
Multi-Grain Coherence Directories

Jason Zebchuk
Department of Electrical and

Computer Engineering
University of Toronto

Babak Falsafi
EcoCloud, EPFL

Andreas Moshovos
Department of Electrical and

Computer Engineering
University of Toronto

ABSTRACT
Conventional directory coherence operates at the finest gran-
ularity possible, that of a cache block. While simple, this
organization fails to exploit frequent application behavior:
at any given point in time, large, continuous chunks of
memory are often accessed only by a single core.

We take advantage of this behavior and investigate re-
ducing the coherence directory size by tracking coherence at
multiple different granularities. We show that such a Multi-
grain Directory (MGD) can significantly reduce the required
number of directory entries across a variety of different
workloads. Our analysis shows a simple dual-grain directory
(DGD) obtains the majority of the benefit while tracking
individual cache blocks and coarse-grain regions of 1KB to
8KB. We propose a practical DGD design that is transparent
to software, requires no changes to the coherence protocol,
and has no unnecessary bandwidth overhead. This design
can reduce the coherence directory size by 41% to 66% with
no statistically significant performance loss.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

General Terms
Design,Performance

Keywords
Cache Coherence, Coherence Directory

1. INTRODUCTION
As chips incorporate ever more cores, coherence direc-

tories are increasingly used to maintain coherence among
on-chip caches [10, 1, 2, 26, 29]. Compared to other
options, directory-based coherence generally uses less net-
work bandwidth and can easily adapt to arbitrary on-chip

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
MICRO’46 December 7-11, 2013, Davis, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2638-4/13/12 ...$15.00.
http://dx.doi.org/10.1145/2540708.2540739

network topologies. These benefits offer scalable coherence
solutions that enable future processors with tens to hundreds
of cores to maintain the convenience and compatibility
of coherent shared memory [20]. However, even scalable
directory designs can incur significant area and energy
overheads, especially when implemented in performance-
per-watt optimized many-core processors where every square
millimetre and millijoule counts. Existing proposals might
scale well, but they cannot be shrunk beyond certain
limits without sacrificing performance. This work explores
alternative directory designs that can push beyond these
limitations while maintaining performance.

Traditionally, multiprocessors use one of three basic coher-
ence directory types. The size of Duplicate Tag directories
scales well, but their highly associative structures result
in poor latency and low energy efficiency, making them
difficult to implement with many cores [5, 14, 32]. In-cache
directories are energy efficient and convenient for systems
with shared caches, but Martin et al. [20] and Zebchuk
et al. [32] have demonstrated that Sparse directories can
offer similar benefits with less area and greater flexibility.
Sparse, or tagged, directory designs sacrifice area scalability
for energy efficiency and speed by using low-associative
structures where each entry represents the sharing pattern
for one block [16]. The choice of sharing pattern represen-
tation involves a trade-off between precision and scalability,
with less precise representations increasing bandwidth and
lowering performance. Additionally, limited associativity
causes conflict misses that forcibly invalidate cached blocks.
Over-provisioning reduces this problem but increases area.

Past work has addressed many shortcomings of sparse
directories; nonetheless, sparse directories still require sig-
nificant on-chip resources, and practical concerns impose
lower limits on their size [20]. Alternate sharing pat-
tern representations [3, 9, 16, 24, 33] and hierarchical
approaches [15, 24, 31, 27] reduce the size of individual
entries and improve scalability. Other approaches, such as
Cuckoo directories [12], and SCD [24] limit the need for over-
provisioning and avoid excessive forced invalidations. But
while Cuckoo directories and SCD significantly improve the
area efficiency of sparse directories, the worst-case scenario
still requires them to have at least a 1:1 ratio between the
number of directory entries and the number of blocks in the
private caches. Unfortunately, near worst-case conditions
do happen. Some workloads, especially multi-programmed
ones, regularly create scenarios where every core caches a set
of mostly unique blocks. This work explores the potential
to reduce the directory size below the 1:1 ratio while still

359

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148001628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

effectively handling worst-case behavior. The technique
presented borrows ideas from SCD and Cuckoo directories,
and it can be combined with SCD, as Section 3.4.5 discusses.

This work’s motivation is that directories only need to
capture a snapshot of sharing behavior at each point in
time. While many cores may access a block at different
times, at any given moment that block might only by cached
by a single core. Thus, nominally shared blocks are often
temporarily private. Further, many applications exhibit a
high degree of spatial locality that extends to their sharing
behavior, resulting in large, contiguous, temporarily private
memory regions [4]. Tracking coherence for such regions
should require storing much less information than tracking
arbitrary sharing patterns for each block. Even when every
block in the private caches is unique, it is highly unlikely
that no spatial locality exists, i.e., every block belongs to a
unique memory region.

Alisafaee recently proposed Spatiotemporal Coherence
Tracking (SCT) as a mechanism for exploiting temporarily
private memory regions [4]. While SCT reduces the direc-
tory size, its approach suffers from several shortcomings:
(i) new race conditions complicate the coherence protocol
and increase verification costs; (ii) unnecssary speculative
snoop messages waste bandwidth; (iii) the structure and
operation are not clearly defined; (iv) energy consumption
increases; and (v) performance suffers and lacks robustness,
with slowdowns up to 16%. Sections 4 and 5 discuss these
issues further.

This work takes a new, systematic approach to exploiting
the phenomenon of temporarily private regions. First, we
describe a conceptual multi-grain directory (MgD) – an
idealized directory that dynamically refines the coherence
granularity and tracks the largest private regions possible.
Our analysis of MgD finds that most of the benefit comes
with only two granularities: fine-grain cache blocks, and
coarse-grain regions between 1 kB and 4 kB in size. Follow-
ing this analysis, we propose a practical dual-grain coherence
directory design (DgD), and evaluate its performance across
several workloads with different program behaviors. While
DgD might superficially appear to resemble SCT, substan-
tive differences make DgD consistently better in terms of
performance and energy efficiency.

In summary, this work makes the following contributions:

• It analyzes applications’ transient sharing behavior
at a range of granularities, and demonstrates the
potential reduction in the number of entries with a
multi-grain coherence directory.
• It shows a dual-grain directory likely offers the best

tradeoff between reduced size and complexity, and
regions between 1 kB and 4 kB provide the most
benefit across a range of workloads.
• It demonstrates a practical DgD design that: a) is en-

tirely transparent to software; b) requires no coherence
protocol changes; c) requires no unnecessary snoops
to search for cache blocks; d) introduces no additional
delays on the critical path; e) adapts storage usage
based on workload behavior; f) reduces the directory
area by 41% with minimal performance loss; and
g) reduces the combined L2, L3 and directory energy
per instruction by 1%.

Section 2 describes and analyzes the idealized MgD.
Section 3 presents a practical DgD design, which Section 4

then compares to the previously proposed SCT. Section 5
evaluates DgD. Section 6 outlines related work. Finally,
Section 7 summarizes this work’s contributions.

2. IDEAL MULTI-GRAIN DIRECTORY
An ideal multi-grain directory (iMgD) attempts to dy-

namically refine the coherence granularity to track as many
individual cache blocks with as few directory entries as
possible. This approach exploits common program behavior
that results in large continuous memory regions being
accessed by only one core at any given time. Such regions
include truly private data that is exclusively accessed by
one core, and a larger class of data that is nominally shared
but temporarily private (i.e., accessed by just one core for
a period of time, although other cores access it at other
times). For each temporarily private region, iMgD uses
only a single entry instead of using one entry for each block
in the region, significantly reducing the number of directory
entries compared to traditional designs. In the extreme case
of completely segregated memory spaces, each core might
require just one directory entry.

Each iMgD entry tracks either a temporarily private
memory region, or a single cache block with any number
of sharers. The size of each region is dynamically adjusted
to minimize the number of directory entries. To simplify the
conceptual design, regions are restricted to be aligned and to
have a size that is a power of two between 128 B (two cache
blocks) and 1 GB (sharing behavior mostly flattens out for
larger regions). While exploring this idealized design, we
ignore details about the format and size of directory entries
and focus our exploration on the total number of entries.

iMgD aggressively merges, splits, and eliminates direc-
tory entries to minimize their total number. Practical
implementation considerations may favor a design that
is less aggressive; or, conversely, actual implementation
details might enable additional optimizations. Regardless,
the role of iMgD is to assess the potential benefits of
adaptively refining the directory’s coherence granularity. As
a result, this section focuses on the key aspects of this
concept and purposefully delays consideration of practical
implementation details.

2.1 iMGD Operation
On an initial access, iMgD assigns a region with the

coarsest possible granularity. Thus, the first access creates
an entry for the 1 GB region containing the requested block
and assigns that region to the requesting core. Subsequent

core 1

core 0

core 0

core 0

core 1

core 0

core 0

core 0

cached block

directory entry

Figure 1: Example of splitting an iMgD directory entry.

360

2 3 4 5 6 7 8 ideal
0

0.2

0.4

0.6

0.8

1

Number of Fixed Region Granularities

R
el

a
ti

ve
N

u
m

b
er

o
f

E
n

tr
ie

s

apache

canneal

cassandra

classification

cloud9

db-a

db-b

fluidanimate

(a)

2 3 4 5 6 7 8 ideal
0

0.2

0.4

0.6

0.8

1

Number of Fixed Region Granularities

R
el

a
ti

ve
N

u
m

b
er

o
f

E
n

tr
ie

s

blackscholes

dedup

nutch

qry6

qry16

qry17

vips
zeus

(b)

Figure 2: Average entry count for iMgD relative to Sparse1×.

1
2
8

B
2
5
6

B
5
1
2

B
1

k
B

2
k
B

4
k
B

8
k
B

1
6

k
B

3
2

k
B

6
4

k
B

1
2
8

k
B

2
5
6

k
B

5
1
2

k
B

1
M

B

0

0.2

0.4

0.6

0.8

1

Region Granularity

R
el

a
ti

ve
N

u
m

b
er

o
f

E
n

tr
ie

s

apache

canneal

cassandra

classification

cloud9

db-a

db-b

fluidanimate

(a)

1
2
8

B
2
5
6

B
5
1
2

B
1

k
B

2
k
B

4
k
B

8
k
B

1
6

k
B

3
2

k
B

6
4

k
B

1
2
8

k
B

2
5
6

k
B

5
1
2

k
B

1
M

B

0

0.2

0.4

0.6

0.8

1

Region Granularity
R

el
a

ti
ve

N
u

m
b

er
o

f
E

n
tr

ie
s

blackscholes

dedup

nutch

qry6

qry16

qry17

vips
zeus

(b)

Figure 3: Average entry count for iDgD relative to Sparse1×.

accesses from the same core to the blocks in the same region
reuse the same directory entry. If another core accesses this
region, iMgD splits the entry into smaller regions such that
each entry represents either a private region or an individual
cache block. Entries are only created for those regions with
blocks present in the private caches. Figure 1 illustrates
an example of this process where, initially, only core 0 has
blocks in some region. A subsequent request from core 1
results in splitting the directory entry into three new entries
with finer granularity, while omitting entries for the empty
half of the region.

When a core evicts a block from its private cache, iMgD
attempts to merge entries to create the largest possible
private region. Following the example in Figure 1, when
the reverse scenario happens and core 1 evicts the cache
block, iMgD will combine the two directory entries for the
remaining blocks cached by core 0 and recreate the original
entry for the large region of memory now that is temporarily
private again.

2.2 Entry Count Reduction with iMGD
To evaluate iMgD’s potential, we model a 16-core CMP

with 256 kB private L2 caches similar to the Nehalem
architecture [1]. Section 5.1 details our methodology. In
addition to iMgD, we considered constrained MgD designs
with two to eight fixed granularities. We chose granularities
that optimized behavior across all workloads based on an
analysis of iMgD using all possible region granularities.
Since all workloads use the same fixed granularities, some
designs may not be optimal for every workload.

Figure 2 shows the relative entry counts for these MgD
designs. The x-axis indicates the number of fixed gran-

ularities for each constrained MgD (the ideal design has
24 granularities).1 The results are presented in Figures 2a
and 2a. Each graph reports the the number of directory
entries relative to the number of unique blocks in the private
caches. A ratio of one is equivalent to the number of entries
in a duplicate tag directory or an aggressive sparse directory
design (Sparse1×), and comparable to the number of entries
in SCD or Cuckoo directories. While these results focus
on the average number of entries, practical implementations
have to either provide more storage to support the worst
case, or perform some forced evictions to maintain a smaller
size. Section 5 demonstrates practical designs can signifi-
cantly reduce directory size without sacrificing performance.

Figure 2 indicates iMgD can reduce the number of
directory entries by more than 60% for all workloads except
canneal and by up over 90% for blackscholes, classification,
cloud9, and vips. Even in the worst case of canneal the
reduction is at least 34%. Canneal implements simulated
annealing and has a very irregular access pattern and low
spatial locality.

While these results show significant potential for reducing
the number of directory entries, the unrestricted iMgD
design surprisingly offers little benefit over constrained

1The region sizes range from individual 64 B cache blocks to
1 GB regions. For each design, we use a single set of region
sizes that minimizes the average number of entries across
all workloads. The specific combinations are: 2: {64 B,
4 kB}, 3: {64 B, 1 kB, 64 kB}, 4: {64 B, 1 kB, 32 kB, 1 MB},
5: {64 B, 512 B, 4 kB, 64 kB, 2 MB}, 6: {64 B, 512 B, 4 kB,
32 kB, 256 kB, 4 MB}, 7: {64 B, 512 B, 2 kB, 16 kB, 128 kB,
1 MB, 8 MB}, 8: {64 B, 512 B, 2 kB, 16 kB, 128 kB, 1 MB,
4 MB, 32 MB}.

361

Is there a block
entry?

Use block entry Is there a region
entry?

Allocate new region
entry

Is the region owned
by the requester?

Use the existing
region entry.

Split the region to
create a block entry.

Start

Yes No

Yes No

Yes No

Figure 4: Typical DgD access.

designs. Overall, two fixed granularities offers nearly the
same potential benefit as continuously adapting between
24 different granularities. Intuitively, two observations can
help explain these results: (1) Common programming and
operating system techniques, such as the use of pages,
naturally divide memory into fixed granularities. While
virtual addresses are contiguous within a physical page,
adjacent virtual pages are not necessarily contiguous within
physical memory. This behavior can create a “natural”
granularity for temporarily private regions while artificially
reducing opportunities for larger granularities. (2) For
designs used in Figure 2, the smallest region larger than an
individual cache block always contains at least eight cache
blocks. Thus, the first level alone is capable of reducing
the number of directory entries by up to 87.5% in an ideal
scenario. Instances of significant spatial locality obtain
large benefits from the first few granularities, and additional
granularities provide diminishing returns.

Figure 3 further analyzes the behavior of ideal dual-grain
directory (iDgD) designs which track individual blocks and
temporarily private regions of one fixed size. Region sizes
range from 128 B (two blocks) up to 128 MB(two million
blocks). Most workloads see significant improvement as the
region increases up to 1 kB. Behavior then usually stabilizes
until extremely large regions eventually exceed the size of
the applications temporarily private regions, causing iDgD
to track more individual cache blocks.

As mentioned previously, the page size makes a natu-
ral choice for the region size, and Figure 3 shows that
most workloads perform well with 8 kB regions that match
our processor’s page size. However several workloads,
particularly fluidanimate, work better with smaller region
sizes. Conversely, classification can take advantage of regions
significantly larger than 8 kB, benefiting from its use of
super-pages. Overall, regions between 1 kB and 4 kB result
in the fewest directory entries, and any practical dual-grain
directory design should obtain the majority of the benefit
with any of these sizes.

3. DESIGN OF A PRACTICAL DUAL-
GRAIN DIRECTORY

This section describes a practical dual-grain

Block Tag Sharers

Region Tag PresentOwner1

0

16

164

25

21

Block Entry:

Region Entry:

V

V

LRU

LRU

Figure 5: Formats of block and region entries in DgD.

directory (DgD) implementation that can achieve the
potential area savings suggested by the previous section.
In addition to reducing the directory size, our DgD design
has the following properties: 1) Each access requires only
a single lookup. 2) One structure holds both block and
region entries in any combination. 3) Low-associativity
reduces lookup costs, while skew-associativity and Zcache-
style replacement reduce conflict misses. 4) No coherence
protocol changes are required. 5) Software transparency for
applications and the OS.

Similar to the conceptual iDgD, the practical DgD
structure contains a pool of entries, each representing either
a single cache block or a coarse grain memory region. A
typical directory request will proceed as Figure 4 shows. In
the common case, a request will find and use a matching
block or region entry for the same core. If no matching
entry is found, one is created for the region. Finally, requests
that find a region entry from another core will split it and
create a new entry for the requested block. Beyond this basic
operation there are several important questions to address:

⇒ What is the format of a directory entry (Sec. 3.1)?
⇒ How are entries located (Sec. 3.2.1) and allocated

(Sec. 3.2.2) in the directory structure?
⇒ How are entries updated (Sec. 3.2.1 and Sec. 3.4)?
⇒ What happens when a region entry is evicted

(Sec. 3.2.3)?
⇒ How are region entries split into block entries

(Sec. 3.3)?
⇒ How are block entries fused into region entries

(Sec. 3.3)?

The proposed DgD design balances the conflicting goals of
reducing area and latency while maintaining simplicity and
efficiency. The rest of this section describes the structure
and operation of DgD and addresses the above questions.

3.1 DgD Entry Format and Use
Figure 5 shows DgD block and region entry formats. The

first bit indicates whether it is a block or region entry.
Both entry types contain a tag to identify the region or
block address, a valid bit (V), and replacement policy bits
(indicated as LRU bits, but other policies are possible).
Block entries store a sharing vector with one bit per core.
Region entries contain two unique fields: (1) the owner
identifies the private cache currently caching blocks from the
region, and (2) the present vector indicates which blocks the
owner has cached. The figure shows an example for a 16-
core CMP where block entries have a 16-bit sharing vector,
and regions are 1 kB and contain sixteen 64 B blocks. As
Figure 5 shows, both entry types have the same size. For
16 to 64 cores, region and block entries can be kept the
same size while using regions between 1 kB and 4 kB (see
results in Section 2.2). In these cases, the owner field in the
region entry can be accommodated by the reduced length

362

B:A7R:B
R:A

B:B6B:A1
B:B3
B:B2

0 1 2 3

Ways

Se
ts

Figure 6: Simultaneous lookup of region and block entries.

of the region tag compared to the block tag, using an extra
bit from the sharer field when the number of cores is not a
power of two.

3.2 Allocating and Locating Entries
DgD provides fast, efficient lookups while making ef-

fective use of limited storage capacity. It uses a low-
associative structure that requires just one lookup to find
sharing information for any block. Moreover, replacements
benefit from the equivalent of a highly associative structure
to reduce conflict misses and increase utilization.

A single set-associative structure stores block and region
entries. Each directory way uses a different hash function,
similar to a skew-associative cache [25]. The first bit of the
entry (Figure 5) is concatenated with either the block tag or
the region tag (zero padded) to produce the input to each
set index hash function.

3.2.1 Entry Lookup
A request might require information from either a block or

a region entry. A simple design would first search for a block
and then a region entry (Section 3.3 explains why this order
cannot be reversed). However, such serialization would add
delay to the many requests requiring two accesses. DgD
avoids these delays by carefully mapping block entries and
corresponding region entries to different ways and searching
for both entry types in parallel.

On each access, DgD searches half of the ways for a region
entry and half for a block entry. The region tag is used as the
input to a hash function that selects which ways search for
a block and which for a region. Thus, for a given region, the
region entry is restricted to half of the ways, and the block
entries are restricted to the other half. However, across all
regions, the block and region entries are distributed across
all ways and any entry can track either a block or region.

With this organization, one lookup suffices to find either
a block, or region entry, or both (Section 3.3 explains when
both entry types might co-exist for a given request). Figure 6
shows an example layout with four ways, in which the entry
for region A (R:A) is located in way 0, while entries for two
blocks in region A (B:A1 and B:A7) are mapped to ways 2
and 3. For region B, on the other hand, the block entries are
mapped to ways 1 and 3, while the region entry is allocated
in way 2 (but could also have been allocated in way 0).

Splitting the ways between regions and blocks for each
region effectively reduces lookup associativity. However,
the replacement policy described next mitigates this by
effectively increasing the associativity when performing
replacements. The results in Section 5 indicate DgD
performs well with an associativity of eight.

3.2.2 Replacement Policy
When replacing an entry, DgD takes advantage of the

different, per way hash functions and tries to shuffle the
existing entries to accommodate the allocation without
evicting any valid entry. Similar to Zcache [23] and
SCD [24], DgD performs a breadth-first search of possible
replacement candidates looking for an invalid entry. The
search terminates when an available slot is located, or when
a limit has been reached for the number of lookups to
perform. If no invalid entries were found, DgD uses a global
timestamp replacement policy – each block stores a 4-bit
timestamp and the oldest block is selected as a victim [23].
Block and region entries are selected with equal preference.
Once a victim is selected, entries are moved within the
structure to replace the victim and make a place available
for the newly allocated entry. This replacement process can
require many directory lookups, so an insertion buffer is used
to delay the replacement process and remove it from the
critical path.

3.2.3 Back-Invalidation of Cached Blocks
When DgD evicts an entry, any cache blocks it represents

are invalidated. For block entries, invalidations are multicast
to all sharers identified in the sharing vector. For region
entries, invalidations are sent to the region owner for each
block indicated in the present vector. This process could
be optimized with a special region invalidate message that
sends the present vector to the cache, but we do not explore
this option. Directory evictions are buffered to remove them
from the critical path.

3.3 Splitting and Merging Region Entries
While a region is temporarily private and cached by a

single owner, all blocks in that region can be represented by
one DgD entry. When a request for a block in such a region
arrives from a core other than the owner, the region becomes
shared and needs to be split. DgD creates a new entry for
the block and marks the requesting node as a sharer. If the
region owner already has a copy of the block, then the owner
is also added to the sharing vector, and the corresponding
bit in the present vector is cleared.

Once a block entry has been split from a region entry, the
region is no longer temporarily private. However, the region
entry can still persist in the directory. Additional block
entries can be created on-demand as blocks are accessed
by cores other than the owner. Subsequent requests for
these blocks are guaranteed to find and use the block entries
since DgD always searches for block and region entries in
parallel. 2 Thus, even though the region is no longer strictly
private, it can still be used to track individual blocks that
remain private to the region owner. When the region owner
has no more private blocks, DgD removes the region entry.

By letting region entries persist after being split, DgD
differs significantly from the iMgD concept. For the
example in Figure 1, iMgD splits a single region entry into
three smaller entries when a second core accessed a block
in the private region. In contrast, DgD keeps the existing
region entry owned by core 0, and only creates one new
block entry for the incoming block accessed by core 1. This
simplifies the process of splitting entries compared to iMgD,
and reduces how many entries need to be stored.

2This is why serial lookups would always search for a block
entry before searching for a region entry.

363

Whenever a region entry is evicted, or when a sharer
is removed from a block entry, it might be possible to
merge multiple block entries into a region entry. The iMgD
design of Section 2 aggressively takes advantage of all such
opportunities, but for DgD this would require scanning for
all possible block entries within the same region. This
could also result in thrashing behavior if shared blocks
frequently move back and forth between cores. To avoid
such overheads, DgD does not aggressively merge blocks
into region entries. Instead DgD only attempts to merge
entries when evicting a block entry with a single sharer. In
this scenario, DgD searches for a region entry, and if the
block sharer owns the region, then DgD merges the block
back into the region, creating space in the directory without
evicting any cached blocks.

3.4 Putting it All Together
To clarify DgD’s operation, this section walks through

the possible scenarios for a read request that arrives at the
DgD directory. Other requests, e.g. writes, follow a similar
sequence of actions. First, the directory performs a single
lookup, searching half of the ways for a block entry, and the
other half for a region entry. Once this lookup completes,
there are four possible scenarios:

1. No block or region entry exist. DgD creates a new
region entry, sets the owner, and marks the requested
block in the present vector. The block cannot have
any sharers so it is retrieved from either the shared
cache or from memory. No special actions are required
to account for block entries that might exist for other
blocks within the region, and no present bits are set
for such blocks, as any accesses to them will always
use the block entry, as item 3 describes.

2. Only a block entry exists. The sharing vector pro-
vides information about all the sharers for this block.
A read request can either be satisfied from the shared
cache, or from one of the sharers. A write request
invalidates the other sharers. In both cases, the
sharing vector is updated to indicate the new set of
sharers.

3. Both a block and region entry exist. The block
entry takes precedence, and DgD behaves as if only
the block entry exists. The region entry does not track
the requested block. This simplifies the required logic
and helps avoids potential thrashing when actively
shared blocks become temporarily private.

4. Only a region entry exists. Two scenarios can occur:

i) The requester is the region owner. The region
is still private, so the block can be retrieved from
memory or the shared cache, and the block is then
added in the region’s present vector.

ii) The requester is not the region owner. A new
block entry is created. If the block is marked
present in the region entry, then this bit is cleared
in the present vector and the owner is added
to the sharing vector of the new block entry.
Once the new entry has been created, operation
proceeds the same as for other cases that use a
block entry.

All private caches notify the directory on block replace-
ments to keep the directory up to date. Block entries in the
directory are marked invalid when they no longer have any
sharers. Similarly, region entries are marked invalid when
the owner no longer has any blocks cached from the region.

3.4.1 Effects on the Coherence Protocol
DgD does not change the coherence protocol – it only

requires the common features of clean evict notifications
and a sharing vector in the directory. DgD does not add
any unnecessary snoops to check if blocks in a region might
be cached by the owner. The present vector always contains
precise information without the need for extra snoops. DgD
does not introduce any delays on the critical path. A single
lookup locates block and region entries in parallel, and an
insertion queue removes long-latency insertions from the
critical path.

DgD can operate correctly with alternative sharing rep-
resentations, and without clean evict notifications. Such
changes might increase bandwidth or forced invalidations.

3.4.2 Deadlock and Starvation
DgD reserves insertion queue slots before initiating new

requests to avoid deadlock scenarios. The queue allows
atomic insertions and replacements off the critical path
without introducing race conditions. Further, DgD requires
no coherence protocol changes that might introduce new
deadlock, livelock or race conditions.

3.4.3 Effect of Forced Evictions
DgD markedly reduces directory size. Effective DgDs

have fewer directory entries than there are blocks in the pri-
vate caches. For workloads with pervasive region sharing or
low spatial locality, conflict misses in the directory forcibly
evict cached blocks. However, our results demonstrate
that temporarily private regions are common in almost all
parallel applications and the frequency of forced evictions is
low for practically sized DgDs.

3.4.4 Multi-Programmed Workloads
While this work does not study multi-programmed work-

loads, we expect DgD to excel in this environment, since it
should naturally result in many temporarily private regions.
Thus, DgD should be able to reduce directory storage
requirements without sacrificing performance not only for
parallel workloads, but also for multi-programmed work-
loads. Demonstrating DgD’s utility for multi-programmed
workloads is left for future work.

3.4.5 Scaling DgD to Hundreds of Cores
DgD’s scalability is limited by the block entries’ sharing

vectors. However, DgD can easily be extended to use other
sharing pattern representations to reduce the size of block
entries for large core counts. One interesting approach
would combine SCD’s hierarchical entries [24] with DgD’s
dual-grain approach. The resulting structure would use
present vectors for region entries, and block entries would
use SCD’s various hierarchical formats. Cache blocks with
fewer entries would use one directory block entry, and
widely shared blocks would use multiple block entries to
track all sharers. The resulting directory structure could
easily scale to hundreds or thousands of sharers, and the
combined approach would likely require much less area than

364

the original SCD design.

3.4.6 Tile Interleaving
A distributed DgD directory works best when the tile

interleaving is the same as the region size. However, DgD
can use non-contiguous regions to allow more fine grain
interleaving. Section 5 shows that a 1 kB interleaving for
DgD does not cause a significant performance loss compared
to the 64 B interleaving used with a sparse directory; thus
we do not explore alternative interleavings in this work.

4. DGD VS. SCT
Alisafaee has proposed Spatiotemporal Coherence Track-

ing (SCT) which follows a similar high-level intuition as
DgD [4]. Section 2 provides unique evidence that the dual-
grain approach used by both DgD and SCT offers the best
trade-off between complexity and reduced directory size.
However, SCT has a number of deficiencies. It uses an
imprecise representation that causes 1) increased coherence
traffic, 2) directory and cache scanning, and 3) new protocol
races; and it also effectively couples block and region entries,
increasing contention and energy consumption.

SCT’s single directory structure contains both block and
region entries. Block entries use the same format as DgD
(Figure 5). Region entries contain a region tag, a region
owner, and two counters. The private block counter (PBC)
tracks the number of private blocks cached by the region
owner, and the shared block counter (SBC) tracks the
number of SCT block entries within the region. The first
access to a region creates a new region entry belonging to
the requester. Subsequent requests within the region from
the owner increment the PBC, and requests from other cores
allocate block entries and increment the SBC.

Many of SCT shortcomings result from its use of counters.
The SBC and PBC are inherently imprecise – they indicate
only the number of blocks without specifying which blocks.
The following paragraphs outline the problems caused by
this imprecision.

Unnecessary Snoops and Scanning: When the pri-
vate block counter for a region is non-zero, the owner might
cache any block in the region, and requests from other cores
often need to speculatively probe the region owner’s cache.
Also, when evicting a region entry, SCT must scan the
directory to find all block entries counted by the SBC, and
scan the region owner’s cache to find all blocks counted
by the PBC. This changes the coherence protocol, wastes
network bandwidth, and increases contention and energy
consumption due to extra lookups.

Protocol Races: Perhaps more importantly, the SCT’s
imprecision causes new races that must be properly handled
by the coherence protocol. For example, in Figure 7 the
directory evicts a block entry and invalidates its sharers,
while at the same time the region owner tries to evict the
same block. If the evict notification arrives at the SCT
directory after the block entry has been removed, it appears
to for a private region block, and a näıve implementation
would decrement the PBC counter at this point, resulting in
an inconsistent state. This is just one example of a potential
new race introduced by SCT. SCT might introduce other
race conditions, and it is not clear how easy they might be
to handle, or how difficult the protocol might be to verify.

Coupling: SCT’s shared block counter creates a coupling
between region and block entries. Accesses that create or

SCT Directory

Evict block entry

Remove block entry.
Decrement SBC in region entry.

Decrement PBC in region entry?

Region Owner
Private Cache

Invalidate Evict cache block

Ack

Evict
Notification

Error!

Figure 7: New protocol race with SCT.

remove a block entry must also update the region entry,
increasing energy consumption in the directory. Further,
a region entry must exist for every block entry, increasing
contention and conflict misses in the directory.

SCT Structure: SCT describes neither the detailed
structure it uses, nor the precise mechanism for accessing
that structure. The paper implies the use of a simple set-
associative structure for block and region entries. Many
requests require multiple serial or parallel access to the SCT
structure to find and update both block and region entries,
thus increasing energy consumption and potentially latency.
Also, as Section 5 shows, this organization, combined
with the coupling block and region entries, results in high
contention and many forced invalidations of cached blocks.

4.1 The DgD Approach
DgD avoids the difficulties of imprecision by using a pre-

cise present vector in region entries. Our initial exploration
of the iDgD concept shows these vectors only need 16 to
64 bits, making them a viable and efficient alternative to
counters. Precisely identifing every cached block means
there is no need to scan the cache or directory, or to change
the coherence protocol. As a result, DgD also avoids new
race conditions.

In addition, DgD decouples block and region entries.
Block entries can exist without any corresponding region
entries, and in many cases block entries can be created or
removed without modifiying the region entry.

Section 3 clearly describes the novel DgD structure
which can efficiently locate both block and region entries
with a single lookup by mapping regions and blocks to
different ways for each region. Combining this with skewed-
associativity and Zcache-style replacement allows DgD to
make efficient use of all available directory capacity and
minimize forced evictions.

DgD’s unique structure, novel lookup mechanism, and
precise region representation make it substantively different
from SCT. As Section 5 shows, DgD provides better, more
robust performance and increased energy efficiency.

5. EVALUATION
This section demonstrates DgD’s effectiveness at reducing

the directory size. Section 5.1 describes our methodology,
and Section 5.2 describes the different configurations stud-
ied. Section 5.3 explores how small the DgD directory can
be made without significantly increasing cache miss rates.
Section 5.4 demonstrates that DgD performs better than
a Sparse or SCT directory of the same size. Section 5.5

365

Table 1: Processor configuration

Processor Core 4 GHz UltraSPARC III ISA

8-stage, out-of-order

128-entry ROB, 64-entry LSQ

decode/issue/commit any 4 instrs/cycle

Branch Predictor 8K GShare, 16K bi-modal, and 16K selector

2K entry, 16-way BTB, 2 branches/cycle

Fetch Unit Up to 8 instrs/cycle, 32-entry fetch buffer

L1D/L1I 64 kB, 64 B blocks, 4-way, 2 cycle

Private L2 256 kB, 8-way, inclusive of L1

2/5-cycle tag/data latency

Shared L3 16 MB, 16-way, non-inclusive

3/9-cycle tag/data latency

Memory 16 GB, 4 channels, DDR3 1600 MHz

Table 2: Workload Descriptions

Online Transaction Processing (OLTP) — TPC-C

db-a 64 clients, 100 warehouses (10GB)

db-b 16 clients, 100 warehouses (10GB)

Decision Support (DSS) — TPC-H

qry2, qry6 commercial database system,

qry16, qry17 450 MB buffer pool

Web Server (Web) — SPECweb99

apache 16K connections, FastCGI, worker threading

zeus 16K connections, FastCGI

Cloud — CloudSuite 1.0 [13]

cassandra, classification, cloud9, nutch

Mixed — Parsec 2.1 [6]

dedup, fluidanimate, vips simlarge input

blackscholes, canneal, swaptions native input

details DgD’s potential area and energy savings. Finally,
Section 5.6 demonstrates the importance of using a single
storage pool to store both block and region entries.

5.1 Methodology
We model a 16-core CMP using Flexus [28] and the full-

system WindRiver Simics simulator [19]. The CMP uses a
tiled layout where each tile has a processor core, private L1
and L2 caches, and a bank of the shared L3 cache. Tiles
are connected by a mesh network with 128 bit links with
a three cycle hop latency. The private L2 caches use a
MESI coherence protocol, with the coherence directory co-
located with the shared L3 banks. Additional parameters
are described in Table 1. Table 2 lists the workloads studied.
All simulated systems ran the Solaris operating system.

Sections 5.3 and 5.3.1 show results from trace-based
simulations. Memory traces were collected while executing
between 900 million and one billion instructions per core for
each workload for a total of at least 14.4 billion instructions.
Traces include both instruction and data references. The
first five billion references in each trace were used to
warm the cache hierarchies, and statistics were collected
for the rest. The remaining sections show results for de-
tailed timing simulations employing the SMARTS sampling
methodology [30]. Functional simulations generated samples
throughout program execution, storing cache and directory
contents for each. The warmup for each sample ranges
from 100 million to over a billion cycles depending on the
workload and sample. Each sample measurement comprises

100k cycles of detailed warming followed by 100k cycles of
measurement collection.

5.2 Directory Configurations
In addition to our proposed DgD design, we also modelled

Sparse and SCT directories:
DgD: All designs have 4k sets and associativity between

four and eight ways, and use 1 kB regions with sixteen
64 B blocks each. The resulting designs have between 0.25
and 0.5 entries for each block in the private caches. The
largest design, DgD8way, has half as many entries as a
Sparse1× design. We use a sixteen entry insertion queue.
Sets are indexed using H3 hash function based on irreducible
polynomials [8].

Sparse: We use 8-way set-associative Sparse directories
with full sharing vectors. A subscript indicates the degree
of over-provisioning, e.g., Sparse2× is two times over-
provisioned, resulting in 16k sets.

SCT: We model an SCT directory [4] with the same size
as DgD8way. The original SCT paper omits many details,
and we make a best effor attemtp to follow the implications
of the paper without being prejudicial or disadvantaging
SCT. We avoid adding optimizations not mentioned in
the original paper. SCT uses 4K sets and 8-way set-
associativity, the same as Sparse0.5× and DgD8way. Sets
are indexed with low-order bits of the full block or region
tag, similar to the Sparse designs. Requests first search for
a block entry and then a region entry if necessary. This
is more energy and area efficient than parallel accesses,
and searching for a block first shortens the critical path
for remote cache accesses. However, some workloads might
prefer the opposite search order. New protocol races were
handled by adding a structure at each directory tile to track
races between evicts and invalidates. As in the original work,
preference is given to evicting block instead of region entries.
Unlike the original proposal, a single SCT directory tracks
both instructions and data.

For all directory designs, we track coherence for both
instructions and data using a single directory structure. A
number of workloads experience writes to cache blocks that
are also fetched as instructions, and our unified coherence
protocol properly handles these events. We model a non-
inclusive L3 cache, and blocks invalidated due to directory
replacements are written to the L3 cache if not already
present. All directory designs perform these write-backs.

5.3 DgD Size Exploration
To evaluate DgD size, we measure the private and shared

cache miss-rates for different configurations. We vary the
associativity between four and eight, and keep the number
of sets fixed at 4K. Figure 8 shows representative results
for a selection of workloads. The x-axis indicates the asso-
ciativity and apacity of each design relative to a Sparse1×
directory. We measured the number of misses per thousand
instructions (MPKI) for the private L2 caches (Figure 8a)
and the shared L3 cache (Figure 8b), and the y-axis shows
the MPKI relative to a Sparse∞ design with no conflict
misses. As DgD associativity and size increase, miss rates
decrease across all workloads, and an 8-way set-associative
DgD barely affects the miss rate of the on-chip caches.

5.3.1 DgD vs. Sparse
To demonstrate the effects of under-provisioning a Sparse

366

4-way
0.25×

6-way
0.375×

8-way
0.5×

Sparse
0.5×

0.95

1

1.05

1.1

1.15

1.2

1.25

Associativity
Relative Directory Capacity

R
el

a
ti

ve
L

2
M

P
K

I

(a) L2 MPKI

4-way
0.25×

6-way
0.375×

8-way
0.5×

Sparse
0.5×

0.95

1

1.05

1.1

1.15

1.2

1.25

Associativity
Relative Directory Capacity

R
el

a
ti

ve
L

3
M

P
K

I

apache

canneal

cassandra

classification

db-a

db-b

dedup

fluidanimate

qry16

(b) L3 MPKI

Figure 8: Relative L2 and L3 MPKI for 4, 6, and 8-way DgD designs, and for a Sparse0.5× directory, all with 4k sets.

directory, the right-most points in Figures 8a and 8b show
the MPKIs for a Sparse0.5× directory that has half as
many entries as there are blocks in the private caches.
This design has the same associativity and number of sets
as the DgD8way design. The under-provisioning results
in higher MPKIs – Sparse0.5× increases the L2 MPKI
for all workloads and by as much as 22% for classification
and dedup. DgD8way only increases the L2 MPKI for two
workloads, and by 1% or less.

Overall, DgD6way offers behavior comparable to
Sparse0.5× with 25% less storage. Meanwhile, DgD8way

has a lower L2 MPKI than Sparse0.5× for all workloads
with the same storage requirements.

5.4 Performance
Figure 9a shows the performance of Sparse0.5×, SCT8way,

and DgD8way designs relative to Sparse1×. The harmonic
mean speedup shows that DgD8way performs nearly iden-
tical to Sparse1× on average, whereas Sparse0.5× and
SCT8way both suffer 2.7% slowdowns. Overall, these slow-
downs appear lower than in prior works for several reasons:
(1) Sparse0.5× design is 8-way set-associative compared
to 4-way for some prior works; (2) we model relatively
large private L2 caches instead of small private L1 caches
and shared L2 caches; (3) our directory tracks both data
and instructions, and the many shared instructions reduce
demand for directory resources; and (4) cache invalidations
due to directory replacements cause write-backs to the
shared L3 cache if the data is not already there. Rather than
artificially inflate the effects of conflict misses, our design
choices represent a realistic, high performance design.

In addition to having better average performance, DgD
is also more robust. In the worst case, Sparse0.5× and
SCT8way both suffer slowdowns of over 16% for classification,
while DgD8way has a speedup of 3.7% for this workload.
The worst slowdown for DgD8way is only 4% for nutch
and qry17. Figure 9a shows that a DgD design chosen to
meet average storage requirements performs well across a
variety of workloads and does not suffer from extremely poor
performance for any workloads.

5.4.1 SCT vs. DgD Performance
Although SCT and DgD appear very similar on the

surface, SCT consistently performs worse than DgD for a
number of reasons:

Table 3: Directory area, energy, and power overheads.

Area (mm2) Energy (pJ) Leakage (mW)

Sparse2× 1.75× 1.55× 1.64×
Sparse1× 0.633 7.15 7.40

DgD8way 0.59× 0.65× 0.67×
DgD6way 0.40× 0.40× 0.51×

i) SCT sends speculative requests when the private block
count is greater than zero. For canneal, 32% of requests
to the L3 are forwarded to other private L2s, but 73%
of these forwarded requests fail and must be satisfied
from memory. This contributes to a 4% slowdown for
canneal.

ii) SCT has more conflict misses. DgD uses more com-
plex hash functions, skewed-associativity, and Zcache
style replacement to reduce conflict misses. As Fig-
ure 10 shows, SCT occupies fewer directory entries
than DgD on average, but conflict misses cause SCT
to forcibly invalidate cache blocks roughly 3× more
often than DgD. In addition, conflicts in SCT that
evict a region entry also evict any block entries within
that region, effectively causing false conflicts.

iii) Evicting region entries from SCT can require scanning
the directory and one of the private caches, increasing
contention for these resources. It also requires evicting
all block entries in the same region, increasing the
number of cache invalidations.

iv) SCT performs serial lookups to find block and region
entries, and it often updates both block and region en-
tries. This increases latency and directory contention.

5.5 Area & Energy
We used CACTI 6.5 to model various DgD and Sparse

directories. Table 3 shows the estimated area, dynamic
energy, and leakage power for various structures. All
measurements are normalized with respect to Sparse1×.
Each structure was optimized to reduce area while keeping
the access latency and cycle time within three processor
cycles. This allows the directory lookup to complete in
parallel with the three cycle tag lookup for the shared cache.

367

ap
ac

he
ze

us

ca
ss

an
dra

cl
as

sifi
ca

tio
n

cl
ou

d9

nutc
h

db-a
db-b

qry
6

qry
16

qry
17

bla
ck

sc
hol

es

ca
nnea

l

ded
up

fluid
an

im
at

e
vi

ps

H
M

EAN

−15%

−10%

−5%

0%

5%
%

S
p

ee
d

u
p

(a) Performance

ap
ac

he
ze

us

ca
ss

an
dra

cl
as

sifi
ca

tio
n

cl
ou

d9

nutc
h

db-a
db-b

qry
6

qry
16

qry
17

bla
ck

sc
hol

es

ca
nnea

l

ded
up

fluid
an

im
at

e
vi

ps

H
M

EAN

0

0.5

1

1.5

R
el

a
ti

ve
T

o
ta

l
D

ir
ec

to
ry

P
ow

er

Sparse0.5× SCT8way DgD8way

(b) Directory Power

Figure 9: Performance and directory power consumption relative to Sparse1× directory.

ap
ac

he
ze

us

ca
ss

an
dra

cl
as

sifi
ca

tio
n

cl
ou

d9

nutc
h

db-a
db-b

qry
6

qry
16

qry
17

bla
ck

sc
hol

es

ca
nnea

l

ded
up

fluid
an

im
at

e
vi

ps

Ave
ra

ge

100%

50%

0%

50%

100%

D
ir

e
c
to

ry
O

c
c
u
p
a
n
c
y

In
v
a
li
d
a
ti

o
n

R
a
te

SCT DgD8way

Figure 10: Upper columns show the percentage of directory
entries used and lower columns show the percentage of
directory allocations that evict cache blocks.

As Table 3 shows, DgD8way significantly reduces area,
energy, and leakage power compared to Sparse1×. Since
DgD can perform many lookups when allocating and re-
placing entries, the energy used per access is not entirely
representative of the total energy consumption. To account
for such differences, Figure 9b shows the total directory
power consumption relative to Sparse1× based upon the
timing simulation results presented in Figure 9a. Overall,
DgD8way reduces directory power by 25%.

SCT8way and DgD8way both have the same associativity,
number of entries, and entry sizes; thus, the area, leakage
power, and access energy estimates for DgD8way apply
equally to SCT8way. However, Figure 9b shows that
SCT8way actually increases directory power by over 20% for
some workloads where a majority of requests need multiple
lookups to find and modify both the block and region entries.

The performance loss, forced invalidations, and specula-
tive snoops of SCT8way also affect the energy consumed
by the various on-chip caches. We measure these effects
and calculate the total amount of energy consumed by the

ap
ac

he
ze

us

ca
ss

an
dra

cl
as

sifi
ca

tio
n

cl
ou

d9

nutc
h

db-a
db-b

qry
6

qry
16

qry
17

bla
ck

sc
hol

es

ca
nnea

l

ded
up

fluid
an

im
at

e
vi

ps

H
M

EAN

−20%

−10%

0%

10%

%
D

ec
re

a
se

in
L

2
a

n
d

L
3

E
n

er
g

y/
In

sn
.

Sparse0.5× SCT8way DgD8way

Figure 11: Percentage decrease in the total L2, L3 and
directory energy per committed user instruction (excluding
busy-waiting).

directory, the L2 caches, and the L3 caches, and divide
this amount by the number of committed user instructions.
Figure 11 shows the resulting decreasing in energy per
instruction for each design (higher positive numbers are
better). As the figure shows, SCT8way increases the L2,
L3 and directory energy per instruction by 0.8% on average
and up to 6% in the worst case, while DgD8way decreases
the average energy per instruction by 1% and never increases
it by more than 3.5%. Thus, DgD8way is measurably more
energy efficient on average.

5.6 Importance of Common Storage
DgD uses one structure for both block and region entries,

and it imposes no restriction on how many block or region
entries exist at a given time. Figure 12 demonstrates this
feature’s importance by showing a breakdown of the average
contents of DgD8way for each workload. Some workloads,
such as dedup, mostly store block entries, while others, such
as classification, store mostly region entries. Using separate
structures for block and region entries would require over
50% more regions to accommodate these extremes.

Figure 12 also indicates the degree of spatial locality
experienced by temporarily private regions. Region entries
dominate for both blackscholes and classification, but while

368

0% 20% 40% 60% 80% 100%

apache
zeus

cassandra
classification

cloud9
nutch

db-a
db-b
qry6

qry16
qry17

blackscholes
canneal

dedup
fluidanimate

vips

Percentage of Directory Entries

Blocks

Regions

Figure 12: Breakdown of the average number of block and
region entries within the DgD8way directory.

blackscholes has significant spatial locality and uses a small
portion of the directory, classification has much less spatial
locality and requires many more region entries. This, even
with low spatial locality, DgD significantly reduces the
directory size without reducing performance.

5.7 DgD vs. an Improved SCT
The SCT8way design evaluated above attempts to closely

match the original design proposed by Alisafee [4]. We also
evaluated a more optimized SCT-Z8way design that borrows
many of the implementation details of DgD8way. This new
design uses DgD’s way-mapping technique to lookup block
and region entries in parallel, along with a Zcache-style
replacement policy and a 1 kB region size. With these
improvements, SCT-Z8way is able to make more effective
use of the available directory capacity, resulting in a higher
average occupancy and fewer cache block invalidations than
SCT8way. This improves the average performance, resulting
in just a 0.6% slowdown compared to the average 2.7%
slowdown experienced by the original SCT8way design.
Despite these improvements, SCT-Z8way still suffers from
the need to store a region entry for every block. As a result,
classification suffers from a 5.7% slowdown, and canneal
increases the combined L2, L3 and directory energy per
instruction by 12%. Thus, while Zcache-style replacement
and other optimizations help improve overall performance,
they are not sufficient to provide the same robustness as the
DgD design.

6. RELATED WORK
Existing work has explored many ways to reduce the size

of coherence directories.
Several works have focused on reducing the size of di-

rectory entries using formats such as coarse vectors [16],
segment directories [9], the SGI Origin directory [18], and
limited pointer directories [3]. More recently, SPACE [33]
stores sharing patterns in a separate table and each entry
stores a small pointer into this table. These schemes only
accurately represent a limited number of possible sharing
patterns, and the directory either restricts sharing or uses
imprecise information causing unnecessary network traffic.

Ferdman et al. propose using Cuckoo hashing to reduce
conflict misses in sparse directories [12]. This reduces over-
provisioning, but the directory still requires 1× to 1.5× as

many entries as private cache blocks, while DgD only needs
0.5× as many entries.

Scalable Coherence Directories (SCD) [24] scale well up
to a thousand cores or more. Root entries contain pointers
to a few potential sharers, and blocks with more sharers use
a hierarchy of multiple directory entries. SCD uses skewed-
associativity and Zcache-style replacement, similar to DgD.
DgD is orthogonal to SCD: where SCD reduces the space
required for large sharing vectors, DgD reduces the required
number of directory entries. As Section 3.4.5 discusses, DgD
and SCD can be combined to further improve scalability.

Tagless coherence directories [32] use bloom filters to track
which blocks are in the private caches. This approach signifi-
cantly reduces directory storage requirements, but the access
energy does not scale well to large core counts. Zhao et
al. propose combining Tagless and SPACE directories [34].
The resulting design improves energy efficiency at the cost of
decreased precision in the representation of sharing patterns.

Cuesta et al. propose deactivating coherence for private
pages of memory and achieve similar benefits to DgD by
reducing the number of directory entries [11]. However, this
scheme uses TLBs to track shared and private pages, and so
is not transparent to software. It also requires scanning the
cache when a page transitions from private to shared, and
either flushing blocks or recording them in the directory.
Hardavellas et al., propose Reactive NUCA (R-NUCA)
which uses a similar scheme to optimize the placement of
data in a distributed shared cache [17]. In contrast to both
schemes, DgD is transparent to software, including the OS,
and reduces the overhead of tracking regions that are only
temporarily private, even if they are shared over a longer
period of time. However, since private regions occupy entries
in the DgD directory, the other schemes might provide more
benefits for some workloads.

Ros and Kaxiras propose a directory-less coherence proto-
col that uses write-through for shared pages and write-back
for private pages [22]. The VIPS-M protocol also flushes
shared data from private caches at synchronization points.
It requires scanning and flushing private caches when a page
transitions from private to shared. Since pages accessed by
more than one core are permanently marked shared, some
workloads where the majority of pages are shared might
suffer using this approach. Also, workloads with frequent,
fine-grain synchronization might cause excessive scanning
and flushing of caches, possibly reducing performance.

RegionScout [21] and Coarse-Grain Coherence Track-
ing [7] avoid broadcasts in a snoop coherence protocol for
requests to temporarily private regions. DgD exploits this
intuition to reduce the storage requirements for directory
coherence.

7. CONCLUSION
Multi-grain coherence directories offer an innovative

mechanism to reduce directory size beyond the 1:1 ratio
traditionally required of Sparse directories. MgDs allow
each entry to track a large, temporarily private memory
region, instead of just tracking one cache block, thus
reducing the required number of directory entries. Our
investigation of an ideal MgD that dynamically refines the
coherence granularity reveals that a dual-grain directory
that tracks individual cache blocks and coarse-grain regions
of 1 kB to 4 kB offers the greatest potential benefit for a
variety of workloads.

369

DgD is a practical implementation that reduces the
directory area by 41% to 66% compared to sparse directories
that are 1× and 2× over-provisioned. DgD requires no
coherence protocol modifications, introduces no unnecessary
snoop bandwidth, adds no extra latency to requests, and
is entirely transparent to software. Compared to the
previously proposed SCT directory, DgD performs better
and uses less energy. Future work may investigate combining
DgD and SCD and consider whether DgD’s region-level
information can enable other optimizations.

8. REFERENCES
[1] First the tick, now the tock: Next generation Intel

microarchitecture (Nehalem). White Paper, 2008.

[2] OpenSPARCTM T2 system-on-chip (SoC)
microarchitecture specification, May 2008.

[3] A. Agarwal et al. An evaluation of directory schemes
for cache coherence. In Proc. of the Int’l Symposium
on Computer Architecture, June 1988.

[4] M. Alisafaee. Spatiotemporal coherence tracking. In
Proc of the Int’l Symposium on Microarchitecture,
Dec. 2012.

[5] L. A. Barroso et al. Piranha: a scalable architecture
base on single-chip multiprocessing. In Proc. of the
Int’l Symposium on Computer Architecture, June 2005.

[6] C. Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[7] J. F. Cantin, M. H. Lipasti, and J. E. Smith.
Improving multiprocessor performance with
coarse-grain coherence tracking. In Proc. of the Int’l
Symposium on Computer Architecture, June 2005.

[8] J. L. Carter and M. N. Wegman. Universal classes of
hash functions (extended abstract). In Proc. of the
Ninth Annual ACM Symposium on Theory of
Computing, 1977.

[9] J. H. Choi and K. H. Park. Segment directory
enhancing the limited directory cache coherence
schemes. In Proc. of the Int’l Parallel Processing
Symposium and Symposium on Parallel and
Distributed Processing, pages 258–267, Apr 1999.

[10] G. Chrysos. Intel R© many integrated core architecture:
The first Intel R© Xeon Phi coprocessor (codenamed
Knights Corner). presented at Hot Chips 24, Stanford,
CA, Aug. 2012.

[11] B. A. Cuesta et al. Increasing the effectiveness of
directory caches by deactivating coherence for private
memory blocks. In Proc. of the Int’l Symposium on
Computer Architecture, 2011.

[12] M. Ferdman et al. Cuckoo directory: A scalable
directory for many-core systems. In Proc. of the Int’l
Symposium on High Performance Computer
Architecture, Feb. 2011.

[13] M. Ferdman et al. Clearing the clouds: a study of
emerging scale-out workloads on modern hardware. In
Proc. of the Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, 2012.

[14] G. Grohoski. Niagara2: A highly-threaded
server-on-a-chip. presented at Hot Chips 18, Stanford,
CA, Aug. 2006.

[15] S.-L. Guo et al. Hierarchical cache directory for CMP.
Journal of Computer Science and Technology,
25:246–256, 2010.

[16] A. Gupta, W.-D. Weber, and T. Mowry. Reducing
memory and traffic requirements for scalable
directory-based cache coherence schemes. In Proc. of
the Int’l Conf. on Parallel Processing, 1990.

[17] N. Hardavellas et al. Reactive NUCA: near-optimal
block placement and replication in distributed caches.
In Proc. of the Int’l Symposium on Computer
Architecture, 2009.

[18] J. Laudon and D. Lenoski. The SGI Origin: A
ccNUMA highly scalable server. In Proc. of the Int’l
Symposium on Computer Architecture, June 1997.

[19] P. Magnusson et al. Simics: A full system simulation
platform. IEEE Computer, 35(2):50–58, Feb. 2002.

[20] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why
on-chip cache coherence is here to stay. Commun.
ACM, 55(7):78–89, July 2012.

[21] A. Moshovos. RegionScout: Exploiting coarse grain
sharing in snoop-based coherence. In Proc. of the Int’l
Symposium on Computer Architecture, June 2005.

[22] A. Ros and S. Kaxiras. Complexity-effective multicore
coherence. In Proc of the Int’l Conf. on Parallel
Architectures and Compilation Techniques, 2012.

[23] D. Sanchez and C. Kozyrakis. The ZCache:
Decoupling ways and associativity. In Proc. of the Int’l
Symp. on Microarchitecture, Dec. 2010.

[24] D. Sanchez and C. Kozyrakis. SCD: A scalable
coherence directory with flexible sharer set encoding.
In Proc. of the Int’l Symposium on High-Performance
Computer Architecture, Feb. 2012.

[25] A. Seznec. A case for two-way skewed-associative
caches. In Proc. of the Int’l Symposium on Computer
Architecture, 1993.

[26] S. Turullols and R. Sivaramakrishnan. SPARC T5:
16-core CMT processor with glueless 1-hop scaling to
8-sockets. presented at Hot Chips 24, Stanford, CA,
Aug. 2012.

[27] D. A. Wallach. PHD: A hierarchical cache coherent
protocol. Technical report, Cambridge, MA, USA,
1992.

[28] T. F. Wenisch et al. SimFlex: statistical sampling of
computer system simulation. IEEE Micro,
26(4):18–31, 2006.

[29] B. Wheeler. Tilera sees opening in clouds.
Microprocessor Report, 25(7):13–16, July 2011.

[30] R. E. Wunderlich et al. SMARTS: Accelerating
microarchitecture simulation via rigorous statistical
sampling. In Proc. of the Int’l Symposium on
Computer Architecture, June 2003.

[31] Q. Yang, G. Thangadurai, and L. M. Bhuyan. Design
of an adaptive cache coherence protocol for large scale
multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
3(3):281–293, May 1992.

[32] J. Zebchuk et al. A tagless coherence directory. In
Proc. of the Int’l Symposium on Microarchitecture,
Dec. 2009.

[33] H. Zhao et al. SPACE: sharing pattern-based
directory coherence for multicore scalability. In Proc.
of the Int’l Conf. on Parallel Architectures and
Compilation Techniques, 2010.

[34] H. Zhao et al. Spatl: Honey, i shrunk the coherence
directory. In Proc of the 2011 Int’l Conf. on Parallel
Architectures and Compilation Techniques, 2011.

370

	Introduction
	Ideal Multi-Grain Directory
	iMGD Operation
	Entry Count Reduction with iMGD

	Design of a Practical Dual-Grain Directory
	DgD Entry Format and Use
	Allocating and Locating Entries
	Entry Lookup
	Replacement Policy
	Back-Invalidation of Cached Blocks

	Splitting and Merging Region Entries
	Putting it All Together
	Effects on the Coherence Protocol
	Deadlock and Starvation
	Effect of Forced Evictions
	Multi-Programmed Workloads
	Scaling DgD to Hundreds of Cores
	Tile Interleaving

	DgD vs. SCT
	The DgD Approach

	Evaluation
	Methodology
	Directory Configurations
	DgD Size Exploration
	DgD vs. Sparse

	Performance
	SCT vs. DgD Performance

	Area & Energy
	Importance of Common Storage
	DgD vs. an Improved SCT

	Related Work
	Conclusion
	References

