEE Transactions
on Knowledge and Data Engineering - TKDE,
2(1):44–62, 1990.

[8] G. Graefe, H. Kimura, and H. Kuno. Foster B-trees.
ACM TODS, 37(3):17:1–17:29, 2012.

[9] R. Johnson, I. Pandis, and A. Ailamaki. Improving
OLTP scalability using speculative lock inheritance.
PVLDB, 2(1):479–489, 2009.

[10] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating
unscalable communication in transaction processing.
VLDB J., 2013.

[11] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In EDBT, pages 24–35, 2009.

[12] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Aether: a scalable approach to
logging. PVLDB, 3:681–692, 2010.

[13] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis,
and A. Ailamaki. Scalability of write-ahead logging on
multicore and multisocket hardware. VLDB J.,
21:239–263, 2012.

[14] C. Mohan. ARIES/KVL: a key-value locking method
for concurrency control of multiaction transactions

operating on B-tree indexes. In VLDB, pages 392–405,
1990.

[15] C. Mohan and F. Levine. ARIES/IM: an efficient and
high concurrency index management method using
write-ahead logging. In SIGMOD, pages 371–380,
1992.

[16] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit.
Using elimination to implement scalable and lock-free
FIFO queues. In SPAA, pages 253–262, 2005.

[17] S. Neuvonen, A. Wolski, M. Manner, and V. Raatikka.
Telecom application transaction processing benchmark
(TATP), 2009. Available at
http://tatpbenchmark.sourceforge.net/.

[18] P. O’Neil, B. O’Neil, and X. Chen. Star schema
benchmark (SSB), 2009. Available at
http://www.cs.umb.edu/ poneil/StarSchemaB.PDF.

[19] I. Pandis, R. Johnson, N. Hardavellas, and
A. Ailamaki. Data-oriented transaction execution.
PVLDB, 3(1):928–939, 2010.

[20] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki.
PLP: page latch-free shared-everything OLTP.
PVLDB, 4(10):610–621, 2011.

[21] D. Porobic, I. Pandis, M. Branco, P. Tözün, and
A. Ailamaki. OLTP on hardware islands. PVLDB,
5(11):1447–1458, 2012.

[22] Shore-MT. Shore-MT and Shore-Kits Code
Repositories. Available at
https://bitbucket.org/shoremt.

[23] Shore-MT. Shore-MT Official Website. Available at
http://diaswww.epfl.ch/shore-mt/.

[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
SIGCOMM, pages 149–160, 2001.

[25] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The end
of an architectural era: (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[26] P. Tözün, I. Pandis, R. Johnson, and A. Ailamaki.
Scalable and dynamically balanced shared-everything
OLTP with physiological partitioning. VLDB J.,
22(2):151–175, 2013.

[27] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: characterization
and methodological considerations. In ISCA, pages
24–36, 1995.

4


