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ABSTRACT Plasmonic modes with long radiative lifetimes, subradiant ;
‘ Low Ohmic losses ‘

modes, combine strong confinement of the electromagnetic energy at the

High spectral
resolution

High spectral
contrast

3

Low limit of detection

nanoscale with a steep spectral dispersion, which makes them promising for

biochemical sensors or immunoassays. Subradiant modes have three decay

channels: Ohmic losses, their extrinsic coupling to radiation, and possibly

their intrinsic dipole moment. In this work, the performance of subradiant

High

modes for refractive index sensing is studied with a general analytical and I
sensitivity

numerical approach. We introduce a model for the impact that has different

decay channels of subradiant modes on the spectral resolution and contrast. It is shown analytically and verified numerically that there exists an optimal
value of the mode coupling for which the spectral dispersion of the resonance line shape is maximal. The intrinsic width of subradiant modes determines
the value of the dispersion maximum and depends on the penetration of the electric field in the metallic nanostructure. A figure of merit, given by the ratio
of the sensitivity to the intrinsic width, which are both intrinsic properties of subradiant modes, is introduced. This figure of merit can be directly calculated
from the line shape in the far-field optical spectrum and accounts for the fact that both the spectral resolution and contrast determine the limit of
detection. An expression for the intrinsic width of a plasmonic mode is derived and calculated from the line shape parameters and using perturbation
theory. The method of analysis introduced in this work is illustrated for dolmen and heptamer nanostructures. Fano-resonant systems have the potential to
act as very efficient refractive index sensing platforms compared to Lorentz-resonant systems, due to control of their radiative losses. This study paves the
way toward sensitive nanoscale biochemical sensors and immunoassays with a low limit of detection and, in general, any nano-optical device where Ohmic
losses limit the performance.
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urface plasmon resonances possess

the ability to confine light at the nano-

scale, below the diffraction limit."?
They have attracted strong interest in the
past decade in the context of biochemical
sensing and immunoassays because a
nanoscale perturbation of their local envi-
ronment can be probed optically.>~> Their
high sensitivity has been instrumental to
push the detection limit of optical sensors
toward a single molecule.>™® Such a real-
time detection method also has the addi-
tional advantage of being label-free. It
has been recently combined with nano-
optical trapping and manipulation®” and
extended to other sensing concepts such
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as nanocalorimetry.® Compact plasmonic
resonators also enable reaching a subcellu-
lar resolution, which has the potential to
improve the understanding of subcellular
processes.>® From the optical point of
view, a shift of the resonance frequency of
a plasmonic resonator occurs when the di-
electric properties of the local environment
change upon binding of any analyte under
study.'® Both the sensitivity of the plasmo-
nic mode and the uncertainty in the deter-
mination of its resonance frequency
determine the detection limit.""'? Plasmo-
nic modes with a long radiative lifetime,
subradiant modes, possess a strong spectral
dispersion which further improves the limit
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of detection and makes them very attractive for sens-
ing applications.'®*' When subradiant modes are
coupled to radiation or to a radiative plasmonic mode
(extrinsic radiative channel), their optical spectrum
carries an asymmetric line shape characteristic of Fano
resonances.'*~'” Overall, subradiant modes have three
different loss channels: Ohmic losses, the extrinsic
coupling to radiation, and possibly their weak intrinsic
dipole moment."*~'%'® Among Fano-resonant systems,
several designs have been proposed, such as dolmens,'® %
nanocrosses,?' plasmonic oligomers,??~2* and ring-disk
nanocavities.'>? Interactions with the substrate have
also been used to tailor the near-field distribution for
increased performances.”®%’ The high electromagnetic
field enhancement generated from their excitation
also serves as efficient platforms for surface-enhanced
spectroscopy.”®?? However, due to the complex nature
of the optical spectrum associated with Fano-resonant
systems, a general design method for highly sensitive
plasmonic resonators with a low detection limit has not
yet been formulated.

In this work, we investigate the performance of
subradiant modes for refractive index sensing using a
general analytical model and numerical calculations
and address the specific features of Fano-resonant
systems for refractive index sensing compared to
Lorentz-resonant systems. We introduce a model pre-
dicting the impact that the different decay channels of
subradiant modes have on the spectral resolution and
contrast. We explicitly show that, by engineering their
spectral dispersion, Fano-resonant systems have the
potential to surpass Lorentzian plasmonic resonances
for refractive index sensing: there exists an optimal
value of the coupling for which the spectral dispersion
is maximal and the reduction of Ohmic losses is the key
to increasing this maximum in dispersion.

In particular, the sensitivity of subradiant modes
with respect to global and local perturbations of the
refractive index is first studied. A plasmonic nanostruc-
ture consisting of a dipolar nanoparticle on top of two
parallel nanoparticles supporting a subradiant quad-
rupolar mode is considered, and the case of plasmonic
heptamers is then used as an illustration. An explicit link
between the sensitivity and the distribution of the mode
field in the sensing region is shown. Using an analytical
model, we show that both the line shape resolution
and contrast determine the strength of the dispersion
in Fano-resonant systems, and that Ohmic losses deter-
mine the line shape resolution and contrast. An expres-
sion for the intrinsic width of a plasmonic mode is
derived and calculated with two methods: from the line
shape parameters and using perturbation theory. Finally,
a figure of merit for refractive index sensing with sub-
radiant modes, given by the ratio of the sensitivity of
the subradiant mode to its intrinsic width, is introduced.
This figure of merit can be directly calculated from the
line shape parameters in the far-field optical spectrum.

RESULTS AND DISCUSSION

Three Loss Channels in Fano-Resonant Systems. In this
section, the different loss channels in Fano-resonant
systems are defined. Figure 1a shows a plasmonic
nanostructure with an optical response characterized
by a Fano line shape.?>?°3° The top metallic nanorod
represented in red acts as an antenna for receiving and
emitting light. It supports a plasmonic resonance with
a Lorentzian line shape observable in the symmetric
configuration (s = 0, Figure 1b). From Figure 1b, this
mode has a dipolar distribution of charges. The reso-
nance frequency w, of the dipolar mode is 1.60 eV in
Figure 1, and its spectral width y, is 0.04 eV. On the
other hand, the two bottom nanorods represented in
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Figure 1. (a) Schematic of the geometry with /; =/, = 100 nm, w = 40 nm, d = 60, nm and e = 20 nm. The period along x and y
direction is 500 nm. The refractive index of the surrounding environment is 1.33 (water), and the material of the nanoparticles
is gold. (b) Reflectance spectra of the array for different values of the symmetry breaking s. Insets: Real part of the
z-component of the instantaneous electric field on a (x,y) plane at half the distance between the top and bottom nanorods ata
photon energy of 1.61 eV.
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blue support a quadrupolar mode, whose electric field
distribution is shown in Figure 1b. Its resonance fre-
quency g is 1.61 eV.The coupling between the dipolar
mode and the quadrupolar mode can be arbitrarily
tuned by breaking the symmetry of the structure. In
the symmetry-broken configuration, some energy is
coupled from the dipolar mode to the quadrupolar
mode; the energy stored in the quadrupolar mode is
either decayed in the metallic nanostructures or
coupled back to the dipolar mode.?® The resonance
width y of the quadrupolar mode is given by the sum
of two contributions: the intrinsic damping y; and an
extrinsic radiative damping y.. The intrinsic damping y;
is associated with the quadrupolar mode only, whereas
the extrinsic radiative damping y. is related to its
coupling to the dipolar mode. The dipolar mode's
Lorentzian response R, is modulated by this asym-
metric line shape so that the total response R satisfies>"’

(@ — wo+qy)* + by?
(@ — wo)? +y2

R = Ra (1)
where the parameters g and b describe the modulation
asymmetry and damping, respectively. In Figure 1b,
the reflectance spectra of the system for various values
of the symmetry breaking are calculated numerically.
In the symmetric configuration, the excitation of the
subradiant mode is forbidden by symmetry, so that
the response is only given by a Lorentzian. When the
symmetry is broken, the mode coupling increases,
resulting in an increase of the extrinsic contribution
Y. to the Fano resonance width. The modulation
damping parameter can be written as the ratio of the
intrinsic width y; to the total width y:2° b= y/(y. + 7%
The asymmetry parameter provides the spectral loca-
tion of the constructive and destructive interferences
associated with the Fano line shape (Supporting Infor-
mation of Gallinet et al.?®): g = (w2 — wd)/(2ya(1 + yi/yJ).

In the example of Figure 1, the dipole moment of
the quadrupolar mode vanishes so that only Ohmic
losses contribute to the intrinsic damping y;.In general,
a Fano resonance can still occur also when a weakly
radiating mode (with a small but nonvanishing dipole
moment) is coupled to a mode with a large dipole
moment. The intrinsic damping y; has, in this case, both
a nonradiative and a radiative contribution. In the
following, the weakly radiating mode will be referred
to as the subradiant mode."® The subradiant mode has
therefore two different radiative loss channels, in addi-
tion to the nonradiative loss channel: one (intrinsic)
from its dipole moment and the other (extrinsic) from
its coupling to the radiative mode. These two channels
contribute differently to the resonance line shape, in
particular, to the modulation damping. In more com-
plex systems, the extrinsic coupling can be divided in
many different channels.3? As will be discussed in the
following, the control of these various loss channels is
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key to engineering Fano resonances with a sharp
spectral dispersion.

Bulk and Local Sensitivity of Subradiant Modes. The first
important aspect determining the performance of a
plasmonic mode for refractive index sensing is its
sensitivity. In this section, the sensitivity of Fano-
resonant systems will be compared to the theoretical
limit and to the sensitivity of Lorentz-resonant systems.
The requirements for a figure of merit for Fano-
resonant systems will be discussed.

Because of the small volume of plasmonic modes, a
very small perturbation of the surrounding refractive
index at the nanoscale induces a large shift of their
resonance frequency. If the refractive index of the
system is perturbed by an amount An within a volume
V, the frequency wq of the plasmon mode shifts by an
amount Aw given by

Aw = —An % Ve )

where n is the initial refractive index in the perturba-
tion region V, and Vg is the fraction of electric field
inside the volume V of perturbation. Equivalents of eq 2
have been derived using perturbation theory.'®'? Its
derivation is shown for completeness in the Methods
section. Equation 2, which is valid for both radiative and
subradiant modes, implies that the frequency shift of
the mode is linear with respect to the refractive index
perturbation. The frequency shift per unit of refractive
index Aw/An is the sensitivity of the mode. In Figure 2,
the perturbation is applied to the entire environment,
which can model, for example, a change in the composi-
tion of the liquid surrounding the nanoparticles. The
refractive index of the unperturbed environment is
chosen to be 1.33, corresponding to the refractive index
of water. In this particular case of bulk perturbation, the
spectral shift is determined by the proportion of the field
that lies in the environment (as opposed to the field
inside the metal). The maximal sensitivity that an elec-
tromagnetic mode can reach corresponds to the situa-
tion where the entire mode lies inside the perturbation
region: (Aw/An)max = —wo/n. The shift as a function of
the refractive index perturbation for a symmetry break-
ing of 10 nm is reported in Figure 2a. The sensitivity
is calculated by fitting a linear function and extracting the
slope which gives Aw/An = —091 eV-RIU™". As ex-
pected, this value is below the maximal possible sensi-
tivity of —1.21 eV- RIU~". From eq 2, the ratio of the sen-
sitivity to the maximal sensitivity (Aw/An)/(Aw/An)max
corresponds to the proportion of the electric field in
the surrounding environment, which in this case is 76%.
In order to increase the sensitivity, the electric field
distribution of the subradiant mode can be engineered
so that ideally 100% of the field lies in the sensing region.
The best improvement in sensitivity Aw/An that can
be expected is only (100 — 76)/76 = 32% in this
case. This implies that both the antenna modes and
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Figure 2. (a) Shift of the Fano resonance frequency as a
function of the bulk refractive index perturbation. (b)
Corresponding sensitivity as a function of the symmetry
breaking s. The dashed red line represents the sensitivity of
the Lorentzian plasmon resonance in the symmetric con-
figuration. (c) Figure of merit (FOM) as a function of the
symmetry breaking s. The dashed red line represents the
FOM of the Lorentzian plasmon resonance in the symmetric
configuration.

the subradiant modes have bulk sensitivities close to the
theoretical limit. Experiments on highly sensitive sub-
radiant modes have been reported in various plasmonic
systems.*23

Let us now consider a local perturbation of the
refractive index. This situation models, for instance, the
binding of a biochemical analyte to the nanoparticles
surface™'®*3 or the conformal coverage by a graphene
sheet3* In this case, the sensitivity factor (eq 2) and
the FOM (eq 3) strongly depend on the volume and
location of the perturbation. The perturbation induces
a significant spectral shift when it is placed in the
region where the field is the most intense and can also
be further enhanced if the resonance frequency is
matched with the frequency of the vibrational states
of the attached biomolecules.*'® Sensitive detection
of molecular monolayers has been experimentally
reported using a Fano-resonant system analogous to
the geometry in Figure 1."® A possible experimental
realization of local perturbation of the subradiant
mode in a three-dimensional structure such as in
Figure 1 would be the following: the fully covered
single nanorod, a dielectric spacer, and the two parallel
nanorods on top which are left uncovered and coated
with a biomolecular monolayer. As an example in
Figure 3, a layer of 4 nm and refractive index 1.55 is
added around the nanoparticles surface. The respec-
tive shifts of the dipolar mode and the subradiant
mode (not shown here) are also linear with respect to
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Figure 3. (a) Local refractive index perturbation (i.e., by
selective binding of biomolecules) is represented by an
additional layer with a refractive index of 1.55 and a thickness
of 4 nm around the nanostructure surface. (b) Corresponding
sensitivity as a function of the symmetry breaking s. The
dashed red line represents the sensitivity of the Lorentzian
plasmon resonance in the symmetric configuration. (c)
Corresponding figure of merit (FOM) as a function of the
symmetry breaking s. The dashed red line represents the
FOM of the Lorentzian plasmon resonance in the symmetric
configuration.

the refractive index perturbation. As expected, the
sensitivity is smaller than for the bulk refractive index
sensing because the overlap between the perturbation
volume and the field is smaller (Figure 3b). As the
volume used for local sensing is included in the volume
used for bulk sensing, a plasmonic mode which has a
low performance for bulk sensing cannot be perform-
ing well for local sensing. From Figure 2b and Figure 3b,
the sensitivities of Fano-resonant and Lorentz-
resonant systems are in the same range. This implies,
in particular, that the advantage of Fano-resonant
systems as compared to Lorentz-resonant systems is
not in their sensitivity but in their high spectral mod-
ulation, as will be discussed in the following.

The performance of a plasmonic mode for refractive
index sensing also depends on the uncertainty in the
determination of the resonance frequency.'? An optical
spectrum with sharp spectral features gives a low limit of
detection, corresponding to the minimal perturbation
that can be detected. For experimental and numerical
approaches where the shift is calculated by fitting the
entire line shape to an analytical formula, the accuracy
and stability of this fit in determining the resonance
frequency depend on the strength of the intensity
variations of the line shape. In experimental measure-
ments, the accuracy is determined by the signal-to-noise
ratio, which also depends on the strength of the intensity
variation at a fixed frequency. For plasmon resonance
with a Lorentzian line shape, the spectral dispersion is
directly related to the spectral width y, so that a standard
figure of merit (FOM) has been introduced as:''

sensitivity (eV-RIU 1)
2y (eV)

FOM = (3)
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For Lorentz resonances, eq 3 can be interpreted in
general as the product of the plasmonic mode's sensi-
tivity with the local curvature of its spectral line shape
(Methods). The FOM is a unitless number characterizing
the performance of a plasmon resonance for refractive
index sensing. Let us now evaluate the FOM for
Lorentzian resonances in the case of Fano resonances,
where the width y of the Fano resonance can be
obtained by locally fitting the spectrum to eq 1. The
FOM of the Fano resonance as a function of the sym-
metry breaking is reported in Figure 2c and compared to
the FOM of the Lorentzian resonance in the symmetric
configuration. By definition, the FOM of the Fano reso-
nance is larger because its line shape is spectrally
narrower than the Lorentzian resonance. As the symme-
try breaking increases, the Fano resonance width y
increases, and by definition, the FOM drastically drops
from 41.8 to 17.8. The sensitivity of both modes is still
comparable. The standard FOM (eq 3) defined originally
for Lorentzian resonances considers only the spectral
width as criterion for the limit of detection. However, in
realistic Fano-resonant systems, a small spectral width is
associated with a low modulation depth so that overall
the spectral dispersion is weak (Figure 1). As a result, the
uncertainty on the position of the Fano resonance
frequency, which determines the limit of detection,
remains high. This situation appears in Figure 2c and
Figure 3c for low symmetry breaking: the sensitivity and
FOM calculations converge in a slower way, and fluctua-
tions are observed. Therefore, in Fano-resonant systems,
the contrast of the modulation is also a very important
quantity which determines the performance for refrac-
tive index sensing, together with the sensitivity and the
spectral resolution. As the FOM only includes the sensi-
tivity and the spectral resolution, a paradoxal situation is
observed where the highest FOM is attributed to a Fano
resonance with the weakest modulation. Therefore, the
standard FOM as defined in eq 3 does not accurately
characterize Fano-resonant systems.

Sensitivity, Spectral Resolution, and Contrast in a Figure of
Merit. It has been previously highlighted that the
performance of a Fano-resonant system for refrac-
tive index sensing depends on its sensitivity and the
strength of the intensity variations of the line shape.
The intensity variation is given by the first derivative
of the line shape and has a maximum on the flanks.
A direct method to evaluate the intensity variations on
the flanks is to calculate the second derivative at the
resonance frequency, which gives the curvature of the
Fano line shape. In analogy, the second derivative of a
Lorentzian line shape at its central frequency is pro-
portional to its width (Methods). In a Fano-resonant
system, this curvature vanishes for zero extrinsic cou-
pling v, as well as for large values of y. (Figure 1). In
fact, the curvature as a function of the coupling can be
calculated analytically from the line shape parameters
and is proportional to (1 — b)/y? in the symmetric case
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Figure 4. (a) Curvature (i.e., second derivative) of the Fano
line shape at the resonance frequency w, as a function of the
symmetry breaking. Red: computed numerically. Green:
evaluated from the line shape parameters. (b) Purple: spectral
width y of the Fano resonance as a function of the symmetry
breaking s. Blue: intrinsic width defined by y; = \/by, as a
function of the symmetry breaking s. (c) Bulk sensitivity as a
function of the imaginary part of the metal permittivity ¢
compared to the reference value ¢,.¢for s = 12 nm. (d) FOMg as
a function of the imaginary part of the metal permittivity
calculated with three different methods: from a fit of the
sensitivity and the line shape parameters (red dots), using a
fit of the sensitivity in panel (c) and eqgs 2 and 4 (black dots),
and using the linear dependence of the intrinsic width in the
conductivity from the model of eq 4 (green curve).

(g = 0, Methods). In Figure 4a, the line shape param-
eters extracted from the fit are used to plot the
curvature as a function of the symmetry breaking.
The analytical formula is in perfect agreement with
the numerically computed second derivative at the
resonance frequency. The curvature reaches a max-
imum when y. = (+/2 — 1)y;, corresponding to b = 1/2.
With this particular value of the coupling, the Fano line
shape shows the largest spectral intensity variations
and therefore is in the optimum configuration for
refractive index sensing.

Let us now discuss how to obtain large spectral
intensity variations with a Fano-resonant system. As
the extrinsic coupling y. has to be adjusted to match
the condition b = 1/2 for maximal curvature, the
intrinsic width determines the value of this maximum,
that is, the limit of detection that can be reached. The
intrinsic width can be extracted from the far-field: it
can be analytically shown that the product v/by = v;
is independent of y.. In Figure 4b, this product is
calculated numerically. As expected, it is constant
and corresponds to the value of the Fano resonance
width when the coupling of the modes approaches
zero. In the absence of an intrinsic dipole moment, an
analytical formula for the intrinsic width can be derived
(Methods):

o

) IM(&metal)
Yi = 5

4
Re(emetal) @
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where €neal is the complex dielectric permittivity of
the metallic structure and V( is the fraction of modal
field inside the volume C of conductive material.
Equation 4 implies in particular that intrinsic losses
depend on the conductivity of the material and the
penetration of the field in the conductive material.

Let us now show that the value of the field pene-
tration in eq 4 can be directly obtained from the
sensitivity of the mode to bulk refractive index pertur-
bations, without the need to compute the near-field
explicitly. The sensitivity Aw/An extracted from the fit
in Figure 1a provides the relative amount of field in the
surrounding environment from eq 2. In this geometry,
the volume covered by the metal is complementary to
the volume covered by the surrounding environment.
As 76% of the field was found to lie in the environment,
it can be considered that 24% of the field lies in the
metallic volume. This value of the relative field pene-
tration in the metallic structure can be directly inserted
in eq 4. At a photon energy of 1.61 eV, the permittivity
of the gold structure is equal to &5(—21.75 + 1.35i)
(according to Johnson and Christy®®), which gives an
instrinsic width of 0.0122 eV. This value is in very good
agreement with the average value of 0.0115 eV of
the product +/by in Figure 4b. This confirms that the
intrinsic width of a plasmonic mode satisfies eq 4 and
shows that it can be calculated using perturbation
theory and without the need to perform field integrals.
This method of calculation can be generalized to any
volume and geometry: in order to calculate the relative
amount of field in a volume V made of a homogeneous
material, one can calculate the sensitivity of the mode
with respect to a perturbation of the dielectric permit-
tivity in the volume V and extract the relative amount
of the field from the sensitivity. We have therefore
shown two different methods to compute the intrinsic
width of a subradiant mode: one from the resonance
parameters and the other using perturbation theory.
The intrinsic width y; responsible for the spectral
dispersion, can be engineered in two different ways:
either on the conductive material to reduce the ratio
[IM(emeta)/Re(emetal)| OF ON the subradiant mode field
distribution.

Overall, it appears that Ohmic losses and the sensi-
tivity are the key elements for the design of an efficient
refractive index sensor based on subradiant modes.
The following figure of merit combines these two
aspects in a unitless number:

sensitivity (eV-RIU )
2vby (eV)

where the product +/by is equal to the intrinsic width
of the subradiant mode and can be directly calculated
from the far-field spectrum. The FOM is intrinsic to the
subradiant mode and takes into account its sensitivity,
the spectral resolution, and the contrast of the line

FOMg = (5)
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shape. Compared to the definition of the standard FOM
(eq 3), the factor /b in eq 5 corrects for the fact that
a narrow Fano line shape is also less modulated. The
FOMg with 8 nm symmetry breaking is 41.2 and 0.3 for
bulk and local perturbation, respectively. The value of
8 nm for the symmetry breaking corresponds to the
condition b = 1/2 for which the spectral modulation is
maximized, but in some systems, the coupling is not
always easily tunable and this particular regime cannot
be reached.?" In Figure 4c,d, the imaginary part of the
nanoparticles' permittivity is multiplied by a factor of
1—3 as compared to the original value in Figure 2 in
order to study the effect of the metal properties on the
FOME. The sensitivity of the subradiant mode remains
generally constant because the modal field distribu-
tion is almost not affected by variations of the Ohmic
losses. However, the intrinsic width increases drasti-
cally and, as a consequence, the FOMg (Figure 4d). In
Figure 4d, the FOMg is calculated from the sensitivity
using eq 2 and eq 4 (method 1), resulting in a very good
agreement with respect to the values obtained by
direct fitting of the sensitivity and the line shape
parameters. The behavior of the FOMg in Figure 4d
can be predicted with a simple model (method 2),
assuming that the sensitivity is constant and the
intrinsic width is linear with Ohmic losses (eq 4). Such
a strong dependence of the FOMg (i.e., the limit of
detection) with respect to Ohmic losses motivates the
optimization of conductive materials for plasmonic
sensing applications.

Let us now apply this analysis to the case of
plasmonic heptamers of two different materials
(Figure 5), silver and gold. In this system, the outer ring
of nanoparticles hybridizes with the central particle to
form a super-radiant mode and a subradiant mode
with large and low dipole moments, respectively.?>~>*
The interaction between the super-radiant and the
subradiant modes leads to a Fano interference. The
resonance parameters of eq 1 are extracted from a fit of
the entire line shape (Methods). First, in panels a and b
of Figure 5, the asymmetry of the Fano resonance is
affected by the perturbation. When the difference in
sensitivity between the super-radiant mode and the
subradiant mode is not negligible compared to the
width of the super-radiant mode y,, the asymmetry
parameter is nonzero. The super-radiant mode is less
sensitive than the subradiant mode, and as a conse-
quence, their detuning and the asymmetry are per-
turbed by the change of refractive index. More
specifically in Figure 5b, the fit gives g = 0.22 for a
refractive index of 1.33, whereas it gives g = 0.17 for
a refractive index of 1.40. The spectral line shape is
more symmetric in the perturbed system. The second
main observation is that since the material chosen in
Figure 5a is silver, the subradiant mode has low
intrinsic losses and a relatively high FOM compared
to gold in Figure 5b. In the heptamer system, the
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Figure 5. FOME of anisolated (a) silver and (b) gold heptamer.
The spheres' radius is 30 nm, and their center-to-center
distance is 65 nm. The green and purple lines refer to a
surrounding refractive index of 1.33 and 1.40, respectively.
The thick solid line refers to the calculated back-scattered light
intensity, the dashed line to the fit with the Fano resonance
formula, and the thin solid line to the extracted Lorentzian
envelope.

coupling between the subradiant mode and the
super-radiant mode has not been tuned to match
the condition of highest spectral dispersion (b = 1/2),
but its FOME can still be calculated and compared to
the one of the system studied in Figure 1. A recent
study also shows how the Fano line shape in such
hybridized plasmonic systems can be precisely con-
trolled, in particular, the modulation depth.>*® Compar-
ing the obtained sensitivity to the maximal possible
value shows that 80 and 60% of the electric field
occupies the environment in the silver and gold hep-
tamers, respectively (eq 2). This corresponds to a
spectral width of 0.007 and 0.049 eV for the silver
and gold heptamers, respectively. These values are
smaller than their respective values of 0.021 and
0.059 eV for the intrinsic widths calculated from the
product /by.

In the case of Figure 5, the heptamer is isolated and
the subradiant mode can radiate to the side due to
retardation effects.?” In addition, its geometry is such
that the total dipole moment of the subradiant mode
is not vanishing. As a result, an intrinsic radiative loss
channel is added to the subradiant mode, which
contributes to the intrinsic width. In total, there are
two radiative loss channels for the subradiant mode:
one from its weak intrinsic dipole moment, and the
other from its extrinsic coupling to the super-radiant
mode. In such a nonideal case of interaction between
two radiative modes, the calculation using eq 4 pro-
vides only the contribution from Ohmic losses to the
intrinsic width of the subradiant mode, which means
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that the radiative and nonradiative contributions of the
intrinsic width can be explicitly calculated using this
method. The existence of a radiative channel intrinsic
to the subradiant mode alters the spectral resolution
and contrast for refractive index sensing, which em-
phasizes the importance of engineering its dipole
moment (in Figure 1, the dipole moment of the quad-
rupolar mode is completely vanishing from symmetry).
An additional radiative intrinsic loss channel can also
be created when the subradiant mode is coupled to
another bright mode, with an orthogonal polarization,
for example.3®

Finally, it has been seen that the control of the
different loss channels in Fano-resonant systems is the
key to a low limit of detection and to surpass Lorentz-
resonant systems for refractive index sensing. This
relies on a control of the electric field distribution in
order to increase the sensitivity and decrease Ohmic
losses. Such field engineering, together with the choice
of conducting materials,*® also paves the road to the
optimal performance of a broad range of nano-optical
devices such as plasmonic lasers,***' waveguides,*?
surface-enhanced spectroscopy,*?® nonlinear de-
vices,*~*> molecular rulers,>**®*” and to the reduction
of the power consumption of active nanoplasmonic
devices and metamaterials.*®

CONCLUSION

In summary, we have analyzed analytically and
numerically the performance of subradiant modes for
refractive index sensing. A nanosensor with a low limit
of detection requires both a high sensitivity and a
strong spectral dispersion of the resonance line shape.
The sensitivity can be enhanced by concentrating the
modal field to the sensing region, whereas the spectral
dispersion is determined by Ohmic losses and the
penetration of the field inside the conductive material.
We have shown analytically and verified numerically
that there exists an optimal value of the extrinsic
coupling for which the spectral dispersion of the
resonance line shape is maximal. The intrinsic width
of the subradiant modes determines the value of the
dispersion maximum. We have introduced a figure of
merit given by the ratio of the sensitivity to the intrinsic
width, which are both intrinsic properties of subradiant
modes and fully characterize their efficiency for refrac-
tive index sensing. This figure of merit can be directly
calculated from the line shape in the far-field optical
spectrum and accounts for the fact that both the
spectral resolution and contrast determine the limit
of detection. An expression for the intrinsic width of a
plasmonic mode has been derived and calculated with
two methods: from the line shape parameters and
using perturbation theory. Fano-resonant systems with
low Ohmic losses have the potential to act as very
efficient refractive index sensing platforms compared
to Lorentz-resonant systems. This study paves the way
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toward sensitive nanoscale biochemical sensors and
immunoassays with a low limit of detection and, in

METHODS

Numerical Calculations and Fits. The spectra have been calcu-
lated with a surface integral formulation.*® The gold and silver
permittivities of the nanoparticles are taken from experimental
data.>> A plane-wave illumination is always considered, and the
ratio of the intensity of the scattered field to the intensity of the
incident field yields the reflectance. The line shape parameters
are calculated from fitting the reflectance spectra to eq 1. In the
case of Figure 2 and Figure 3, the detuning between the dipolar
and the quadrupolar modes is small as compared to the dipolar
resonance width so that the modulation can be assumed to
be symmetric (g = 0). The ratio of the total reflectance R to the
reflectance in the symmetric system R, is calculated and locally
fitted by variation of the parameters y and b. In the case of Figure 5,
the two modes are supported by the same structure and the
background reflectance R, does not exist by itself. For each of the
numerically calculated spectra, a fit by variation of seven para-
meters in eq 1 has been performed. For the Lorentzian response
of the super-radiant mode R,, these parameters are the central
frequency w,, the spectral width y,, and the amplitude a. For the
Fano modulation, the parameters considered are the central
frequency wo, width y, asymmetry g, and modulation damping b.

Spectral Dispersion of Lorentz and Fano Resonances. The line shape
o, of Lorentz-resonant systems is given by the following func-
tion of the frequency: oy (w) = yﬁ/((w — a)L)2 + yf).The dispersion
is given by the first derivative oi, which vanishes at the
resonance frequency w; and has a maximum on its flanks.
The strength of the dispersion on the flanks is locally deter-
mined by the curvature (ie, the second derivative) at the
resonance frequency. It can be easily shown that ol is propor-
tionnal to 1/yZ, which means that the FOM in eq 3 is propor-
tional to «/o]_. As the spectral width y_ increases, the FOM
decreases monotonously. This behavior is in very good agree-
ment with the decrease of the spectral resolution; therefore,
the FOM is appropriate for Lorentz-resonant systems. For Fano-
resonant systems, it is assumed for simplicity that their line
shape is almost symmetric so that the parameter g is neglected.
The line shape of is given by or(w) = (@ — wo)2 + byz)/
((w — (uo)2 + yz). The curvature of Fano-resonant systems is
calculated in a similar way as for Lorentz-resonant systems:
a;(wo) =201 — b)/yz. The curvature is a non-monotonous
function of the coupling y., which has a maximum for y. =
W2- 1)y;, corresponding to b= 1/2. In this situation, the system
possesses an optimal trade-off between spectral resolution
and contrast. Ideally, a Fano-resonant system has therefore to be
positioned in this coupling regime in order to optimize the strength
of the spectral dispersion. In the expression of the FOMg in eq 5,
afactor Vb is introduced as a correction for the FOM including the
contrast. It is proportionnal to the mode sensitivity and the last loss
channel which needs to be engineered: Ohmic losses.

Sensitivity of a Localized Plasmon Mode. Let us consider the
Feshbach decomposition of a electric field wave function |E)

into a radiative and a nonradiative parts:'®*° |E) = P|E) + QIE).
A unique nonradiative mode E,, defined as the eigenfunctio_n of
the projector to nonradiative modes, Q[Eo) = |Eo), satisfies the

following eigenvalue equation:'®

(Q7Q — w§ )|Eo) = 0 (6)
where w, the real frequency eigenvalue associated to the
nonradiative mode and .// is a hermitian operator associated
with the electric field wave equation:
%

é/ E(r) = )

V x V x E(r) (7)
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general, any nano-optical device where Ohmic losses
limit the performance.

The scalar product is defined by (E,|E,) = fdz'rs(r)E}*(r) -E5(r) to
guarantee the hermiticity of the operator .//. The nonradiative
mode is normalized: [(Eo|E)]? = 1. A perturbation of the di-
electric permittivity Ae over a volume V is now assumed. Using
perturbation theory, the shift Aw of the frequency of the mode
is given by'%'?

An
AUJ = — T (Uo(E()‘Eo)V (8)

where the scalar product of the field is restricted to the volume V
of perturbation. Equation 8 is equivalent to eq 2.

Losses of a Localized Plasmon Mode. In the presence of a current
field |J), such as found in conductive materials, eq 6 can be
written as

iwuc?
&

Q7 Q -} NEy = “2-Qpy) ©)

where u is the relative magnetic permeability. The formal
solution of eq 9 has the form of |E) = |Eo) + (iamcz/e)go(_) [,
where |E) is the solution of the homogeneous problem and Go
its Green's dyadic function. Using a procedure equivalent to the
one in a previous work (Supporting Information in Gallinet
et al.?®), the electric field wave function can be written as
) icuw

Q77 Q[E) = w;|Eo) £ > (Eo|J)|Eo) (10)
where the sign of the second term is chosen with respect to
causality. Let us now assume that the current field is governed
by Ohm's law (|J) = o|E) with o the conductivity of the material)
and restricted to a region C corresponding to the presence of a

conductive material. Equation 10 becomes in the assumption of
low current:

wolm(e)

2Re(e) an

2
Q.7 (w01 o) EalEc) 6
where the scalar product of the field is restricted to the volume
C of conductive material. Extracting the imaginary part of the
eigenvalue in eq 11 yields eq 4.
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