
Classification of unions of subspaces with sparse
representations

Alhussein Fawzi and Pascal Frossard
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Abstract—We propose a preliminary investigation on the ben-
efits and limitations of classifiers based on sparse representations.
We specifically focus on the union of subspaces data model and
examine binary classifiers built on a sparse non linear mapping
(in a redundant dictionary) followed by a linear classifier. We
study two common sparse non linear mappings (namely `0 and
`1) and show that, in both cases, there exists a finite dictionary
such that the classifier discriminates the two classes correctly.
This result paves the way towards a better understanding of the
increasingly popular classifiers based on sparse representations,
and provides initial insights on appropriate dictionary design.

I. INTRODUCTION

The past decade has witnessed an explosion of high-
dimensional data. Leveraging the geometric properties of data
has therefore become crucial in order to develop efficient data
processing techniques. In many practical problems, the data
points lie on low dimensional subspaces instead of being uni-
formly distributed across the ambient space. Sparse represen-
tations in redundant dictionaries have attracted much attention
recently, as they permit to build representations that adapt to
the data geometry. Sparse representations have for example led
to state-of-the art results in many recognition and classification
tasks [1], [2], [3], [4]. In this context, sparse representations
are viewed as feature sets that are fed to a classifier, and
sparse coding is seen as a nonlinear feature extraction mapping.
Even though the relevance of sparse coding in classification is
now well-established from an experimental point of view, there
are, to the best of our knowledge, no theoretical results that
explain the benefits of sparse representations in classification.
Interestingly, the authors in [3], [5], [6] conjecture that sparse
codes are advantageous for classification since features are
more likely to be linearly separable in the high dimensional
feature space, but no theoretical results are shown.

In this paper, we propose to tackle the problem of classi-
fication in Unions of Subspaces (UoS) with classifiers based
on sparse representations. The UoS model, where datapoints
belong to a union of usually low-dimensional subspaces, has
been shown to be applicable in many computer vision problems
([7] and references therein). For example, face images of
one subject under different illumination conditions lie ap-
proximately on a low dimensional subspace in the ambient
space [1]. Face images of different subjects therefore lie on a
union of low dimensional subspaces. The UoS model has also
received attention in areas such as biomedical data processing
[8] and system control theory [9]. We assume in this paper that
datapoints of class 1 and class 2 lie on two different unions
of unknown low dimensional subspaces. The goal is then to
correctly classify a new unlabeled datapoint (or equivalently,

determine to which union of subspaces the datapoint belongs).
Using the example of face images classification, this could
correspond to separating between male and female face images,
as male and female face images lie on different unions of low
dimensional subspaces. To tackle this classification problem,
we consider a simple classification architecture where a non
linear sparse coding mapping is followed by a linear classifier.
We show the existence of a classifier following this archi-
tecture that succeeds in classifying the unions of subspaces.
Specifically, we show the existence of a redundant dictionary
for which the images of the two unions of subspaces by the
sparse representation mapping are linearly separable in the
feature space. This result is valid even when the angle between
subspaces becomes arbitrarily small, as long as the subspaces
intersect only at the origin.

The paper is organized as follows. In Section 2, we
formally define the problem considered in this paper. We
analyze theoretically the introduced classification architecture
for the `0 and `1 case respectively in Section 3 and 4. We
then review related work in Section 5 and finally conclude
with open questions in Section 6.

II. PROBLEM FORMULATION

Let {Si}LS
i=1 and {Ti}LT

i=1 denote two sets of subspaces in
Rn that define respectively the classes 1 and 2. In other words,
any point x ∈ ∪LS

i=1Si belongs to class 1 whereas any point
x ∈ ∪LT

i=1Ti belongs to class 2. We assume that Si ∩Tj = {0}
for all i, j. The classification problem consists in finding a
mapping C that verifies:

C : ∪LS
i=1Si ∪LT

i=1 Ti −→ {1, 2}
C
(
∪LS
i=1Si

)
= 1,

C
(
∪LT
i=1Ti

)
= 2.

If C verifies the above conditions, we say that C succeeds
in separating ∪LS

i=1Si and ∪LT
i=1Ti. When the subspaces are

known, the construction of such a classifier is trivial. We
study in this paper a classification architecture based on
sparse representations that does not require the knowledge
of the subspaces. Inspired by kernel methods for non linear
classification, we focus on a simple classification architecture
based on a sparse representation nonlinear mapping followed
by a linear classifier. It is important to note that, while in kernel
methods the non linear feature mapping is defined implicitly
by a so called kernel function, the sparse coding mapping
considered here is explicitly computed. In particular, for a fixed
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dictionary D ∈ Rn×N and p ∈ {0, 1}, we define the `p sparse
coding mapping by

f`p(x|D) = arg min
c∈RN

‖c‖p subject to x = Dc.

While the `0 “norm” measures the sparsity of a vector with the
number of nonzero elements, the `1 norm is a tractable convex
relaxation. In this work, we further constrain the coefficients
of the sparse codes to be nonnegative. That is, we augment
the dictionary D with the negative of each atom and add a
nonnegative constraint to the coefficients. The nonnegative `p
sparse coding mapping is therefore defined as follows:

f+
`p

(x|D) = arg min
c∈R2N

‖c‖p subject to x = [D,−D]c and c ≥ 0.

To illustrate the benefits of sparse representation mappings
f`p(·|D) and f+

`p
(·|D) in the classification of data lying on

unions of subspaces, let us first consider the two-dimensional
toy example of Fig. 1 where datapoints of class 1 live on sub-
spaces S1∪S2, whereas datapoints of class 2 live on subspace
T1. Clearly, the two classes cannot be separated by a line in
R2. However, the feature vectors (in R3) obtained by applying
f`p(·|D) (for p = 0 or 1) with D = [d1|d2|d3] are separable
by a plane. We stress here that the choice of the dictionary
is crucial: another choice of the dictionary may not have led
to linearly separable features. The performance of a classifier
based on sparse representations therefore strongly depends on
the dictionary. When datapoints are not constrained to lie in
the positive quadrant, the features obtained with f`p(·|D) are
no more linearly separable. Consequently, f`p(S1∪S2|D) and
f`p(T1|D) are not linearly separable. On the other hand, it is
easy to see that f+

`p
(S1 ∪ S2|D) and f+

`p
(T1|D) are separable

by a hyperplane. This motivates the use of nonnegative sparse
coding dictionary over f`p(·|D). On an empirical level, Coates
and Ng [10] have observed that replicating the dictionary
and constraining the coefficients to be nonnegative induce a
significant gain in classification performance.

R2 R3

S1

S2
T1

d1

d2
d3 Sparse representation in

D = [d1|d2|d3]

e1

e2

e3

Fig. 1. Toy example in R2 that illustrates the benefits of the non linear sparse
coding mapping for classification.

We therefore focus on the set of classifiers C built by
applying a non negative sparse coding followed by a linear
classifier. Specifically, for D ∈ Rn×N and (w, b) ∈ RN × R,
we denote by C(D,w,b) ∈ C the classifier defined using the
following two-step procedure:

1) Feature extraction: For an input test point x ∈ Rn,
compute f+

`p
(x|D).

2) Linear classification: If wTf+
`p

(x|D) ≤ b, then
assign label 1 to x. Otherwise, assign label 2.

We examine in this paper the relevance of the set of classifiers
C in separating unions of subspaces. Specifically, we study the
existence of a classifier C(D,w,b) ∈ C that separates ∪LS

i=1Si
and ∪LT

i=1Ti.
Problem 1. Let {Si}LS

i=1 and {Ti}LT
i=1 be two sets of subspaces

such that Si ∩ Tj = {0} for all i, j. Does there exist a finite
dictionary D and a linear classifier (w, b) such that C(D,w,b) ∈
C separates the two unions of subspaces?

Clearly, the above problem formulation is equivalent to
asking whether there exists a finite dictionary D such that
f+
`p

(
∪LS
i=1Si|D

)
and f+

`p

(
∪LT
i=1Ti|D

)
are linearly separable.

Problem 1 involves studying the notion of linear separability
between subspaces that might be difficult to study theoretically.
Hence, we focus instead on a sufficient condition that involves
the notion of D-subspace detection property defined as follows:

Property 1. (D-Subspace detection property (D-SDP)) Let
{Wi}Li=1 be a set of subspaces and D be a dictionary where
the atoms live in ∪Li=1Wi. We say that {Wi}Li=1 satisfies the
D-subspace detection property if for any x ∈ Wi, the sparsest
representation of x (that is, f`p(x|D)) activates only atoms in
the subspace Wi.

We are now ready to define Problem 2 as follows:

Problem 2. Let {Wi}Li=1 be a set of subspaces in Rn. Does
there exist a finite dictionary D such that the D-subspace
detection property is satisfied for subspaces {Wi}Li=1?

Clearly, if the answer to Problem 2 is ”yes” for {Wi}Li=1 =
{Si}LS

i=1∪{Ti}LT
i=1, then so is the answer to Problem 1. Indeed,

if there exists a dictionary D such that the D-SDP is satisfied,
the two unions of subspaces are linearly separable as it suffices
to take a normal vector w with positive entries for atoms
in Si and negative entries otherwise, and a bias b = 0.
This hyperplane separates the features of both classes since
subspaces {Si}i and {Ti}i are assumed to be disjoint. In the
rest of this paper, we therefore focus on the analysis of Problem
2 for two different sparse coding mappings.

III. THE `0 SPARSE CODING MAPPING

The goal of this section is to address Problem 2 when
p = 0. We define D to be a dictionary made up by concatenat-
ing arbitrary basis of each subspace. That is, D = [B1| . . . |BL]
where Bi is an arbitrary basis of subspace Wi. We then con-
sider the following probability distribution defined on ∪Li=1Wi:

∀i ∈ {1, . . . , L},P(x ∈ Wi) =
1

L
P(x|x ∈ Wi) = UWi

,

where UWi
denotes the uniform distribution over the unit

sphere of Wi. In other words, the choice of the subspace is
equiprobable, and the distribution is uniform on the unit sphere
of the subspace. We have the following result:

Theorem 1. The D-subspace detection property holds almost
everywhere. That is, when x is chosen according to the



above mentioned distribution, the `0 sparsest representation
of x activates only atoms in the same subspace as x with
probability 1.

Proof: Remember that D is constructed by appending
arbitrary bases of each subspace. For any x, we consider the
error event E(x):

“f`0(x|D) activates at least one atom not in the subspace of x”

The error probability is therefore:

Px (E(x))

=
1

L

L∑
i=1

Px (E(x)|x ∈ Wi) . (1)

Let i ∈ {1, . . . , L}, and denote by δi the dimension of
subspace Wi. We define Ai to be the set of subsets of D
of cardinality at most δi and that contain at least one atom not
in Wi. That is, we have

Ai = {D̃ ⊂ D : |D̃| ≤ δi and ∃d̃ ∈ D̃, d̃ /∈ Wi}.
We have:

Px∼UWi
(E(x))

≤ Px∼UWi
(
⋃

D̃∈Ai

x ∈ span(D̃))

≤
∑

D̃∈Ai

Px∼UWi
(x ∈ span(D̃))

=
∑

D̃∈Ai

Px∼UWi
(x ∈ span(D̃) ∩Wi). (2)

Note moreover that, for D̃ ∈ Ai, we have span(D̃) 6= Wi.
Therefore, dim(Wi ∩ span(D̃)) ≤ δi − 1. We obtain

Px∼UWi
(x ∈ span(D̃) ∩Wi) = 0.

By injecting this equality into the upper bound on the error
probability in Eq. (2), we conclude that

Px∼UWi
(E(x)) = 0.

Eq. (1) then concludes the proof of Theorem 1.

Theorem 1 outlines an important property of sparse repre-
sentations. That is, the sparsest representation of a point living
in a particular subspace tends to activate atoms living in the
same subspace, when we consider a simple dictionary made
up of the union of different subspace bases. We believe that
this result partially explains the discriminative power of sparse
representations and therefore the empirical success of sparsity-
based classifiers.

We further remark that the proof of Theorem 1 uses
the knowledge of the subspaces Wi in order to construct
the dictionary (i.e., we need to have a basis per subspace).
Theorem 1 is an existence result and has no intention of
providing a practical way to construct the dictionary (as the
subspaces are unknown). However, we note that sampling
uniformly at random δi points per subspace gives us a basis
with probability 1. Therefore, as long as we have access to
δi points drawn uniformly at random for each subspace, this

gives a way to construct a dictionary that satisfies the D-SDP
with probability 1.

Finally, it is known that the `0 sparse representation map-
ping is NP-hard to compute (for a particular test point x).
Moreover, this mapping is not stable, such that small pertur-
bations of the input vector might induce significant changes in
the sparsest representation. Both reasons motivate the study of
another sparse coding scheme, namely the mapping f`1(·|D).

IV. THE `1 SPARSE CODING MAPPING

We now study Problem 2 in the case of `1 sparse coding.
Unlike the `0 mapping, the `1 sparse representation mapping
is tractable to compute. We assume in this section that all the
subspaces {Wi}Li=1 = {Si}LS

i=1 ∪ {Ti}LT
i=1 are disjoint.

A. Counterexample

We first show with a simple counterexample in R3 (Fig. 2)
that the dictionary construction of Section III does not satisfy
the D-SDP in the `1 case. Specifically, we consider three
subspaces {Wi}3i=1 defined as follows:

W1 = span(e1, e2),

W2 = span(f2),

W3 = span(f3),

where e1, e2, f2, f3 have all a unit Euclidean norm. Clearly,
(e1, e2), f2 and f3 define respectively a basis for subspaces
W1, W2 and W3. We consider a dictionary D defined by
concatenating those bases:

D = [e1, e2, f2, f3].

It is not hard to see that for values of η that are small enough,
the `1 sparsest representation of a point outside the cone
defined by (e1, e2) involves f2 and f3. Unlike the `0 sparse
coding case where the D-SDP would fail only for x that lies
on the line span(ΠW1

(f2)) (where ΠW1
defines the orthogonal

projection operator onto the plane W1), the `1 sparse coding
mapping fails to select the atoms of the right subspace for a
set of nonzero measure, when η is small.

0

e1 e2

W1 = span(e1, e2)
W2 = span(f2)

W3 = span(f3)

2⌘

x

Fig. 2. Example where a set of non-zero measure is wrongly classified, when
the `1 norm is used in the sparse coding step.

We now show in the next section that there exists a
dictionary, which satisfies the D-SDP when the classifier uses
an `1 sparse coding non linear mapping.

B. Existence of a dictionary for `1 sparse coding mapping

The main message one can take from the counter example
in Fig. 2 is that when the atoms are not well spread across
all the subspace, the `1 norm fails to guarantee the subspace
detection property. This was already observed in [11] and



[12]. In the following, we show the existence of a dictionary
that is “sufficiently spread” in order to satisfy the D-SDP on
all subspaces. More precisely, the dictionary we consider is
constructed by concatenating two components:

• An ε-net [13] on the unit sphere of each subspace1,
where ε is carefully chosen depending on the principal
angles between the subspaces.

• An orthonormal basis of each subspace. We add
this component to the dictionary for purely technical
reasons.

We let κ be the cosine of the maximum principal angle
between the subspaces. In other words:

κ = max
xi∈Wi

max
yj∈Wj

| 〈xi,yj〉 |
‖xi‖2‖yj‖2

.

Since the subspaces are disjoint, we have κ < 1. With the
above dictionary construction D, we have the following result:

Theorem 2. The subspaces {Wi}Li=1 satisfy the D-subspace
detection property. This dictionary contains at most N atoms,
with

N =

((
1 +

2(
√
δmax + 1)

1− κ

)δmax

+ δmax

)
L,

and δmax being the maximum dimension of the subspaces.

Proof: Let ε = 1−κ√
δmax+1

. The following lemma featured
in [13] gives an upper bound on the number of points needed
for constructing an ε-net on the unit sphere, when the ambient
space is δ-dimensional:

Lemma 1. For any ε > 0, there exists an ε-net Nε on the unit
sphere Sδ−1 with size

|Nε| ≤
(

1 +
2

ε

)δ
.

Recall that our dictionary is obtained by concatenating an
ε-net on the unit sphere of each subspace with an orthonormal
basis of each subspace. Using Lemma 1, the size of our
dictionary therefore satisfies

|D| ≤
(

1 +
2(
√
δmax + 1)

1− κ

)δmax

L+ Lδmax.

We now prove that the proposed dictionary D =
[d1| . . . |dN] satisfies D-SDP. Suppose, by contradiction, that
the `1 sparsest representation of x ∈ Wi in D activates at least
one atom not in Wi. We write le `1 sparsest representation of
x as follows:

x =

N∑
j=1

cjdj =
∑

j:dj∈Wi

cjdj +
∑

j:dj /∈Wi

cjdj.

Since x ∈ Wi and
∑
j:dj∈Wi

cjdj ∈ Wi, we have x′
def
=

x−∑j:dj∈Wi
cjdj ∈ Wi. Moreover, it is not hard to see that∑

j:dj /∈Wi
cjdj is the sparsest (in the `1 sense) representation

1We recall that an ε-net on the unit sphere Sδ−1 is a finite set, denoted by
Nε, that satisfies: ∀x ∈ Sδ−1, ∃d ∈ Nε such that ‖x− d‖2 ≤ ε.

of x′ in the dictionary. By orthogonal projection of the equality
x′ =

∑
j:dj /∈Wi

cjdj into Wi, we have:

x′ =
∑

j:dj /∈Wi

cjΠWi
(dj), (3)

where ΠWi
is the orthogonal projection operator onto Wi.

We now exhibit a representation of x′ in D whose `1 norm
is strictly smaller than

∑
j:dj /∈Wi

|cj | and whose atoms all
belong to Wi. To do so, we represent each vector ΠWi(dj) in
Eq.(3) with its nearest neighbor atom and a residual vector that
accounts for the approximation error. Let pj =

ΠWi
(dj)

‖ΠWi
(dj)‖2 .

There exists a dictionary atom d̃j in Wi such that:∥∥∥pj − d̃j

∥∥∥
2
≤ ε, (4)

due to the ε-net dictionary construction. Then, for each dj /∈
Wi, we compute the orthogonal projection of pj onto d̃j:

pj =
〈
pj, d̃j

〉
d̃j + d̃j

⊥
. (5)

Taking the norms of the previous equality, we have

‖d̃j
⊥‖22 = 1−

〈
pj, d̃j

〉2

(∗)
≤ 1−

(
1− ε2

2

)2

≤ ε2 (6)

where the inequality (*) is due to Eq. (4). Let further (ek)k
be an orthonormal basis of Wi in the dictionary. We have
d⊥j =

∑
k r

j
kek for some vector rj with ‖d⊥j ‖2 = ‖rj‖2. We

therefore conclude that ‖rj‖1 ≤
√
δmax‖dj

⊥‖2 =
√
δmaxε.

We now upper bound ‖ΠWi
(dj)‖2. By noting that〈

ΠWi
(dj), d̃j

〉
=
〈
dj, d̃j

〉
and rewriting Eq. (5), we have:

ΠWi
(dj) =

〈
dj, d̃j

〉
d̃j + d̃j

⊥‖ΠWi
(dj)‖2.

Therefore, by taking the norm of the previous equality, and
making use of Eq. (6), we obtain:

‖ΠWi
(dj)‖2 ≤

〈
dj, d̃j

〉
√

1− ε2
≤ κ√

1− ε2
. (7)

We rewrite the representation in Eq. (3) using dictionary
elements:

x′ =
∑

j:dj /∈Wi

‖ΠWi(dj)‖2cjpj

=
∑

j:dj /∈Wi

‖ΠWi(dj)‖2cj
(〈

pj, d̃j

〉
d̃j + d̃⊥j

)
=

∑
j:dj /∈Wi

‖ΠWi
(dj)‖2cj

〈
pj, d̃j

〉
d̃j

+
∑
k

ek
∑

j:dj /∈Wi

rjk‖ΠWi(dj)‖2cj .



The `1 norm of the above representation is therefore upper
bounded by:∑

j:dj /∈Wi

‖ΠWi
(dj)‖2

∣∣∣cj 〈pj, d̃j

〉∣∣∣
+
∑
k

∣∣∣∣∣∣
∑

j:dj /∈Wi

rjk‖ΠWi
(dj)‖2cj

∣∣∣∣∣∣
≤ κ√

1− ε2
∑

j:dj /∈Wi

|cj |+
∑

j:dj /∈Wi

|cj |‖rj‖1

=

(
κ√

1− ε2
+
√
δmaxε

) ∑
j:dj /∈Wi

|cj |

Finally, it is easy to show that for ε = 1−κ√
δmax+1

, we have:

κ√
1− ε2

+
√
δmaxε < 1,

hence the new representation of x′ where atoms live exclu-
sively in Wi has an `1 norm that is strictly smaller than∑
j:dj /∈Wi

|cj |. This contradicts our initial assumption and
therefore concludes the proof of Theorem 2.

Theorem 2 shows that, if the dictionary is made of atoms
that cover enough directions, the D-SDP holds. Unlike the `0
case, it is not sufficient to take a dictionary made of a union of
bases, when `1 sparse coding is used. In this case, the number
of atoms is exponential in the dimension of the subspaces (as
the covering number on the sphere is exponential), if one wants
to satisfy the sufficient D-SDP for proper linear classification
of unions of subspaces.

V. RELATED WORK

In [12], Elhamifar and Vidal consider the problem of
subspace clustering, where unlabeled data belongs to a union
of subspaces and the goal is then to cluster points into
their corresponding subspaces. The authors approached this
problem through a sparse representation based method (sparse
subspace clustering) that precisely use the property that sparse
representations tend to activate atoms of the same subspace of
the datapoint (similar to the D-SDP). A theoretical analysis is
conducted and shows roughly that, as the maximum principal
angle between subspaces κ satisfies κ < 1√

δmax
, the subspace

detection property holds. Unfortunately, in many practical
scenarios, this constraint does not hold. Soltanolkotabi and
Candes in [11] improved this theoretical analysis, with a
different notion of subspace detection property, where it is only
asked that the sparse representations of the specific points we
wish to cluster activate other points in the same subspace.
This differs from our study, where we ask that any point
belonging to the union of subspaces activates atoms of the
same subspace. Note finally that in these works ([12], [11]),
the authors assume that the datapoints are fixed and the goal is
to find conditions on the subspaces and datapoints for which
sparse subspace clustering works.

Our perspective through this paper is different. Motivated
by a classification problem, we study whether we can find a
dictionary for which the D-SDP holds for any given unions of

subspaces (with no particular assumption on the principal angle
between subspaces2). We show that this is true for the `0 and
`1 sparse representation mappings, as long as the subspaces
are disjoint.

VI. DISCUSSION AND OPEN QUESTIONS

This paper represents what we believe to be one of the
first investigations on the benefits and limitations of classifiers
based on sparse representations. Many questions remain unan-
swered and will be the focus of future work. For example,
do we really need an exponential number of atoms (with
respect to the dimension) in order to satisfy D-SDP, in the
`1 sparse coding case? Also, what is the behavior of practical
dictionaries vis-a-vis the D-SDP, when the number of atoms is
limited? Finally, we are developping discriminative dictionary
learning methods that use the insights provided above to
guarantee good classification accuracy.
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