
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. B. Faltings, président du jury
Prof. K. Aberer, directeur de thèse

Prof. Z. Bellahsene, rapporteur
Dr Z. Miklós, rapporteur

Dr M. Rajman, rapporteur

Reconciling Schema Matching Networks

THÈSE NO 6033 (2013)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 14 JANVIER 2014

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE SYSTÈMES D'INFORMATION RÉPARTIS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2014

PAR

Quoc Viet Hung NGUYEN

Acknowledgements

I would like to express my gratitude to:

My supervisors – Prof. Karl Aberer and Prof. Zoltan Miklos – at Dis-

tributed Information Systems Laboratory EPFL. Through their valuable

guidance, I have obtained relevant research skills as well as followed the

right research direction.

My thesis committee: Prof. Zohra Bellahsene, Prof. Boi Faltings, Prof.

Zoltan Miklos, and Dr. Martin Rajman for their important comments and

discussions to improve my dissertation.

My colleagues from my laboratory (LSIR) at EPFL for their generous sup-

ports and friendships – we have a great team. A special thanks goes to

Chantal, who helped me sort out so many not only administrative issues

but also paper works.

My colleagues and my paper coauthors whom I collaborated with during

this three-year PhD study at EPFL, especially the NisB team, the master

and bachelor students, and the student interns at LSIR.

My parents and my friends who have understood and shared with me joys

and sorrows in my life.

There many other people who supported me to accomplish my PhD study.

I apologize for not mentioning their names here, but I always remember in

my heart their helps.

ii

Abstract

Schema matching is the process of establishing correspondences between the

attributes of schemas, for the purpose of data integration. Schema matching

is often performed in a pair-wise setting, in which two given schemas are

matched again each other by automatic tools. In this thesis, we instead

approach the schema matching problem in a network setting, in which the

two schemas to be matched do not exist in isolation but participate in a larger

matching network and connect to several other schemas at the same time,

coined the term schema matching network. The notion of schema matching

network is novel in its own right and is beneficial in many real world scenarios,

including large enterprises and mashup applications.

There is a large body of work on schema matching techniques; numerous

commercial and academic schema matching tools, called matchers, have been

developed in recent years. Since matchers rely on heuristic techniques, their

result is inherently uncertain. Even though matchers achieve impressive per-

formance on some datasets, they cannot be expected to yield a correct result

in the general case. In practice, data integration tasks often include a post-

matching reconciliation phase, in which correspondences are reviewed and

validated by user(s). The process of reviewing and validating correspon-

dences is called reconciliation that incrementally leads to identifying correct

correspondences. The human reconciliation is a tedious and time-consuming

task. It raises several issues in designing a burdenless interaction scheme to

reduce the validation effort.

Addressing these issues, we propose reconciliation methods to enable the

automation and analysis of the reconciliation. In particular, we go beyond

the common practice of human reconciliation in improving and validating

matchings for a pair of schemas. Instead, we study the reconciliation for a

schema matching network (i.e. a network of related schemas matched against

each other). Having a network of multiple schemas enables the introduction

of network-level integrity constraints, which should be respected during the

reconciliation. The presence of such integrity constraints creates a number of

dependencies between correspondences that, however, may be hard to over-

look in large networks. Despite of this challenge, those dependencies create

an opportunity to guide the validation work and minimize the necessary

efforts by providing evidence for the matching quality. The dedicated con-

tributions of this work are to address and overcome the issues of reconciling

schema matching networks in three following settings.

iii

Pay-as-you-go reconciliation. A single human expert is involved to val-

idate the generated correspondences. In Chapter 4, we develop a recon-

ciliation guiding method, in which the correspondences are validated in an

order according to the expected amount of the potential “benefit” if their

correctness is given. To further reduce the involved human effort and detect

erroneous input, we propose a reasoning technique based on the integrity con-

straints to derive the validation consequences. Morever, as the availability

of such expert work is often limited, we also develop heuristics to construct

a set of good quality correspondences with a high probability, even if the

expert does not validate all the necessary correspondences.

Collaborative reconciliation. While the pay-as-you-go setting above con-

siders only one single expert, this setting employs a group of experts who work

simultaneously to validate a set of generated correspondences. As the ex-

perts might have conflicting views whether a given correspondence is correct

or not, there is a need of supporting the discussion and negotiation among

the experts. In Chapter 5, we leverage the theorical advances and multiagent

nature of argumentation to realize the supporting tools for collaborative rec-

onciliation. More precisely, we construct an abstract argumentation from the

expers’ inputs and encode the integrity constraints for detecting validation

conflicts. Then we guide the conflict resolution by presenting meaningful in-

terpretations for the conflicts and offering various metrics to help the experts

understand the consequences of their own decisions as well as those of others.

Crowdsourced reconciliation. In the two above settings, we elicit the

knowledge from experts for reconciliation. However in some cases, the ex-

perts are not always available due to limited effort budget. To overcome this

limitation, we use crowdsourcing approach that employs a large number of

crowd users online, with the advantages of low monetary cost and high avail-

ability. In Chapter 6, we propose techniques to obtain high-quality validation

results while minimizing labour efforts of the crowd, including (i) contextual

question design – incorporates the contextual information to the question,

(ii) constraint-based answer aggregation – aggregates different answers of the

crowd based on the dependencies between correspondences.

Through theoretical and empirical findings, the thesis highlights the impor-

tance and robustness of schema matching networks in reconciling the erro-

neous matches of automatic matching. Such matching networks are inde-

pendent of used matching tools and reconciliation settings, leading to more

potential applications in the future. Especially with the era of Big Data in

recent years, our techniques are suitable for big data integration in which

more and more data sources are being incorporated over time.

Keywords: data integration, schema matching, reconciliation, crowdsourc-

ing, collaborative work, argumentation

Résumé

La mise en relation de schémas (schema matching) est le procédé qui consiste

à établir des correspondances entre les attributs de plusieurs schémas dans

le but d’intégrer des données provenant de diverses sources. Ce procédé est

souvent appliqué dans le cas restreint de deux schémas pour lesquels la corre-

spondance entre attributs est effectuée de manière automatique. Dans cette

thèse, nous préférons aborder la mise en relation de schémas d’un point de vue

réseau, dans lequel les pairs de schémas ne sont pas considérées séparément,

mais plutôt comme faisant partie d’un plus vaste de réseau de schémas avec

des correspondances créant des liens entre ces schémas. D’où la notion de

réseaux de correspondances entre schémas (schema matching network). La

notion de réseaux de correspondances entre schémas est innovante et peut-

être bénéfique à de nombreux problèmes concrets tels que ceux rencontrés

dans les grandes entreprises ou dans des logiciels d’agrégation de données.

Il existe un grand nombre de travaux ayant trait aux techniques de schema

matching; De nombreux outils commerciaux et académiques, appelés match-

ers, ont été développés ces dernières années. Ces outils reposant sur des

systèmes d’heuristique, leurs résultats en sont intrinsèquement incertains.

Bien que ces matchers se prouvent très performants pour certains datasets,

on ne peut s’attendre à ce qu’il fournissent des résultats corrects dans le cas

général. En pratique, l’intégration de données inclue souvent une phase de

réconciliation une fois que les relations entre schémas ont été établies au-

tomatiquement. Pendant cette phase de réconciliation, les relations trouvées

sont évaluées et validées par le(s) utilisateur(s). Cette phase d’évaluation

et de validation est appelée reconciliation et permet d’identifier au fur et

à mesure les correspondances corrects. Cette tache, nécessitant une inter-

vention humaine, est laborieuse et chronophage et motive donc la création

d’un mécanisme de validation requérant un effort moindre de la part de(s)

l’utilisateur(s).

Nous proposons une solution de réconciliation permettant l’automatisation

et l’analyse de cette réconciliation. En particulier, nous allons au delà d’une

simple intervention humaine afin d’améliorer et valider les correspondances

entre deux schémas. Nous préférons étudier la réconciliation de schémas

d’un point de vue d’un réseau de schémas. Les réseaux de schémas per-

mettent d’introduire des contraintes d’intégrité concernant la structure des

réseaux, qui doivent être respectées pendant la phase de réconciliation. Ces

v

contraintes d’intégrité créent un certain nombre de dépendances entre les cor-

respondances qui sont difficiles à prendre en compte dans le cas de réseaux

étendus. Malgré ces complications, ces dépendances apportent également

des informations supplémentaires permettant de guider la validation des cor-

respondances en fournissant un critère de qualité. Les contributions de ce

travail proposent une solution au problème de réconciliation de réseaux de

correspondance entre schémas dans trois configurations données.

Pay-as-you-go reconciliation. Une seule personne est impliquée dans la

validation des correspondances automatiquement générées. Dans le chapitre

4, nous développons une méthode permettant de guider la phase de réconciliation.

Dans cette méthode, les correspondances sont validées dans un certain or-

dre dépendant des potentiels bénéfices que peuvent apporter ces correspon-

dances si elles s’avèrent correctes. Afin de diminuer encore plus l’implication

humaine dans le processus ainsi que détecter d’éventuelles données erronées,

nous proposons un raisonnement déterminant les conséquences d’une vali-

dation basée sur l’intégrité des contraintes du réseau de schémas. De plus,

étant donné que la disponibilité d’un avis expert est souvent restreinte, nous

développons également des heuristiques pour construire des ensembles de

correspondances de bonnes qualités avec une grande probabilité, même dans

les cas où l’expert ne valide pas tout les correspondances nécessaires.

Collaborative reconciliation. A l’inverse du mode de réconciliation précèdent

qui ne prend en compte qu’un seul expert, cette méthode considère un groupe

d’expert qui travaillent simultanément à la validation d’un ensemble des

correspondances générées automatiquement. Les experts pouvant être en

désaccord concernant la validité d’une correspondance, un outil de discus-

sion et de négociation est nécessaire. Dans le chapitre 5, nous utilisons les

avancées théoriques et la nature multi-agent d’une argumentation afin de

réaliser les outils supportant une réconciliation collective. Plus précisément,

nous construisons une argumentation dite abstraite des conseils des experts

et intégrons les contraintes d’intégrité tirées de la topologie du réseau de

schémas afin de détecter les conflits de validation. Finalement nous guidons

la résolution des conflits en présentant une interprétation cohérente des con-

flits et en offrant différentes mesures ayant pour but d’aider les expert à

comprendre les conséquences de leur propres décisions ainsi que celles des

autres experts.

Crowdsourced reconciliation. Dans les deux configurations précédentes,

nous utilisons les connaissances d’experts afin de valider les correspondances.

Cependant, ces connaissances ne sont pas toujours disponibles, par exemple

pour des raisons de budget. Afin de pallier cette limitation, nous utilisons

le crowsourcing qui utilise un grand nombre d’utilisateur en ligne et qui

présente les avantages d’être bon marché et d’avoir une forte disponibilité.

Dans le chapitre 6, nous proposons une méthode pour obtenir des valida-

tions de correspondance de grande qualité tout en minimisant le travail des

utilisateurs, incluant (i) Un questionnaire contextualisée - incorporant des

éléments contextuels dans questions, (ii) une agrégation des résultats basée

sur les contraintes - agrégation des réponses des utilisateurs en se basant sur

les dépendances entre les correspondances.

A travers une recherche à la fois empirique et théorique, la thèse met en avant

l’importance et la robustesse des réseaux de correspondances entre schémas

lors de la réconciliations de relations erronées générées automatiquement.

Ces réseaux de correspondances sont indépendants des outils utilisés pour la

générations des relations ainsi que du mode de réconciliation utilisé, menant

sur de nombreuses applications potentielles. En particulier due à l’avènement

de l’ère ”Big data” ces dernières années, les techniques présentées sont ap-

propriées à l’intégration de ce déluge de données dans lequel de plus en plus

de sources sont incorporées au fil du temps.

Mots-clés: l’intégration des données, schéma correspondant, la réconciliation,

crowdsourcing, le travail collaboratif, l’argumentation

viii

Contents

Abstract iii

Résumé v

Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Motivation . 3

1.1.1 Applications of Schema Matching Networks 3

1.1.2 The Need of Schema Matching Reconciliation 5

1.2 Goals and Research Questions . 6

1.3 Contributions and Thesis Organization . 8

1.4 Selected Publications . 10

2 Background 13

2.1 Schema Matching . 13

2.1.1 Matching Techniques . 13

2.1.1.1 Techniques for Pair-wise Matching 14

2.1.1.2 Techniques for Multiple Schemas 15

2.1.1.3 Techniques for Large Schemas 16

2.1.1.4 Combined Techniques . 17

2.1.1.5 Semi-Automatic Techniques 17

ix

CONTENTS

2.1.2 Matching Tools . 18

2.1.2.1 Commercial Prototypes 19

2.1.2.2 Research Prototypes . 20

2.2 Answer Set Programming . 21

2.2.1 Introduction . 21

2.2.2 Knowledge Representation in ASP 22

2.2.3 Applications . 24

2.3 Argumentation . 25

2.3.1 Introduction . 25

2.3.2 Logical Argumentation . 25

2.3.3 Abstract Argumentation Frameworks 26

2.3.3.1 Model . 26

2.3.3.2 Semantics . 27

2.3.4 Applications . 29

2.4 Crowdsourcing . 29

2.4.1 Introduction . 30

2.4.2 Crowdsourcing Services . 31

2.4.3 Quality Control in Crowdsourcing 31

2.4.3.1 Worker Quality . 32

2.4.3.2 Answer Aggregation . 33

2.4.4 Crowdsourcing Applications . 35

3 Schema Matching Network - Modeling, Quantifying, and Partitioning 37

3.1 Introduction . 37

3.2 Elements of a Schema Matching Network 38

3.2.1 Schema . 38

3.2.2 Interaction graph . 39

3.2.3 Attribute Correspondences . 39

3.2.4 Integrity constraints . 40

3.3 Representation in ASP . 41

3.3.1 Encoding Elements of a Schema Matching Network 41

3.3.2 Detecting Constraint Violations . 43

3.4 Quantifying the Network Uncertainty . 43

x

CONTENTS

3.4.1 Probability of Correspondences in the Network 44

3.4.2 Approximating the Probabilities 46

3.4.3 Network Uncertainty . 48

3.5 Network Partitioning . 48

3.5.1 Decomposition by Connected Components 49

3.5.2 Decomposition by k-way Partitioning 50

3.5.3 Decomposition by Schema Cover 52

3.6 Evaluation Methodology . 54

3.7 Summary . 56

4 Pay-as-you-go Reconciliation 57

4.1 Introduction . 57

4.2 Model and Approach . 58

4.2.1 Motivating Example . 58

4.2.2 Framework . 59

4.2.3 Reconciliation Process . 60

4.3 Minimize User Effort . 62

4.3.1 Effort Minimization by Ordering 62

4.3.2 Effort Minimization by Reasoning 64

4.4 Instantiate Selective Matching . 67

4.4.1 Problem Statement . 67

4.4.2 Heuristic-based Algorithm . 69

4.5 Empirical Evaluation . 71

4.5.1 Experimental Setup . 71

4.5.2 Evaluations on Minimizing User Effort 72

4.5.3 Evaluations on Instantiating Selective Matching 75

4.6 Summary . 77

5 Collaborative Reconciliation 79

5.1 Introduction . 79

5.1.1 Motivating Example . 80

5.1.2 Overall Approach . 81

5.2 Model and System Overview . 81

5.2.1 Task Partitioning . 82

xi

CONTENTS

5.2.2 Collaborative Reconciliation . 82

5.3 Detecting Conflicts in User Inputs . 83

5.3.1 Arguments for Schema Matching networks 84

5.3.2 Construct Argumentation Framework 85

5.3.3 Detection Mechanism . 86

5.4 Guiding the Conflict Resolution . 86

5.4.1 Interpretation of Conflict Structures 87

5.4.2 What-If Analysis . 89

5.5 Implementation . 89

5.5.1 Instantiate Argumentation Framework 90

5.5.2 Realizing Services . 92

5.5.2.1 Conflict Detection. 92

5.5.2.2 Interpretation of Conflict Structures. 92

5.5.2.3 What-If Analysis. 93

5.6 Tool - ArgSM . 93

5.6.1 User Interface . 93

5.6.2 Technical Challenges . 94

5.7 Summary . 95

6 Crowdsourced Reconciliation 97

6.1 Introduction . 97

6.2 Model and Overview . 98

6.3 Question Design . 99

6.4 Answer Aggregation . 100

6.4.1 Aggregating Without Constraints 101

6.4.2 Leveraging Constraints to Reduce Error Rate 101

6.4.2.1 Aggregating with Constraints 102

6.4.2.2 Aggregating with 1-1 Constraint 102

6.4.2.3 Aggregating with Cycle Constraint 104

6.4.2.4 Aggregating with Multiple Constraints 106

6.5 Worker Assessment . 106

6.5.1 Detect Spammers . 106

6.5.2 Detect Worker Dependency . 108

xii

CONTENTS

6.6 Experiments . 110

6.6.1 Experimental Settings . 110

6.6.2 Effects of Contextual Information 110

6.6.3 Relationship between Error Rate and Matching Accuracy 111

6.6.4 Effects of Constraints on Worker Effort 112

6.6.5 Effects of Constraints on Detecting Worker Dependency 113

6.7 Summary . 114

7 Conclusion 117

7.1 Summary of the Work . 117

7.2 Future Directions . 118

7.2.1 Managing Schema Matching Networks 119

7.2.2 Big Data Integration . 120

7.2.3 Generalizing Reconciliation for Crowdsourced Models 121

Bibliography 123

xiii

CONTENTS

xiv

List of Figures

1.1 A schema matching example . 2

2.1 Classification of schema matching techniques 14

2.2 Graph presentation of an argumentation framework 27

2.3 General crowdsourcing system . 30

2.4 Characteristics of different types of workers 32

3.1 A full matching network . 37

3.2 Simplified matching network . 37

3.3 Relationship between the set of candidate correspondences C, the user

input 〈F+, F−〉, and the matching instances I1, ..., In 45

3.4 Network decomposition by hypergraph partitioning 51

3.5 Network decomposition by schema cover 53

4.1 Effects of guiding user validation . 58

4.2 Simplified architecture of the framework 59

4.3 C is a set of correspondences, Cons(U) is the consequences of user input,

c is the correspondence on which new feedback is given, ∆U,c is the set of

correspondences needed for reasoning. 66

4.4 User effort needed to achieve 100% precision. 73

4.5 Effect of the reconciliation goal (PO). 74

4.6 Effect of network topology (with goal ∆Precision=1 .0). 74

4.7 Effects of correspondence ordering strategies on instantiation. H is the

instantiated matching of our algorithm. 76

xv

LIST OF FIGURES

4.8 Effects of the likelihood function on instantiation. H is the instantiated

matching of our algorithm. 76

5.1 The motivating example. (a) A network of schemas and correspondences

generated by matchers. There are two violations: {c2, c4} w.r.t. the one-

to-one constraint, {c1, c3, c4} w.r.t. the cycle constraint. (b) An illus-

trated collaborative reconciliation between three video content providers:

EoverI, BBC, and DVDizzy. The assertions (approvals/disapprovals) of

BBC and DVDizzy are identical and different from those of EoverI. 80

5.2 Task Partitioning in Collaborative Reconciliation 82

5.3 The collaborative reconciliation process starts with a set of correspon-

dences C generated by matchers. In Phase 1, each expert (user/partici-

pant) i is responsible for validating a particular set Ci ⊂ C. It is followed

by Phase 2 that has multiple negotiation steps (3.1. to 3.N) to resolve

conflicts in user inputs. 83

5.4 The GUI of ArgSM, with Argumentation view (left) and Schema view

(right) . 95

6.1 Architecture of the crowdsourced reconciliation framework 98

6.2 Question designs with 3 different contextual information: (A) All alter-

native targets, (B) Transitive closure, (C) Transitive violation. 100

6.3 Optimization goal . 101

6.4 Compute conditional probability with (A) 1-1 constraint and (B) cycle

constraint . 103

6.5 Effects of contextual information. (a) all alternatives, (b) transitive clo-

sure, (c) transitive violation . 111

6.6 Relationship between error rate and precision 112

6.7 Effects of constraints on worker effort . 113

6.8 Accuracy of detecting dependence between workers 113

xvi

List of Tables

1.1 Constraint violations of matcher output in real datasets 5

2.1 Tool Catalogue of Schema Matching Commercial Prototypes 19

2.2 Tool Catalogue of Schema Matching Research Prototypes 20

3.1 Statistics for datasets . 55

4.1 Effects of the Reconciliation Goal . 74

4.2 Ability to conclude assertions . 75

4.3 Accuracy of detecting noisy user input . 76

xvii

LIST OF TABLES

xviii

Chapter 1
Introduction

More and more online services enable users to upload and share structured data, in-

cluding Google Fusion Tables [GHJ+10], Freebase [BEP+08], and Factual [fac]. These

services primarily offer easy visualization of uploaded data as well as tools to embed

the visualisation to blogs or Web pages. As the number of publicly available datasets

grows rapidly and fragmentation of data in different sources becomes a common phe-

nomenon, it is essential to create the interlinks between them [DSFG+12]. An example

is the often quoted coffee consumption data found in Google Fusion Tables, which is

distributed among different tables that represent a specific region [GHJ+10]. Extraction

of information over all regions requires means to query and aggregate across multiple

tables, thereby raising the need of interconnecting table schemas to achieve an integrated

view of the data. This task is often labeled schema matching, which is the process of

generating a set of correspondences between attributes of the involved schemas.

Not only is schema matching essential for such online services, but it is also crucial for

data integration purposes in large enterprises. Specifically, schema matching enables to

integrate the data distributed in different subsidiaries of an enterprise, such as providing

access to all data via a Web portal. Moreover, it also allows the collaboration between

the information systems of different companies through a seamless exchange of the data

residing in their databases. In fact, the market for data integration is growing rapidly

and attracting large amounts of capital in recent years. Statistically, data integration

was thought to consume about 40% of IT budget in large enterprises [BM07, Haa06].

The market was about $2.5 billion in 2007 and had an average annual growth rate of

8.7% [HAB+05]. Those numbers reflect the high level of importance of schema matching

in large enterprises.

Technically, schema matching is the problem of generating correspondences between

the attributes of two given schemas. A schema is a formal structure designed by human

beings, such as a relational schema and XML schema. Each schema contains several

attributes, each of which reflects the meaning of a particular aspect of the schema. An

attribute correspondence between a pair of schemas captures the equivalence relationship

of two given attributes, implying that they have the same meaning. For example, Figure

1.1 shows three XML schemas that were developed independently in the same domain.

1

1. Introduction

Despite the lexical difference between the two attributes releasedate and availabilityDate,

they have the same meaning and thus a correspondence (c2) is generated between them.

A set of attribute correspondences is typically the outcome of the schema matching

process. It is noteworthy that although we mainly use XML schemas for illustrations

in this thesis, our proposed techniques are applicable for a wide range of crowdsourced

models designed by humans such as ontology and web service.

s1: EoverI

s2: BBC

s3: DVDizzy

a4: productionDate

a1: releaseDate
a3: availabilityDate

a2: screeningDate

c4

c2

c1
c3

c5

Figure 1.1: A schema matching example

There is a large body of work on schema matching techniques; numerous commercial

and academic schema matching tools, called matchers, have been developed in recent

years [BMR11a, RB01a]. Even though matchers achieve impressive performance on some

datasets, they cannot be expected to yield a correct result in the general case. Since

matchers rely on heuristic techniques, their result is inherently uncertain. In practice,

data integration tasks often include a post-matching phase, in which correspondences are

reviewed and validated by user(s). For example, all the five attributes correspondences in

Figure 1.1 are generated by typical matchers, but only three of them are correct (correct

and incorrect correspondences are depicted by solid lines and dashed lines, respectively).

We need user validation to identify which generated correspondences are correct.

The process of reviewing and validating correspondences is called reconciliation that

incrementally leads to the identification of correct correspondences. Human reconcili-

ation is a tedious and time-consuming task. It raises an open challenge in designing

a burdenless interaction scheme to reduce the validation effort. As a result, there is a

need of reconciliation methods to guide the validation work and minimize the necessary

efforts, enabling the automation and analysis of the reconciliation. A good reconciliation

method should be able to identify the most problematic correspondences for validation

and derive the validation consequences for avoiding redundant input from user. Through

this guidance, only a limited amount of user input is required to achieve high matching

quality.

In this work, we go beyond the common practice of human reconciliation in improv-

ing and validating matchings for a pair of schemas. Instead, we focus on a setting in

which matching is conducted for a network of related schemas matched against each

other, namely schema matching network. The reconciliation in schema matching net-

works is novel in its own right and is beneficial in different scenarios, including enter-

prise [SMM+09b] and mashup applications [DLHPB09a]. In these applications, satisfy-

2

1.1 Motivation

ing the network-level integrity constraints is a must to enforce the natural expectations

for consistency purposes in data integration. The presence of such integrity constraints

creates a number of dependencies between correspondences, making it challenging to

guarantee the overall consistency especially in large-scale networks. Despite this chal-

lenge, the dependencies between correspondences create an opportunity to improve the

quality of the matching by providing evidence for detecting problematic correspondences.

Prioritizing the problematic correspondences for user validation is crucial to reduce the

necessary efforts since those correspondences are the most likely cause for the poor

matching results.

In this chapter, we firstly claim that reconciliation in schema matching network is

important. To support this claim, we show a wide range of applications for schema

matching networks as well as the need of reconciling these networks. Then we introduce

the goals of this thesis as well as the research questions tackled to achieve these goals.

After that, we summarize the contributions which are the proposed solutions for those

research questions. Finally, we present the thesis organization and selected publications.

1.1 Motivation

Before diving into the goals of this thesis and the research questions, we would like to

convince the reader that reconcilition in schema matching network (SMN) is important.

To do this, we would like to show the presence of SMN in many applications and the

need of reconciliation.

1.1.1 Applications of Schema Matching Networks

There are many applications that require schema matching, varying from large enter-

prises to cloud platforms.

Large enterprises. Large enterprises often consist of many subsidiaries whose databases

are developed independently for targeted business needs. Hence, data reside in multiple

sources throughout an enterprise, rather than sitting in one neatly organized database.

Consequently, there is a need of querying across different databases to provide a unified

view of data in the whole enterprise. To support these cross-queries, we need to identify

the matchings between the schemas of involved databases [LMR90, SMM+09a]. And

thus, schema matching is a valuable tool to realize this identification.

Dataspaces. Dataspaces has been proposed [FHM05, HFM06] as a new abstraction

for data management to meet the growing demands of pervasive data. One success-

ful application of dataspaces is the personal information management that consists of

highly heterogeneous data typically stored among multiple file systems (local or net-

work) and multiple machines (desktop or mobile devices). The goal of dataspaces is

to provide primitive functionality over all data sources. To realize such functionality,

schema matching is an essential component for establishing the connections between all

data sources in the dataspaces.

3

1. Introduction

World-wide-web. The World-Wide-Web is known to be a repository of big data, in

particular the structured HTML tables [CHW+08]. Harnessing this fact, many appli-

cations have been developed to gather and aggregate those existing web tables. In this

context, each web table has its own “schema”; and thus, schema matching techniques

can be used to interconnect these tables. One possible web-based application is prod-

uct catalogue management [NFP+11], in which the information about specific products

is retrieved from multiple web sites, allowing users to search and compare products of

different providers with ease. Apparently, the network of these web tables can be model

as a schema matching network.

Data Mashup. Mashups are a new type of interactive web applications, combining

content from multiple services into a new service [DLHPB09b, Rah07]. For example,

a mashup website about computers can get quotes, pictures, videos, and reviews from

computer websites, forums and social networks. The data coming from different services

have different structures and formats. Integrating those heterogeneous data is a must to

realize the mashup. One possible approach is modeling each service as a schema, which

contains the provided meta-data information, and construct a network of schemas for

matching. As a result, schema matching techniques can be used to create the inter-links

between these services for the purpose of data integration.

P2P networks. A P2P network is a decentralized and distributed network architec-

ture in which the participating nodes act as peers that share data between each other.

Searching in these networks requires to query across multiple peers. However, the data

are often heterogeneous in P2P networks due to different file formats and content struc-

tures. And thus, we need to establish the semantic interoperability between these peers

[ACMO+04, ACMH03]. This establishment is the inspiration of schema matching net-

works, in which each peer exposes the schema of its own data to be matched against

each other.

Collaborative Systems. Collaborative systems technologies support the collaboration

between information systems by providing flexible and scalable services to work together

in large-scale environments. Under collaborative scenarios, the information systems

are themselves the primary data providers. Integrating data stored in autonomously-

developed information systems is essential for a number of applications. For example,

two private banks would like to collaborate for detecting fraud transactions [DCSW09,

MAL+05]. They need to exchange the data residing in their independent databases. As a

result, schema matching becomes an essential component in enabling the interconnection

between the involved systems.

Cloud. In recent years, the success of cloud applications in practice is broadening by

the ability to store and process personal data distributed across PCs, mobile devices,

and online services [eye, ubu, dro]. Especially with user-centric solutions like Personal

Cloud [AGPS09], users expect to use a ubiquitous and unified cloud portal to handle

their massive amount of data. To enable this scenario, there is a demand of sharing data

between different cloud platforms to make the existing cloud applications more glued.

In that, semantic interoperability is a key ingredient to promote the integration of data

4

1.1 Motivation

horizontally across different cloud solutions. To support this semantic interoperabil-

ity, schema matching is an essential part for establishing the interconnections between

different cloud data.

1.1.2 The Need of Schema Matching Reconciliation

The problem of schema matching has been a subject of research for over a decade, but

there is no perfect solution. In fact, schema matching is a “tough” problem since no

model has been able to fully-capture the exact semantics of a given schema [Gal06b].

More precisely, the schemas with identical semantics are represented by different struc-

tures and vocabularies that only their own designers can completely understand. Due

to the lack of a generic model, automatic matchers often rely on heuristic approaches to

generate the matchings between two given schemas. As a result, their matching results

are inherently uncertain.

It quickly became clear that one of the major bottlenecks in data integration is the

effort required to create the fully correct matchings. Even though with the help of

matching tools, if one would like to use the attribute correspondences for data integra-

tion or exchange, it is necessary to eliminate the errors from the automatic matchings.

Thus, it requires a reconciliation process in which human user(s) review and validate

the generated attribute correspondences. Especially in our setting of schema matching

networks, the reconciliation is of paramount importance to ensure the matching quality,

facilitating the integration of a big amount of data coming from multiple sources.

Moreover, reconciling such large schema matching networks is not trivial and costly:

if a large number of candidate correspondences violate various integrity constraints, so

that the reconciliation effort can be considerable. Table 1.1 lists the number of constraint

violations in our real datasets. Rather independent of the applied schema matcher, the

results obtained by automatic matching contain a large number of problematic corre-

spondences. This, in turn, motivates the need for effective reconciliation. Thousands

of constraint violations cannot be investigated exhaustively, and the validation feedback

needs to be collected efficiently. The main contribution of this work is to devise such

effective techniques for reconciling schema matching networks.

Table 1.1: Constraint violations of matcher output in real datasets

Dataset #Schemas
Violations per Matcher

COMA AMC

BusinessPartner 3 252 244
PurchaseOrder 10 10078 11320
UniversityAppForms 15 40436 41256
WebForm 89 6032 6367
THALIA 44 12511 7425

A significant branch of the research community focused on the reconciliation pro-

cess for a pair-wise matching between two schemas [DR02a, MBR01, MGMR02, BM02,

ACMH03]. The goal of these works is to create tools that reduce the amount of human

5

1. Introduction

effort involved. The main difference between the literature and our work is that we

study the reconciliation for schema matching networks, which involve many pair-wise

matchings at the same time.

1.2 Goals and Research Questions

As mentioned above, reconciliation is important for schema matching. In this thesis, we

study the reconciliation with three different settings: (i) pay-as-you-go reconciliation, (ii)

collaborative reconciliation, and (iii) crowdsourced reconciliation. While the first two

settings involve the work from human experts (i.e. all answers are considered correct),

the last setting employs human workers from the crowd (i.e. each answer is correct

with a probability). The difference between the pay-as-you-go and the collaborative

reconciliation is that the former uses a single expert while the latter uses multiple ones.

Each setting raises different research questions, which are described in the following.

Pay-as-you-go Reconciliation. We analyze the reconciliation process in a setting

where a single human expert is involved to validate the generated correspondences.

Since reonciliation is a tedious and time-consuming task, our first goal is to reduce the

costly human effort. As the availability of such experts is often limited, the second goal

is to develop techniques that can construct a set of good quality correspondences with a

high probability, even if the expert does not validate all the necessary correspondences.

To achieve these goals, there are numerous research questions to tackle:

• How to identify an efficient order of correspondences chosen for user validation?

Different correspondences have different influence on the quality of a schema match-

ing network. In that, detecting the problematic correspondences, which violate

integrity constraints, first is important since they are the most likely cause for the

poor matching quality. Given the same amount of user efforts, different orders

of user validations on these correspondences might lead to different network qual-

ity. As a result, identifying a good order can guide the validation work to reduce

necessary user efforts.

• How to propagate user input? The presence of integrity constraints creates a num-

ber of dependencies between correspondences, which may be hard to overlook in

the reconciliation. Despite this challenge, dependencies between correspondences

open an opportunity to derive the consequences from user input. As a result,

redundant validation of correspondences can be avoided to save the expert’s work.

• How to instantiate a single trusted set of correspondences? As the effort budget is

limited, it is necessary to construct a set of good quality correspondences with a

high probability, even if not all the necessary user input has been collected. Such

instantiation is important for applications that value a fast setup time above wait-

ing for full validation [FHM05] and require a deterministic matching that enables

querying and aggregating across multiple schemas.

6

1.2 Goals and Research Questions

Collaborative Reconciliation. While the pay-as-you-go setting above considers only

one single expert, this setting employs a group of experts who work simultaneously to

reconcile a set of matched correspondences. In fact, it is desirable to involve several ex-

perts rather than a single expert, especially when the number of schemas in the network

is dramatically large. The reconciliation becomes overwhelming due to the network-level

integrity constraints between pair-wise matchings in the network. Moreover, since the

schemas can originate from different sources and be developed independently, the valida-

tion requires a wide range of expertise knowledge to cover the semantic heterogeneity. As

a result, there is a need of techniques that enable collaborative reconciliation in a system-

atic way. As the experts might have conflicting views whether a given correspondence is

correct or not, the techniques need to support the discussion and negotiation among the

experts for conflict resolution. To realize the methods for collaborative reconciliation,

we have to cope with the following research questions:

• How to encode user inputs? Collaborative reconciliation involve multiple experts,

who need to communicate between each other. It is important to encode their

inputs in the common ground so that the validation can be unified among them.

• How to detect conflicting inputs? As experts might have different opinions about

the correctness of correspondences, their inputs should inevitably contain conflicts.

Moreover, since they work on local parts of the network, some global consistency

conditions can be violated. Consequently, we regard detecting conflicts as an

important task to eliminate the violations.

• How to guide conflict resolution? Since conflicts are inevitable, we need to define

a guiding mechanism that assists experts in exchanging knowledge, debugging,

and explaining the possible validations. Through this guidance, an expert would

trust more his own decisions and those of the others, resulting in a rapid conflict

resolution.

Crowdsourced Reconciliation. In the two previous settings, we elicited the knowl-

edge from experts for the reconciliation. However in some cases, the experts are not

always fully available due to limited effort budget. To overcome these limitations, one

possible approach is to employ a large number of human workers in online communi-

ties, with the advantages of low monetary cost and high availability. In recent years,

crowdsourcing has become a promising methodology to realize this approach. On top

of the existing crowdsourcing platforms, we aim to design effective mechanisms to post

questions and aggregate the answers from workers. In order to fulfill this goal, we need

to tackle the following research questions:

• How to design and post questions to the crowd? The validation questions need to

be properly designed so that the human workers are actually giving the correct

answers that the reconciliation needs. Moreover, if the questions are more under-

standable for workers, the quality of the answers would be more likely better. And

consequently, the monetary cost and completion time can also be reduced.

7

1. Introduction

• How to aggregate the answers effectively from the crowd? The workers often give

different answers for the same question. Since they have a wide range of expertise,

it is often difficult to aggregate their answers. A good answer aggregation method

should be able to compute the aggregated answers with a high quality.

• How to reduce the monetary cost and completion time? In order to achieve a

high-quality validation, the answers should be obtained from as many workers as

possible. However, it takes much time and money to obtain a large set of worker

answers. The challenge then becomes how to avoid redudant questions to reduce

the monetary cost.

1.3 Contributions and Thesis Organization

In what follows we describe the contributions of this work, which are spanned over the

remaining chapters.

Modeling schema matching networks – Chapter 3: Schema matching network

is a novelty and the heart of this work. Before diving into the reconciliation, we fo-

cus on formulating the concept of schema matching network and its properties. Our

contributions of this modeling can be summarized as follows.

• We introduce the notion of schema matching networks, a generalization of the

pairwise schema matching setting. Having a network of multiple schemas enables

the introduction of network-level integrity constraints, thereby providing evidence

for the quality of the matching by detecting constraint violations.

• We present a framework that allows expressing generic integrity constraints in a

declarative form, using Answer Set Programs (ASP). On top of this framework,

we encode the most representative integrity constraints and define the declarative

rules for reasoning purposes.

• We propose a probabilistic model in which each attribute correspondence is as-

sociated with a probability. This model provides the means not only to measure

the quality of a schema matching network but also to guide the expert work for

improving the network quality.

• We develop network modularity techniques to partition the network into small

components with specific properties such that the dependence between components

is minimized. This partitioning helps to avoid overwhelming for user and speed up

the reconciliation process, especially in large-scale networks.

Pay-as-you-go reconciliation – Chapter 4: In the pay-as-you-go reconciliation set-

ting, we focus on minimizing user efforts required to validate the generated matchings.

Moreover, as the availability of such efforts is often limited, we develop techniques that

can construct a set of good quality matchings, even if not all necessary validations are

collected. The main contributions of our approach can be summarized as follows:

8

1.3 Contributions and Thesis Organization

• We develop a method to order correspondences for which feedback shall be sought

using a decision theoretic model. In this model, we quantify the information gain

for each correspondence, which is the expected amount of the potential benefit if

the correctness of that correspondence is given. The correspondences suggested to

user are ordered by their information gain value.

• We propose a reasoning technique to reduce the involved human effort and detect

erroneous input in most cases. Due the presence of integrity constraints, there

are dependencies between correspondences. Based on these dependencies, we de-

rive the consequences from user input as well as detect the inconsistency in the

validation results.

• We develop a method that instantiates a selective matching – a single trusted set

of correspondences satisfying integrity constraints and retaining the information

as much as possible. The instantiation can be computed based on partial user

input only, making a partial result of data integration available at any time. We

formulate the instantiation of such a matching as an optimization problem and

propose a heuristic to construct an approximate solution.

• We present a comprehensive experimental evaluation of the proposed methods

using real-world datasets and state-of-the-art matching tools. The results highlight

that the presented approach supports pay-as-you-go reconciliation. In that, we are

able to guide user feedback precisely, observing improvements of up to 48% over

the baselines. Also, we demonstrate that the approach improves the quality of

instantiated matchings significantly in both precision and recall.

Collaborative reconciliation – Chapter 5: In this collaborative setting of reconcilia-

tion, we focus on the issues of employing multiple experts to validate the correspondences

simultaneously. We leverage theoretical advances and the multiagent nature (users can

be considered as agents) of argumentation to facilitate this collaborative reconciliation.

The specific contributions of this approach are as follows.

• We model the schema matching network and the reconciliation process, where we

relate the experts’ assertions and the constraints of the matching network to an

argumentation framework [Dun95]. Our representation not only captures the ex-

perts’ belief and their explanations, but also enables to reason about these captured

inputs.

• We develop supporting techniques for experts to detect conflicts in the set of their

assertions. To do so, we construct an abstract argumentation [Dun95] from the

experts’ inputs. In terms of this abstract argumentation, we define some rules for

analyzing and detecting the conflicts of correspondence assertions.

9

1. Introduction

• We guide the conflict resolution by offering two primitives: conflict-structure in-

terpretation and what-if analysis. While the former presents meaningful interpre-

tations for the conflicts and various heuristic metrics, the latter can greatly help

the experts to understand the consequences of their own decisions as well as those

of others.

• We implement an argumentation-based negotiation support tool for schema match-

ing (ArgSM) [NLM+13], which realizes our methods to help the experts in the

collaborative task.

Crowdsourced reconciliation – Chapter 6: In this setting, our main contribution is

leveraging the advantages of crowdsourcing to improve the schema matching networks.

In doing so, we focus on obtaining high-quality validation results with low labour efforts

of crowd workers. The details of our approach can be summarized as follows.

• We design questions presented to the crowd workers in a systematic way. In our

design, we focus on providing contextual information for the questions, especially

the transitivity relations between correspondences. The aim of this contextual

information is to reduce question ambiguity such that workers can answer more

rapidly and accurately.

• We investigate different answer aggregation techniques. The answer aggregation

is inherently challenging since crowd workers have wide-ranging levels of expertise

and questions have varying degrees of difficulty. According to our benchmark-

ing analysis [NNTLNA13], Expectation Maximization [IPW10] is the best-suited

method for our setting.

• We design a constraint-based aggregation mechanism, which is built upon an ex-

isting aggregation technique, to reduce the error rate of the aggregated results. In

doing so, we propose a probability model to formulate the integrity constraints as

well as adjust the error rate.

• We demonstrate the efficacy of our techniques through extensive experimentation

using real-world datasets. Our theoretical and empirical results show that by

harnessing the integrity constraints, the questions are designed effectively and the

constraint-based aggregate technique outperforms the existing techniques by up to

49%.

1.4 Selected Publications

This thesis is based on the following research papers:

• Nguyen Quoc Viet Hung, Tri Kurniawan Wijaya, Zoltan Miklos, Karl Aberer,

Eliezer Levy, Victor Shafran, Avigdor Gal and Matthias Weidlich. Minimizing

Human Effort in Reconciling Match Networks. The 32nd International Conference

on Conceptual Modeling (ER), 2013. (Chapter 3, 4)

10

1.4 Selected Publications

• Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltan Miklos, Karl Aberer, Avig-

dor Gal and Matthias Weidlich. Pay-as-you-go Reconciliation in Schema Matching

Networks. The 30th IEEE International Conference on Data Engineering (ICDE),

2014. (Chapter 4)

• Nguyen Quoc Viet Hung, Xuan Hoai Luong, Zoltan Miklos, Tho Quan Thanh, Karl

Aberer. Collaborative Schema Matching Reconciliation. The 21st International

Conference on Cooperative Information Systems (CoopIS), 2013. (Chapter 5)

• Nguyen Quoc Viet Hung, Xuan Hoai Luong, Zoltan Miklos, Tho Quan Thanh,

Karl Aberer. An MAS Negotiation Support Tool for Schema Matching. The

12th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), 2013. (Chapter 5)

• Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltan Miklos, Karl Aberer. On

Leveraging Crowdsourcing Techniques for Schema Matching Networks. The 18th

International Conference on Database Systems for Advanced Applications (DAS-

FAA), 2013 (Best Student Paper Award). (Chapter 6)

• Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, Karl Aberer. An

Evaluation of Aggregation Techniques in Crowdsourcing. The 14th International

Conference on Web Information System Engineering (WISE), 2013. (Chapter 6)

• Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, Karl Aberer. A

Benchmark for Aggregation Techniques in Crowdsourcing. The 35th International

ACM SIGIR conference on research and development in Information Retrieval

(SIGIR), 2013. (Chapter 6)

11

1. Introduction

12

Chapter 2
Background

In this chapter, we review the literature related to this thesis work. For a better un-

derstanding with clear organization, we present four topics as the search background of

this thesis; i.e., schema matching, answer set programming, argumentation, and crowd-

sourcing. For each topic, we will describe characteristics, issues, and state-of-the-art

approaches. This chapter is organized as follows. In Section 2.1, we survey important

techniques and tools for schema matching. In Section 2.2, we discuss the essentials of

Answer Set Programming. In Section 2.3, we summarize theoretical advances of argu-

mentation. At the end, Section 2.4 contains a overview of crowdsourcing issues and

techniques. It is noteworthy that nothing in this chapter is new to this dissertation.

Important citations are provided for major definitions and results. We present here the

most relevant literature, without being exhaustive.

2.1 Schema Matching

Schema matching is the process of establishing correspondences between the attributes

of schemas, for the purpose of data integration. The database and AI researchers have

studied schema matching for over 25 years [DH05] with many cutting-edge techniques

and tools. Inspired by the two surveys [RB01b] and [BMR11a], we try to categorize the

state-of-the-art in a different way. In that, we briefly highlight some fundamental schemes

and provide a general view for catalogue purposes. Interested readers are referred to

original papers for details.

2.1.1 Matching Techniques

There are numerous techniques for the schema matching problem, ranging from general

purpose approaches to domain-specific algorithms. Each of them has different charac-

teristics and address different problems, therefore having an overview is desirable. In

this section, various schema matching techniques are presented aiming at showing the

essence of their approaches and targeted problems. In the sense of this thesis’s goals

13

2. Background

and research questions, we present a classification 1 of schema matching techniques as

in Figure 2.1. It provides with a high level of abstraction about schema matching in the

literature and serves as a guideline for how to select a suitable solution on particular

application scenarios. The subsections are outlined according to our classification.

Schema Matching Techniques

Pair-wise

Element-based

Structure-based

Constraint-
based

Rule-based

Multiple
Schemas

Reuse-based

Holistic

Large Schemas

Partition-based

Parallel

Heuristic
Optimizations

Semi-automatic

Post-matching
Validation

Active Learning
and Reasoning

Collaboration
Support

Combined
techniques

Hybrid

Composite

Figure 2.1: Classification of schema matching techniques

2.1.1.1 Techniques for Pair-wise Matching

The aim of pair-wise schema matching techniques is to generate correspondences between

attributes of two given schemas. A schema is a formal structure that is created by

human, such as XML schema, relational database schema, business document, etc. Since

each schema has different structures and types of elements, the matching techniques are

characterized by which schema properties they aim for. The outline includes element-

based techniques, structural-based techniques, constraint-based techniques, and rule-

based techniques.

Element-based techniques. The techniques fallen into this category match two given

schema elements solely based on their own characteristics (name, description, data type,

value range, cardinality, term, key, relationship etc.). We describe the most representa-

tive techniques in what follows.

• Linguistic matching: The names or labels of schema elements are linguistically

analyzed in order to determined the similarity between them. The similarity

measurement can be calculated using prefix [DR02a], suffix [MGMR02], edit dis-

tance [NM01], n-gram [DR02a], tokenization [GSY04], lemmatization [GSY04],

elimination [MBR01]. Also semantic descriptions of schema elements can be con-

sidered.

1Only schema-level techniques are highlighted. Other instance-level matching techniques are out of
scope of this work.

14

2.1 Schema Matching

• Auxiliary information: Beside the characteristics of the schema elements them-

selves, auxiliary information is sometimes employed, such as dictionaries, the-

saurus [MBR01], acronyms, hypernyms, homonyms, mismatch lists, Wordnet-

senses [BSZ03, GSY04], and other WordNet resources [Mil95].

Structure-based techniques. The attributes in a schema can be connected by some

structures, varying from flat or tree-like hierarchy to graph. The goal of structure-based

techniques is to exploit similar structures in different schemas and to match groups

of schema attributes that appear together in these structures [BCV99]. Technically,

two schema attributes are similar if their neighbor attributes (e.g. parent, children,

and siblings) are similar and together form a similar structured group. Similarity mea-

sures are propagated through such structured groups. Exiting approaches include Chil-

dren [DR02a], Leaves [DR02a], and Graph [MGMR02, DMDH02].

Constraint-based Matching. Constraint based matching techniques exploit the ex-

plicit constraints contained in schemas, such as data types, value ranges, uniqueness,

optionality and cardinalities, etc. In order to determine the similarity of two schema

elements, the constraints on them are compared. Datatypes comparison involves com-

paring the various attributes of a class with regard to the datatypes of their value [Val99].

Multiplicity comparison attribute values can be collected by a particular construction

(set, list, multiset) on which cardinality constraints are applied [Noy04]. The constraint-

based approach helps to limit the number of candidate correspondences and should be

combined with other techniques with other approaches.

Rule-based Matching. This approach is based on matching rules that are expressed in

first-order logic. Examples include the SKAT prototype [MWJ99], the Artemis system

[CDA01], and the Automatch system [BM02]. In [MWJ99], rules are defined to express

match relationships and derive new matches. In [CDA01], rules are used to encode prior

knowledge provided by users for supporting the matching process. In [BM02], rules are

used to encode knowledge which is learnt from examples and data instance.

2.1.1.2 Techniques for Multiple Schemas

Beside pair-wise matching techniques, there are other approaches that consider multiple

schemas at the same time and collectively generate the matches between them. The core

idea is that each pair of schemas is still matched by existing techniques and the generated

matchings are collected and refined by each other. Two main categories include reuse-

based matching and holistic matching.

Reuse-based Matching. This approach stores and reuses the information from ex-

isting matchings to aid the generation of new matchings [DR07, SSC10a, SBH08]. The

reuse-oriented approach is promising, since schemas in the same domain are often sim-

ilar to each other. One possible reused information is the groups of similar schema

attributes that are matched frequently. For example, the attributes Buyer and Purchaser

are matched frequently in the schemas of purchase order documents and the more they

15

2. Background

appear the higher confidence value of their matches. Another possible reused informa-

tion is the generated correspondences which are validated by users. For example, given

three schemas s1, s2, s3, if the correspondence between two attributes s1.P ersonName

and s2.P erson is already validated by user, then the correspondence between two at-

tributes s1.P ersonName and s3.P erson will be generated automatically, assuming that

the name Person has a unique meaning.

Holistic Matching. The main idea of this approach is extracting collective properties

of the collected schemas in order to refine each pair-wise matching. There are sev-

eral methods to realize this approach. One possible method is to construct a single

mediated schema for web forms in the same domain [HMYW03]. Another method

is to statistical cooccurrences of attributes in different schemas and use them to de-

rive complex correspondences [SWL06, HC03]. Last, but not least, is the method that

uses a ‘corpus’ of schemas to augment the evidence which improves existing matching

and exploit constraints between attributes by applying statistical techniques [MBDH05].

Moreover, further collective properties such as network-level transitivity are also consid-

ered in [ACMH03, CMAF06b], in which the establishment of attribute correspondences

is studied in large-scale P2P networks.

2.1.1.3 Techniques for Large Schemas

Considering large input schemas (schemas with hundreds or thousands of attributes)

is another large-scale challenge for schema matching. Being aware of this challenge,

many techniques have been developed to effectively generate attribute correspondences

between large schemas. In what follows, we list some state-of-the-art approaches for this

category.

Partition-based Matching. In this approach, the input schemas are partitioned and

the matching is performed for each pair of partitions, in order to reduce the space of

possible correspondences [DR07, HQC08, ZLL+09]. For example, the work in [DR07]

decomposes a large XML schema into smaller fragments, which are the tree-like structure

or a set of attributes used frequently inside the schema.

Parallel Matching. In this approach, the matching process is executed in parallel

internally or externally [GHKR10]. Internal parallelization means different steps of the

matching algorithm of an individual matcher are executed simultaneously without al-

tering the matching result as they are run in sequence. External parallelization means

different individual matchers are executed independently and their matching results are

combined afterward. Parallel matching can be combined with partition-based matching

in a way that different partitions of the schemas are matched in parallel with different

individual matchers.

Heuristic Optimizations. There are other approaches that optimize the schema

matching process for large input schemas. Such approaches include string matching op-

timization [JMSK09], look-ahead to avoid repeated traversal in XML schemas [ASS09],

and space-efficient similarity matrix [BMPQ04].

16

2.1 Schema Matching

2.1.1.4 Combined Techniques

To improve the quality of matching results, it is common practice to use multiple schema

matching techniques at the same time. An individual matching technique is often de-

veloped for specific problems, thus unlikely to cover all good candidate correspondences.

Combining different individual matching techniques becomes a natural solution, since

the strengths of one technique can complement the weaknesses of another and vice-versa.

There are two possible combinational approaches:

Hybrid Matching. In this approach, a hybrid matcher is developed by integrating

multiple techniques inside the matcher. There are many implementations to realize this

approach, such as workflow-like strategies [BMPQ04, DR02a, SMH+10], bootstrapping

strategies [ESS05, LSDR07, LTLL09], and search space pruning [ES04, PBR10]. Basi-

cally, hybrid matchers they produce better correspondences since many similarity mea-

surements for establishing correspondences are taken into account. However, the hybrid

approach is not customizable since it is difficult to interpret and tune the parameters of

the combined matching techniques.

Composite Matching. In this approach, one lets different matchers be executed in-

dependently and then combines their matching results. Many composite matching tech-

niques have been developed [DDH01a, ADMR05b, DR02b, DMD+03], such as combining

the correspondences at attribute-level (i.e. the confidence value is aggregated by aver-

age, max, or min functions) and at schema-level (i.e. all correspondences are aggregated

and refined by each other, taking the importance of individual matchers into account).

Comparing to the hybrid matching, the composite approach provides a higher degree

of customization. The matchers can be selected or combined either automatically or

manually, executed either in sequence or in parallel, and plugged in or plugged out on

demand (even a hybrid matcher can be even plugged into a composite matcher but not

vice-versa). Nevertheless, a composite matcher can be slower than the hybrid one or any

others, since the matching between two schemas has to be performed in multiple passes.

2.1.1.5 Semi-Automatic Techniques

Beside automatic matching, the semi-automatic and manual approach have also received

considerable attention in the literature. Strategies have been proposed to incorporate

user interaction and feedback in the matching process. Since these techniques are de-

signed for human users, visualizing schemas and related information is a must. In many

systems, a graphical user interface (desktop-based or web-based GUI) is provided to

support the interactive inspection and correction of generated correspondences. For ex-

ample, in [ADMR05b, BMC06, CAS09, FN11], the GUI maintains all generated match-

ings and offers various functions to manipulate, merge, combine, and evaluate attribute

correspondences. Beside the visualization, there are other approaches in this category

as described in what follows.

17

2. Background

Post-matching Validation. The post-matching validation process, which employs

user(s) to validate the correspondences after they are generated by automatic matchers,

has received considerable attention in the literature using different approaches. The

system in [JFH08] relies on one user only, whereas the frameworks in [ZS06, MSD08,

NNMA13] rely on multiple users. Moreover, when examining the matching results, es-

pecially with large schemas, users are often overwhelmed by the number of candidate

matches and annoyed by low-quality correspondences generated by matchers. One pos-

sible solution for these issues is incremental matching [BMC06, SDH08], in which user

selects attributes he wants to match as the system goes. Another solution is using top-k

matching [Gal06a] where instead of generating a complete list of candidate correspon-

dences between two schemas, only top-k ones of each attribute are showed to user for

validation; i.e. k is a tuning parameter to control the trade-off between simplicity (users

are not overwhelmed) and diversity (users have a general view). While most of the lit-

erature focuses on the context of the mediated schema approach, our work studies the

post-matching validation for a network of schemas.

Active Learning and Reasoning. Some other techniques further reduce user effort

by deriving the consequences of other correspondences from partial user input. One

possible approach is active learning [YEN+11] to learn user feedback and decide upon

the correctness of the suggested correspondences without further user’s involvement. In

that, the authors propose a reasoning mechanism based on decision theory and active

learning to reason about the validation in a principled manner. To this end, each cor-

respondence is associated with an uncertainty score that quantifies the “benefit” when

the correspondence is validated.

Collaboration Support. Since examining the generated correspondences is an over-

whelming task, employ a single user is not enough, especially at large-scale. For this

reason, a wide range of techniques have been proposed to support collaborative user inter-

action, in which multiple users are asked to validate (sequentially or parallely) the corre-

spondences by answering the questions about intermediate matches, domain constraints,

and final matches. One possible setting is employing a group of experts and support-

ing the negotiation and conflict resolution between them, as described in [NLMA13].

Another setting is posting the validation tasks to online communities [MSD08, ZS06,

NNMA13] and aggregating different answers from the crowd. Further collaboration sup-

ports include network modularity [SSC10a, GKS+13] that divide a large collection of

schemas into smaller subsets such that users can work separately on different subsets.

2.1.2 Matching Tools

Many above techniques are developed as the core component in a variety of schema

matching systems and tools. From the 2001 survey [RB01b], there were already many

well-known tools that support a wide range of schema types such as XML, OWL, RDF,

and relational schema. Most systems involve users in the matching process from the

beginning, such as eliciting validation feedback, embedding domain knowledge, tuning

18

2.1 Schema Matching

matching parameters, and manually creating difficult matches. Until the 2011 survey

[BMR11a], more and more state-of-the-art matching tools have been developed, includ-

ing commercial and research prototypes. While commercial tools focus on supporting

manual matching due to strictly high quality requirements, the research ones attempt

to automate the matching process for reducing user effort. For a broad view, we hereby

provide a catalogue of important schema matching tools that are developed in this pe-

riod.

2.1.2.1 Commercial Prototypes

The increasing growth of commercial tools underlines the highly important role of schema

matching in practice. In many commercial information systems, schema matching is typ-

ically a first step for generating pragmatic attribute correspondences between schemas,

for the purpose of transforming and migrating data from legacy systems into enter-

prise applications. The common features of such tools include a GUI-based matching

editor and a manual specification of the attribute correspondences. Due to strict qual-

ity requirements (i.e. data must be transformed correctly), most commercial tools do

not support automatic matching techniques (e.g. reuse-based matching, partition-based,

parallel matching); and thus, a huge manual matching effort is usually required especially

for large-scale matching tasks.

Table 2.1 presents our tool catalogue of commercial prototypes, including IBM In-

fosphere Data Architect, Microsoft Biztalk server, SAP Netweaver Process Integration,

and Altova MapForce. The details of these tools are given below.

Table 2.1: Tool Catalogue of Schema Matching Commercial Prototypes

Matching Tool Year of introduction Supported Format

Altova Mapforce 2008 XML, relational, flat files, EDI,
XSDL

JitterBit 2009 XML, relational, WSDL
IBM Infosphere 2009 XML, relational
Biztalk server 2009 XML, flat files, EDI
SAP Netweaver 2010 XML, WSDL

IBM Infosphere Data Architect. This tool 2 was developed from its research pro-

totype Clio [PVH+02] and has been released from 2009, with the price of $6,270 for

enterprise edition. It has a mapping editor that supports linguistic matching and differ-

ent types of databases like Oracle, DB2, Sybase, Microsoft SQL Server, MySQL

Microsoft Biztalk server. This tool 3 has been released from 2009, with the sell-

ing price of $10,835 for enterprise edition. Its user interface supports visualizing large

schemas and complex matchings [BMC06]. The Biztalk server is also incorporated in

Microsoft Visual Studio and .NET framework.

2
http://www-03.ibm.com/software/products/us/en/ibminfodataarch/price

3
http://www.microsoft.com/biztalk/en/us/

19

http://www-03.ibm.com/software/products/us/en/ibminfodataarch/price
http://www.microsoft.com/biztalk/en/us/

2. Background

SAP Netweaver Process Integration. This tool 4 has been released from 2010 as a

part of SAP NetWeaver enterprise solution. It allows reducing the cost and development

time of deployment projects, in which data is migrated from the legacy system into the

SAP ERP system. In addition, it supports many B2B document standards and business

rules, which are explicitly enforced and notified for user in the migration process.

Altova MapForce. This tool 5 has been released from 2008, with the price of e799 for

enterprise edition. It has a graphical schema mapping interface which supports XML,

relational databases, flat files, EDI, and Microsoft Excel. Comparing to other tools, it

supports more user interaction features such as matching filters, structural matching,

functional matching (union, intersection, sum, etc. operators).

Jitterbit. This tool 6 has been released from 2009, with the price of $4000/month for

enterprise edition. Beside user-friendly interfaces and wizard tools, Jitterbit supports

not only XML but also Web services.

2.1.2.2 Research Prototypes

Now we briefly compare a few research prototypes that have successfully been applied

in literature. Table 2.2 depicts the characteristics of compared prototypes. Especially

the year of introduction is given based on the oldest publication of each tool.

Table 2.2: Tool Catalogue of Schema Matching Research Prototypes

Matching Tool Year of introduction Supported Format Availability

CUPID 2001 XSD N/A
OntoBuilder 2004 XML CLI, GUI
COMA 2002-2012 XSD, OWL, Relational GUI, Java API
Clio 2009 XML, Relational Commercial Tool of IBM
YAM 2009 XSD, OWL GUI, CLI
Harmony (OpenII) 2010 XSD, Relational, OWL GUI, Open-source
AMC 2011 XSD Commercial, GUI

COMA. This tool has been developed for more than ten years, starting from the first

version COMA [DR02a] to the second version COMA++ [ADMR05a] and the current

version COMA 3.0 [MRA+11]. COMA is one of the most comprehensive research proto-

types that integrate most of the schema matching techniques as aforementioned. It has a

wide range of successful applications, including matching XML schemas, web directories,

UML models, and ontology matching. While COMA++ is free for research purposes,

COMA 3.0 community edition becomes an open-source project with world-wide usages.

Harmony (OpenII). Harmony is the matching tool inside the OpenII framework

[SMH+10]. It provides a graphical user interface and supports many well-known match-

ing techniques. Especially, it supports composite matching where different confidence

values (proposed by individual matchers) are aggregated at schema-level. Harmony

4
http://www.sdn.sap.com/irj/scn/nw-downloads

5
http://www.altova.com/mapforce.html

6
http://www.jitterbit.com/

20

http://www.sdn.sap.com/irj/scn/nw-downloads
http://www.altova.com/mapforce.html
http://www.jitterbit.com/

2.2 Answer Set Programming

is known to be able to match large schemas having about a thousand of attributes

[SMM+09c].

Cupid. This is a hybrid matcher that integrates element-based (linguistic matching with

auxiliary information), structured-based, and reuse-based matching techniques [MBR01].

CUPID is the predecessor of Microsoft BizTalk Mapper. Especially, CUPID also con-

siders integrity constraints such as key and referential dependencies.

Clio. This tool was developed at IBM [HMH01] and is the predecessor of the matching

component in IBM Infosphere. Beside providing a comprehensive GUI and a matching

engine, it has a schema management system that transforms and manages XML and SQL

schemas. Clio uses a hybrid matching approach, which combines linguistic matching and

learning algorithms.

OntoBuilder. Ontobuilder is a matching tool for web forms. It supports a GUI to

crawl web forms, matching crawled forms, and generate an integrated form. OntoBuilder

uses linguistic matching in combination with auxiliary information and some sequencing

algorithms [RG06]. Especially, it can also be used for matching RDF-based ontologies.

AMC. Auto Mapping Core (AMC) [PER11] is a generic framework that supports a cus-

tomizable matching process. The matching process can be defined, executed, debugged,

and visualized with highly flexible components. Existing matching tools can be plugged

into AMC for a uniform evaluation and reuse. Especially, it supports various aggregation

operators (e.g. sum, max, min) to combine the matching results of individual matchers.

YAM. Yet Another Matcher (YAM) [DCBM09a, DCBM09b, DBC11] is a generic pro-

totype that supports both maching tasks and post match effort. One of its key features

is the ability to dynamically combine similarity measures according to machine learning

techniques, with the benefit of automatically tuning the thresholds for each measure.

Its extended version, YAM++ [NB12], also supports ontology matching using machine

learning approach.

2.2 Answer Set Programming

Answer set programming (ASP) is a prominent theme in the field of knowledge repre-

sentation and reasoning. ASP is a fairly young, yet very successful descendant of a long

tradition of logic programming formalisms. In this section, we give the readers a general

view of ASP, the formulations, how to encode a problem using ASP, and the applications

of ASP in practice.

2.2.1 Introduction

For over ten years, the answer set programming (ASP) has become a novel paradigm for

declarative knowledge representation and reasoning [GL91a]. ASP is a form of declara-

tive programming which uses mathematical logic to describe the original problem that

we want to solve. By describing what the problem is instead of how the problem should

be solved, ASP brings many benefits. First, ASP has no side-effect since all logic state-

ments are evaluated at once; i.e., the answer is unique and independent of the evaluation

21

2. Background

order of statements. Second, ASP has high expressive and reasoning power, thus being

recognized as a programming paradigm despite the fact that it is a subset of logic pro-

gramming. Because of these benefits, ASP have been applied to various problem-solving

domains, such as graph algorithms, model checking, and other specialized reasoning

tasks.

ASP is rooted in logic programming and non-monotonic reasoning; in particular, the

stable model semantics for logic programs [GL88, GL91b] and default logic [Rei80]. In

particular, ASP is based on the disjunctive datalog language, which is a subset of the

Prolog language. Although the datalog language does not support compound terms in

logic rules, this restriction guarantees that ASP is decidable – a desirable property of

declarative programming. Another important property of ASP is the principle of nega-

tion as failure, in which an atomic proposition is false by default if it cannot otherwise

be proven in the program. This principle brings some advantages for ASP by making the

program more expressive, but also results in considerable limitations of having a more

complex set of logic rules.

2.2.2 Knowledge Representation in ASP

ASP represents a problem in terms of mathematical models and semantic notions and

returns a set of possible answers of the problem, coined the term ‘answer set’. In ASP,

solving problems is reduced to searching for answer sets, such that answer set solvers

(programs for generating answer sets) are used to perform search. We start by shortly

summarizing the elements and syntax of ASP. We then explain the formal semantics of

ASP. Finally, we brief on some reasoning mechanism in ASP and introduce some ASP

solvers. For further details, we refer interested readers to the premiere work in [EIK09a].

Elements and Syntax. Let C, P, X be mutually disjoint sets whose elements are called

constant, predicate, and variable symbols, respectively. Constant and variable symbols

C∪X are jointly referred to as terms. An atom (or strongly negated atom) is defined as a

predicate over terms. It is of the form p(t1, . . . , tn) (or ¬p(t1, . . . , tn), respectively) where

p ∈ P is a predicate symbol and t1, . . . , tn are terms. An atom is called ground if t1, . . . , tn

are constants, and non-ground otherwise. Below, we use lower case for constants and

upper case for variables in order to distinguish both types of terms. A classical literal l

is either an atom p (in this case, it is positive), or a negated atom ¬p (in this case, it is

negative). A negation as failure literal l is of the form l or not l , where l is a classical

literal; in the former case l is positive, and in the latter case negative. Unless stated

otherwise, by literal we mean a classical literal.

An answer set program consists of a set of disjunctive rules of form:

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . ,not cn (2.1)

where a1, . . . , ak, b1, . . . , bm, c1, . . . cn (k,m, n ≥ 0) are atoms or strongly negated

atoms. This rule can be interpreted as an if-then statement, i.e. if b1, . . . , bm are true

and c1, . . . , cn are false, then we conclude that at least one of a1, . . . , ak is true. In other

22

2.2 Answer Set Programming

words, whenever the atoms b1, . . . , bm hold and the atoms c1, . . . , cn do not hold, at least

one of the atoms from a1, . . . , ak must hold. We call a1, . . . , ak the head of the rule,

whereas b1, . . . , bm and c1, . . . , cn are the body of the rule. A rule with an empty body

is a fact, since the head has to be satisfied in any case. A rule with an empty head is

a constraint ; the body should never be satisfied. For illustration, consider the following

example.

Example 1. Π is an answer set program comprising three rules (X being a variable, c

being a constant):

Π =

p(c) ←
q(X) ← p(X).

← r(c).

Program Π defines three predicates p, q, r. The first rule is a fact and the third

rule denotes a constraint. Further, p(c), r(c) are ground atoms, and p(X), q(X), are

non-ground atoms. Informally, an answer set of a program is a minimal set of ground

atoms, i.e., predicates defined only over constants, that satisfies all rules of the program.

An example of an answer set of program Π would be {p(c), q(c)}.

Semantics. Now we define formal semantics for an answer set program. Consider an

ASP P, a set of rules r of the form 2.1. We refer to the head a1, . . . , ak of the rule r as

H(r) and denote the parts of the body as follows: b1, . . . , bm is denoted by B+(r) and

c1, . . . , cn by B−(r). We define an interpretation M of P as a set of ground atoms which

can be formed from predicates and constants in P. An interpretation M is a model of

• a ground rule r, denoted as M |= r, if H(r) ∩ I 6= ∅ whenever B+(r) ⊆ M and

B−(r) ∩M = ∅;
• a rule r, denoted as M |= r, if M |= r′ for each r′ ∈ gr(r);
• a program P, denoted as M |= P, if M |= r for each r ∈ P.

A model M of P is minimal if there is no M ′ ⊂M which is also a model for P. A reduct

[GL88] of a ground program P with respect to an interpretation M , denoted as PM is

obtained from P by:

(i) removing rules with not p in the body if p ∈M ; and

(ii) removing atoms not q from all rules if q 6∈M
An interpretation M of P is a stable model of P, if M is a minimal model of PM . An

answer set of P is a stable model of P.

Reasoning. Finally, we recall the notion of cautious and brave entailment for ASPs

[EIK09a]. An ASP Π cautiously entails a ground atom a, denoted by Π |=c a, if a is

satisfied by all answer sets of Π. For a set of ground atoms A, Π |=c A, if for each a ∈ A
it holds Π |=c a. An ASP Π bravely entails a ground atom a, denoted by Π |=b a, if a

is satisfied by some answer sets of Π. For a set of ground atoms A, Π |=b A, if for each

a ∈ A it holds that some answer set M satisfies a.

ASP Solvers. To implement an underlying model for ASP, there is a large body of work

in literature [LTT99]. Many sophisticated solvers have been implemented as underlying

23

2. Background

reasoning engines. Such solvers include the DLV system [LPF+06], the Smodels system

[NS97], and the Clingo system [GKK+08], which provide front-ends and back-ends for

reasoning as well as computing the semantics of logic programs.

2.2.3 Applications

In spite of its young age, ASP has an outstanding development. It has shown to be

widely applicable not only in the field of knowledge representation and reasoning but

also in other domains. In what follows, we summarize most popular achievements of

ASP.

Planning. ASP has been widely applied for solving classical planning problems such

as conformant planning, conditional planning, planning under uncertainty, incomplete

information, action costs, and weak constraints[Lif02, Bar03, LRS01]. Many ASP solvers

have been implemented for this purpose, especially the planning extension DLVK of the

DLV system [EFL+01].

World-Wide-Web. ASP has been used to provide preference reasoning services, such

as recommendation systems [ICL+03, BE99]. Moreover, ASP is also well-suited for rep-

resenting dynamic knowledge bases of domain-specific languages and ontologies in Se-

mantic Web [EFST01]. The work in [HV03] also integrated ASP into ontology languages

to extend their expressive and reasoning power.

Software Verification. ASP was also applied in constraint programming, software

verification, and software configuration [Nie99, SN98, Syr00]. In that formal concepts

such as configuration models and requirements are represented as declarative semantics

in ASP. Moreover, ASP is also used for symbolic model checking [Hel99] and Boolean

equation systems [KN05].

Multi-agent Systems. The work in [DVV03] presented a multi-agent system that

used ASP to model the interactions between agents for reaching an agreement. Agents

communicate with each other by exchanging the answer sets with their information

integrated. In some works [CT04], ASP is also integrated inside the agent language

interpreter to provide more advanced features.

Security. ASP has been applied for security and cryptography. The work in [CAM01]

showed how security protocols can be verified by specifying actions and rules in terms

of logic program and reasoning using ASP. The work in [HMN00] presented an ASP-

encodings for Data Encryption Standard (DES). Another line of research [KM03] uses

ASP as the inference engine for access controls (e.g. credentials abduction, trust negoti-

ation, and declarative policy). In [GMM03], ASP was used to simulate security systems,

including visual design, integrity analysis, and detecting security weaknesses.

Game Theory. ASP was also extended for studying finite extensive games [DVV99].

Games are transformed to logic programs such that the answer sets of the program corre-

spond to either the Nash equilibria or perfect equilibria of the game. Some works [BDV03]

also combine ASP-based planning into game applications.

24

2.3 Argumentation

2.3 Argumentation

It is worth reminding that the second reconciliation setting studied in this thesis is the

collaborative reconciliation, in which a group of expert users collaborate with each other

to reconcile a schema matching network. Generally in such a collaborative setting, the

participants will try to pursue their own goals with different points of view. In order to

reach an agreement among them, there is a need of formal methods for analyzing the

participants’ opinions. Negotiation techniques could largely benefit from such represen-

tations. In this work, we study one such method, called argumentation.

The process of argumentation is an iterative exchange of arguments towards reducing

conflicts and promoting the agreement. In order to participate, a user needs the ability

to (i) express and maintain his own beliefs, (ii) derive consequences by combining with

other users’ beliefs, and (iii) affect other users’ beliefs. Over repeated exchanges, users

may observe and analyze each other’s intentions to establish a better understanding and

stronger feelings of trust. Through these analyses and observations, the users dynami-

cally update and refine their knowledge and individual goals. In the following we will

describe the concept, the proposed techniques, and the applications of argumentation.

2.3.1 Introduction

Argumentation is essential to reach an agreement in multi-user settings, especially when

users have incomplete knowledge about each other. It makes a user trust in his own

decisions and those of the others, resulting in a rapid and reliable negotiation process.

There is a large body of research about argumentation that tries to answer two important

questions: (i) how to represent the arguments, and (ii) how to analyze the relationships

between arguments. While the former question can be answered by techniques related to

logical argumentation, the latter question can be answered by the work based on abstract

argumentation framework. A survey paper for developments of research in argumentation

can be found in [Pra12].

2.3.2 Logical Argumentation

Now we introduce how to formalize the arguments using logical argumentation. The au-

thors of [BH01] used classical (propositional) logic to represent argumentation. In that,

each argument consists of a premise and a conclusion that can be drawn from the sup-

porting premises (existing in a knowledge base). Each premise defined in the knowledge

base consists of propositional formulae, which represent translations of natural-language

arguments. Formally, an argument is represented by a pair A = 〈Φ, α〉, where Φ is the

support for the argument and α represents the conclusions (or claim) drawn from Φ,

such that Φ is a minimal subset of a knowledge base ∆ satisfying Φ 6|=⊥,Φ |= α.

Example 2. Let c1 and c2 be two facts in real life that cannot be true at the same time.

Now assume that one is able to prove that c1 is true. Thus c2 must be false. This point

of view can be represented as an argument 〈{c1,¬c1 ∨ ¬c2},¬c2〉.

25

2. Background

An argument can attack other arguments. To model this relation, the literature de-

fined two types of attack, namely undercut and rebuttal. The undercut relation between

two arguments captures the case that the claim of one argument directly contradicts with

the support of another argument. The rebuttal relation between two arguments repre-

sents that their claims contradict one another. Formally, let 〈Φ, α〉 and 〈Ψ, β〉 are two

arguments. 〈Φ, α〉 rebuts argument 〈Ψ, β〉 if α↔ ¬β is a tautology. 〈Φ, α〉 undercuts

argument 〈Ψ, β〉 if ¬α ∈ Ψ.

It is important to note that the logic-based nature of logical argumentation leads to

scalability issues in the problem of generating arguments and attack relations efficiently.

Although many approaches have been proposed in literature, the problem itself remains

largely unsettled. Here we summarize a few of these approaches. While the authors

in [EH11] relied on connection graphs and resolution, the work in [BGPR10] gave a

SAT-based approach. However, even the most advanced SAT-solvers cannot achieve

reasonable computational performance for large data sets. Another approach is based

on Answer Set Programming (ASP), which was proposed in Vispartix [CWW13]. This

approach takes advantage of the declarative nature of ASP to model the argumentation

formalism. As mentioned above, although ASP brings some advantages of adding ex-

pressive power to the formulation, it has some difficulties in describing complex inference

rules.

2.3.3 Abstract Argumentation Frameworks

After computing the arguments and counter-arguments, we need a generic model to

represent and analyze the relationships between these arguments. In abstract argumen-

tation we are not interested in the internal structure of arguments. Instead, we abstract

away the premises and conclusions and focus on the relations between arguments. In

the following, we describe the formulation of an abstract argumentation framework and

the semantics to resolve the conflicts between arguments.

2.3.3.1 Model

The arguments and their relations can be represented in an argumentation framework

(or AF for short). The most popular formalization for AFs was introduced by Dung

[Dun95] and is described as follows.

Definition 2.1 (Argumentation framework). An argumentation framework is a

pair AF = 〈A,R〉 where A is a set of arguments and R ⊆ A× A is the attack relation,

representing attacks among arguments.

An abstract argumentation framework does not depend on the internal structure or

meaning of arguments. What remains are the abstract arguments and the relations

between them. A single AF could represent many different implementations. On the one

hand, the lack of information about the concrete problem might create some difficulties in

the evaluation and analysis of the relationships between arguments. On the other hand,

26

2.3 Argumentation

this abstraction opens an opportunity to analyze arguments independence from any

specific context and allows for more general definitions of semantics. Another advantage

of abstract argumentation is that it can be represented as a directed graph, in which the

arguments are represented as vertices and the attack relations are represented as edges.

Example 1. Let AF = 〈A,R〉 is an abstract argumentation framework. The arguments

areA = {a, b, c, d, e}. The attack relations areR = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}.
Figure 2.2 illustrates the graph representation of this abstract argumentation framework.

a

b c d

e

Figure 2.2: Graph presentation of an argumentation framework

Conflict-freeness. Many conflicts between arguments have been identified. As a natu-

ral desire, we are interested in a set of arguments without any conflict, called conflict-free.

In other words, a set of arguments is conflict-free if it does not contain any argument

that attacks another argument (or itself). Formally, let F = 〈A,R〉 be an AF. A set

of arguments S ⊆ A is conflict-free iff there are no two arguments a, b ∈ S such that a

attacks b or b attacks a; i.e. (a, b) ∈ R. We denote the set of all possible conflict-free

argument sets of F as cf(F). For example in Figure 2.2, {a, e} is a conflict-free set of

arguments.

Defense. Another important property of argumentation frameworks is the notion of

defense. Intuitively, an argument a is defended by a set of other arguments iff for any

argument a′ that attacks a, a′ is attacked by one of the arguments in the set. Formally,

let F = 〈A,R〉 be an AF. An argument a is defended by a set of arguments S ⊆ A iff for

each argument a′ ∈ A with a′ → a there exists an argument a′′ ∈ S such that a′′ → a′.

For example in example 1, argument c defends e since {c, d} ∈ R and {d, e} ∈ R.

2.3.3.2 Semantics

Given a set of arguments and their attack relations, we can construct many possible

conflict-free subsets of arguments. An interesting observation is that for an attack rela-

tion between two arguments, it is not straightforward to choose an argument and discard

the other. Intuitively, an argument is selected or rejected according to how it is argued

against the attacking arguments. For example, one could argue that an argument should

be discarded because it is attacked by many arguments; while another could also argue

that argument should be selected because it is defended by many other arguments. As

a result, there are many criteria to select the ‘appropriate’ arguments, which are de-

fined by semantics on argumentation frameworks, so called acceptability semantics in

the literature.

Acceptability semantics formally define which arguments are selected in an argumen-

tation framework. In other words, among possible subsets of arguments, the conflicts

27

2. Background

between arguments are analyzed and resolved differently. Formally, given an argumen-

tation framework AF = 〈A,R〉, an acceptability semantics divides A into one or many

subsets (possibly overlap with each other) that satisfies certain constraints. Such subsets

are referred as extensions. In the abstract argumentation literature, several acceptability

semantics have been proposed. Most of them are summarized or introduced by [Dun95].

In the following, we describe the formal definitions of the most representative semantics.

• Admissible Semantics. A set of arguments S is an admissible extension of an

AF if no argument in S attacks another argument in S and all arguments that

attack S are themselves attacked by S. Formally, S ⊆ A is admissible if it is

conflict-free and every argument a ∈ S is defended by S.

• Complete Semantics. A set of arguments is a complete extension if it is admissi-

ble and it contains every argument that is defended by the set. As a consequence,

every complete extension of an argumentation framework is also an admissible

extension. Formally, S ⊆ A is a complete extension if it is admissible and each

argument a ∈ A that is defended by S is contained in S.

• Preferred Semantics. A set of arguments is a preferred extension if the set

is an admissible extension and there exists no other admissible extension that is

a superset of the extension. Formally, S ⊆ A is a preferred extension if it is

admissible and there exists no other admissible extension S′ such that S ⊂ S′

. Intuitively, preferred extensions aim at the selection of a maximal number of

arguments.

• Stable Semantics. A set of arguments is a stable extension if it is conflict-free and

every argument that is not contained in the set is attacked by the set. Formally,

S ⊆ A is a stable extension if it is conflict-free and for each argument a ∈ A \ S,

there exists an argument b ∈ S, such that b→ a. Stable semantics make sure that

every argument that is not selected has a counter-argument that is in the set of

selected arguments.

• Semi-stable Semantics. The work in [Cam06] introduced semi-stable semantics

as a mix of stable semantics and admissible semantics. Every stable extension is a

semi-stable extension and all semi-stable extensions are admissible extensions. In

contrast to stable extensions, every argumentation framework has at least one semi-

stable extension. Formally, a semi-stable extension S combined with all arguments

a ∈ A \ S attacked by S must be maximal.

• Stage Semantics. The authors of [Ver96] proposed stage semantics as an exten-

sion of to semi-stable semantics. The similarity is that the property of maximality

in semi-stable semantics must hold. Whereas, the difference is that the arguments

are conflict-free (instead of admissible).

28

2.4 Crowdsourcing

• Grounded Semantics. Grounded extensions are defined as the minimal set of

all arguments that are either not attacked or defended by any arguments in the

set [Dun95]. Formally, S ⊆ A is a grounded extension if ∀a ∈ A \ S, a is attacked

by S and @b ∈ S such that b defends a.

Scalability issues appear when computing acceptability semantics for a large numbers

of arguments and attack relations. Generally, algorithms to compute semantics that are

more demanding in terms of defense and conflict-freeness have higher complexity. A

survey on computational complexity of such algorithms can be found in [BDG11]. It

is worth nothing that the graph representation of argumentation frameworks as graphs

is extremely helpful when it comes the implementation of algorithms for acceptability

semantics. We can implement different acceptability semantics not only by existing

graph-based algorithms but also the represenative power of graphs. The analysis of rela-

tions between arguments and the selection of ‘appropriate’ arguments becomes traversing

through graph edges and retaining the graph nodes that satisfy pre-defined criteria.

2.3.4 Applications

The argumentation-based approach has been successfully applied to many practical ap-

plications. In e-commerce systems [BAMN10], argumentation is used for solving conflicts

that may arise among distributed providers in large scale networks of web services and

resources, thus improving the automation level of business processes. In collaborative &

cooperative planning [ENP11], argumentation can be combined with other techniques

(e.g. machine learning) to help participants collaborate to solve problems by determining

what policies are operating by each participant. In social-network platforms [GCM12],

arguments can be extracted from natural language and then argumentation is used to

determined the social agreements among participants. In cloud-computing [HdlPR+12],

argumentation can be used to help cloud providers, who manage computational resources

in the platform, to reach an agreement on reacting against physical failures. In semantic

web [RZR07], argumentation has been modeled under Argument Interchange Format

(AIF) ontology, which forms the foundation for a large-scale collection of interconnected

arguments in the Web. In this work, we apply argumentation in data integration domain,

which is an active research field for more than ten years [BMR11b].

2.4 Crowdsourcing

As the volumes of AI problems involving human knowledge are likely to soar, crowd-

sourcing has become essential in a wide range of applications. Its benefits vary from

unlimited labour resources of user community to cost-effective business models. The

book [vA09] summarized problems and challenges in crowdsourcing as well as promis-

ing research directions for the future. A wide range of crowdsourcing platforms, which

allows users to work together in a large-scale online community, have been developed.

In this section, we firstly describe the concept of crowdsourcing and its elements. Next,

29

2. Background

we summarize the state-of-the-art platforms that provide the crowdsourcing services in

the web. Finally, we survey some applications that have been developed on top of the

crowdsourcing.

2.4.1 Introduction

In recently years, there are more and more AI problems that cannot be solved completely

by computers such as image labeling, text annotation, and product recommendation.

Moreover, as the scale of these problems is beyond the effort of a single person, there

is a need of connecting a mass number of people in the form of an open call. Such

processes of employing an undefined network of workers are defined as crowdsourcing

[How06]. Rather than developing a complicated algorithm, it has been shown that a

large-scale problem can be solved by people on the Web, in which the tedious work is

split into small units that each person can solve individually.

In general, a crowdsourcing system comprises three elements: (1) Requester (ones

who have works to be done), (2)Worker (ones who work on tasks for money), and

(3) Platform (the system manages the task and the answer). Figure 2.3 depicts the

architecture of general crowdsourcing system.

Requester

Crowdsourcing
Platform

Submit Tasks Collect Answers

Return Answers

Publish Tasks

Accept Tasks

Worker

Figure 2.3: General crowdsourcing system

• Requester: A requester is an employer that submits a task request initiating

the process of crowdsourcing. Requester needs to describe the characteristics of

the task, such as location, skill-set, and education level. Upon the successful

completion of the task, the requester approves and pays the reward.

• Worker: A worker is a person who accepts the offer and complete the crowd-

sourced tasks, in exchange for monetary or non-monetary rewards. Workers have

wide-ranging levels of expertise and knowledge, thus they can make some errors

while answering the questions. Statistically, the overall quality of workers is not

high.

• Platform: A crowdsourcing platform connects many requesters and workers in a

large-scale online community, ensuring that workers successfully complete the task

and requesters pay for the work. Crowdsourcing platforms can assign the requests

to workers in a number of different ways, such as auction, free-style selection, or

30

2.4 Crowdsourcing

even allow requesters and workers to work together. One such famous platform is

the Amazon Mechanical Turk (AMT), which is mainly used in our work.

Using crowdsourcing both have pros and cons. On one hand, advantages of crowd-

sourcing includes the ability to assemble a large amount of users online, which reduces

the amount of completion time while minimizing labor expenses. Crowdsourcing also

encourages creativity since many ideas are contributed in the same place. On the other

hand, disadvantages of crowdsourcing concern the management issues. The crowd are

not traditional employees, thus it is not possible to control their commitment to control

how they work. Besides, crowd workers also need satisfaction and reputation, which are

often ignored by the requesters.

2.4.2 Crowdsourcing Services

Crowdsourcing has become an interesting business in online industry recently. Many

platforms were introduced, some of the most important ones are described below.

Amazon Mechanical Turk (AMT). Amazon Mechanical Turk is an online crowd-

sourcing platform that connect requesters (ones who have works to be done) and workers

(ones who work on tasks for money). The requesters’ works are decomposed into small,

simple tasks called HITs that workers select to complete. Requesters need to break down

work into tasks and control quality of the results by themselves. Most of these tasks are

easy for human to work on but difficult for computers to solve.

CrowdFlower. Unlike AMT, CrowdFlower is a service that bridges the need between

requesters and AMT. It handles work decomposition, task workflow and result quality

for requesters. Tasks decomposed by CrowdFlower can be uploaded to AMT for workers

to work on. One of the quality assessment method that CrowdFlower provides but AMT

lacks of is ground truth value checking. CrowdFlower was used for conducting a crisis

relief experiment in [HSB10]. The most significant contribution of CrowdFlower to this

experiment is the scalability of the pool of crowd resources (workers, machines, ...).

Taskcn. Taskcn (Taskcn.com) is viewed as a Witkey site - a type of knowledge sharing

market where questions are posed by requesters and answered by other users. User whose

answer is correct gets a monetary reward. Taskcn differs from AMT that taskcn focuses

on creation tasks where the majority of tasks on AMT are decision tasks. For example,

a company may pose a logo design contest to taskcn. Solvers need to research about the

company in order to design a logo that suitable for the company culture. Taskcn was

used for examining the behavior of users in [YAA08]. Taskcn has 1.7 million registered

users, with around 3100 tasks and 543000 answers (up to 2008).

2.4.3 Quality Control in Crowdsourcing

In this work, we only concern two aspects of quality control in crowdsourcing, namely

worker quality and answer aggregation.

31

2. Background

2.4.3.1 Worker Quality

The workers in the crowd have wide-ranging levels of different characteristics, such as

education, age, and nationality. Many surveys have been conducted on existing crowd-

sourcing platforms for statistical analysis. For example, the findings in [RIS+10] suggest

that the workers on Amazon Mechanical Turk (AMT) are highly educated as more than

50% of workers have Bachelor and Master degrees. According to the statistical data in

the same survey, more than 50% of AMT workers have age below 34, and the majority

of workers on AMT are Indian and US citizens.

Based on those survey results, there is a large body of work proposed to capture and

formalize the worker characteristics. Most relevant studies are [KKMF11, VdVE11],

which characterized different types of crowd workers based on their expertise. In that,

workers with high expertise often give correct answers, while low expertise workers in-

tentionally or unintentionally give incorrect answers. Following the statistical data in

[VdVE11], we classify 5 worker types as depicted in Figure 2.4.

(1) Experts: who have deep knowledge about specific domains and answer the questions

with high reliability.

(2) Normal workers: who have general knowledge to give correct answers, but with few

occasional mistakes.

(3) Sloppy workers: who have very little knowledge and thus often give wrong answers,

but unintentionally. Their answers should be eliminated to ensure the overall quality.

(4) Uniform spammers: who intentionally give the same answer for every questions.

(5) Random spammers: who carelessly give the random answer for any question.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Se
ns

iti
vi

ty
 (t

ru
e

po
si

tiv
e

ra
te

)

Specificity (true negative rate)

Crowd Simulation

15

Random
Spammer

Uniform
Spammer Expert

Normal
Worker

Uniform
Spammer

Sloppy
Worker

Figure 2.4: Characteristics of different types of workers

The first three worker types are often called truthful workers, whereas the last two types

are often called untruthful workers (or just spammers). Spammers just want to get as

much as money without spending too much time. Classifying workers is important for

controlling the quality of validation answers. For example, the trustworthiness of answers

can be evaluated not only by the majority but also the expertise of the associated workers.

To simulate the expertise of crowd workers, there are two well-known models, namely

one-coin model [MSD08] and two-coin model [IPW10]. The former represents the ex-

pertise of a worker by a probability p ∈ [0, 1] that his answer is correct. The lat-

ter uses two parameters: sensitivity—the proportion of actual positives that are cor-

rectly identified—and specificity—the proportion of negatives that are correctly iden-

tified. Following the statistical result in [KKMF11], we set randomly the sensitivity

32

2.4 Crowdsourcing

and specificity of each type of worker as follows. For experts, the range is [0.9, 1].

For normal workers, it falls into [0.6, 0.9]. For sloppy workers, the range [0.1, 0.4]

is selected. For random spammers, it varies from 0.4 to 0.6. Especially for uniform

spammers, there are two regions: (i) sensitivity ∈ [0.8, 1], specificity ∈ [0, 0.2] and (ii)

sensitivity ∈ [0, 0.2], specificity ∈ [0.8, 1].

2.4.3.2 Answer Aggregation

Crowdsourcing relies on human workers to complete a problem, but humans are prone

to errors, which can make the results of crowd-sourcing arbitrarily bad. The reason is

two-fold. First, to obtain rewards, a malicious worker can submit random answers to all

questions. This can significantly degrade the quality of the results. Second, for a complex

problem, the worker may lack the required knowledge for handling it. As a result, an

incorrect answer may be provided. To address the above issues, a problem is split into

many tasks and each task is assigned to multiple workers so that replicated answers

are obtained. If conflicting answers are observed, the answers of different workers are

aggregated to determine a final result.

In the domain of crowdsourcing, a large body of work has studied the problem

of aggregating worker answers, which is formulated as follows. There are n objects

{o1, . . . , on}, where each object can be assigned by k workers {w1, . . . , wk} into one of

m possible labels L = {l1, l2, . . . lm}. The aggregation techniques take as input the set

of all worker answers that is represented by an answer matrix :

M =

a11 . . . a1k

...
. . .

...
an1 . . . ank

 (2.2)

where aij ∈ L is the answer of worker wj for object oi. The output of aggregation

techniques is a set of aggregated values {γo1 , γo2 , . . . γon}, where γoi ∈ L is the unique

label assigned for object oi. In order to compute aggregated values, we first derive the

probability of possible aggregations P (Xoi = lz), where Xoi is a random variable of the

aggregated value γoi and its domain value is L. Each technique applies different models

to estimate these probabilities. For simplicity sake, we denote γoi and XOi as γi and Xi,

respectively. After obtaining all probabilities, the aggregated value is computed by 7:

γi = argmax
lz∈L

P (Xi = lz) (2.3)

A rich body of research has proposed different techniques for answer aggregation. In

what follows, we describe the most representative techniques for answer aggregation.

Majority Decision. Majority Decision (MD) [KWS03] is a straightforward method

that aggregates each object independently. Given an object oi, among k received answers

for oi, we count the number of answers for each possible label lz. The probability P (Xi =

lz) of a label lz is the percentage of its count over k; i.e. P (Xi = lz) = 1
k

∑k
j=1 1aij=lz .

7Note that
∑
lz∈L P (Xi = lz) = 1

33

2. Background

However, MD does not take into account the fact that workers might have different levels

of expertise and it is especially problematic if most of them are spammers.

Honeypot. In principle, Honeypot (HP) [LCW10] operates as MD, except that un-

trustworthy workers are filtered in a preprocessing step. In this step, HP merges a set

of trapping questions Ω (whose true answer is already known) into original questions

randomly. Workers who fail to answer a specified number of trapping questions are ne-

glected as spammers and removed. Then, the probability of a possible label assigned for

each object oi is computed by MD among remaining workers. However, this approach

has some disadvantages: Ω is not always available or is often constructed subjectively;

i.e truthful workers might be misidentified as spammers if trapping questions are too

difficult.

Expert Label Injected Crowd Estimation Expert Label Injected Crowd Estimation

(ELICE) [KSA11] is an extension of HP. Similarly, ELICE also uses trapping questions

Ω, but to estimate the expertise level of each worker by measuring the ratio of his answers

which are identical to true answers of Ω. Then, it estimates the difficulty level of each

question by the expected number of workers who correctly answer a specified number

of the trapping questions. Finally, it computes the object probability P (Xi = lz) by

logistic regression [HL00] that is widely applied in machine learning. In brief, ELICE

considers not only the worker expertise (α ∈ [−1, 1]) but also the question difficulty

(β ∈ [0, 1]). The benefit is that each answer is weighted by the worker expertise and

the question difficulty; and thus, the object probability P (Xi = lz) is well-adjusted.

However, ELICE also has the same disadvantages about the trapping set Ω like HP as

previously described.

Expectation Maximization The Expectation Maximization (EM) technique [IPW10]

iteratively computes object probabilities in two steps: expectation (E) and maximization

(M). In the (E) step, object probabilities are estimated by weighting the answers of

workers according to the current estimates of their expertise. In the (M) step, EM

re-estimates the expertise of workers based on the current probability of each object.

This iteration is repeated until all object probabilities are unchanged. Briefly, EM is an

iterative algorithm that aggregates many objects at the same time. Since it takes a lot

of steps to reach convergence, running time is a critical issue.

Supervised Learning from Multiple Experts. In principle, Supervised Learning

from Multiple Experts (SLME) [RYZJ09] also operates as EM, but characterizes the

worker expertise by sensitivity and specificity—two well-known measures from statistics—

instead of the confusion matrix. Sensitivity is the ratio of positive answers which are

correctly assigned, while specificity is the ratio of negative answers which are correctly

assigned. One disadvantage of SLME is that it is incompatible with multiple labels

since the sensitivity and specificity are defined only for binary labeling (aggregated value

γ ∈ {0, 1}).

34

2.4 Crowdsourcing

Generative model of Labels, Abilities, and Difficulties. Generative model of La-

bels, Abilities, and Difficulties (GLAD) [WRW09] is an extension of EM. This technique

takes into account not only the worker expertise but also the question difficulty of each

object. It tries to capture two special cases. The first case is when a question is answered

by many workers, the worker with high expertise have a higher probability of answering

correctly. Another case is when a worker answers many questions, the question with high

difficulty has a lower probability of being answered correctly. In general, GLAD as well

as EM-based approaches are sensitive to arbitrary initializations. Particularly, GLAD’s

performance depends on the initial value of worker expertise α and question difficulty β.

In fact, there is no theoretical analysis for the performance guarantees and it is necessary

to have a benchmark for evaluating different techniques in the same setting.

Iterative Learning. Iterative Learning (ITER) is an iterative technique based on stan-

dard belief propagation [KOS11]. It also estimates the question difficulty and the worker

expertise, but slightly different in details. While others treat the reliability of all answers

of one worker as a single value (i.e. worker expertise), ITER computes the reliability of

each answer separately. And the difficulty level of each question is also computed indi-

vidually for each worker. As a result, the expertise of each worker is estimated as the sum

of the reliability of his answers weighted by the difficulty of associated questions. One

advantage of ITER is that it does not depend on the initialization of model parameters

(answer reliability, question difficulty). Moreover, while other techniques often assume

workers must answer all questions, ITER can divide questions into different subsets and

the outputs of these subsets are propagated in the end.

2.4.4 Crowdsourcing Applications

Crowdsourcing has been applied for a wide range of computational problems and prac-

tical applications. Nonetheless, crowdsourcing is cheap but not free and not scalable

without proper design. Since humans are not computationally intensive like computers,

not all problems can be solved by crowdsourcing. As pointed out in [vA09], the set

of problems and applications best-suited for crowdsourcing should meet the following

requirements.

• Easy for humans. Since humans will perform the computation, it is beneficial if

the problem (or small parts of the problem) can be easily solved by a human.

• Hard for computers. Human computation time are typically much slower and

more expensive than computer computation time. Crowdsourcing is therefore most

usefully applied to computational problems that cannot be solved by a computer.

• Reasonable working effort. Even though the number of crowd workers on the web

is large, it is still infeasible to solve problems that require exponential numbers of

working hours. Thus, the problem should be solvable by a considerable number of

people.

35

2. Background

• The work is decomposable. Since human cognitive load is limited, the problem at

hand should be split into micro tasks. A task that takes an average worker several

hours to complete should be avoided.

There are a lot of surveys and tutorials [DFKK11, DRH11, LY12, QB11] toward

applying crowdsourcing to various research areas. In what follows, we highlight some

well-known problems and applications that use crowdsourcing successfully.

ESP game. The ESP Game [VAD04] provides an example of a novel interactive system

that allows people to label images while enjoying themselves. In this game, the partici-

pant labels an input image by a keyword, which most properly describes the image, from

a set of provided keywords. The ultimate goal is to obtain proper labels for each image.

The collection of all propoer labels about images on the Web is an invaluable data for

information retrieval applications.

Enterprises. Employing a crowd of users is not a new paradigm in enterprises. In

the past, many companies have engage end-users to contribute towards their products

and marketplace, often through the form of a competition, such as designing advertising

campaign, vetting new product ideas and solving challenging R&D problems [Sur05].

Examples include the Xerox’s Eureka system [BW02] – which uses internal employees

as the crowd for extracting business knowledge, and the ReferralWeb system [KSS97] –

which allows users to collaborative online in creating Web contents.

Crowd-based websites. Crowdsourcing is widely adopted in Web 2.0 sites. For in-

stance, Wikipedia has thousands of editors, who continually edit articles and contribute

knowledge for building a free encyclopedia. Another site is Yahoo! Answers, where users

submit and answer questions. Another example is the Goldcorp Challenge 8, which em-

ploys geological experts distributed all over the world to identify the locations of gold

desposits. Crowdsourcing is also used on software development life cycles, as in Top-

coder.com. Recently, many piggy-back applications, which use programming API of

crowdsourcing platforms, have been developed such as CrowdDB [FKK+11], HumanGS

[PSGM+11], and CrowdSearch [YKG10].

8http://www.goldcorpchallenge.com/

36

Chapter 3
Schema Matching Network - Modeling,
Quantifying, and Partitioning

3.1 Introduction

Let us consider the following scenario where three video content providers EoverI, BBC,

and DVDizzy would like to create a shared website to publicize their offerings, which

link back to the particular website for the purchases. The shared website needs informa-

tion from the individual content providers (e.g. title, date, review) so that consumers

searching on the site can find the products they want. Although it would be conceivable

to construct a global schema for the three providers, as more providers would join to

this shared site, such a global schema could become impractical. We assume a scenario

where the correspondences are established in a pairwise manner.

s1: EoverI

s2: BBC

s3: DVDizzy

releaseDate totalScore

title

review

userComment

overallScore

title

productionDate

assessment

title

screeningDate

userMemo

averageScore

review

availabilityDate

userJugment

Figure 3.1: A full matching network

s1: EoverI

s2: BBC

s3: DVDizzy

a4: productionDate

a1: releaseDate
a3: availabilityDate

a2: screeningDate

c4

c2

c1
c3

c5

Figure 3.2: Simplified matching network

Figure 3.1 shows simplified schemas to illustrate this scenario. The three boxes

represent the schemas of EoverI (s1), BBC (s2), and DVDizzy (s3) respectively. Schema

s1 has five attributes: title, releaseDate, review, userComment, and overallScore. Schema

s2 contains five attributes: title, screeningDate, review, userMemo, and averageScore.

Schema s3 consists of six attributes: title, productionDate, availabilityDate, assessment,

userJudgment, totalScore.

To interconnect the data, we need to find equivalent attributes for each pair of

schemas. This equivalence relation is binary and represented by a correspondence be-

tween two attributes. The attribute correspondences can be automatically generated

37

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

by typical schema matching tools such as COMA++ [ADMR05a] and AMC [PER11].

Combining generated correspondences, we have a notion of schema matching network—

a network of connected schemas in which two schemas to be matched do not exist in

isolation but participate in a larger interaction and connect to several other schemas at

the same time. For presentation purposes, we do not draw all correspondences here.

For simplicity sake, we now consider only a small portion of the network in Figure

3.2, with date-related attributes : s1.releaseDate, s2.screeningDate, s3.productionDate,

and s3.availabilityDate. The figure shows four correspondences, denoted by c1, c2, c3,

and c4. As the names of the involved attribute are rather similar, automatic match-

ers fail to give the attribute correspondences without ambiguity. For example, the

attribute s1.releaseDate is both matched to the attribute s3.productionDate and the at-

tribute s3.availabilityDate; hence, it is difficult to judge which correspondence (c2 or c4)

is correct. This problem, among others, will be addressed more precisely in subsequent

chapters.

In this chapter, we formulate the concept of schema matching network to provide

the fundamental model for other chapters. To this end, we identify elements of the

matching network and attempt to define them in a domain-independent way. After

that, we opt for representing matching network in Answer Set Programming (ASP) and

point out the advantages of this representation in the context of this work. With the

benefits of ASP, we can modify the network easily, e.g. assert correspondences, update

constraints. Finally, we introduce some measurements to quantify the network quality.

During the course of the chapter, we use the motivating example (Figure 3.2) as an

informal illustration to help readers understand formal definitions.

3.2 Elements of a Schema Matching Network

In this section, we describe the elements of a schema matching network. Formally, we

define a schema matching network to be a quadruple 〈S, GS,Γ, C〉, where S is a set of

schemas, GS is a corresponding interaction graph, Γ is a set of integrity constraints, and

C is a set of candidate correspondences. The detailed definitions are given as follows.

3.2.1 Schema

We model a schema as a tuple s = 〈As, δs〉, such that As = {a1, ..., an} is a finite set

of attributes and δs ⊆ As × As is a relation capturing attribute dependencies. This

model largely abstracts from the peculiarities of schema definition formalisms, such as

relational or XML-based models. As such, we do not impose specific assumptions on δs,

which may capture different kinds of dependencies, e.g., composition or specialization of

attributes. For example, in Figure 3.1, s1 is a schema, in which the attribute review is a

complex attribute composed of two simple attributes userComment and overallScore; i.e.,

the dependency between the attribute review and each of the two attributes userComment,

overallScore is composition.

38

3.2 Elements of a Schema Matching Network

Let S = {s1, ..., sn} be a set of schemas that are built of unique attributes 1, i.e.

Asi ∩ Asj = ∅ for all 1 ≤ i, j ≤ n and i 6= j, and let AS denote the set of attributes

in S, i.e. AS =
⋃
iAsi . In a schema matching network, S represents the set of involved

schemas that are matched against each other. To represent the connections between these

schemas, we layout the network in terms of an interaction graph in the next subsection.

3.2.2 Interaction graph

As illustrated in Figure 3.1, the owners of schemas interact with one another by matching

their schemas. In real scenarios, not all pairs of schemas are allowed to be matched

due to several reasons, such as availability of public usages, business requirements, and

privacy policies. In order to represent the allowed interactions, we introduce the notion

of interaction graph to layout a schema matching network. In that, the correspondences

are generated for attributes of only relevant schemas that have interactions between

them.

Formally, the interaction graph of a schema matching network is denoted as an

undirected graph GS = (V,E), representing which schemas need to be matched in the

network. The vertices in V are labeled by the schemas from S. There is an edge

between two vertices, if the corresponding schemas need to be matched. For example,

the interaction graph of the network of schemas in Figure 3.1 and 3.2 is G{s1,s2,s3} =

({s1, s2, s3}, {s1 ↔ s2, s1 ↔ s3, s2 ↔ s3}). Studying different topologies of interaction

graph raises several interesting future directions, however it is outside the scope of this

work. In the experiments, we will specify how the interaction graph constructed with

respect to real datasets.

3.2.3 Attribute Correspondences

An attribute correspondence represents the (semantic and/or syntactic) equivalence rela-

tion between attributes. Attribute correspondences are generated by automatic tools, so-

called matchers (e.g. COMA++ [ADMR05b], AMC [PER11], and OntoBuilder [RG06].

Formally, we use the notation (a, a′) for an attribute correspondence that asscociates

a pair of attributes a ∈ As and b ∈ As′ from the two schemas s, s′ ∈ S. A valuation

function associates a confidence value in [0, 1] to an attribute correspondence, referred

to as quality, reflecting a degree of similarity between two involved attributes. Given

two schemas s and s′ with n and n′ attributes respectively, a schema matcher produces

an assessment of equivalance, represented by a n× n′ matrix where each row or column

corresponds to an attribute. An element ma,a′(s, s
′) of this matrix is the confidence

value of a pair of attributes a ∈ As and a′ ∈ As′ .
We often refer to individual attribute correspondences as candidate correspondences

since there is no guarantee that they are indeed correct. Candidate correspondences ci,j

(for a given pair of schemas si, sj ∈ S) is a set of attribute correspondences, that often

1The attribute names might not be unique, but one can add a unique identifier to the names to
obtain unique attributes

39

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

consists of correspondences whose associated value is above a given threshold. The set

of candidate correspondences C for an interaction graph GS consists of all candidates for

pairs corresponding to its edges, i.e. C =
⋃

(si,sj)∈E(GS) ci,j . C is typically the outcome

of schema matchers [Gal11, GSW+12]. Most such matchers generate simple one-to-

one attribute correspondences, which relate an attribute of one schema to at most one

attribute in another schema. However, our model does not preclude handling of one-to-

many or many-to-many relations among sets of attributes. A natural approach to handle

these complex relations is treating the set of involved attributes as a complex attribute.

3.2.4 Integrity constraints

Being an uncertain output of automatic tools, a schema matching network inherently

contains the inconsistencies between correspondences. For detecting and repairing the

inconsistencies, we represent natural properties of a schema matching network as con-

sistency conditions and formulate them in terms of integrity constraints. While an

inconsistent schema matching network violates at least one integrity constraint, a con-

sistent one has to satisfy all of them. It is important to emphasize that the constraints

we deal with are generic constraints. That is, they are completely domain-independent,

in contrast to the constraints in [DDH01b] (which are extracted from experts’ knowlege).

There are three types of integrity constraints we have investigated so far:

• One-to-one constraint. In some cases, one expects that each attribute of one

of the schemas is matched to at most one attribute of any other schemas. For

example in Figure 3.2, the attribute s1.releaseDate is only allowed to match to

either s3.productionDate or s3.availabilityDate. However, both correspondences c2

(s1.releaseDate ↔ s3.availabilityDate) and c4 (s1.releaseDate ↔ s3.productionDate)

are generated by automatic matchers and we have to eliminate one of them by the

reconciliation.

• Dependency constraint. This is another constraint based on the relation between

attributes within a schema, for instance, a composition relation in an XML schema.

The dependency constraint requires that the relation between attributes within a

schema is preserved by network-wide paths of correspondences. This constraint is

satisfied for the pairwise matching between two schemas, but is often violated on

the network level, once more schemas are taken into account.

• Cycle constraint. If the schemas are matched in a cycle, the matched attributes

should form a closed cycle. This is a natural expectation, if one would like to

exchange data that is stored in the databases corresponding to the schemas. Such

network-level constraints describe important consistency conditions; one would

like to avoid constraint violations. For example, among automatically generated

correspondences in Figre 3.2, the set of correspondences {c3, c1, c4} violates the

cycle constraint.

40

3.3 Representation in ASP

Now we formulate the integrity constraints as follows. Let Γ = {γ1, . . . , γn} be a finite

set of constraints, which are used to represent the expected consistency conditions. A

set of correspondences I ⊆ C is consistent if it satisfies all the integrity constraints;

i.e., ∀γ ∈ Γ, I |= γ. Otherwise, it is called an inconsistent set or a constraint violation,

which will be investigated further in section 3.3.2. For example, consider the one-to-

one constraint γ1−1 and the cycle constraint γ�. I satisfies γ1−1 iff @c1, c2 ∈ I : c1 =

(a, a′)∧ c2 = (a, a′′), where a, a′, a′′ are attributes and a′, a′′ belong to the same schema.

I satisfies γ� iff @c1, c2, . . . , ck ∈ I : c1 = (a1, a2) ∧ c2 = (a2, a3) ∧ . . . ∧ ck = (ak, a
′
1),

where a1, a
′
1, a2, . . . , ak are attributes and a1, a

′
1 belong to the same schema.

3.3 Representation in ASP

In this section, we describe how to represent a schema matching network using Answer

Set Programming (ASP). We first show how to encode the elements of a schema matching

network using ASP (Section 3.3.1). Then we outline the reasoning mechanism ASP uses

to identify the violations of integrity constraints (Section 3.3.2).

Using ASP has many advantages in unifying user input and automatic matches to

reconcile a schema matching network. In ASP, solving search problems is reduced to

computing answer sets, such that answer set solvers (programs for generating answer

sets) are used to perform search. For more details, the essentials of ASP are already

summarized in Section 2.2.

3.3.1 Encoding Elements of a Schema Matching Network

Let (S, GS,Γ, C) be a schema matching network that needs to be reconciled. An ASP

Π(i), which corresponds to the i-th step of the reconciliation process, is constructed from

a set of smaller programs that represent the schemas and attributes (ΠS), the candidate

correspondences (ΠC), the basic assumptions about the setting (Πbasic), the constraints

(ΠΓ), and a special rule that relates the correspondences and constraints Πcc . The

program Π(i) is the union of the smaller programs Π(i) = ΠS ∪ ΠC ∪ ΠD(i) ∪ Πbasic ∪
ΠΓ ∪Πcc . These programs are discussed in what follows.

Schemas and attributes (ΠS). Program ΠS is a set of ground atoms, one for each

attribute and its relation to a schema, and one for each attribute dependency.

ΠS ={attr(a, si) | si ∈ S, a ∈ Asi}
∪ {dep(a1, a2) | si ∈ S, (a1, a2) ∈ δsi}

Candidate correspondences (ΠC). Program ΠC comprises ground atoms, one for

each candidate correspondence in the matching network.

ΠC = {cor(a1, a2) | (a1, a2) ∈ C}

Basic assumptions (Πbasic). We describe our basic assumption as rules in the program

Πbasic :

41

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

• An attribute cannot occur in more than one schema. We encode this knowledge by

adding a rule with an empty head, i.e., a constraint, so that no computed answer

set will satisfy the rule body. For each attribute a ∈ AS and schemas s1, s2 ∈ S,

we add the following rule to Πbasic :

← attr(X,S1), attr(X,S2), S1 6= S2.

• There should be no correspondence between attributes of the same schema. We add

a rule to for each candidate correspondence (a1, a2) ∈ C and schemas s1, s2 ∈ S to

Πbasic :

← cor(X1, X2), attr(X1, S1), attr(X2, S2), S1 = S2.

Example 3. Back to the running example in Figure 3.2, we have the follow-

ing ASP programs respectively. The program of schemas and attributes is ΠS =

{attr(a1, s1), attr(a2, s2), attr(a3, s3), attr(a4, s3)}. The program of candidate correspon-

dences is ΠC = {cor(a1, a2), cor(a1, a3), cor(a1, a4), cor(a2, a3), cor(a2, a4)}. No rule in

the program of basic assumption Πbasic is unsatisfied.

Integrity Constraints (ΠΓ). We express the schema matching constraints as rules

in the program ΠΓ, one rule per constraint, such that ΠΓ = Πγ1 ∪ · · · ∪ Πγn for Γ =

{γ1, . . . , γn}. In the following, we give examples of three matching constraints.

• One-to-one constraint: For any attribute of a schema, there is at most one corre-

sponding attribute in another schema. We capture this constraint with the follow-

ing rule:

←match(X,Y),match(X,Z), attr(Y, S), attr(Z, S),

Y 6= Z.

• Cycle constraint: Two different attributes of a schema must not be connected by

a path of matches. We call a cycle of attribute correspondences incorrect, if it

connects two different attributes of the same schema. Formally, a solution is valid

if it does not contain any incorrect cycle. We encode this constraint based on

reachability relation (represented by reach(X,Y), where X and Y are variables for

attributes) as follows:

reach(X,Y) ← match(X,Y)
reach(X,Z) ← reach(X,Y),match(Y,Z)

← reach(X,Y), attr(X,S), attr(Y, S),
X 6= Y.

• Dependency constraint: Dependencies between attributes shall be preserved by paths

of matches. To encode this type of constraint, we proceed as follows. First, we

model (direct or indirect) reachability of two attributes in terms of the dependency

relation (represented by reachDep(X,Y), where X and Y are both variables for

attributes). Then, we require that reachability based on the match relation for two

42

3.4 Quantifying the Network Uncertainty

pairs of attributes preserves the reachability in terms of the dependency relation

between the attributes of either schema:

reachDep(X,Y) ← dep(X,Y)
reachDep(X,Z) ← reachDep(X,Y), dep(Y,Z)

← reachDep(X,Y), reach(X,B),
reachDep(A,B), reach(Y,A).

Example 4. We continue using the running example in Figure 3.2 for illustrations. The

match(a1, a3) and match(a1, a4) does not satisfy one-to-one constraint because attr(a3, s3),

attr(a4, s3) and a3 6= a4. The match(a3, a2), match(a2, a1), and match(a1, a4) do not

satisfy cycle constraint because reach(a3, a4), attr(a3, s3), attr(a4, s3), and a3 6= a4.

3.3.2 Detecting Constraint Violations

We say that a set of correspondences violating an integrity constraint is a constraint

violation. In practice, we are not interested in all possible violations, but rather the

minimal ones, where a set of violations is minimal w.r.t. γ if none of its subsets vio-

lates γ. Given a set of correspondences C ′, we denote the set of minimal violations as

V iolation(C), each element of which is formally defined as follows.

Definition 3.1. Let C be a set of correspondences, Γ be a set of integrity constraints.

A set of correspondences V ⊆ C is a violation, if

• Inconsistent: V does not satisfy at least one integrity constraint; i.e. ∃γ ∈ Γ, V 6|=
γ.

• Minimal: not exists a correspondence c ∈ V such that ∃γ ∈ Γ, V \ {c} 6|= γ.

In large matching networks, detecting such constraint violations is far from trivial

and an automatic support is crucial. Adopting the introduced representation enables

us to compute violations of constraints automatically. Technically, a violation V of a

integrity constraint γ is encoded in ASP as ΠS ∪ Πbasic ∪ Πγ 6|=b ΠV . With the help

of ASP solvers, we can detect these constraint violations, each of which has the form

{corr(ai, aj), . . . , corr(ak, al)}, and then convert them to the set V iolation(C) easily.

Moreover, the ASP representation also allows for expressing reconciliation goals. A

frequent goal of experts is to eliminate all violations, that we can express as ∆NoViol =

{Π(i) |=b ΠC(i)}, i.e., the joint ASP bravely entails the program of the correspondences

at the i-th step of the reconciliation process.

Example 5. We depict how to detect constraint violations by using the running example

in Figure 3.2. With respect to one-to-one constraint and cycle constraint, we have a set of

minimal violations V iolation({c1, c2, c3, c4, c5}) = {{c2, c4}, {c3, c5}, {c3, c1, c4}, {c5, c1, c2}}.

3.4 Quantifying the Network Uncertainty

Since automatic matchers rely on heuristic techniques to generate attribute correspon-

dences, a schema matching network composed of the generated correspondences is inher-

ently uncertain. To characterize the uncertainty present in the network, we propose a

43

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

probabilistic model that maintains a set of probabilities P where each element pc is asso-

ciated with a correspondence c ∈ C. Combining the introduced notions, we extend from

a schema matching network N = (S,GS , C,Γ) into the notion of probabilistic matching

network, denoted as 〈N,P 〉.
Our probabilistic model provides a unified way to encode all relevant information

on top of a schema matching network. Usually schema matchers deliver a so called

confidence value to each candidate correspondence [RB01a]. A confidence value may

be interpreted as an indicator for the uncertainty of the correspondence in the match-

ing. However, it has been observed that these confidence values are not normalized,

often unreliable, dependent of the used matcher and unrelated to the application goals

[BMR11a]. Thus, we take a different approach to measure the uncertainty for corre-

spondences. In the context of this work, we assume that the integrity constraints and

user input are of paramount importance for the applications. To unify the constraints

and user input, we compute the probabilities of correspondences from both, which will

be described more precisely below. For example, having all probability values equal to

one means that the associated correspondences satisfy all integrity constraints and re-

spect user input. Moreover, on top of this model, potential applications can exploit the

embedded information easily and leverage the theoretical advances of probability theory.

This section is dedicated to discussing the problem of establishing a probabilistic

matching network. In particular, we introduce how to compute the probabilities as-

sociated to the correspondences. Moreover, as computing the exact probability values

for correspondences can be computationally expensive, we then also develop techniques

to approximate these values. Finally, we quantify overall uncertainty of the network

through computing the sum of individual uncertainty.

3.4.1 Probability of Correspondences in the Network

We assume that the integrity constraints and user input are of paramount importance

to the data integration applications. Here we denote user input as 〈F+, F−〉 where F+

is a set of approved correspondences and F− is a set of disapproved correspondences,

regardless of the reconciliation setting. In a schema matching network, we call a set of

correspondences, which satisfies all the integrity constraints and respects user input, a

matching of the network. If all correspondences in the schema matching network are

validated by the user, we call the set of all approved correspondences the final matching,

assuming that user input is correct and consistent (i.e. no constraint violation). From

this starting point, we adopt a model in which a correspondence is more like to occur

in the final matching, if it is present in many matchings that qualify as approximations

of final matching. This property should also hold in the presence of user input (ap-

provals or disapprovals of correspondences) that we consider correct. That is, for the

computation of probabilities, we consider possible matchings that include all approved

correspondences and exclude all disapproved correspondences (all possible matchings are

considered as equally probable). We capture the intuition of a matching that qualifies as

44

3.4 Quantifying the Network Uncertainty

an approximation of the final matching with the notion of a matching instance, defined

as follows:

Definition 3.2. Matching Instance. Let 〈S,GS ,Γ, C〉 be a schema matching network

and F+/F− be a set of approved/disapproved correspondences given by user(s). A set

of correspondences I ⊆ C is a matching instance, if

• Consistent: I satisfies all integrity constraints (i.e. I |= Γ) and respects user input

(i.e. F+ ⊆ I and F− ∩ I = ∅).
• Maximal: there does not exist a correspondence c ∈ C\(F−∪I) such that I∪{c} |=

Γ.

Using a Venn diagram, Figure 3.3 illustrates the relationship of matching instances

with candidate correspondences and user input. Any matching instance includes all ap-

proved correspondences and excludes all disapproved correspondences. The number of

all possible matching instances is at most 2|C| as they are subsets of candidate corre-

spondences. F+ and F− are disjoint since a correspondence cannot be approved and

disapproved at the same time.

I 	…	

, : sets of approved/disapproved correspondences

Figure 3.3: Relationship between the set of candidate correspondences C, the user input 〈F+, F−〉, and
the matching instances I1, ..., In

Using the notion of a matching instance, we define the probability pc of a given

correspondence c to be proportional to the number of matching instances in which c

participates:

pc =
|{I ∈ Ω(F+, F−) | c ∈ I}|

|Ω(F+, F−)| (3.1)

where Ω(F+, F−) = {I1, . . . , In}, Ii ⊆ C, 1 ≤ i ≤ n, is the set of all possible matching

instances under user input 〈F+, F−〉. Thus, the probability of asserted correspondences

is either one or zero, since every matching instance, by definition, includes all approved

correspondences and excludes all disapproved correspondences; i.e. pc = 1, ∀c ∈ F+ and

pc = 0,∀c ∈ F−. Although Equation 3.1 gives a precise definition of the probability

of a correspondence, computing the exact value is costly, especially when user input is

incrementally updated. In fact, exact probability computation requires generating all

possible matching instances, the number of which is exponential in the total number of

correspondences, and verifying them with user input. This is intractable in practice.

45

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

3.4.2 Approximating the Probabilities

Since computation of the exact probabilities of correspondences is intractable, we propose

a sampling-based approximation to estimate the probabilities. To this end, we generate

Ω∗ a set of a tractable number of sample matching instances and then consider the

probability of a correspondence as the finite limit over Ω∗:

pc = lim
Ω∗→Ω(F+,F−)

|{I ∈ Ω∗ | c ∈ I}|
|Ω∗| (3.2)

In order to design an efficient sampling technique for a stream of user assertions, two

factors have to be considered:

1. The sample space: it is critical to draw good samples that well capture the exact

distribution. Because of the integrity constraints, some correspondences always

go together, whereas some others never do. These correlations between corre-

spondences create a complex joint distribution incorporating all possible matching

instances.

2. The running time: we consider reconciliation as a pay-as-you-go process where

only a few changes are made at a time. Hence, it is not reasonable to re-sample

the matching instances from scratch for each user assertion. Instead, we need a

technique to maintain a set of preceding samples and update it upon the arrival of

a new user assertion.

Addressing these aspects, we rely on a sampling technique that supports non-uniform

sampling (to approximate the sample space of matching instances) and view mainte-

nance [BLT86] (to improve the running time).

Non-Uniform Sampling. Because of the complex joint distribution of matching in-

stances, uniform sampling methods like Monte Carlo are insufficient [GHS07] for prob-

ability estimation. Our non-uniform sampling overcomes this limitation by making use

of a random-walk strategy and simulated annealing. The role of random-walk is to ex-

plore the sample space by generating a next instance from the previous one. Technically,

the next instance is computed by randomly adding a correspondence to the current in-

stance and resolving all constraint violations created by this correspondence. However, a

random-walk may get trapped in the sample regions with high density [DLK+08]. Hence,

the role of simulated annealing is to “jump” out of such regions. Due to the dependencies

(i.e., integrity constraints) between correspondences in our set-up, the space of match-

ing instances is divided into regions of different magnitude which are not reachable from

each other. As a result, combining random-walk and simulated annealing ensures that

an instance in a high-magnitude region should be sampled with a high chance and that

an instance in a low-magnitude region should be sampled with a low chance.

We show the details of our non-uniform sampling in Algorithm 3.1. The algorithm

has two parameters (n, k), four inputs (C,Γ, F+, F−), and returns a set of sampling

instances Ω∗ as output. First, it starts with a trivial sample which contains all the

approved correspondences (line 1). Next, it generates the next n samples, each of them

being computed from the previous one using random-walk [MSK97, WES04] (line 4).

46

3.4 Quantifying the Network Uncertainty

Then following the simulated annealing meta-heuristic [VLA87], we consider accepting

the next sample with a probability non-uniformly proportional to the number of its

correspondences different with those of the current sample (line 7). Since this probability

is an exponential function (i.e. 1 − e−∆), our sampling is non-uniform. The rationale

behind this is that due to the integrity constraints, two particular matching instances are

more likely to fall into the same sampling region if they have more common attributes,

and vice-versa. In order to avoid being trapped in such sampling regions which are not

reachacle from each other, we should make a “jump” with a higher probability if the

distance between the current and next sampling instances is larger. The distance between

two matching instances is the size of their symmetric difference ; i.e. ∆(Ii, Inext) =

|Ii \ Inext|+ |Inext \ Ii|.

Algorithm 3.1: Non-uniformly sample matching instances
input : a set of correspondences C,

a set of integrity constraints Γ,
a set of approved/disapproved correspondences F+/F−,
a number of samples n,
a number of random-walks per sample k

output : A set of sampling instances Ω∗ = {I1, . . . , In}
1 I0 ← F+; Ω∗ ← ∅
2 for i = 1→ n do
3 Ii ← Ii−1

// Run random-walk for k steps beginning on Ii−1

4 for j = 1→ k do
// Randomly select another correspondence

5 c← Rand(C \ F− \ Ii)
// Add c and repair all constraint violations

6 Inext ← repair(Ii, c, F
+,Γ)

// Acceptance probability w.r.t. the distance ∆

7 With probability 1− e−∆(Ii,Inext) do Ii ← Inext

8 Ω∗ ← Ω∗ ∪ Ii
9 return Ω∗

View Maintenance. To realize view maintenance, we always keep the set of preceding

samples Ω′ and update it based on the new assertion of a correspondence c. The idea is

that if a correspondence is approved, all the samples not containing this correspondence

are discarded; otherwise, we remove all the samples which contain this correspondence.

More precisely, the set of samples Ω∗ is derived as follows, depending on whether c is

approved (Ω∗(F+ ∪ {c}, F−)) or disapproved (Ω∗(F+, F− ∪ {c})):

Ω∗(F+ ∪ {c}, F−) = Ω′(F+, F−) \ {I ∈ Ω′(F+, F−)|c 6∈ I}
Ω∗(F+, F− ∪ {c}) = Ω′(F+, F−) \ {I ∈ Ω′(F+, F−)|c ∈ I}

Maintenance may reduce the number of samples as we do not generate any further

sampling instances, leading to poor estimation of the probabilities. To cope with this

limitation, we define a tolerance threshold nmin, such that more samples are generated

if |Ω∗| < nmin. Moreover, if the size of Ω∗ is still smaller than nmin after two consecutive

samplings, it implies that the actual number of all matching instances is smaller than

nmin and it holds Ω∗ = Ω. Hence, it is not necessary to re-sample since all matching

instances have already been generated.

47

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

3.4.3 Network Uncertainty

In a probabilistic matching network 〈N,P 〉 with N = 〈S, GS,Γ, C〉 being a network of

schemas, each candidate correspondence c ∈ C is assigned a probability pc ∈ P that rep-

resents how likely the correspondences is to be part of the final matching. This decision,

in turn, can be modeled as a binary random variable. Hence, the overall uncertainty

of the network is computed as the Shannon entropy [SW48] over a set of random vari-

ables, each one representing the uncertainty of a particular candidate correspondence.

Formally, the Shannon entropy for a probabilistic matching network as follows:

H(C,P) = −
∑
c∈C

[pc log pc + (1− pc) log (1− pc)] (3.3)

A network uncertainty H(C,P) = 0 means that all probabilities are equal to one or

zero; or in other words, there is only one matching instance remaining. In that case, all

remaining candidate correspondences, except the disapproved ones, construct a matching

that satisfies all the integrity constraints, the final matching. Hence, our goal in the

reconciliation of a probabilistic matching network is to reduce the network uncertainty

to zero. It is worth noting that the user input F is not included in eq. (3.3) since it is

already incorporated in the correspondence probabilities P (implicitly by the probability

computation). It is also noteworthy that asserted correspondences do not contribute to

the network uncertainty since their probability is either one or zero. In other words, the

network uncertainty can be computed on the set of non-asserted correspondences only,

i.e., H(C,P) = H(C \ (F+ ∪ F−), P).

3.5 Network Partitioning

In practical settings, not only there is a lot of schemas in the repository but also each

schema is usually large (i.e. has a large number of attributes). For reconciling such

large networks of schemas, one needs to give a special attention to scalability for various

reasons. First of all, large schema matching networks are out of control for user with big

constraint violations (i.e. contain many correspondences), which are hard to interpret

and identify the problematic correspondences. Secondly, human interaction incurs high

end-to-end response time. The large network can cause computational problems and

make the response time even slower. Thirdly, reconciliation is an incremental process

where a few changes are made once at a time and these changes often affect only a small

region of the network. Therefore, it is imprudent and ineffective to let user work on the

whole network.

To cope with these issues, we need decomposition techniques. In the literature,

several authors have approached the problem by decomposing the schema to smaller

units, address the matching problem for these sub-schemas, and reuse the results of

these smaller matching problems. Some works in this direction include [SSC10b], or

in the context of mappings, [AHPT12]. Closely related to this approach is the study

of dependencies between schema matchings [Fan08]. However, the major limitation of

48

3.5 Network Partitioning

these works is that even if each sub-schema is small enough, the number of schemas in

the network is still too large for the computation.

In our work, we study a fine-grained approach that decompose the original network

into small regions, which are reasonably small for computational tractability. This ap-

proach offers several advantages. First, it avoids the potential computation problems of

detecting and resolving large constraint violations. Second, we can devise means for mul-

tiple users to work parallelly on different regions of network. To realize this approach,

we propose two graph-based techniques: (i) decomposition by connected components

and (ii) decomposition by k-way partitioning. While the former focuses on the connec-

tion between attributes, the latter preserves the correlation between correspondences in

terms of integrity constraints. In the end, we additionally mention our another decom-

position technique based on schema cover [GKS+13], which can be combined with these

two graph-based techniques.

3.5.1 Decomposition by Connected Components

It is our goal to find disjoint sets of attribute correspondences, given a schema matching

network. In general, any modifications on a disjoint set do not affect the other sets. To

detect such disjoint sets, we derive a graph of attribute correspondences from a network

of schemas. Our model is a weighted k-partite graph, following the idea of representing

a matching as a k-partite graph over the attributes of k schemas. We consider all

attribute pairs that appear in any of the candidate correspondences and take the union

of all correspondences.

Definition 3.3. Attribute graph is an overlay graph derived from a schema matching

network. Let (S,GS , C,Γ) be a schema matching network with k schemas. Then, an

attribute graph is defined as a k-partite graph G = (V1 ∪ V2 ∪ . . . ∪ Vk, E), where each

partite set Vi represents all attributes of the schema si ∈ S and each edge e = (ai, aj) ∈ E
represents a candidate correspondence between two attributes ai and aj (i.e. (ai, aj) ∈
C).

For the decomposition, we employ the concept of connected component in a graph.

In that, any two attributes are in the same connected component iff they are connected

to each other by a path of correspondences. The rationale behind this decomposition

is that we are interested in groups of attributes in which the ambiguity of attributes

in the group is explained by a path of correspondences to attributes that are also part

of the group. If two attributes of the same schema also stay in the same connected

component, they show ambiguity in the matching since we cannot be certain to which

attribute it is matched. For technical implementation, we leverage a large body of works

on the topic of connected components in a graph [HT73, SE81, LP82, Rei08]. If we use

depth-first-search, the complexity is O(|AS | + |C|) (AS is the union of all attributes in

all schemas of S).

We have some observations with regard to connected components and the integrity

constraints. If there is no violation in the network, the size of each connected component

49

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

must not exceed the number of schemas. When the number of violations increases, the

size of connected components also increases but the number of them decreases. In

the worst case, there could be only one connected component which is also the whole

attribute graph. For example in Figure 3.2, since all attributes are connected, there

is only one connected component {c1, c2, c3, c4, c5}. As a result, there is no bound on

the size of connected components, motivating us to devise other decomposition schemes

for better modularity. In what follows, we present one such scheme based on k-way

hypergraph partitioning to construct a disjoint sets of correspondences with tolerated

size.

3.5.2 Decomposition by k-way Partitioning

This technique attempts to overcome the limitation of the previous one in decomposing

large constraint violations, whose correspondences span over the network. It is our goal

to partition the matching network into subsets of correspondences with similar size,

while minimizing the number of interconnected violations (a violation is interconnected

if it involves at least two correspondences in different subsets). Before going into the

problem statement, we need to introduce two concepts: (i) δ-equality and (ii) fitness

function.

The first concept is about equality between correspondence subsets in a partition.

Denote Ωk be a space of possible k-way partitions, in which each partition ω ∈ Ωk is

a set of correspondence subsets {C1, . . . , Ck}, where Ci ⊆ C and ∀i, j : Ci ∩ Cj = ∅.
A partition ω is called δ-equality partition iff the size of each correspondence subset is

balanced; i.e. (1 − δ) ×
∑k
i=1 |Ci|
k ≤ |Ci| ≤ (1 + δ) ×

∑k
i=1 |Ci|
k where δ is the balance-

tolerance. If δ = 0, we have a strict equality with all the sizes of correspondence subsets

are equal, which is the most desired level of balance for a particular problem input.

However, such a strict equality might not exist in any partition; and thus, the parameter

δ plays the role of relaxing the equality condition to construct at least one working

partition.

The second concept is about dependence between correspondence subsets in a parti-

tion. Denote fV : Ωk → N is the fitness function of a partition that returns the number

of disconnected violations, which span over at least two different subsets of correspon-

dences; i.e. fV (ω) = |{v ∈ V | ∃Ci, Cj ∈ ω : Ci ∩ v 6= ∅ ∧ Cj ∩ v 6= ∅}|. The smaller

value of this function, the better partition we have. The core idea is to preserve the

constraint correlations between correspondences; and thus, integrity constraints can be

independently harnessed in an individual subset of correspondence.

Problem 1. Dependence Minimization. Let (S,GS , C,Γ) be a schema matching

network and let V = {vi|vi ⊆ C} be a set of violations. The dependence minimiza-

tion problem is finding a δ-equality partition ω such that not exists another δ-equality

partition ω′ and fV (ω′) < fV (ω).

Choosing appropriate value for k—the number of subsets in a partition—is, however,

still a domain-dependent problem. One one hand, one can increase k such that the

50

3.5 Network Partitioning

v3

v1

v4

v2c5

c2

c1 c3

v1 = {c2, c4}
v2 = {c3, c5}

v3 = {c1, c3, c4}
v4 = {c1, c2, c5}

c4

v3
v1

v2

v4

…

k = 3

Figure 3.4: Network decomposition by hypergraph partitioning

size of a sub-network is small enough for computational tractability. On the other hand,

increasing k would shorten the imbalance gap between correspondence subsets but might

also enlarge their dependency; i.e. increase the number of disconnected violations.

Hypergraph Reformulation. Problem 1 can be transformed directly into the the

k-way hypergraph partitioning problem [GJ90]. Based on this reformulation, we are

able to show the NP-hardness of our problem, since this is a one-to-one transformation.

Moreover, it allows us to apply heuristic-based algorithms, which have been proposed by

a large body of work in the literature. Formally, we represent a set of correspondences

C and a set of violations V in terms of a hypergraph H = (N,E). Each node n ∈ N
represents for a correspondence c ∈ C and associated with a weight equals to the number

of violations of c: w(n) = |{v ∈ V | c ∈ v}|. Each hyperedge e ∈ E is a subset of nodes

which share at least one violation. Formally, E = {e ⊆ N |∃v ∈ V,∀cj ∈ ei, cj ∈ v}.
Now given a hypergraph H(N,E) which is transformed from (V,C), the dependence

minimization on (R,C) is equivalent to the k-way hypergraph partitioning on H(N,E).

In that, the goal is to partition the set N into k disjoint subsets, N1, N2, ..., Nk such that

• The total weight of nodes in each subset Ni is bounded by:

(1− δ)×N ≤ |Ni| ≤ (1 + δ)×N

where |Ni| =
∑

nj∈Ni w(nj) is the total weight of nodes in Ni and N =
∑k
i=1 |Ni|
k .

• The sum of external degrees
∑ |E(Ni)| of a partition is minimized, where the

external degree |E(Ni)| of a subset Ni is defined as the number of hyperedges that

are incident but not fully inside this partition.

Example 6. In Figure 3.4, we have a schema matching network with five correspon-

dences: C = {c1, c2, . . . , c5}. If we only consider one-to-one constraint and cycle con-

straint (i.e. Γ = {γ1−1, γ�}), we have four constraint violations V = {v1, v2, v3, v4}. In

that, v1 = {c2, c4}, v2 = {c3, c5}, v3 = {c1, c3, c4}, v4 = {c1, c2, c5}. We can construct

a violation hypergraph with 4 nodes and 5 hyperedges. With the number of partitions

k = 3 and the balance tolerance δ = 0.2 , the optimal partitioning contains three par-

titions {v1, v2}, {v3} and {v4} with minimal total number of interconnected violations

between partitions |{c1, c2, c3, c4, c5}| = 5.

Apply K-way Partitioning Methods. K-way partitioning for hypergraph is at least

a NP-hard problem [GJ90]. Many approaches have been proposed to solve this problem,

which can be categorized into following schemes:

51

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

• Recursive bisection paradigm: reduces k-way partitioning problem into performing

a sequence of bisections, but at least NP-hard [GJ90]. Many heuristics algorithms

have been developed, as surveyed in [AK95].

• Multi-level paradigm: In this class of hypergraph bisections algorithm [KAKS99],

an iterative refinement process is employed by constructing a sequence of succes-

sively smaller (coarser) hypergraphs. The substantially successful tool for this

scheme is hMETIS [KAKS99].

• Direct-computing paradigm: In [ST97], the authors showed that a method that

compute k-way partitions directly produced much better than recursive method

(computing k-way partitions successively via recursive bisections) in terms of op-

timizing objectives such as sum of external degrees, scaled cost and absorption.

There are many research works on this direction, most recent is K-PM/LR algo-

rithm [CL98].

In our system, we use hMETIS [KAKS99] to compute k-way partition. hMETIS uses

novel approaches to successively reduce the size of the hypergraph as well as to refine

the quality of partitions. Comparing to other similar algorithms, hMETIS can provide

very high quality partitions of hypergraphs with thousands of nodes in an extremely fast

computing time.

3.5.3 Decomposition by Schema Cover

We now consider another scalability dimension of schema matching networks – the

schema size (i.e. the number of attributes in a schema). Matching large schemas have

been studied in the literature [DR07], in which they first divide a large schema into small

parts and then perform the matching between these parts. In [SSC10a], we studied an-

other approach, namely schema cover, which defines correspondences between parts of

the schema and information building blocks, referred to as concepts. The main advantage

of schema cover is that schemas are not only divided into small parts but also matched

against well-defined concepts, faciliating the interoperability of large-scale matching net-

works. Schema cover was first introduced by [SSC10c] as a solution for schema matching.

In the last decade, new applications were introduced, to which schema cover can bring

benefit [LYHY02, SMM+09a]. Continuing the running example in Figure 3.1, we depict

an example of schema cover for network decomposition in Figure 3.5. In that, there is a

repository of two concepts Description (cp1) and Evaluation (cp2). The attributes of the

three schemas are matched to corresponding attributes of those concepts (left-hand side

of the figure). Based on this schema cover, the original matching network is decomposed

into two partitions (right-hand side of the figure).

The notion of concepts, representative of entities in the domain of discourse [4] (e.g.

a vendor concept in an eCommerce domain), originates from the idea of reuse and collab-

oration in the world of connected businesses. Concepts establish a form of a conceptual

52

3.5 Network Partitioning

(Left) Schema cover (Right) Two resulting partitions

Figure 3.5: Network decomposition by schema cover

middleware, providing a shared set of abstractions that faciliates data integration, espe-

cially schema matching. Informally, a concept is a collection of attributes that frequently

appear together. Each concept has a specific meaning and can be used to build schemas

by combining several of them. For instance, “street”, “city” and “zip code” often go

together and all of them describe a specific meaning “address”. This is a promising

approach since a concept is more meaningful than separate attributes.

Schema cover matches parts of schemas (called subschemas) with concepts, using

schema matching techniques (see chapter 2) and then adds cover-level constraints. Let

SBs = {sb1, . . . , sbm} be a set of subschemas of s, where a subschema contains a subset

of the attributes of s (i.e. sbi ⊆ s). Let CP = {cp1, . . . , cp} be a set of concepts,

where a concept is a schema by itself. A cover σ(s, CP) between a schema and a

set of concepts is a set of pairs, where each pair in the set is a matching between a

subschema and a concept. For example in Figure 3.5, {({s1.title, s1.releaseDate}, cp1),

({s1.review, s1.userComment, s1.overallScore}, cp2)} is a schema cover between the schema

s1 and the concept repository.

In our work, we study two cover-level constraints: (i) ambiguity and (ii) completeness.

The former measures the part of a schema that can be covered by a set of concepts and

the latter examines the amount of overlap between concepts in a cover. Ambiguity and

completeness constraints, to be formally defined as follows, are embedded as (either hard

or soft) constraints in an optimization cover problem.

• Ambiguity: represents the number of times an attribute is matched to attributes

in several concepts. Ambiguity was first introduced in [SSC10c] as a phenomenon

where several concepts may give a different semantic interpretation to an attribute

in a schema. In our setting, we define the ambiguity of a cover to be the sum of

duplicate apperancees of an attribute in a cover:

Aσ(s) =
∑
a∈s

(|(sb, cp) ∈ σ : a ∈ sb| − 1) (3.4)

53

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

• Completeness: represents the part of a schema that is “covered” by any concept.

In other words, we would like to check to what extent schema attributes are present

in a cover:

Cσ(s) =

∑
a∈s min(1, |(sb, cp) ∈ σ : a ∈ sb|)

|s| (3.5)

Problem 2. Minimization Cover. Let s be a schema and let CP = {cp1, . . . , cpp} be

a set of concepts. The minimization cover problem is finding a schema cover σ(s, CP)

such that Aσ(s) is minimal and Cσ(s) is maximal.

In [SSC10a], we presented an Integer Linear Programming formulation to the min-

imization cover problem. ILP problems are known to be NP-complete [Kar72b], and

therefore no polynomial time algorithm exists (unless P=NP). However, contemporary

efficient solvers solve many instances of ILP within a reasonable time frame. In [SSC10a],

we presented an extensive empirical evaluation using MOSEK solver [Mos10], showing

its ability to solve the minimization cover problem efficiently, even for large concept

repositories.

In the end, we decompose the schema matching network into partitions based

on the covers between each schema and the concept repository. Formally, assume

we have n schemas. Then, whe output of the minimization cover problem re-

turned by the ILP solver is a set of schema covers {{(sb1,1, cp1), . . . , (sb1,n, cp1)},
. . ., {(sbp,1, cpp), . . . , (sbp,n, cpp)}}. The partitions are obtained by grouping the sub-

schemas matching to the same concepts; i.e. we have p partitions {sb1,1, . . . , sb1,n}, . . .,
{sbp,1, . . . , sbp,n}. For remaining attributes that are not covered by any concepts, we put

them into another separate partition. The matchings between each pair of subschemas

are constructed from the matchings between subschemas and concepts in the covers. The

illustration at right-hand side of Figure 3.5 gives an example of network decomposition

by schema cover.

3.6 Evaluation Methodology

In this section, we describe and discuss the overall evaluation methodology of the thesis,

including datasets, tools, and metrics. All experiment settings of subsequent chapters

will refer to this section. Moreover for brevity sake, we do not include experiments of

the proposed models and techniques in this chapter. Interested readers are referred to

our original publications.

Datasets. We relied on four real-world datasets spanning various application domains,

from Web forms to business schemas as observed in data marketplaces.

(1) Business Partner (BP): The dataset contains 3 schemas originated from SAP that

model business partners in SAP ERP, SAP MDM and SAP CRM systems. Each

schema has 80 attributes and 3 levels of hierarchy.

54

3.6 Evaluation Methodology

(2) PurchaseOrder (PO): We collected, extracted and normalized purchase order e-

business documents from various resources, including COMA evaluations [DR02a],

openTRANS2, xCBL3, RosettaNet4, SAP-PO5, CRF6.

(3) University Application Form (UAF): We collected and extracted XML schemas rep-

resenting the web interface of American universities’ application form. Although

we visited around 50 university websites, we were only able to obtain 15 schemas

since most of them use the same platforms, such as CommonApp7, UniversalApp8,

Embark9, CollegeNet10.

(4) WebForm: The schemas for this dataset have been automatically extracted from

Web forms using OntoBuilder [RG06]. They cover seven different domains (e.g.,

betting and book shops). There are 60,762 possible schema pairs, out of which an

exact match was defined manually for 149 pairs. Web forms are small, with 10-30

attributes each and an overwhelming majority of one-to-one correspondences.

(5) Thalia: The dataset of the Thalia project contains schemas describing university

courses. Since this dataset has no exact match associated with it, we use it mainly

in the first experiment concerning constraint violations.

Table 3.1: Statistics for datasets

Dataset #Schemas #Attributes per schema (Min/Max)

BP 3 80/106
PO 10 35/408
UAF 15 65/228
WebForm 89 10/120
Thalia 44 3/18

These datasets are publicly available 11 and descriptive statistics for the schemas are

given in Table 3.1.

Tools. To generate candidate correspondences, we used two well-known schema match-

ers, COMA++ [DR02b, ADMR05b] and AMC [PER11]. All experiments ran on an

Intel Core i7 system (2.8GHz, 4GB RAM). ASP reasoning tasks are conducted with

the DLV system12, release 2010-10-14, a state-of-the-art ASP interpreter. For network

partitioning, we worked with a state-of-the-art Hypergraph Partitioning tool, namely

the hMETIS system 13, release 2007− 05− 25. We used the MOSEK system [20] for the

network partitioning by schema cover.

Metrics. We rely on the following evaluation measures.

2openTRANS E-business document standards http://www.opentrans.de/
3XML Common Business Library
4The RosettaNet Standard, http://www.rosettanet.org/
5SAP Purchase Order Standard, http://www.sap.com
6Centro Ricerche Fiat http://www.crf.it
7Common Application https://www.commonapp.org
8Universal College Application https://www.universalcollegeapp.com/
9Embark, http://www.embark.com

10CollegeNet http://www.collegenet.com/elect/app/app
11
http://lsir.epfl.ch/schema_matching

12
http://www.dlvsystem.com

13http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

55

http://www.opentrans.de/
http://www.rosettanet.org/
http://www.sap.com
http://www.crf.it
https://www.commonapp.org
https://www.universalcollegeapp.com/
http://www.embark.com
http://www.collegenet.com/elect/app/app
http://lsir.epfl.ch/schema_matching
http://www.dlvsystem.com
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview

3. Schema Matching Network - Modeling, Quantifying, and Partitioning

• Precision & Recall: For defining precision and recall, we rely on an exact matching

G, containing correct correspondences (validated before-hand). In our context,

the precision and recall are defined for a set of correspondences V . Formally,

Prec(V)=(|V ∩G|)/|V | and Rec(V)=(|V ∩G|)/|G|, where G is the exact matching

(i.e. ground truth) given by the dataset provider.

3.7 Summary

In this chapter, for the first time, we defined and proposed the notion of schema matching

network and its elements. The model formally and declaratively represents the network

and generic network-level constraints. We deployed this model as an answer set program.

Using the reasoning capabilities of ASP and simple yet generic constraints, we prepared

the means to reduce the necessary user efforts in subsequent chapters. Moreover, we

proposed a probabilistic model that allows the capture of the uncertainty in the matching

network in a systematic way, independent of the used schema matching tools and data

integration tasks that shall be solved. Finally, we develop network modularity techniques

to decompose a schema matching network into small regions. The empirical results in

our original publications showed the effectiveness of our model and techniques in real

datasets.

56

Chapter 4
Pay-as-you-go Reconciliation

4.1 Introduction

In this chapter, we study the reconciliation within the most simple setting, in which

a single expert user (i.e. his input is absolutely correct) validates the correspondences

generated by automatic matchers. Specifically, we go beyond the common practice of hu-

man reconciliation in improving and validating matchings for a pair of schemas. Instead,

we study the reconciliation for a schema matching network, in which the participating

expert should respect the network-level integrity constraints to guarantee the overall

matching quality. The presence of such integrity constraints creates a number of depen-

dencies between correspondences, which may be hard to oversee especially in large-scale

networks. Despite of this challenge, dependencies between correspondences open an op-

portunity to guide the expert’s work by defining the order in which the expert gives his

input (e.g. in which order to assert whether a correspondence is correct).

The approach taken in this chapter strives to reduce the user effort needed for rec-

onciliation. We achieve this objective by relying on two strategies: (i) ordering – defines

the order of input sequences in which user is introduced with carefully selected corre-

spondences, and (ii) reasoning – for certain correspondences, we never elicit any feedback

since the application of reasoning may allow us to conclude on the assertions for these

correspondences as consequences of the remaining user input. Using the reasoning ca-

pabilities of Answer Set Programming (ASP) and simple yet generic constraints, as well

as a heuristic ordering of the issues a human has to resolve, we will be able to reduce

the necessary user interactions.

Guiding and minimizing user effort is essential for effective reconciliation. Yet, our

ultimate goal is to instantiate a selective matching – a high-quality set of correspon-

dences that satisfies all the integrity constraints – even if not all necessary input is

collected. This is because we can expect that in real-world settings, an expert has a

limited effort-budget and applications require fast setup time, so that waiting for full

reconciliation is not a feasible option. Indeed, if the schema matching network contains

a lot of problematic correspondences, the reconciliation effort can be considerable. Of-

ten however one does not need the entire network: for certain applications a subset of

57

4. Pay-as-you-go Reconciliation

consistent correspondences suffices. To achieve this goal, we develop a pay-as-you-go ap-

proach to reconciliation that allows for retrieving a single trusted set of correspondences

that satisfies the integrity constraints and maximizes the benefits of expert input at any

time.

Our contributions and the outline of this paper can be summarized as follows. Section

4.2 provides our model and approach for pay-as-you-go reconciliation. Section 4.3 shows

how to minimize user effort by ordering and reasoning. Section 4.4 presents the problem

of instantiating a selecting matching and a heuristic solution to this problem. Section

4.5 demonstrates experimental results, before Section 4.6 concludes the chapter.

4.2 Model and Approach

In this section, we introduce a model and propose our approach for the pay-as-you-go

reconciliation process. First, we give a motivating example of our approach. Then, we

describe a framework that realizes our approach for pay-as-you-go reconciliation. Finally,

we present a generic model for pay-as-you-go reconciliation.

4.2.1 Motivating Example

Now we give an example to illustrate that different validation sequences might lead to

different necessary user efforts and why we need to instantiate a selective matching.

Continuing the running example in Figure 3.2, Figure 4.1 illustrates user validation for

the presented schema matching network, in which the correspondences are approved

(as true) and disapproved (as false) by a single user. Only 1-1 constraint and cycle

constraint are considered. In this specific case, we assume that c1, c2, c3 are true (solid

lines) and c4, c5 are false (dash lines). We also assume that user can only validate two

correspondences c3 and c5, now consider two possible validation sequences:

s1

s2

s3

c1 c3

c5
c2

c4

s2

s3

c2

c4

s1

s2

s3

c1 c3

c2

s1

c1

c4

c3

Figure 4.1: Effects of guiding user validation

(i) disapprove c5 → approve c3. There is no effort reduction since we cannot conclude

the correctness of c3 after the disapproval on c5.

(ii) approve c3. After approving c3, we can conclude that c5 must be false due to 1-

1 constraint, assuming that the constraints and user input is correct. Hence, in

addition to validation of correspondence c3, falsification of correspondence c5 is

also a consequence of the user input on c3.

58

4.2 Model and Approach

As a result, the second validation order has less number of steps than the first one. In

other words, the user effort (i.e. number of necessary validation steps) depends on the

order of which correspondences are validated first. This, in turn, motivates us to design

ordering and reasoning techniques for minimizing user effort for a given reconciliation

goal (e.g. all the integrity constraints are satisfied).

Moreover, we can observe that after the sequence (ii), four correspondences c1, c2, c3, c4

remains. This ‘matching’ cannot be used since it still has constraint violations. To make

the system ready for operation, we have to select a single trusted set of correspondences

without any violation, coined the term ‘selective matching’. A possible selective match-

ing of this example is {c1, c2, c3}.

4.2.2 Framework

For an overview of our approach, we describe our framework before giving a precise model

of the collaborative reconciliation process in the next subsection. Figure 5.3 presents a

simplified architecture of our framework. The system involves a human expert in the

reconciliation, who works as long as the selective matching does not reach a quality he

is satisfied with. We start from a set of matching candidates, generated by automatic

schema matchers. The matching candidates are used to construct the schema matching

network. Upon any changes of the network, Instantiation automatically instantiates a

selective matching as the output of the system. For the purpose of guiding user and

minimizing his validation effort, we build the Effort Minimization component consisting

of an Ordering engine and a Reasoning engine. While the ordering engine is responsible

for generating and ranking all correspondence candidates shown to user, the reasoning

engine derives the validation consequences from user input. The interaction between the

framework and the user is repeated incrementally as the system runs. The more user

assertions, the higher quality of the selective matching.

Pay-as-you-go Reconciliation

User

Schemas

Effort Minimization

Ordering

Instantiation

Matchers

Selective matching

Reasoning

Schema Matching Network

Figure 4.2: Simplified architecture of the framework

To realize the pay-as-you-go methods for reconciliation, we have to cope with the

following problems: (1) How to choose a good order of correspondences? (2) How to

derive the validation consequences from user input? (3) How to obtain a possibly-

complete set of correspondences during the reconciliation process, based on potentially

incomplete input. These questions are addressed in the detailed functionality of three

main components as follows.

59

4. Pay-as-you-go Reconciliation

Ordering. This engine takes the role of guiding the expert work to validate the schema

matching network. It generates and ranks correspondence candidates shown to user. The

correspondences are prioritized for user assertion in an incremental order that brings the

most “benefit” to the network. As a result, the user effort is minimized. The details

of how to define the network benefit and design the ordering criteria are described in

Section 4.3.

Reasoning. Base on the ASP formalization of user input, we use reasoning techniques

to conclude on the consequences of user input. This avoids eliciting feedback for any

correspondence for which there is an assertion in the consequences. In contrast to the

baseline (without reasoning), the assertions are no longer limited to the correspondences

for which user input has been elicited. Thus, when updating the active set as part of one

step in the reconciliation process, we also consider correspondences for which assertions

have been derived by reasoning. As a result, the user effort is minimized. The details of

this component is described in Section 4.3.

Instantiation. Instead of using heuristics or arbitrary rules, the Instantiation compo-

nent systematizes the use of the network uncertainty in 3.4 to make sensible decisions

about which correspondences are kept in the selective matching. This component instan-

tiates the selective matching by harnessing the computed correspondences probabilities,

via the maximal likelihood principle. Technically, from the original set of correspon-

dences (generated by matchers), we eliminate a minimal subset of correspondences with

low probability such that the remaining ones satisfy all integrity constraints. The in-

stantiation problem is described in detail in Section 4.4.

4.2.3 Reconciliation Process

The set of candidate correspondences C aims at serving as a starting point of the match-

ing process and thus typically violates the integrity constraints Γ. In this section, we

model the reconciliation process under a set of predefined constraints Γ as an iterative

process, where in each step a user asserts the correctness of a single correspondence.

Starting with the result of a matcher, a set of correspondences, called active set, is con-

tinuously updated by: (1) selecting an attribute correspondence c ∈ C, (2) eliciting user

input (approval or disapproval) on the correspondence c, (3) computing the consequences

of the feedback and updating the active set, and (4) instantiating a selective matching

from the active set. Reconciliation halts once the goal of reconciliation (e.g. eliminating

all constraint violations) is reached. It is worth noting that in general, a user may add

missing correspondences to C during the process. For simplicity, we assume here that

all relevant candidate correspondences are already included in C.

Each user interaction step is characterized by a specific index i. Then, Di denotes

the active set, i.e., the set of correspondences considered to be true in step i. Further, let

u+
c (u−c) denote the user input where u+

c denotes approval and u−c denotes disapproval

of a given correspondence c ∈ C and UC be the set of all possible user inputs for the set

of correspondences C, i.e. UC = {u+
c , u

−
c | c ∈ C}. Further, ui ∈ UC denotes user input

60

4.2 Model and Approach

at step i and Ui is the set of user input assertions until step i, i.e. Ui = {uj | 0 ≤ j ≤ i}.
The consequences of such user input assertions Ui are modeled as a set Cons(Ui) ⊆ UC
of positive or negative assertions for correspondences. They represent all assertions that

can be concluded from the user input assertions.

Algorithm 4.1: Generic reconciliation procedure
input : a set of candidate correspondences C,

a set of constraints Γ,
a reconciliation goal ∆.

output: a selective matching M

// Initialization

1 D0 ← C; U0 ← ∅; Cons(U0)← ∅; i← 0;
2 while not ∆ do

// In each user interaction step

// (1) Select a correspondence

3 c← select(C \ {c | u+
c ∈ Cons(Ui) ∨ u−c ∈ Cons(Ui)});

// (2) Elicit user input

4 Elicit user input ui ∈ {u+
c , u

−
c } on c;

// (3) Integrate the feedback

5 Ui+1 ← Ui ∪ {ui};
6 Cons(Ui+1)← conclude(Ui);

7 Di+1 ← Di ∪ {c | u+
c ∈ Cons(Ui+1)} \ {c | u−c ∈ Cons(Ui+1)};

8 i← i+ 1;
// (4) Instantiate a selective matching (which can be used outside at any time)

9 M = instantiate(C) ;

10 return M

A generic reconciliation procedure is illustrated in Algorithm 4.1. It takes a set

of candidate correspondences C, a set of constraints Γ, and a reconciliation goal ∆

as input and returns a selective matching M . Initially (line 1), the active set D0 is

given as the set of candidate correspondences C and the sets of user input U0 and

consequences Cons(U0) are empty. Then, we proceed as follows: First, there is a function

select , which selects a correspondence from the set of candidate correspondences (line

3). Here, all correspondences for which we already have information as the consequence

of earlier feedback (represented by Cons(Ui)) are neglected. Second, we elicit user input

for this correspondence (line 4). Then, we integrate the feedback by updating the set of

user inputs Ui+1 (line 5), computing the consequences Cons(Ui+1) of these inputs with

function conclude (line 6), and updating the active set Di+1 (line 7). A correspondence

is added to (removed from) the active set, based on a positive (negative) assertion of

the consequence of the feedback. At the end of each iteration, a selective matching M is

instantiated from C (line 9), providing a single trusted set of correspondences available

at any time. The reconciliation process stops once Dr satisfies the halting condition ∆

representing the goal of reconciliation.

Instantiations of Algorithm 4.1 differ in their implementation of the select, conclude,

and instantiate routines. For example, by considering one correspondence at a time,

Algorithm 4.1 emulates a manual reconciliation process followed by an expert. As a

baseline, we consider an expert working without any tool support. This scenario corre-

sponds to Algorithm 4.1 with the following functions for selecting correspondences and

concluding the consequences of feedback:

61

4. Pay-as-you-go Reconciliation

• Selection: select(C \Cons(Ui)). A user selects a random correspondence from the

set C \ Cons(Ui).

• Consequence: conclude(Ui). The consequences of user input are given by the input

assertions Ui, that is conclude(Ui) = Ui.

We are going to formulate two problems. The first problem is about effort mini-

mization (Section 4.3), in which we implement the two routines select and conclude to

minimize user effort for a given reconciliation goal. The second problem is about selec-

tive matching instantiation (Section 4.4), in which we implement the instantiate routine

select a set of ‘best probable’ correspondences up until an arbitrary step of reconciliation

process.

4.3 Minimize User Effort

Now we formulate the problem of minimizing user effort for a given reconciliation goal.

Given the iterative model of reconciliation, we would like to minimize the number of

necessary user interaction steps for a given reconciliation goal. Given a schema match-

ing network (S, GS,Γ, C), a reconciliation goal ∆, and a sequence of correspondence

sets 〈D0, D1, . . . , Dn〉 such that D0 = C (termed a reconciliation sequence), we say that

〈D0, D1, . . . , Dn〉 is valid if Dn satisfies ∆. Let R∆ denote a finite set of valid rec-

onciliation sequences that can be created by instantiations of Algorithm 4.1. Then,

a reconciliation sequence represented by 〈D0, D1, . . . , Dn〉 ∈ R∆ is minimal, if for any

reconciliation sequence 〈D′0, D′1, . . . , D′m〉 ∈ R∆ it holds that n ≤ m. Our objective is

defined in terms of a minimal reconciliation sequence, as follows.

Problem 3. Let (S, GS,Γ, C) be a schema matching network and R∆ a set of valid

reconciliation sequences for a reconciliation goal ∆. The minimal reconciliation problem

is the identification of a minimal sequence 〈D0, D1, . . . , Dn〉 ∈ R∆.

Problem 3 is basically about designing a good instantiation of select and conclude

to minimize the number of iterations to reach ∆. The approach taken in this paper

strives to reduce the effort needed for reconciliation, thus finding a heuristic solution to

the problem. We achieve this goal by relying on heuristics for the selection of correspon-

dences (select) and applying reasoning for computing the consequences (conclude).

4.3.1 Effort Minimization by Ordering

We now consider minimization of user effort based on the selection strategy that is used

for identifying the correspondence that should be presented to the user. In Section 4.2.3,

we showed that without any tool support, a random correspondence would be chosen.

Depending on the order of steps in the reconciliation process, however, the number of

necessary input steps might vary. Some input sequences may help to reduce the required

user feedback more efficiently. In this section, we focus on a heuristic selection strategy

that exploits a ranking of correspondences for which feedback shall be elicited.

62

4.3 Minimize User Effort

This section approaches the minimization of user effort by providing two heuristics

of the selection function in the reconciliation process. The first heuristic exploits the

constraint violations associated with each correspondence. The second heuristic employs

the concept of information gain, which measured the amount of uncertainty reduction if

the correctness of a certain correspondence is given.

Ordering by Min-violation. Our selection function is based on a min-violation scor-

ing that refers to the number of violations that are caused by a correspondence. The

intuition behind this heuristic is that eliciting feedback on correspondences that violate

a high number of constraints is particular beneficial for reconciliation of a matching

network. Given a set C ′ ⊆ C of candidate correspondences, function minViol assigns

to each correspondence c ∈ C ′ the number of minimal violations (Violation(C ′), cf.,

Section 3.3.2) that involve c:

minViol(c) =
∣∣{C ′′ ∈ Violation(C ′), c ∈ C ′′

}∣∣ .
This scoring function is the basis for the selection of correspondences for eliciting

user feedback. As defined in Algorithm 4.1, selection is applied to the set of candidate

correspondences C once all correspondences for which we already have information as

the consequence of earlier feedback (represented by Cons(Ui)) have been removed. Thus,

selection is applied to C ′ = C \ {c | u+
c ∈ Cons(Ui) ∨ u−c ∈ Cons(Ui)} and defined as

follows:

selectminV iol(C
′) = c

s.t. c ∈ {x ∈ C ′ | minViol(x) = maxy∈C′ minViol(y)}.

In case there are multiple correspondences in C ′ that qualify to be selected, we randomly

choose one.

Ordering by Information-gain. Following decision theory [RNC+95], the key con-

cept of our second heuristic is to order candidates according to the potential benefit

of knowing their true value. Quantifying this potential benefit varies from application

to application. In our application, the benefit is measured as the information gain,

which is the information obtained from an observation that the correctness of a certain

correspondence is given.

Technically, we employ the probabilistic model in Section 3.4. We measure the

information gain of a correspondence c as the expected amount of uncertainty reduction.

This reduction is computed as the difference between network uncertainty before and

after user asserts c. Since the assertion result (approval or disapproval) is not known

before-hand, the “after” part needs to be calculated as the expected network uncertainty

conditioned on c. Formally, we define a conditional network uncertainty for a particular

correspondence as follows:

HF (C | c) = pc ·HF+c(C) + (1− pc) ·HF−c(C) (4.1)

63

4. Pay-as-you-go Reconciliation

where F+c = 〈F+ ∪ {c}, F−〉 is user input if c is approved and F−c = 〈F+, F− ∪ {c}〉
is user input if c is disapproved. Then, the information gain of a correspondence is

computed by:

IG(c) = HF (C)−HF (C | c) (4.2)

This ordering function is the basis for the selection of correspondences in eliciting user

feedback. As defined in Algorithm 4.1, selection is applied to the set of candidate

correspondences once all correspondences for which user already asserted have been re-

moved. Thus, the selection is applied to C ′ = C \ (F+ ∪ F−) and defined as follows:

c∗ = argmaxc∈C′ IG(c). If the highest information gain is observed for multiple corre-

spondences, one is randomly chosen.

4.3.2 Effort Minimization by Reasoning

In the baseline reconciliation process, the consequences of the user input Ui up to step

i of the reconciliation process are directly given by the respective input assertions, i.e.,

Cons(Ui) = Ui. This means that updating the active set of correspondences Di based

on Cons(Ui) considers only correspondences for which user input has been elicited. In

the presence of matching constraints, however, we can provide more efficient ways to

update the active set, as demonstrated by the following example.

Example 7 (Reasoning with user input). Consider two schemas, s1 and s2, and three

of their attributes, encoded in ASP as attr(x, s1), attr(y, s2), and attr(z, s2). Assume

that a matcher generated candidate correspondences that are encoded as C = {cor(x, y),

cor(x, z)}. Further, assume that Γ consists of the one-to-one constraint. By approving

correspondence (x, y), we can conclude that candidate correspondence (x, z) must be false

and should not be included in any of the answer sets. Hence, in addition to validation of

correspondence (x, y), falsification of correspondence (x, z) is also a consequence of the

user input on (x, y).

To leverage reasoning for effort minimization, we first explain how to represent the

user input assertions in ASP, then turn to the actual reasoning about them, and finally

discuss how to detect inconsistencies in user input for avoiding wasted efforts.

Representing user input assertions. We represent user input assertions with an ASP

Πp(i). The construction of this program is close to the one presented in the previous

section. In fact, we largely rely on the same subprograms. We only change the way

correspondences and constraints are connected, i.e., Πcc is replaced by Π′cc , and add a

program to capture the user assertions, ΠU (i). Then, the program is constructed as

Πp(i) = ΠS ∪ΠC ∪ΠD(i) ∪Πbasic ∪ΠΓ ∪Π′cc ∪ΠU (i).

• Connecting correspondences and constraints (Π′cc). To reason about the user input,

we use a slightly different rule to compute the set of correspondences satisfying

the constraints of the matching network. In contrast to the previous rule (cf.,

64

4.3 Minimize User Effort

Section 3.3), this rule considers all candidate correspondences (cor(X,Y)) and not

only those from the active set (corD(X,Y)):

match(X,Y) ∨ noMatch(X,Y) ← cor(X,Y).

• User input (ΠU (i)). For representing the user input, we add distinguished atoms

for the approval or disapproval of a correspondence to ΠU (i). We have chosen

not to represent the user assertion of approving (disapproving) a correspondence

cor(a, b) directly as match(a, b) (noMatch(a, b)), to be able to detect problems

with the user input, w.r.t. the integrity constraints. Further, for the case of

disapproval, ASP enables the use of ‘strong negation’ (in ASP syntax: ¬), which

directly corresponds to our intention: if a user disapproves a correspondence, then

it should not appear in any of the answer sets of the joint program Πp(i). We

define the atoms for the user input and the rules that connect the approval or

disapproval of correspondences with their correctness as follows (program ΠU ′(i)

with U ′(i) ⊆ U(i) is defined analogously):

ΠU (i) = {incl cand(a, b) | c = (a, b) ∈ C, u+
c ∈ Ui} ∪

{¬incl cand(a, b) | c = (a, b) ∈ C, u−c ∈ Ui} ∪
{match(X,Y)← incl cand(X,Y)} ∪
{noMatch(X,Y)← ¬incl cand(X,Y)}

Reasoning mechanism. Based on the ASP formalization of user input, we use rea-

soning techniques to conclude on the consequences of user input. Let Πp(i) be the ASP at

some stage of the reconciliation process. We define ΠPU = {incl cand(a, b),¬incl cand(a, b) |
cor(a, b) ∈ ΠC} as the ASP representation of potential user inputs, i.e. the set of ground

atoms that correspond to an approval or disapproval of a correspondence from C. Then,

we capture the consequences of user input ΠU (i) in ASP by the set ΠCons(Ui) ⊆ ΠPU ,

such that

• the consequences cover at least the user input, ΠU (i) ⊆ ΠCons(Ui), and

• the reconciliation process cautiously entails consequences, Πp(i) |=c ΠCons(Ui), and

• the consequences are maximal, for each t ∈ ΠPU \ ΠCons(Ui) it holds that Πp 6|=c

ΠCons(Ui) ∪ {t}.
Based on the consequences captured in ASP representation, we define the function

for concluding on consequences as follows:

concludereasoning(Ui) =
{u+

c | c = (a, b) ∈ C, incl cand(a, b) ∈ ΠCons(Ui)} ∪
{u−c | c = (a, b) ∈ C,¬incl cand(a, b) ∈ ΠCons(Ui)}.

This instantiation of the conclude routine avoids eliciting feedback for any correspon-

dence for which there is an assertion (in the ASP representation) in the set ΠCons(Ui) \
ΠU (i). We conclude on those assertions automatically. In contrast to the aforementioned

conclude function (in section 4.2.3) used as a baseline, therefore, the assertions are no

longer limited to the correspondences for which user input has been elicited. Thus, when

65

4. Pay-as-you-go Reconciliation

updating the active set as part of one step in the reconciliation process, we also consider

correspondences for which assertions have been derived by reasoning.

Detecting problems in user input The ASP-based reasoning can also assist in de-

tecting problems in the user input. Assume that a user provides input ui, such that

Πp(i) 6|=b ΠU (i + 1). Then, the new input ui together is inconsistent with the previous

input. In this case, we determine the root cause of the inconsistency as a set of wit-

ness correspondences W (i) ⊆ Ui. Intuitively, W (i) represents a set of correspondences

that, together with ui, caused the inconsistency. We characterize such a set of witness

correspondences by Πp(i) 6|=b ΠU ′(i) with U ′(i) = W (i) ∪ {ui} in ASP representation.

To provide a meaningful feedback to the user, we require that W (i) be minimal. Then,

presenting W (i) to the user helps in resolving the respective problem by highlighting

which inputs jointly caused the inconsistency.

Enhancing Scalability. In general, invoking ASP is an expensive computational task.

It is inefficient to send the whole program Πp(i) to ASP at each reconciliation step i. In

fact, reconciliation is an incremental process where only a few changes are made once

at a time. These changes affect a small region of the network (see Figure 4.3). There-

fore, rather than perform reasoning over the whole network, we maintain the preceding

reasoning result and perform reasoning only over this small region. In the following,

we introduce how to determine the small region affected by a new feedback as well as

construct the corresponding ASP program for this region.

∖

Δ ,

Figure 4.3: C is a set of correspondences, Cons(U) is the consequences of user input, c is the corre-
spondence on which new feedback is given, ∆U,c is the set of correspondences needed for reasoning.

First of all, computing the set of correspondences needed for reasoning depends on

the user-input consequences Cons(U) and the correspondence c on which a new feedback

is given. We denote ∆U,c as the set of correspondences affected by c and U in reasoning

(|∆U,c| � C). With the integrity constraints and reasoning technique mentioned above,

a correspondence ĉ ∈ ∆U,c must satisfy two conditions: (i) exists at least one simple

(no repeated) path c, c1, c2, ..., ĉ connecting c and ĉ, (ii) only one correspondence on this

path does not belong to Cons(U). After obtaining ∆U,c, we compute ∆Πp(i) that is sent

to ASP in order to compute new consequences. Formally, we have:

∆Πp(i) = ∆ΠC ∪∆ΠD(i) ∪Πbasic ∪ΠΓ ∪Π′cc ∪∆ΠU (i) (4.3)

where

• ∆ΠC = {attr(a, si) | si ∈ S, a ∈ si,∃b : (a, b) ∈ ∆U,c} ∪ {cor(a, b) | (a, b) ∈ ∆U,c}

66

4.4 Instantiate Selective Matching

• ∆ΠD(i) = {corD(a, b). | (a, b) ∈ Di ∩∆U,c}
• ∆ΠU (i) = {incl cand(a, b) | c = (a, b) ∈ ∆U,c, u

+
c ∈ Ui} ∪ {¬incl cand(a, b) | c =

(a, b) ∈ ∆U,c, u
−
c ∈ Ui}

4.4 Instantiate Selective Matching

A distinguished feature of our approach to pay-as-you-go reconciliation is the fact that a

matching that approximates the selective matching can be instantiated at all times, even

if not all the user input that would be needed for full reconciliation has been collected.

Such instantiation is particularly important for applications that value a fast setup

time above waiting for full validation [FHM05] and require a deterministic matching

that enables querying and aggregating across multiple schemas. In this section, we

first formulate the instantiation of an approximation of the selective matching as an

optimization problem. Again, this problem turns out to be computationally costly.

Therefore, we then propose a heuristic-based algorithm to construct a near optimal

solution.

4.4.1 Problem Statement

Given the set of candidate correspondences of a schema matching network, instantiation

refers to the selection of one of the possible matching instances of the network (the notion

of matching instance is given in definition 3.2). Ideally, this selective matching is the

ground truth. In most cases, however, this matching will only approximate the ground

truth due to the uncertainty of the network (automatically generated correspondences

are inherently uncertain, if not otherwise validated by user). To model the network

uncertainty, we employ the probabilistic model as described in Section 3.4; i.e. we reuse

the notation of a probabilistic matching network 〈N,P 〉, where the schema matching

network N=〈S,GS ,Γ, C〉 is paired with a set of probablities P that characterize the

uncertainty of its correspondences.

To formulate the instantiation problem, we measure the quality of a matching with

respect to the current state of the probabilistic matching network along two dimensions:

its repair distance and its likelihood. Informally, the former measures the difference

between the correspondences of a matching instance and the set of candidate corre-

spondences; the latter indicates the correctness of a set of correspondences given the

probabilities of the network. We capture these quality dimensions by two functions

defined for a probabilistic matching network 〈N,P 〉 as follows:

• The repair distance is a function ∆ : 2C × 2C → N capturing the size of the

symmetric difference between two correspondence sets, i.e., ∆(A,B) 7→ |A\B|+|B\
A| where A,B ⊆ C. In our context, we are interested in the repair distance between

a matching instance I and the original set of correspondences C. Then, ∆(I, C)

measures the amount of information loss of deriving I from C by eliminating some

correspondences to guarantee that the integrity constraints of the network are

satisfied.

67

4. Pay-as-you-go Reconciliation

• The likelihood is a function u : 2C → [0, 1] capturing the product of probabilities

of a set of correspondences, i.e., u(A) =
∏
c∈A pc where A ⊆ C. In our context,

considering the likelihood should guide the instantiation towards the selection of

correspondences with high probabilities.

Using these measures, we model instantiation of a (probabilistic) schema matching

network as an optimization problem: we are interested in a matching instance with

minimal repair distance w.r.t. the candidate correspondences and maximal likelihood.

In the context of schema matching, we consider the repair distance to be more important

than the likelihood, since information about correspondences should be preserved as

much as possible. Formally, our problem is described as follows.

Problem 4. Instantiation. Let 〈N,P 〉 be a probabilistic matching network with

N = 〈S, GS,Γ, C〉. The instantiation problem is the identification of a matching instance

I that satisfies the two following conditions, in the descending order of priority:

i) Minimal repair distance: not exist a matching instance I ′ such that ∆(I ′, C) <

∆(I, C).

ii) Maximal likelihood: not exist a matching instance I ′ with minimal repair distance

such that u(I ′) > u(I).

Note that the instantiation problem is defined only on the probabilities P assigned to

correspondences since user assertions are already incorporated implicitly in P . Solving

the instantiation problem requires knowledge about the integrity constraints in the net-

work. Unfortunately, even under the simplistic one-to-one constraint and even without

the maximal likelihood condition, the instantiation problem is computationally hard.

Theorem 1. Let 〈N,P 〉 be a probabilistic matching network with N = 〈S, GS,Γ, C〉,
such that Γ defines the one-to-one constraint. Then, given an integer θ, the problem

of deciding whether there exists a matching instance of 〈N,P 〉 with repair distance less

than θ is NP-Complete.

Proof. To prove the NP-completeness of our decision problem, we show that: (i) it is in

NP and (ii) it is NP-hard. Given a matching instance I, one can check in polynomial

time its repair distance (i.e. ∆(I, C)) is less than θ; so (i) is true. By definition, a

matching instance I must not violate the one-to-one constraint; i.e. ∀c ∈ I, @c′ ∈ I such

that c and c′ share exactly one common attribute and their remaining attributes belong

to the same schema. This case can be represented as an undirected graph G = (V,E)

where each vertex v ∈ V is a correspondence and each edge e = (vi, vj) ∈ E represents

a constraint violation between vi and vj . G can be constructed in polynomial time by

iterating over all the correspondences and creating an edge between any two attributes

that match one attribute of a schema to two different attributes of another schema.

Finding a matching instance I with minimal repair distance is equivalent to finding

a maximum independent set (MIS) of G, as no two vertices being adjacent means no

violations and ∆(I, C) = |C| − |I|. Since the MIS problem is NP-complete [Kar72a], (ii)

is true.

68

4.4 Instantiate Selective Matching

Algorithm 4.2: An instantiating heuristic
input : a probabilistic matching network 〈N,P 〉 with N = 〈S, GS,Γ, C〉,

user input F = 〈F+, F−〉,
an upper bound for the number of iterations k

output: a matching instance H

// Step 1: Initilization - Greedy pickup among samples

1 H ← argmaxargmax
I∈Ω(F+,F−)

∆(I,C) u(I);

// Step 2: Optimization - Randomized local search

2 I ← H; i← 0; T ← Queue[k] // a queue with fixed size k
3 while i < k do

// Fitness proportionate selection

4 ĉ← RouletteWheelc({〈c, pc〉 | c ∈ C \ F− \ I});
5 I ← I ∪ {ĉ};
6 T.add(ĉ);

// Repair matching until constraints are satisfied

7 I ← repair(I, ĉ, F+,Γ) ;
// Keep track of the optimal instance

8 if ∆(H,C) > ∆(I, C) then
9 H ← I;

10 if ∆(H,C) = ∆(I, C) and u(H) < u(I) then
11 H ← I;

12 i← i+ 1;

13 return H

In the next subsection, we consider a heuristic-based algorithm to the relaxation

version of our problem, in which the approximate solution is found in polynomial time.

4.4.2 Heuristic-based Algorithm

In light of Theorem 1, we consider heuristic approaches to our problem that find a

matching instance I efficiently, at the expense of non-optimality w.r.t. repair distance

and likelihood. Developing such a heuristic is far from trivial, given the complex and

inter-related dependencies between correspondences that are induced by the integrity

constraints.

The approach proposed is a two-step meta-heuristic algorithm: involving (i) initial-

ization, and (ii) optimization. The former aims at finding a feasible solution; the latter

attempts to optimize this solution. In the initialization step, we greedily pick an initial

matching instance among sampled ones. This is motivated by the fact that the space of

all possible matching instances is intractably large. Hence, we employ the sampled set

of matching instances generated in Section 3.4.2 as a starting point for our algorithm.

However, since the purpose of sampling is to best capture the exact distribution and

because the number of samples is often much smaller than the size of the sample space,

we need the optimization step to improve the quality of the initial matching instance.

To this end, we apply a randomized local search. The core idea is that we keep exploring

the neighbors of recent instances until termination (in our case, an upper bound of iter-

ations), and record the one with the smallest repair distance and the largest likelihood.

The details of our instantiation heuristic are given in Algorithm 4.2. It takes a proba-

bilistic matching network and a pre-defined upper bound for the number of iterations as

input and returns the best matching instance (with smallest repair distance and largest

likelihood) it can find during the search. Technically, we begin by greedily picking up a

matching instance from the sampling set Ω(F+, F−) described in Section 3.4.2 (line 1).

69

4. Pay-as-you-go Reconciliation

Recall that user input F = 〈F+, F−〉 in Section 3.4 is the set of user assertions in Section

4.2.3. Starting with the best sample, the local search is repeated until the termination

condition is satisfied (line 3). At each iteration, we first generate a set of remaining

correspondences and their probabilities. Among these correspondences, we add one into

the current instance I based on Roulette wheel selection [Gol89]. The rational behind

this heuristic is that the chosen correspondence has a high chance of being consistent

with the others. When a certain correspondence is inserted, it might produce some

constraint violations. Thus, the repair() function (defined formally below) is invoked

to eliminate new violations by removing problematic correspondences from I (line 7).

However, a correspondence could be added into I and then removed immediately by the

repair function, leaving I unchanged, so that the algorithm would be trapped in local

optima. For this reason, we employ the Tabu search method [GM86] that uses a fixed-

size “tabu” (forbidden) list of correspondences so that the algorithm does not consider

these correspondences repeatedly (line 6). Finally, a matching instance H is returned

by evaluating the repair distance and likelihood of matching instances explored so far.

Proposition 1. Algorithm 4.2 terminates and is correct.

Proof. Termination follows from the fact that the termination condition of the routine

between line 3 and line 11 can be defined as a constant number k of iterations.

Correctness follows directly from the following points. (1) A new correspondence is not

chosen from disapproved correspondences (line 4). (2) When a new correspondence ĉ

added to I (line 5) causes constraint violations, I is repaired immediately (line 7). (3) H

always maintains the instance with smallest repair distance (line 8) and largest likelihood

(line 10). Therefore, the algorithm’s output is a near optimal matching instance that

satisfies all the integrity constraints and respects the user assertions.

Finally, we observe that the presented heuristic indeed allows for efficient instantia-

tion. In fact, the algorithm requires quadratic time in the number of candidate corre-

spondences, is tractable for real datasets.

Proposition 2. The run time complexity of Algorithm 4.2 is O(k × |C|2).

Proof. The most expensive operation in Algorithm 4.2 is the function repair(), which

takes at most O(|I|2), as outlined below. Since I ⊆ C and there are at most k iterations

of the local search, we have O(k × |C|2).

Repair Heuristic by Greedy Removal. Algorithm 4.3 shows the details of our repair

heuristic, which implements the repair() function in algorithms 4.2 and 3.1. This repair

algorithm is used, for a particular instance, to resolve all violations caused by the new

correspondence added into that instance. This algorithm’s key idea is to greedily remove

the correspondences involving new violations, one-by-one, until no violation remains (line

2). In it, we remove the correspondence that causes most constraint violations (line 5

and 6). The insight behind this greediness is that removing correspondences with a high

number of violations should be able to minimize the repair distance.

70

4.5 Empirical Evaluation

The complexity analysis is given as follows. First, to check whether an instance

I satisfies a set of integrity constraints (line 2), as well as implementing the function

I.getConflict() (line 4), we detect all the constraint violations of I. However, as this

detection operation is only computed for the added correspondence c (line 1), it takes

at most O(|I|); i.e. all remaining correspondences might be affected. Moreover, the

loop between line 2 and line 6 takes place at most |I| times (the worst case in which all

correspondences are deleted). As a result, the overall complexity is O(|I|2), even though

in practice it is likely to be lower since an integrity constraint is often defined upon a

small fraction of total correspondences.

Algorithm 4.3: Repair an inconsistent matching instance
input : an inconsistent (matching) instance I,

an added correspondence c,
a set of approved correspondences F+,
a set of integrity constraints Γ

output: a consistent matching instance Î
1 I ← I ∪ {c}
2 while I does not satisfy Γ do

// Get all violations each correspondence ci involves

3 for ci ∈ I \ F+ \ {c} do
4 vi ← I.getConflict(ci,Γ)

// Greedily remove the one with most violations

5 c∗ ← argmaxci |vi|
6 I.remove(c∗)

7 return Î ← I

4.5 Empirical Evaluation

This section presents a comprehensive experimental evaluation of the proposed methods

using real-world datasets and state-of-the-art matching tools. The results highlight that

the presented approach supports pay-as-you-go reconciliation by effective minimization

and instantiation techniques. In particular, we are able to guide user feedback precisely,

observing improvements of up to 48% over the baselines. We demonstrate that the

approach improves the quality of instantiated matchings significantly in both precision

and recall. We proceed as follows: We first discuss the experimental setup. Then, we

report on the results of applying the proposed methods for minimizing user effort and

instantiating selective matching.

4.5.1 Experimental Setup

We use the same datasets and tools as in Section 3.6. We evaluated our reconciliation

framework in different settings. We varied the construction of schema matching networks

in terms of dataset, matcher, and network topology. For the reconciliation process, we

considered different types of users and reconciliation goals. We measured the quality

improvements achieved by reconciliation and the required human efforts as follows:

71

4. Pay-as-you-go Reconciliation

Precision measures quality improvements. Similar to 3.6, precision is defined for the i-

th step in the reconciliation process given an exact matching G. Then, the precision

of the active set at step i is defined as Pi = (|Di ∩G|)/|Di|.
User effort is measured in terms of feedback steps. Since a user examines one cor-

respondence at a time, the number of feedback steps is the number of asserted

correspondences. For a better comparison, we express this number i relative to

the size of the matcher output C, i.e., Ei = i/|C|.

4.5.2 Evaluations on Minimizing User Effort

In this set of experiments, we study the extent to which our approach reduces user ef-

fort. For each dataset, we generate a complete interaction graph and obtain candidate

correspondences using automatic matchers. Then, we simulate the pay-as-you-go recon-

ciliation process where user assertions are generated using the exact matching, which is

constructed in advance by the dataset provider.

User guiding strategies. We explored how the quality of the match result in terms

of precision improved when eliciting user feedback according to different strategies. For

the BP and PO datasets, Figure 4.4 depicts the improvements in precision (Y-axis) with

increased feedback percentage (X-axis, out of the total number of correspondences) using

four strategies, namely

(1) Rand NoReason: feedback on each correspondence in random order, consequences

of feedback are defined as the user input assertions (this is the baseline described in

Section 4.2.3);

(2) Rand Reason: reconciliation using random selection of correspondences, but apply-

ing reasoning to conclude consequences;

(3) MinViol NoReason: reconciliation selection of correspondences based on the min-

violation heuristic, consequences of feedback are defined as the user input assertions;

and finally

(4) MinViol Reason: reconciliation with the combination of the min-violation heuristic

for selecting correspondences and reasoning for concluding consequences.

(5) Info Reason: reconciliation with the combination of the info-gain heuristic for se-

lecting correspondences and reasoning for concluding consequences.

The results depicted in Figure 4.4 show the average over 50 experiment runs. The

dotted line in the last segment of each line represents the situation where no correspon-

dence in the active set violated any constraints, i.e. the reconciliation goal ∆NoViol has

been reached. In those cases, we used random selection for the remaining correspon-

dences until we reached a precision of 100%. The other datasets demonstrate similar

results and are omitted for brevity sake.

The results show a significant reduction of user effort for all strategies with respect to

the baseline. Our results further reveal that most improvements are achieved by apply-

ing reasoning to conclude on the consequences of user input. Applying the min-violation

72

4.5 Empirical Evaluation

heuristic or the info-gain heuristic for selecting correspondences provides additional ben-

efits. The combined strategies (MinViol Reason and Info Reason) showed the highest

potential to reduce human effort, requiring only 40% or less of the user interaction steps

of the baseline.

0.40.5
0.60.7
0.80.9
1

0% 20% 40% 60% 80% 100%

Pr
ec
is
io
n

Percentage of feedbacks

Rand_NoReason Rand_Reason MinViol_NoReason MinViol_Reason Info_Reason

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

User Effort

PurchaseOrder

0.6

0.7

0.8

0.9

1

0% 20% 40% 60% 80% 100%

Pr
ec

is
io

n

User Effort

BusinessPartner

Figure 4.4: User effort needed to achieve 100% precision.

Effects of reconciliation goal. Reconciliation is driven by a goal ∆, and different goals

may affect the reconciliation process differently. Therefore, we evaluated our approach

for three reconciliation goals:

(1) ∆NoViol : stop when there are no more violations in the active set (see Section ??).

(2) ∆Precision=1 .0 : stop when 100% precision is achieved.

(3) ∆AllConcluded : stop once all correspondences are validated, i.e. once |Cons(Ui)| = |C|.
For the experiment we used the same settings as described in the previous experiment.

Figure 4.5 illustrates the results for the PO dataset. For each combination of reconcilia-

tion goal and strategy, it shows the percentage of user feedback, out of the total number

of correspondences, required to reach the goal. Table 4.1 provides the results for all

datasets.

We observe that, independent of the reconciliation goal, reconciliation guided by

our approach yields significant improvements over the random baseline in terms of re-

quired user effort. In particular, the MinViol Reason strategy requires only 31%, 42%,

and 50% of the user effort to reach the goals ∆NoViol , ∆Precision=1 .0 , and ∆AllConcluded ,

whereas the baseline Rand NoReason requires around 100% of user effort (which means

investigation of all correspondences) to reach these goals. In sum, the combined strate-

gies (MinViol Reason and Info Reason) work best, especially for the reconciliation goals

∆NoViol and ∆Precision=1 .0 .

Effects of the network topology. We have analyzed the influence of the topology

of the interaction graph on the reduction of the necessary efforts. For this purpose we

have used randomly generated interaction graphs, instead of the complete graphs (i.e.

cliques) of the previous experiments. We have constructed these graphs G(|S|, p) using

the Erdős-Rényi random graph model [ER60], where p is the inclusion probability. We

have constructed 10 graphs, and applied the reconciliation procedure. The results are

obtained as an average of 5 runs per graph.

73

4. Pay-as-you-go Reconciliation

0%

20%

40%

60%

80%

100%

NoViol Precision=1.0 AllConcluded

U
se

r E
ffo

rt

criteria

Info_Reason MinViol_Reason Rand_Reason
MinViol_NoReason Rand_NoReason

Figure 4.5: Effect of the reconciliation goal (PO).

Table 4.1: Effects of the Reconciliation Goal

Dataset Goal
User Effort Percentage for Strategy

Rand NoReason Rand Reason MinViol NoReason MinViol Reason Info Reason

BP
No Violations 94% 68% 51% 31% 27%
Precision = 1.0 100% 73% 78% 36% 32%
AllConcluded 100% 93% 100% 53% 47%

PO
No Violations 98% 42% 61% 31% 34%
Precision = 1.0 100% 43% 94% 42% 42%
AllConcluded 100% 48% 100% 50% 55%

UAF
No Violations 99% 35% 83% 35% 24%
Precision = 1.0 100% 46% 90% 45% 46%
AllConcluded 100% 64% 100% 62% 72%

WebForm
No Violations 97% 58% 60% 31% 30%
Precision = 1.0 100% 64% 87% 42% 41%
All Concluded 100% 72% 100% 60% 62%

Figure 4.6 (for the PurchaseOrder dataset and the UAF dataset) depicts the im-

provements of necessary user efforts, for different graphs. The X-axis corresponds to the

inclusion probability (the probability whether a given edge is included in the graph),

that we used to construct the interaction graphs, while the Y-axis shows the user efforts.

One can observe that the techniques that use reasoning significantly reduce the necessary

efforts, independently of the topology of the interaction graph. Also these methods are

robust w.r.t. the structure of the graph. Moreover, we could achieve a more expressed

reduction w.r.t. the cases where the interaction graph was more dense.

0%
20%
40%
60%
80%

100%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rand_NoReason MinViol_NoReason Rand_Reason MinViol_Reason Info_Reason

0%

20%

40%

60%

80%

100%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
se

r E
ffo

rt

Inclusion Probability

PurchaseOrder

0%

20%

40%

60%

80%

100%

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Inclusion Probability

UAF

Figure 4.6: Effect of network topology (with goal ∆Precision=1 .0).

Effects of user knowledge limitation. So far, we assumed that it is always possible

74

4.5 Empirical Evaluation

to elicit a user input assertion for a correspondence. One may argue that in many

practical scenarios, however, this assumption does not hold. Users have often only

partial knowledge of a domain, which means that for some correspondences a user cannot

provide any feedback. We studied the performance of our approach in this setting, by

including the possibility of skipping a correspondence in the reconciliation process. Thus,

for certain correspondences, we never elicit any feedback. However, the application

of reasoning may allow us to conclude on the assertions for these correspondences as

consequences of the remaining user input.

Table 4.2: Ability to conclude assertions

Dataset
p : skipping probability

5% 10% 15% 20% 25% 30%

BP 0.29 0.26 0.27 0.23 0.20 0.18
PO 0.31 0.30 0.26 0.22 0.22 0.16
UAF 0.21 0.20 0.16 0.15 0.14 0.11
WebForm 0.31 0.32 0.26 0.19 0.16 0.20

In our experiments, we used a probability p for skipping a correspondence and mea-

sured the ratio of concluded assertions (related to skipped correspondences that can be

concluded by reasoning over the remaining user input) and all skipped correspondences.

Table 4.2 shows the obtained results. It is worth noting that even with p = 30%, the

ratio is close to 0.2, which means that about 20% of the assertions that could not be

elicited from the user were recovered by reasoning in the reconciliation process. As ex-

pected, this ratio increases as p decreases; skipping less correspondences provides the

reasoning mechanism with more useful information.

Detecting problems in user input. Incompleteness is only one aspect of user feed-

back uncertainty. In many practical scenarios, user input assertions for some correspon-

dences may also be incorrect. Our reconciliation framework, however, is able to detect

potential errors made by a user as outlined in Section 4.3.2. To investigate the effect

of incorrect feedback, we added noise to the user feedback: with a given probability p

we have changed the user input assertion (from approve to disapprove, and vice versa).

Then, we measured the ratio of detected changed assertions out of all changed assertions.

The results are presented in Table 4.3. For the datasets BP, PO, and WebForm, a

large majority of the introduced problems could be detected. Less success was achieved

for the UAF dataset. We attribute this effect to the amount of dissimilar attributes

in this dataset, reducing the chance that an incorrect correspondence participates in

a constraint violation and, thus, making it harder to detect. Nevertheless, the overall

results, a chance of 0.5 or higher to detect an incorrect assertion, indicate that our

approach shows a certain robustness regarding incorrect feedback.

4.5.3 Evaluations on Instantiating Selective Matching

Now we study the effectiveness of our method for instantiation, i.e., the derivation of a

matching from the probabilistic matching network.

75

4. Pay-as-you-go Reconciliation

Table 4.3: Accuracy of detecting noisy user input

Dataset
p : probability of noise

5% 10% 15% 20% 25% 30%

BP 0.99 0.97 0.98 0.98 0.98 0.98
PO 0.75 0.76 0.80 0.80 0.81 0.81
UAF 0.48 0.46 0.49 0.53 0.54 0.55
WebForm 0.75 0.74 0.80 0.83 0.82 0.83

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

P
re

c
(H

)

User Effort (%)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

R
ec

 (
H

)

User Effort (%)

Random Heuristic

Figure 4.7: Effects of correspondence ordering
strategies on instantiation. H is the instantiated
matching of our algorithm.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

P
re

c
(H

)

User Effort (%)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

R
ec

 (
H

)

User Effort (%)

Without Likelihood With Likelihood

Figure 4.8: Effects of the likelihood function on
instantiation. H is the instantiated matching of
our algorithm.

Effects of Ordering Strategies. Clearly, the two above ordering strategies used for

reducing the network uncertainty have a great influence on the quality of the instantiated

matching. We investigate this aspect with an experiment in which, given a pre-defined

user effort (e.g., 5% of all candidate correspondences), we reduce network uncertainty

with these strategies (i.e., the Random and the Heuristic). Then, we compare the results

in terms of precision and recall of the matching derived by instantiation according to

Algorithm 4.2.

Figure 4.7 illustrates the influence of the ordering strategies on quality of the instan-

tiated matching for the BP dataset (again, the other datasets showed the same trend

and are omitted for brevity). Here, we varied the budget of user effort (x-axis) from

0% to 15%. A key finding is that our heuristic ordering outperforms the baseline with

an average difference of 0.12 (for precision) and 0.08 (for recall). At the beginning (0%

user effort), there is no difference between two ordering strategies because no correspon-

dence is selected for user validation. We conclude that our heuristic ordering plays an

important role in improving the quality of the matching that approximates the selective

matching and is derived by instantiation.

Effects of Maximal Likelihood. Instantiation is guided by the repair distance (num-

ber of candidate correspondences that are removed to satisfy the integrity constraints)

and the likelihood of a particular matching (cf., Section 4.4). We argued that the repair

distance shall be minimal in any case to keep us much information on correspondences

as possible. Yet, in this experiment, we study the importance of also considering the

likelihood for instantiation. To this end, we compare the result of instantiation with and

without the likelihood criterion. We quantify the results in terms of precision and recall

for the derived matching.

Figure 4.8 shows the obtained results: the percentage of user effort relative to the

quality of the matching measured by precision and recall. We observe that consider-

76

4.6 Summary

ing the likelihood criterion, indeed leads to a matching of better quality. This result

underlines the benefits of our probabilistic model in quantifying the uncertainty of cor-

respondences as well as of the network as a whole.

4.6 Summary

This chapter presents the first reconciliation setting of this thesis; i.e., the pay-as-you-go

reconciliation. The main outcome is a pay-as-you-go framework that enables to reduce

user effort and instantiate a trusted set of correspondences over time. As such, the

approach can be used for supporting data integration at any point in time, while still

continuously improving the quality of the instantiated matching by reconciliation of

the network. We presented a comprehensive experimental evaluation, indicating that

the approach is applicable for large, real-world datasets and allows for effective and

efficient reconciliation. We showed that our approach significantly reduces the number

of user interactions, up to 40% compared to the baseline of an expert working without

assistance. Our experimental results also indicate that the reduction remains significant

over different reconciliation goals, different network topology, or limited user knowledge.

In some cases, our framework can even detect erroneous user feedback based on reasoning

over the schema matching constraints.

77

4. Pay-as-you-go Reconciliation

78

Chapter 5
Collaborative Reconciliation

5.1 Introduction

Until this chapter, the task of reconciling a schema matching network was performed

by a single expert. As the size of networks in data integration grows, the complex

reconciliation tasks should be performed by not only one but several experts, to avoid

the overload on a single expert and also to assign each expert the parts of the problem

about which he is more familiar. Moreover, typical information systems need to involve a

wide range of expertise knowledge, since schemas are often designed by different persons

and with different domain purposes. As a result, there is a need for a mechanism that

allows not a single expert but an expert team work collaboratively to reconcile the output

of automatic matchers.

In this chapter, we develop such a multi-user mechanism to enable collaborative rec-

onciliation process. It is challenging to achieve this goal since we have to face the three

following issues. Note that hereby two terms—experts and users—are used interchange-

ably to represent the participants in this process.

1. How to encode user inputs? The inputs of users should be encoded to not only

capture fully information given by users but also support reasoning on the informa-

tion. In other words, from user inputs, we can derive consequences and compute

their explanations.

2. How to detect conflicting inputs? As users might have different opinions about the

correctness of correspondences, their inputs inevitably involve conflicts. Detecting

conflicts is an important step to eliminate inconsistency.

3. How to guide conflict resolution? To facilitate conflict resolution, we need to

define a mechanism that supports users to exchange knowledge, allow debugging,

and contain explanations for the given decisions. Moreover, we provide heuristic

metrics to rank possible decisions as well as support ”what-if” analysis, which

involves computing the foreseeable consequences of the decisions.

79

5. Collaborative Reconciliation

To address these issues, we leverage theoretical advances and the multi-user nature

of argumentation [Dun95, BH08]. The overall contributions of our work are as follows.

We model the schema matching network and the reconciliation process, where we relate

the experts’ assertions and the constraints of the matching network to an argumenta-

tion framework [Dun95]. Our representation not only captures the experts’ belief and

their explanations, but also enables to reason about these captured inputs. On top

of this representation, we develop support techniques for experts to detect conflicts in

a set of their assertions. Then we guide the conflict resolution by offering two primi-

tives: conflict-structure interpretation and what-if analysis. While the former presents

meaningful interpretations for the conflicts and various heuristic metrics, the latter can

greatly help the experts to understand the consequences of their own decisions as well as

those of others. Last but not least, we implement an argumentation-based negotiation

support tool for schema matching (ArgSM) [NLM+13], which realizes our methods to

help the experts in the collaborative task.

5.1.1 Motivating Example

Now we give an example of why we need to use argumentation in collaborative reconcili-

ation. Continuing from the running example in Figure 3.2, Figure 5.1 a set of user inputs

from multiple experts, where we only consider the four correspondences c1, c2, c3, c4 for

simplicity sake. Here we assume that the experts are the owners of schemas, and thus

we also call them by the name of schemas. If several experts assess a set of corre-

spondences (or as it is more common, they work on a different but overlapping set of

correspondences) then we can represent their individual input in the form of arguments.

s1: EoverI

s2: BBC

s3: DVDizzy

a4: productionDate

a1: releaseDate
a3: availabilityDate

a2: screeningDate

c4

c2

c1
c3

(a)

User Inputs Arguments (derived from user inputs)

we
1 = 〈{c1}, c1〉, we

2 = 〈{c2}, c2〉
EoverI approve c1, c2, c3 we

3 = 〈{c3}, c3〉, we
4 = 〈{c2,¬c2 ∨ ¬c4},¬c4〉

disapprove c4 we
5 = 〈{¬c3 ∨ ¬c1 ∨ ¬c4, c1, c3},¬c4〉

we
6 = 〈{¬c4},¬c4〉

BBC approve c3, c4 wb
1 = 〈{c3}, c3〉, wb

2 = 〈{c4}, c4〉

DVDizzy approve c3, c4 wd
1 = 〈{c3}, c3〉, wd

2 = 〈{c4}, c4〉

(b)

Figure 5.1: The motivating example. (a) A network of schemas and correspondences generated by
matchers. There are two violations: {c2, c4} w.r.t. the one-to-one constraint, {c1, c3, c4} w.r.t. the cycle
constraint. (b) An illustrated collaborative reconciliation between three video content providers: EoverI,
BBC, and DVDizzy. The assertions (approvals/disapprovals) of BBC and DVDizzy are identical and
different from those of EoverI.

In this example, the experts might agree or disagree about certain correspondences.

For example, c3 is approved by all the experts but c4 is only approved by two. To obtain

a final decision, we have to resolve the conflicts (i.e. approvals and disapprovals on

same correspondences). However, the simple techniques for conflict resolution such as

majority voting are not applicable, if the application requires the integrity constraints.

80

5.2 Model and System Overview

For example, the choice of considering a correspondence correct can influence the possible

choices for other correspondences. Thus, the resulting set of correspondences would not

comply to these constraints. To resolve these problems, the experts need to discuss and

negotiate which correspondences to accept or reject. Because of complex dependencies

between correspondences in the schema matching network, it is very challenging for the

experts to overlook all possible consequences of their decisions. Thus on one hand it is

highly desirable to split the reconciliation task, on the other hand combining individual

results is very challenging. Our work addresses exactly this problem by proposing a

number of services and a tool realizing those services to enable the collaborative process.

5.1.2 Overall Approach

First, we model the collaborative reconciliation on schema matching network. In this

context, the user inputs are encoded as propositional formulae. Following logical argu-

mentation [BH08], we can infer consequences from encoded formulae. Each inference is

represented by an argument, in which the claim is a consequence (indirect approval or

disapproval of a correspondence) and the support is the respective explanation. On top

of the arguments, we analyze the relationships (attacks) between them and construct an

argumentation framework [Dun95] to detect conflicts in inputs. Second, we propose a

method to guide conflict resolution. From arguments, we generate all possible decisions

and rank them according to different criteria. Moreover, to enhance the trust of users

in their own decisions and those of the others, we support what-if analysis by showing

the effects of decisions. Third, we develop ArgSM, an argumentation-based negotiation

support framework for schema matching. In ArgSM, the schema matching problem is

modeled in terms of Answer Set Programming [EIK09b] (ASP). Based on this model, we

generate arguments and compute attacks. Moreover, our framework provides two insight

views: Schema view (human-oriented), and Argumentation view (technical). They are

displayed side by side in a unified graphical user interface (GUI). This helps the users

to review the inputs and make decisions effectively.

Our chapter is organized as follows. We first describe the overview in Section 5.2,

which consists of the formulation of schema matching problem and the overview of our

solution. Next, Section 5.3 discusses the technique to detect conflicts in user inputs,

while Section 5.4 deals with guiding conflict resolution. After that, Section 5.5 describes

the adoption of argumentation into schema matching. Then, ArgSM is summarized in

Section 5.6. Finally, Section 6.7 concludes the paper.

5.2 Model and System Overview

In this section, we focus on modeling the collaborative reconciliation in schema matching.

Firstly, we introduce the need of decomposing the task of reconciling a schema matching

network into sub-tasks for the experts. Then we describe the process of collaborative

reconciliation to validate the mappings of this network, which are generated by automatic

matchers.

81

5. Collaborative Reconciliation

5.2.1 Task Partitioning

Since the collaborative reconciliation involves multiple experts to validate the generated

correspondences at the same time, we need to distribute the work among them. Espe-

cially if the size of the schema matching network is large, the validation task can be

rather expensive. Moreover, some experts might be more knowledgeable about some

parts of the network, thus in these cases it is very natural to split/partition the task

among multiple experts. In order to realize this task partitioning, we employ the network

modularity techniques described in Section 3.5. It is worth noting that the problem of

how to partition the task efficiently is out of the scope of this work. We only focus on

resolving the conflicts happened during the collaborative reconciliation.

Example 8. Figure 5.2 illustrates the task partitioning problem for a schema matching

network. There are three experts participating to validate five correspondences. In this

specific case, we use the k-way hypergraph partitioning technique as aforementioned in

Section 3.5. The output contains three subsets of correspondences assigned for each

expert: {c2, c3, c4, c5}, {c1, c2, c5}, and {c1, c3, c4}

c5

c2

c1 c3

c4

k = 3

K-way Hypergraph
Partitioning

c2

c5

c3

c4

c1

c5

c2

c1

c4

c3

Argumentation

Figure 5.2: Task Partitioning in Collaborative Reconciliation

5.2.2 Collaborative Reconciliation

The collaborative reconciliation as illustrated in Figure 5.3 is a two-phase process: indi-

vidual validation and input combination. Let E denote the set of users E = {E1, . . . , En}
who participate.

• Individual validation: In the first phase, each expert Ei is assigned to validate

a subset Ci of C, resulting from the task partitioning above. The assigned sets

Ci usually overlap to a certain degree, thus there are correspondences assessed by

several experts.

• Input combination: In the second phase, the individual inputs are combined. The

goal of the collaborative reconciliation process is to construct a set of correspon-

dences M that satisfies all constraints. If there are conflicting views about corre-

spondences (for example, one expert considers correct while the other incorrect)

then they need to come to a conclusion and chose which view to accept.

82

5.3 Detecting Conflicts in User Inputs

1

1. Automatic
 Matching
 COMA
 AMC

2. Individual
 Validation

Expert 1

2. Individual
 Validation

Expert n

Correspondences C

• • •

(a) Phase 1 - Individual validation
2

Expert n Expert 1

Arguments &
Explanations

Correspondences

F1

Participant Inputs

A1

Arguments &
Explanations

Fn

Participant Inputs

An

Argumentation framework

3.1. Negotiation
 Detect conflicts
 Guide conflict resolution

• • •

. . .

C

Expert n Expert 1

Arguments &
Explanations

Correspondences

F1

Participant Inputs

A1

Arguments &
Explanations

Fn

Participant Inputs

An

Argumentation framework

3.N. Negotiation
 Detect conflicts
 Guide conflict resolution

. . .

C

Intermediate Rounds

(b) Phase 2 - Input combination

Figure 5.3: The collaborative reconciliation process starts with a set of correspondences C generated
by matchers. In Phase 1, each expert (user/participant) i is responsible for validating a particular set
Ci ⊂ C. It is followed by Phase 2 that has multiple negotiation steps (3.1. to 3.N) to resolve conflicts in
user inputs.

We leverage existing techniques from a large body of research [JFH08, Bel11, QCS07] for

the first phase. In this chapter, we focus on the second phase. More precisely, we apply

the theoretical advances of argumentation to detect conflicts in user inputs and guide

them to resolve conflicts. Section 5.3, 5.4, and 5.5 will describe those functionalities in

detail.

5.3 Detecting Conflicts in User Inputs

Let us consider a setting where several experts assess a set of attribute correspondences

in a schema matching network. They might have different views whether a given corre-

spondence should be correct or not. To complete the reconciliation task, they need to

discuss and resolve these conflicts to obtain a globally consistent set of correspondences.

The conflicts between the different user views can be rather complex in the presence of

integrity constraints. We call a situation direct conflict if two experts disagree about

a given correspondence (one of them thinks it is correct, while the other claims that it

is incorrect). In the presence of integrity constraints, we can also talk about indirect

conflicts. For example, in Figure 5.1, if we assume the one-to-one constraint between

S1 and S3 and an expert considers c4 correct, then c2 must be incorrect (otherwise the

constraint would be violated). We call a situation where a second expert thinks that c2

is correct an indirect conflict.

83

5. Collaborative Reconciliation

5.3.1 Arguments for Schema Matching networks

In order to study the conflicts between the experts opinions, we will rely on argumenta-

tion techniques. Argumentation is a systematic study of techniques to reach conclusions

from given premises [BH08]. We will use the standard representation of arguments

[BH08] where an argument consists of a claim and a support that explains the respec-

tive claim. We represent arguments in the form 〈{support}, claim〉. In the case of

logic-based argumentation, both the support and the claim are logical formulas, such

that the support is a minimal set that is sufficient to prove the claim.

For the schema matching problem, given a set of correspondences C, we employ

propositional logic to encode the user inputs (during the reconciliation process): if an

expert asserts that a given correspondence c is true, then we can represent this by a

propositional variable vc (and the assignment vc = true). To simplify our notation,

sometimes we use c to denote the propositional variable (corresponding to a correspon-

dence c). This representation also enables to represent the consistency constraints, for

example ¬(c2 ∧ c4) encodes the one-to-one constraint (the two correspondences c2 and

c4 cannot be true at the same time).

If several experts assess a set of correspondences (or as it is more common, they work

on a different but overlapping set of correspondences) then we can use this encoding to

represent their individual input in the form of arguments. For example, in Figure 5.1, we

can represent the input assertion of an expert by the argument we1 = 〈{c1}, c1〉, where the

claim is that the c1 is correct, that is based on the simple support that is the knowledge

of the expert about the correctness of c1. A more complex example is the argument (that

is the claim of an expert, together with a support) we4 = 〈{c2,¬c2 ∨¬c4},¬c4〉. This can

be interpreted as follows: the expert has approved c2, he would like to avoid violating

the one-to-one constraint (¬c2 ∨ ¬c4), he disapproves c4. We give a more complete

list of arguments of three experts in Figure 5.1b (with respect to one-to-one and cycle

constraints). In our work, the claim of an argument is always a single propositional

clause, while the support is a set of propositional formulae.

Understanding the conflicting arguments. This representation enables us to ex-

plain more precisely the direct and indirect conflicts. If the claim of two arguments

w1 and w2 contradict each other (together they form an inconsistent set of formulae)

then we say that the arguments w1 and w2 are in direct conflict. In argumentation

terminology this is called rebuttal. If the claim of an argument w2 appears in a negated

form in the support of w1, we talk about indirect conflict. In argumentation terms, w1

undercuts w2. In the following, we will consider following attack relation: w1 defeats w2

if w1 either undercuts or rebuts w2. For example, wd2 rebuts we6 and the argument wd1
undercuts the argument we5 (Figure 5.1b). A set of arguments and attacks between the

arguments 〈A,R〉 is called an argumentation framework [Dun95].

Constructing argumentation framework 〈A,R〉 for a reconciliation problem from the

arguments of all the experts A =
⋃
Ai with the above attack relation has several ad-

vantages. In particular, computing the attack relation we can detect each problem that

84

5.3 Detecting Conflicts in User Inputs

might exists in the experts’ inputs. The argumentation framework enables even more

complex tasks that we explain in the following sections.

5.3.2 Construct Argumentation Framework

In general, an argument reflects not only the current beliefs of users but also the conse-

quences of those beliefs. Formally, an argument consists of two elements: (i) a claim that

shows the belief and (ii) a support that provides the belief’s explanation. In our setting,

a claim is either an approval or a disapproval of a correspondence, while a support is a

conjunction of approvals, disapprovals, and integrity constraints. For example, consider

the argument we4 = 〈{c2,¬c2 ∨ ¬c4},¬c4〉 in Figure 5.1, the claim is a disapproval (¬c4)

and the support contains an approval (c2) and an one-to-one constraint (¬c2∨¬c4). The

formal definition of argumentation was proposed in [BH08]:

Definition 5.1. An argument a ∈ ∆ is a pair (Φ, α), where α ∈ L is the claim, Φ ⊆ L
is the support :

• The support deduces the claims, i.e. Φ ` α

• The support is logically consistent, i.e. Φ 0⊥

• No proper subset of Φ satisfies the two conditions above, i.e. @Ψ ⊂ Φ : Ψ 0⊥∧
Ψ ` α

To construct arguments, we define a deductive argumentation framework [BTK93] as

a tuple 〈L,`,∆〉, where L defines all interpretable sentences, ` describes a monotonic

inference procedure to derive conclusions from premises, and ∆ is the argument space

that specifies the scope of argumentation. For the schema matching problem, given a set

of correspondences C, we encode the space of possible user inputs as U = {c,¬c | c ∈ C}
and denote R = {r | r =

∨
ui, ui ∈ U} to be a set of all integrity constraints applied on

C. From the framework, we form arguments by applying monotonic inference procedures

on L. For instance, we have the argument we4 because {c2,¬c2∨¬c4} ` ¬c4 (Figure 5.1).

The framework captures the possible words of interpretable sentences and arguments.

Now we introduce the concept of framework instance. For a given set of user inputs F =

〈F+, F−〉, we denote a framework instance as 〈LF ,`,∆F 〉 (instantiated from 〈L,`,∆〉).
LF is constructed by combining all approved and disapproved correspondences with all

integrity constraints, i.e. LF = {c | c ∈ F+} ∪ {¬c | c ∈ F−} ∪ R. ∆F is constructed

from all arguments whose support is a subset of LF , i.e. ∆F = {(Φ, α) ∈ ∆ | Φ ⊆ LF }.
Note that for a particular set of user inputs, there is a unique framework instance.

Through analyzing that framework instance, we can detect conflicts in the inputs. This

is described in the next subsection.

85

5. Collaborative Reconciliation

5.3.3 Detection Mechanism

Combining the inputs of participants usually involves conflicts. In fact, there are two

types of conflict: direct conflict and indirect conflict. Direct conflict is a contradic-

tion regarding two opposite assertions on a particular correspondence. In other words,

given a particular correspondence, the simultaneous existence of the approval and dis-

approval on this correspondence is called a direct conflict. Whereas, indirect conflict is

a contradiction that emerges after some reasoning steps. Recall the running example in

Figure 5.1, the approval of EoverI on c2 and that of BBC on c4 form an indirect conflict

according to the one-to-one constraint.

Detecting direct conflicts is trivial. For indirect ones, however, this is not the case

as reasoning ability is required, especially when the set of integrity constraints is con-

tinuously modified. We harness the power of abstract argumentation [Dun95] to detect

both of them. More precisely, we analyze the attack relation between arguments based

on the concept of abstract argumentation framework.

Definition 5.2. An abstract argumentation framework is a pair 〈A,R〉, where:

• A is a set of arguments, A ⊂ ∆.

• R is the attack relation between ordered pairs of arguments a, b ∈ A such that “a

attacks b” (denoted as a→ b).

For brevity, we reserve the term argumentation framework for the abstract one from

this point on because more about this framework will be discussed later in this paper.

Continuing the running example in Figure 5.1b, we have wb2 attacks we6 and and vice

versa, while we5 attacks wb2. Hence, the argumentation framework has {wb1, we3, we5, wb6} ⊂
A and {wb2 ↔ we6, w

e
5 → wb2} ⊂ R. More details about attacks and the complete argu-

mentation framework will be presented later.

Now we show how to detect conflicts using abstract argumentation given a set of user

inputs {F1, F2....Fn}. For each user i, we maintain a framework instance 〈Li,`,∆i〉 based

on his assertions Fi. Then, we combine all arguments of users in a single set A =
⋃

∆i

and construct an argumentation framework 〈A,R〉. By analyzing attack relations in

R, not only do we know which correspondences contradict with each other but also

the reasons of contradiction. The construction of R, specific for schema matching, is

described below. It is worth noting that a set of user inputs is conflict-free if and only

if the set of attack relations R = ∅.

5.4 Guiding the Conflict Resolution

We have presented in Section 5.3 how to construct an argumentation framework for

the schema matching problem, where multiple experts work on the reconciliation task.

This not only enables to reason about the user input, but also to detect conflicts and

86

5.4 Guiding the Conflict Resolution

determine the reasons for these problems. In this section we focus on techniques that

exploit this information to guide the experts in resolving these conflicts.

In particular, we describe here two services that can largely help the collaborating

experts. These are the (1) the interpretation of conflict structures, with which we can

present meaningful interpretations for the conflicts together with some associated metrics

that can largely support the negotiation of the experts and the (2) what-if analysis,

with which we can compute (and in the tool visualize) the consequences of a particular

potential decision. The details of these services are provided in what follows.

5.4.1 Interpretation of Conflict Structures

Given a potentially conflicting set of assertions from several experts who collaborate on

the reconciliation task, we can analyse the structure of conflicts and compute (qualita-

tive) metrics that explain the conflicts as well the potential ways to resolve the problems.

Extensions. An extension ε ⊆ A of an argumentation framework 〈A,R〉 is an acceptable

set of arguments ε; i.e., a set of arguments that can be accepted simultaneously, that

is, they do not contain any conflicts. In fact, there are many possible ways to define

an extension. The various strategies that can be used to construct such an exception

are called acceptability semantics [Dun95]. For instance, an extension following the

complete semantics is a conflict-free set of arguments, defends all its arguments, and

contains all arguments it defends. A set of arguments A′ is conflict-free if there are no

arguments a1, a2 ∈ A′ that a1 attacks a2. Meanwhile, a1 defends a2 if there exists a3

that is attacked by a1 and attacks a2. Generally, there exists more than one extension

(for a given semantics). Hence, the experts need to agree on choosing which one. With

argumentation, we can compute and present extensions for the experts, thus enable them

to consider all possible options.

Witnesses. Given a set of conflicting arguments, we compute (also present and visual-

ize) witnesses of the conflicts. Let Ac and A¬c be the set of arguments having claim c

and ¬c respectively, i.e. Ac = {(Φ, α) ∈ A | α = c} and A¬c = {(Φ, α) ∈ A | α = ¬c}.
Ac and A¬c explain why we should approve/ disapprove c. Presenting the witnesses lets

the experts understand problems arise during reconciliation.

Example 9. In Figure 5.1, EoverI wants to approve c1, c2, c3 and disapprove c4. From

the complete semantics, we obtain the extension {we1, we3, wb1, we4, we5, we6}. Based on the

explanations provided by this extension’s arguments, EoverI can better argue for the other

two participants to approve c1 (explained by we1), c3 (explained by we3), and disapprove c4

(explained by we4, we5, and we6). Furthermore, observing the witnesses for and against c4

would make the decision to discard this correspondence more convincing. Indeed, from

those witnesses (Ac4 = {wb2, wd4} and A¬c4 = {we4, we5, we6}), we realize that although the

decision supporting c4 is voted by more users, the opposite decision (to disapprove c4)

seems to be the one that is better explained. Moreover, disapproving c4 is also justified

by intuitive observations on the network: the approval of this correspondence would

87

5. Collaborative Reconciliation

constitute not only a one-to-one constraint violation (with c2) but also a cycle constraint

violation (with c1 and c3).

We cannot only compute the extensions and witnesses to facilitate the discussion among

the experts, but also associate heuristic metrics to further support their work. Further-

more, we enable the users to rank decisions, based on the strengths of their explanations

(arguments) or the decisions themselves.

Argument strength. Computing extensions is a preliminary step to evaluate argu-

ments. From the occurrences of an argument in the extensions, we compute the argument

strength. Given the set of extensions E of an argumentation framework with respect to an

acceptability semantics, the strength of an argument a is the number of its occurrences

in E divided by the size of E:

argument strength(a) =

∑
ε∈E 1a∈ε

| E |

With argument strength, we have a more fine-grained metric to rank arguments and

assist the users to make wiser decisions. Indeed, we were motivated by the notion of

argument acceptance [DM04], which evaluates arguments based on their occurrences

in all extensions of a given acceptability semantics. However, this is a rough metric,

which does not take into account the difference between the number of occurrences of

arguments in the extensions. This shortcoming prevents the users from having detailed

looks on the credibility of arguments to compare them.

Decision strength. Providing explanations might be overwhelming for the users, es-

pecially when there are too many arguments. Therefore, we associate each decision with

a quantitative metric reflecting the decision strength, which is computed by applying

aggregate operators (max, min, avg, etc.) on the set of supporting arguments. Based on

this metric, the users can evaluate which decisions should be made given a specific cir-

cumstance. It is also important to note that the number of ambiguous correspondences

is generally large. As a result, identifying the sequence of correspondences to negotiate

is necessary. In practice, one may define such a sequence by taking pairs of decisions for

and against a correspondence in the ascending order of the level of ambiguity, which can

be measured by the difference between the strengths of associated decisions.

Example 10. An example of argument and decision strength can be found in Figure 5.4.

In that figure, we have on the left the decisions (circle shapes) supporting and opposing

each correspondence in the network, as well as the associated arguments (square shapes).

We follow the complete acceptability semantics to compute argument strengths and apply

the sum operator to evaluate decision strengths. Those values are displayed right above

the corresponding shapes. We can observe that the decision to disapprove c4 possesses

higher strength. Thus, disapproving c4 would be the better decision to take. In fact, this

outcome aligns with what the users should achieve using the qualitative metrics solely.

Having the quantitative metrics (argument and decision strength), however, brings the

users more details thus increases the confidence in making decisions.

88

5.5 Implementation

5.4.2 What-If Analysis

We have also developed another reasoning service, called what-if analysis, that exists in

many decision support systems [HMST11] and largely supports the collaborative work.

This service can compute (and in our tool also visualize) the consequences of a possible

decision. Using the what-if analysis, the experts can understand the consequences of

any particular decision, resulting in a stronger feeling of trust throughout their work.

Three questions for which we can compute the answers are:

• Q1: Which arguments will be added or deleted if a particular assertion is given?

• Q2: Which attacks will be added or deleted if a particular assertion is given?

• Q3: Which extensions will be modified if a particular assertion is given?

By answering these questions, we can provide the experts with two important views.

The (1) Local view reflects the relationships among inputs of a single participant. Each

participating expert can check whether his new assertion conflicts with the previous in-

puts. Technically, we use the answers of Q1 and Q2 to construct this view. When a user

gives a new assertion, his own arguments are maintained. If any attack between those

arguments is found, the user is notified to adjust his inputs to avoid further inconsis-

tencies. Besides, the (2) Global view reflects the connections between inputs of multiple

users. All participants can observe the negotiation progress. To construct this view, we

use the answers of Q2 and Q3. The number of attacks and extensions are maintained.

On the one hand, the users understand the current conflicts (attacks) among their ar-

guments and the impact of those inconsistencies. On the other hand, keeping track of

the extensions lets them know the current state of the system and when it reaches an

agreement.

Example 11. In Figure 5.1, three video content providers now attempt to change their

assertions to reach an agreement. In the view-point of EoverI, he might change his disap-

proval of c4 since the others both approve c4. If EoverI approves c4, two new arguments

we7 = 〈{c4}, c4〉, we8 = 〈{c4,¬c2∨¬c4},¬c2〉 and two new attacks we7 ↔ we4, we8 ↔ we2 will

be added. Through local view, EoverI can foresee these new arguments and attacks to

realize the contradiction by himself. In the view-point of BBC and DVDizzy, they might

change the approval of c4 because of EoverI. If they disapprove c4, two arguments wd2
and wb2 will be deleted; and hence, there is no attack between remaining arguments and

only one extension remains. Through global view, they can foresee this consequence and

feel more confident to make changes. In addition, they might also agree with EoverI on

c1 and c2 since no further contradiction exists.

5.5 Implementation

In the previous sections, we discussed how to support the collaborative reconciliation

through detecting conflicts in the assertions of multiple experts and guiding the resolu-

tion of these conflicts. To accomplish these tasks, we need to realize the argumentation

89

5. Collaborative Reconciliation

framework, which can only be achieved after generating arguments and computing the

attack relation. This section serves a two-fold purpose. First, we present how to instan-

tiate an argumentation framework using ASP-based tools. Second, we describe how to

implement the proposed services on top of this argumentation framework.

5.5.1 Instantiate Argumentation Framework

We rely on Answer Set Programming (ASP) [BET11], to carry out the preliminary tasks

before instantiating an argumentation framework (Figure 5.3). In our work, we utilize

the ASP Solver DLV-Complex[CCIL08] to take advantages of its built-in data structures

and functions. We invoke an ASP program called Πpre, which is essentially the union

of other ASP program, each of which is responsible for a specific task. In particular,

Πpre = Πsmn ∪ΠΓ ∪Πinputs ∪ΠΦ.

Encoding the schema matching network (Πsmn). We extend the setting to keep

track of the correspondences. Let I be the set of identities, a function f : C → I maps

exactly one element in I to each in C. f is injective as an identity is assigned to at

most one correspondence. For each schema si ∈ S, we represent the attribute-schema

relationship between si and each attribute a ∈ Asi as a ground fact attr(a, si). It is as-

sumed that the attributes are globally unique. Meanwhile, the correspondence-attribute

relationships are captured by cor(c, ai, aj) for each (ai, aj) ∈ C and c = f((a1, a2)). For

instance, the network in Figure 5.1 has the following encoding of Πsmn:

Πsmn = {attr(a1, S1).attr(a2, S2).attr(a3, S3).attr(a4, S3).

cor(c1, a1, a2).cor(c2, a1, a3).cor(c3, a2, a3).cor(c4, a1, a4).}

Encoding the integrity constraints (ΠΓ). We encode the integrity constraints as

rules. In fact, we use rules to encode two different types of constraints. The first type is

our basic assumptions, which are encoded in the program πass below:

πass = { ← attr(a, s), attr(a, s′), s 6= s′.

← cor(c, a, a′), attr(a, s), attr(a′, s′), s = s.′}
(5.1)

Second, we use rules to express the network-level integrity constraints. Atoms prefixed

with # are built-in functions of DLV-Complex.

• Cycle constraint : a path of correspondences must not make any two attributes of

a schema reachable. Each rch(S, a, a′) signifies the reachability between attributes

a and a′ via the correspondences in S. Below is the encoding of the program πcycle:

πcycle = {rch(S, a, a′)← cor(c, a, a′),#set(c, S).

rch(S, a, a′)← #intersection(P,Q,R),#card(R, 0),

rch(P, a, b), rch(Q, b, a′),#union(P,Q, S).

violation(S)← rch(S, a, b), a 6= b, attr(a, s), attr(b, s).}

(5.2)

• One-to-one constraint : any attribute is matched by at most one attribute in each

of the other schemas. Each pair(c, c′) captures a violation detected by π1−1 below:

π1−1 = {pair(c, c′)← cor(c, a, b), cor(c′, a, b′), b 6= b′, attr(b, s), attr(b′, s).

violation(S)← pair(c, c′),#set(c, c′, S).}
(5.3)

90

5.5 Implementation

In a nutshell, ΠΓ is defined formally as ΠΓ = πass ∪ πcycle ∪ π1−1. For example,

invoking ΠΓ for the network in Figure 5.1, we have πass check the validity of the schema

matching network encoded by Πsmn, which is valid indeed. Besides, from πcycle and

π1−1, we obtain two violations: {c2, c4} and {c1, c3, c4}.
Collecting user inputs (Πinputs). Indeed, user inputs are assertions on the corre-

spondences. We represent user assertions (that may be approvals or disapprovals of

correspondences) as ground atoms of the form app(·) and dis(·). For instance, in Figure

5.1b, the user EoverI approves c1, c2, c3 and disapproves c4, while BBC and DVDizzy

only approve c3 and c4. Their inputs are encoded as follows:

ΠEoverIinputs = {app(c1). app(c2). app(c3). dis(c4).}

ΠBBCinputs = ΠDVDizzyinputs = {app(c3). app(c4).}

Constructing the set of formulae (ΠΦ). We construct this set by extracting propo-

sitional formulae from either the assertions (through πsimple) or the detected violations

(through πextract). Formally, ΠΦ = πsimple ∪ πextract. Each atom kb(·) captures a for-

mula. For assertions, we consider each assertion app(c) (or (dis(c)) as a simple formula

c (or ¬c). This is captured by the program πsimple:

πsimple = {kb(c)← app(c).

kb(neg(c))← dis(c).}
(5.4)

Things are more complex in the cases of the constraint violations (detected by the

πcycle and π1−1 of ΠΓ). From a violation {c1, · · · , cn}, we can state that at least one of

the assertions must be false. This is expressed formally by the formula ¬c1 ∨ · · · ∨ ¬cn.

Such formulae are extracted from the detected violations by the program πextract, whose

process is described below:

• Initially, violations are captured by ground atoms violation(S) where S is a set

of correspondences. We convert from set to list using the atom by vioList(L), in

which L is the list-based representation of S.

• From each list L, we create sublists starting from the first to the (n−1)th element

([c1, · · · , cn], [c2, · · · , cn], · · · , [cn−1, cn]).

• Based on the sublist, we form formulae in a bottom-up manner, starting from

the shortest one ([cn−1, cn]). The longer sublists have their forumlae composed

recursively from those that are one element shorter. This is continued up to original

list.

Example 12. In Figure 5.1b, we have the collected the inputs of EoverI. Through πsimple,

we obtain the formulae kb(c1), kb(c2), kb(c3), and kb(neg(c4)). Besides, we also detected

the violations in the schema matching network, from which πextract form two formulae

kb(or(neg(c2), neg(c4))) and kb(or(neg(c1), or(neg(c3), neg(c4)))). These ground atoms

kb(·) compose the set of formulae of EoverI.

91

5. Collaborative Reconciliation

With the set of formulae, we proceed to first generate arguments then the attack

relation, with the goal to compose an argumentation framework. One could consider

formulae in the set we just obtained as candidates to be argument claims. This ap-

proach, however, would easily overwhelm the users due to the huge amount of generated

arguments. The reason is that many formulae are syntactically different but semanti-

cally equivalent. To avoid this scenario, we limit the candidates for argument claims.

In practice, users are concerned more with arguments claiming to approve or disap-

prove correspondences. We thus select the set of possible claims from the assertions.

In the motivating example, the possible claims for EoverI are cl(c1), cl(c2), cl(c3), and

cl(neg(c4)).

We take advantage of Vispartix [CWW12], an ASP-based tool, to not only generate

arguments but also to compute the attack relation. For argument generation, the tool

considers only subsets of the set of formulae and the set of possible claims. It then looks

for pairs which can be considered as arguments (Figure 5.1b presents an example of

these generated arguments). Once the set of arguments is ready, we start to compute

the attack relation. This is done by invoking the corresponding feature of Vispartix

with the set of all arguments (the union of the arguments of each user) as the input.

Visaprtix provides the users with several attack types [BH08], such as defeat, undercut,

and rebut.

5.5.2 Realizing Services

In Section 5.3 and 5.4, we showed the elements of an argumentation framework as well as

offered possible services (conflict detection, interpretation of conflict structures, what-if

analysis) on top of this framework. In this subsection, we will describe how to realize

these services, with the focus on technical aspects.

5.5.2.1 Conflict Detection.

We detect conflicts based on the results of ASP-solver in section 5.5.1. In that section,

we described how to encode the integrity constraints in the language of ASP. The solver

DLV-Complex is responsible for detecting the violations based on our encodings. Based

on the results of the solver, we have the atoms vioList(L) as lists of violation, each of

which contains a set of involved correspondences. Moreover, in our system, we show not

only the violations but also the explanations for these violations. In doing so, we analyze

the attack relations R of the argumentation framework. The user inputs are valid if this

vioList is empty or R is empty.

5.5.2.2 Interpretation of Conflict Structures.

To realize this service, we need to compute four elements: the extension, the witness, the

argument strength, and the decision strength. In Section 5.5.1, we already generated a

set of arguments. As previously defined, a witness of a claim is a set of arguments having

this claim. By grouping arguments sharing the same claim, we obtain the witnesses

for all possible claims. Then, we employ Vispatrix [CWW12] to generate all possible

92

5.6 Tool - ArgSM

extensions with different semantics. After obtaining all extensions, we compute argument

and decision strength as mentioned in Section 5.4.1.

5.5.2.3 What-If Analysis.

To realize this service, we need to recompute the argumentation framework and all

possible extensions when a user modifies an assertion. Then, we compare the differences

between the newly computed results and the current ones. Based on these differences,

we can know what arguments, attacks, and extensions are added or deleted to answer

three what-if questions in Section 5.4.2. This service is implemented with the support

of Vispatrix [CWW12], which allows efficient recomputation.

All above-mentioned services are integrated in our argumentation-based negotiation sup-

port tool, namely ArgSM. This tool not only implements these services but also provides

graphical user interface. The details will be described in the next section.

5.6 Tool - ArgSM

ArgSM is an argumentation-based negotiation support tool for schema matching. It

is developed by using the Java programming language and the JUNG1 library for vi-

sualization purposes. We also integrate other supporting libraries, including Vispatrix

[CWW12] and DLV-Complex [CCIL08]. We have also made the source code to be pub-

licly available at our website 2. In this section, we discuss the user interface and the

technical challenges.

5.6.1 User Interface

ArgSM can aggregate the assertions of multiple experts and visualize the concerned

arguments. For visualizing, we provide users with a GUI (Figure 5.4), which is a unified

view of the provided inputs and the argumentation framework. From the GUI, the users

can compare their inputs via views and view modes. In particular, views give the users

static pictures about the network, the decisions, and the explanations, while view modes

provide the users with dynamic interaction during collaborative reconciliation.

Two views are supported in ArgSM: Schema and Argumentation view. They are

displayed alongside each other in the GUI (Figure 5.4, from right to left). Together,

they should help the users to review the inputs and make decisions effectively.

• Schema view. This view shows the schema matching network for the users who

do not have deep understandings of argumentation, hence another name User view.

In this view, correspondences are highlighted according on to their status. There

are three possible status: (1) all approved and (2) all disapproved respectively for

correspondences that are approved and disapproved by all users, and (3) ambiguous

for those that are approved by some and disapproved by the others.

1JUNG - http://jung.sourceforge.net
2https://code.google.com/p/argsm/wiki/ArgSM

93

http://jung.sourceforge.net
https://code.google.com/p/argsm/wiki/ArgSM

5. Collaborative Reconciliation

• Argumentation view. Also called the technical view, it is intended for those who

have knowledge on argumentation. In this view, the numbers outside the shapes in-

dicate the strengths of decisions (circles) or witnesses (squares) respectively. There

are two perspectives supported:

– Decision-making perspective shows all possible decisions (aggregated from the

inputs) and the associated witnesses (arguments) that explain the reasons for

making decisions.

– Abstract argumentation perspective presents the argumentation framework in

the form of a directed graph. The nodes are the arguments and the directed

edges are elements of the attack relation.

Those views are further supported by three view modes. Apart from the Normal mode,

which is set by default and has no interaction at all, the others allow users to interact

with the network and the arguments:

• Schema-Argumentation mode. Upon clicking on a correspondence in the

Schema view, the user can see all generated decisions (circle shapes) and wit-

nesses (square shapes) in the Argumentation view. For instance, in Figure 5.1,

correspondence c3 has two arguments we4 and we5 for disapproving and wb2 for ap-

proving. Therefore, the users will have two decisions at their disposal (c4 and ¬c4,

presented in circles) and three witnesses (we4, we5, and wb2, presented in squares).

Those circles and squares will be highlighted when the users click on c4 in the

Schema view.

• Argumentation-Schema mode. There are two cases. First, when choosing

a witness in the Argumentation view, the participants will see all the involved

correspondences in the Schema view. Correspondences appearing in the support

are showed differently from those in the claim of the witness. In the other case,

once a decisions is clicked on, the relating correspondence is highlighted in the

Schema view.

For a better understanding and stronger feelings of trust, ArgSM not only generates

explanations but also provides the foreseeable effects of each decision. Technically, we

keep the strength of arguments and the possible decisions up-to-date during negotiation.

5.6.2 Technical Challenges

When implementing ArgSM, we had to cope with a number of scalability issues. The

schemas are usually too large, leading to high response time (i.e. computation time) for

each human interaction and overwhelming control for the experts. To overcome such

challenges, we apply the following techniques:

• Partitioning. We divide the correspondences into subsets that are small enough

and doable for the experts. The details are abovementioned in Section 5.2.

94

5.7 Summary

Figure 5.4: The GUI of ArgSM, with Argumentation view (left) and Schema view (right)

• Caching. We apply the view maintenance technique [BLT86] with a repository

storing intermediate results along the process. The rationale behind is that col-

laborative reconciliation is incremental as a change (insertion or removal) only

affects some arguments. Recomputing all arguments after each modification is

unnecessary.

• Filtering. It is not useful to generate each and every argument. We only filter

for arguments of predefined claims. Hence, not only does it reduce computation

time but also avoid overwhelming the users. Every argumentation process should

operate on the filtered set. That set may be refined by modifying the predefined

claims.

To show the efficiency of the above techniques, we set up an experiment to measure

the response time of computing arguments and attacks for a large network. With the

help of automatic matchers, we obtain 472 correspondences in the network. Since the

network is large, it is partitioned into 21 clusters, in which smallest and biggest ones

contain 6 and 59 correspondences respectively. Applying caching and filtering for each

cluster, the response time varies from 0.38s (the smallest cluster) to 12.92s (the biggest

cluster). In total, it takes about 61.16s to generate all arguments and attacks.

5.7 Summary

We presented an argumentation-based tool to support collaborative reconciliation, where

multiple users, with different sorts of opinions, cooperate to validate the outputs of au-

tomatic matchers. While splitting the reconciliation task is highly desirable, combining

the individual results in the presence of consistency constraints is very challenging for

the collaborating experts. Our tool and its services shall facilitate collaboration. In par-

ticular, we systematically detect conflicts, provide the experts with visual information to

understand the causes of the problems. Moreover, we offer services to better understand

decision consequences and make collaborative reconciliation more transparent.

Our work opens up some future research directions. First, we will design a negotiation

protocol to enable negotiation within our tool. Second, we would like to extend the notion

of proposed constraints and consider further integrity constraints that are relevant in the

praxis (e.g., functional dependencies, domain-specific constraints). Third, we would like

95

5. Collaborative Reconciliation

to apply our methods to other problems. While our work focuses on schema matching,

our techniques, especially the argumentation-based reconciliation, could be applicable

to other tasks such as entity resolution or business process matching.

96

Chapter 6
Crowdsourced Reconciliation

6.1 Introduction

In this chapter, we approach the reconciliation of a schema matching network by leverag-

ing the “wisdom of the crowd” in order to assert correspondences. Getting the assertion

feedback by expert(s) can be expensive and time consuming. Especially with a large

number of schemas and (possible) connections between them, the validation task would

require an extreme effort. Addressing this problem, this chapter demonstrates the use

of crowdsourcing for reconciling a schema matching network. In that, we employ a

large number of online users, so called crowd workers, to assert the correspondences by

answering validation questions. With the advent of crowdsourcing platforms such as

Amazon Mechanical Turk and CloudCrowd, it has become faster and cheaper to acquire

the assertions from several crowd workers in a short amount of time.

Crowdsourcing techniques have been successfully applied for several data manage-

ment problems, for example in CrowdSearch [YK10] or CrowdScreen [PGMP+12]. Mc-

Cann et al. [MSD08] have already applied crowdsourcing methods for schema matching.

In their work, they focused on matching a pair of schemas, but their methods are not

directly applicable for the matching network that is our main interest. On top of such

networks, we exploit the relations between correspondences to define the network-level

integrity constraints. Leveraging these constraints opens up several opportunities to not

only guide the crowd workers effectively but also reduce the necessary human efforts

significantly.

The main takeaways of this chapter are as follows. First of all, we develop a crowd-

sourcing framework built on top of the schema matching network. Secondly, we design

questions presented to the crowd workers in a systematic way. In our design, we focus on

providing contextual information for the questions, especially the transitivity relations

between correspondences. The aim of this contextual information is to reduce question

ambiguity such that workers can answer more rapidly and accurately. Finally, we design

an aggregation mechanism to combine the answers from multiple crowd workers. In par-

ticular, we study how to aggregate answers in the presence of integrity constraints. Our

97

6. Crowdsourced Reconciliation

theoretical and empirical results show that by harnessing the network-level constraints,

the worker effort can be lowered considerably.

The outline of the chapter is given as follows. We first present an overview of our

framework in Section 6.2. In Section 6.3, we describe how to design the questions

that should be presented to crowd workers. In Section 6.4, we formulate the problem

of aggregating the answers obtained from multiple workers and clarify our aggregate

methods that exploit the presence of integrity constraints. In Section 6.5, we show how

to evaluate and control the worker quality, given that the crowd workers have wide-

ranging levels of expertise. Section 6.6 presents experimental results, while Section 6.7

concludes the chapter.

6.2 Model and Overview

The crowdsourced reconciliation process starts with a schema matching network that is

constructed by automatic matchers, as described in Chapter 3. To validate the gener-

ated correspondences, we employ workers from the crowd to answer validation questions

(i.e. in each question, a worker will decide whether a given correspondence is valid or

not). Due to low hiring cost, crowd workers cannot be expected to have high expertise

and domain-specific knowledge; and thus, their answers are not fully reliable. Letting

the workers answer the same questions and aggregating their answers is a natural way

to minimize the errors. In other words, each correspondence is validated by different

workers and each worker validates many correspondences in his work (of course, each

worker answers a question only once).

3

User Corr Answer

u1 c1 True

u2 c1 True

u3 c1 False

… c2 …

Workers

Corr Aggr Error
Rate

c1 True 0.067

c2 False 0.12

Corr Decision

c1 True

c2 …

Selection Condition 0.1

Question Builder

Answer Aggregation

1

2

3 4

5

C

Figure 6.1: Architecture of the crowdsourced reconciliation framework

For realizing this process, we propose the framework as depicted in Figure 6.1. The

input to our framework is a set of correspondences C. These correspondences are fetched

to Question Builder component to generate questions presented to crowd workers. A

worker’s answer is the validation of worker ui on a particular correspondence cj ∈ C,

denoted as a tuple 〈ui, cj , a〉, where a is the answer of worker ui on correspondence cj .

Domain values of a are {true, false}, where true/false indicates cj is approved/dis-

approved. In general, the answers from crowd workers might be incorrect. There are

several reasons for this, such as the workers might misunderstand their tasks, they may

accidentally make errors, or they simply do not know the answers. To cope with the

problem of possibly incorrect answers, we need aggregation mechanisms, realized in the

98

6.3 Question Design

Answer Aggregation component. We adopt probabilistic aggregation techniques. We

estimate the quality of the aggregated value by comparing the answers from different

workers. The aggregated result of a correspondence is a tuple 〈ac, e〉, where ac is the

aggregated value, e is the error rate of aggregation. If the error rate e is greater than a

pre-defined threshold ε, we continue to fetch c into Question Builder to ask workers for

more answers. Otherwise, we make the decision ac for the given correspondence. This

process is repeated until the halting condition is satisfied. In our framework, the halting

condition is that all correspondences are decided.

In our setting, it is reasonable to assume that there is an objective ground truth,

i.e., there exists a single definitive matching result that is external to human judgment.

However, this truth is hidden and no worker knows it completely. Therefore, we leverage

the wisdom of the crowd in order to approximate the hidden ground truth (with the help

of our aggregation techniques). However, approximating the ground truth with limited

budget raises several challenges: (1) How to design the questions for effective answers?

(2) How to make aggregation decision based on the answers from workers? (3) How

to reduce the number of questions with a given quality requirement? In the following

sections, we will address these challenges.

6.3 Question Design

In this section, we demonstrate how to design questions using the set of candidate

correspondences. Generally, a question is generated with 3 elements: (1) Object, (2)

Possible answers and (3) Contextual information. In our system, the object of a question

is an attribute correspondence. The possible answers which a worker can provide are

either true (approve) or false (disapprove). The last element is contextual information,

which plays a very important role in helping workers answer the question more easily. It

provides a meaningful context to make the question more understandable. In our work,

we have used three kinds of contextual information:

• All alternative targets: We show a full list of candidate targets generated by

matching tools. By examining all possible targets together, workers can better

judge whether the given correspondence is correct or not as opposed to evaluating

a single value correspondence. Figure 6.2(A) gives an example of this design.

• Transitive closure: We do not only display all alternatives, but also the tran-

sitive closure of correspondences. The goal of displaying the transitive clo-

sure is to provide a context that shall help workers to resolve the ambiguity,

when otherwise these alternatives are hard to distinguish. For example, in Fig-

ure 6.2(B), workers might not be able to decide which one of two attributes

DVDizzy.productionDate and DVDizzy.availabilityDate corresponds to the attribute

Eoverl.releaseDate. Thanks to the transitive closure DVDizzy.availabilityDate →
BBC.screeningDate → Eoverl.releaseDate, workers can confidently confirm the cor-

rectness of the match between Eoverl.releaseDate and DVDizzy.availabilityDate.

99

6. Crowdsourced Reconciliation

Demo Scenarios

Does attribute releaseDatematch attribute availabilityDate?
 Yes No

EoverI DVDizzy

availabilityDate

releaseDate

productionDate

EoverI

BBC

DVDizzy

productionDate

releaseDate
availabilityDate

screeningDate

Contextual
Information

Question

(A) (B) (C)

Does EoverI.releaseDate match DVDizzy. availabilityDate?
 Yes No

Does EoverI.releaseDate match DVDizzy.productionDate?
 Yes No

EoverI

BBC

DVDizzy

availabilityDate

screeningDate

releaseDate

productionDate

Figure 6.2: Question designs with 3 different contextual information: (A) All alternative targets, (B)
Transitive closure, (C) Transitive violation.

• Transitive violation: In contrast to transitive closure, this design sup-

ports a worker to identify incorrect correspondences. Besides all alterna-

tives, the contextual information contains a cycle of correspondences that

connects two different attributes of the same schema. For instance, in

Figure 6.2(C), workers might find it difficult to choose the right target

among DVDizzy.productionDate, DVDizzy.availabilityDate for Eoverl.releaseDate.

The transitive violation DVDizzy.availabilityDate → BBC.screeningDate →
Eoverl.releaseDate → DVDizzy.productionDate is the evidence that helps worker

to reject the match between Eoverl.releaseDate and DVDizzy.productionDate.

Comparing to the question generating and posting strategy presented in [MSD08],

our question design is more general. In our approach, both the pairwise information

(i.e., data value and all alternatives) and the network-level contextual information (i.e.,

transitive closure and transitive violation) are displayed to help the workers to answer

the question more effectively. To evaluate the effectiveness of the question design, we

conducted some experiments in section 6.6. It turned out that the contextual information

proposed as above is critical. Having the contextual information at hand, the workers

were able to answer the questions faster and more accurately. Subsequently, the total

cost could be substantially reduced since the payment for each task can be decreased

[vA09].

6.4 Answer Aggregation

In this section we explain our aggregation techniques. After posting questions to crowd

workers (as explained in Section 6.3), for each correspondence c ∈ C, we collect a set

of answers πc (from different workers) in which each element could be true(approve) or

false(disapprove). The goal of aggregation is to obtain the aggregated value ac as well

as estimate the probability that ac is incorrect. This probability is also called the error

rate of the aggregation ec.

In order to compute the aggregated value ac and error rate ec, we first derive the prob-

ability of possible aggregations Pr(Xc). In that, Xc is a random variable of aggregated

values of c and domain values of Xc is {true, false}. This value refers to the ground

truth, however that is hidden from us, thus we try to estimate this probability with the

help of aggregation methods. There are several techniques proposed in the literature to

100

6.4 Answer Aggregation

compute this probability such as majority voting [vA09] and expectation maximization

(EM) [DS79]. While majority voting aggregates each correspondence independently, the

EM method aggregates all correspondences simultaneously. More precisely, the input of

majority voting is the worker answers πc for a particular correspondence c, whereas the

input of EM is the worker answers π =
⋃
c∈C πc for all correspondences.

In this paper, we use EM as the main aggregation method to compute the probability

Pr(Xc). The EM method differs from majority voting in considering the quality of

workers, which is estimated by comparing the answers of each worker against other

workers answers. More precisely, the EM method uses maximum likelihood estimation

to infer the aggregated value of each correspondence and measure the quality of that

value. The reason behind this choice is that the EM model is quite effective for labeling

tasks and robust to noisy workers [SP08].

6.4.1 Aggregating Without Constraints

After deriving the probability Pr(Xc) for each correspondence c ∈ C, we will compute

the aggregation decision 〈ac, ec〉 = gπ(c), where ac is the aggregated value and ec is the

error rate. The aggregation of this decision is formulated as follows:

gπ(c) =

{
〈true, 1− Pr(Xc = true)〉 If Pr(Xc = true) ≥ 0.5
〈false, 1− Pr(Xc = false)〉 Otherwise

(6.1)

In equation 6.1, the error rate is the probability of making wrong decision. In order

to reduce error rate, we need to reduce the uncertainty of Xc (i.e., entropy value H(Xc)).

If the entropy H(Xc) is close to 0, the error rate is closed to 0. For the experiments

described in section 6.6, in order to achieve lower error rate, we need to ask more

questions. However, with given requirements of low error rate, the monetary cost is

limited and needs to be reduced. In next section, we will leverage the constraints to

solve this problem.

6.4.2 Leveraging Constraints to Reduce Error Rate

From many studies in the literature [IPW10, PGMP+12], it has been shown that to

achieve lower error rate, more answers are needed. This is, in fact, the trade-off between

the cost and the accuracy[YK10]. The higher curve of Figure 6.3 depicts empirically a

general case of this trade-off.

-0.1
0

0.1
0.2
0.3
0.4

1 7 13 19 25 31 37 43 49

Er
ro

r R
at

e

Gap between 'yes' and 'no' answers

r = 0.6 r = 0.7 r = 0.8

0

0.1

0.2

0.3

0.4

1 11 21 31 41 51
#Answers

0

0.1

0.2

0.3

0.4

1 4 7 10 13 16

Er
ro

r R
at

e

Gap between 'yes' and 'no' answers

0

0.1

0.2

0.3

0.4

1 11 21 31 41 51

Er
ro

r R
at

e

#Answers

In
cr

ea
se

 E
rr

or
 R

at
e

Increase #Answers

Without constraint

Goal

Figure 6.3: Optimization goal

101

6. Crowdsourced Reconciliation

We want to go beyond this trade-off by lowering this curve as much as possible.

When the curve is lower, with the same error rate, the number of answers is smaller. In

other words, with the same number of answers, the error rate is smaller. To achieve this

goal, we leverage the network-level consistency constraints, they enable us to improve the

error rate, for a given number of answers. In the following, we will show how to exploit

these constraints and how can we aggregate the values. We do not detail here how to

efficiently compute these probabilities. There exists methods that enable to compute

the probabilities fast enough, such that the reduction methods can be used “real-time”.

6.4.2.1 Aggregating with Constraints

In section 6.4.1, we already formulate the answer aggregation. Now we leverage con-

straints to adjust the error rate of the aggregation decision. More precisely, we show

that by using constraints, we need fewer answers to obtain an aggregated result with the

same error rate. In other words, given the same answer set on a certain correspondence,

the error rate of aggregation with constraint is lower than the one without constraint.

We consider very natural constraints that we assume to hold; in other words we assume

that these are hard constraints.

Given the aggregation gπ(c) of a correspondence c, we compute the justified ag-

gregation gγπ(c) when taking into account the constraint γ. The aggregation gγπ(c) is

obtained similarly to equation 6.1, except that the probability Pr(Xc) is replaced by the

conditional probability Pr(Xc|γ) when the constraint γ holds. Formally,

gγπ(c) =

{
〈true, 1− Pr(Xc = true|γ)〉 If Pr(Xc = true|γ) ≥ 0.5
〈false, 1− Pr(Xc = false|γ)〉 Otherwise

(6.2)

In the following, we describe how to compute Pr(Xc|γ) with 1-1 constraint and cycle

constraint. Then, we show why the effect of constraints can reduce the error rate. We

leave the investigation of other types of constraints as an interesting future work.

6.4.2.2 Aggregating with 1-1 Constraint

Our approach is based on the intuition illustrated in Figure 6.4(A), depicting two corre-

spondences c1 and c2 with the same source attribute. After receiving the answer set from

workers and applying the probabilistic model (section 6.4.1), we obtained the probability

Pr(Xc1 = true) = 0.8 and Pr(Xc2 = false) = 0.5. When considering c2 independently,

it is hard to conclude c2 being approved or disapproved. However, when taking into

account c1 and 1-1 constraint, c2 tends to be disapproved since c1 and c2 cannot be ap-

proved simultaneously. Indeed, following probability theory, the conditional probability

Pr(Xc2 = false|γ1−1) ≈ 0.83 > Pr(Xc2 = false).

In what follows, we will formulate 1-1 constraint in terms of probability and then

show how to compute the conditional probability Pr(Xc|γ1−1).

Formulating 1-1 constraint. Given a matching between two schemas, let us have

a set of correspondences {c0, c1, . . . , ck} that share a common source attribute. With

102

6.4 Answer Aggregation

Pr 0.8

0.5

c1 c2 Prob
T T 0.4 Δ
T F 0.4 1.0
F T 0.1 1.0
F F 0.1 1.0

0.4 0.1
Δ 0.4 0.4 0.1 0.1

c1 c2 c3 Prob ↻
T T T 0.32 1.0
T T F 0.32 0.0
T F T 0.08 0.0
T F F 0.08 Δ
F T T 0.08 0.0
F T F 0.08 Δ
F F T 0.02 Δ
F F F 0.02 Δ

↻
0.32 Δ 0.02

0.32 2 Δ 0.08 2 Δ 0.02
0.9 with Δ 0.2

(A) (B)

0.83 with Δ 0

Pr 0.8
Pr 0.8
Pr 0.5

S1

S3

S2

c1

c2 c3

S Tc1

c2

Figure 6.4: Compute conditional probability with (A) 1-1 constraint and (B) cycle constraint

respect to 1-1 constraint definition, there is at most one ci is approved (i.e., Xci = true).

However there are some exceptions where this constraint does not hold. For instance,

the attribute name might be matched with firstname and lastname. But these cases

only happen with low probability. In order to capture this observation, we formulate 1-1

constraint as follows:

Pr(γ1−1 |Xc0 , Xc1 , . . . , Xck) =

{
1 If m ≤ 1
∆ ∈ [0, 1] If m > 1

(6.3)

where m is the number of Xci assigned as true. When ∆ = 0, there is no constraint

exception. In general, ∆ is close to 0. An approximated value of ∆ can be obtained

through statistical model [CMAF06a].

Computing conditional probability. Given the same set of correspondence {c0, c1, . . . , ck}
above, let us denote pi as Pr(Xci = true) for short. Without loss of generality, we con-

sider c0 to be the favourite correspondence whose probability p0 is obtained from the

worker answers. Using the Bayesian theorem and equation 6.3, the conditional proba-

bility of correspondence c0 with 1-1 constraint γ1−1 is computed as:

Pr(Xc0 = true|γ1−1) =
Pr(γ1−1|Xc0 = true)× Pr(Xc0 = true)

Pr(γ1−1)
=

(x+ ∆(1− x))× p0

y + ∆(1− y)
(6.4)

where x =
∏k
i=1 (1− pi)

y =
∏k
i=0 (1− pi) +

∑k
i=0 [pi

∏k
j=0,j 6=i (1− pj)]

x can be interpreted as the probability of the case where all other correspondences ex-

cept c being disapproved. y can be interpreted as the probability of the case where

all correspondences being disapproved or only one of them being disapproved. The

precise derivation of equation eq. (6.4) is given as follows. According to Bayes the-

orem, Pr(Xc0 |γ1−1) =
Pr(γ1−1|Xc0)×Pr(Xc0)

Pr(γ1−1) . Now we need to compute Pr(γ1−1) and

Pr(γ1−1|Xc0). Let denote pi = Pr(Xci = true), for short. In order to compute Pr(γ1−1),

we do following steps: (1) express Pr(γ1−1) as the sum from the full joint of γ1−1,

c0, c1, . . . , ck, (2) express the joint as a product of conditionals. Formally, we have:

103

6. Crowdsourced Reconciliation

Pr(γ1−1) =
∑

c0,c1,...,ck
Pr(γ1−1, Xc0 , Xc1 , . . . , Xck)

=
∑
Pr(γ1−1|Xc0 , Xc1 , . . . , Xck)× Pr(Xc0 , Xc1 , . . . , Xck)

= 1× Pr(Xc0 , Xc1 , . . . , Xck |m(Xc0 , Xc1 , . . . , Xck) ≤ 1)
+ ∆× Pr(Xc0 , Xc1 , . . . , Xck |m(Xc0 , Xc1 , . . . , Xck) > 1)
= y + ∆× (1− y)

where m is function counting the number of Xci assigned as true

y =
∏k
i=0 (1− pi) +

∑k
i=0 [pi

∏k
j=0,j 6=i (1− pj)]

Similar to computing Pr(γ1−1), we also express Pr(γ1−1|Xc0) as the sum from the

full joint of γ1−1, c1, . . . , ck and then express the joint as a product of conditionals. After

these steps, we have Pr(γ1−1|Xc0 = true) = x + ∆ × (1 − x), where x =
∏k
i=1 (1− pi).

After having Pr(γ1−1) and Pr(γ1−1|Xc0), we can compute Pr(Xc0 |γ1−1) as in equation

6.4.

Theorem 2. The conditional probability of a correspondence c being false with 1-1 con-

straint is less than or equal to the probability of c being false without constraint. Formally,

Pr(Xc = false|γ1−1) ≥ Pr(Xc = false).

Proof. From equation 6.4, we can rewritten y = x +
∑k

i=1 [pi
∏k
j=0,j 6=i (1− pj)]. Since∑k

i=1 [pi
∏k
j=0,j 6=i (1− pj)] ≥ 0 and ∆ ≤ 1, we have x + ∆(1 − x) ≤ y + ∆(1 − y).

Following this inequality and equation 6.4, we conclude Pr(Xc = true|γ1−1) ≤ Pr(Xc =

true)⇔ Pr(Xc = false|γ1−1) ≥ Pr(Xc = false).

From this theorem, we conclude that the error rate is reduced only when the ag-

gregated value is false. From equation 6.1 and 6.2, the error rate with 1-1 constraint

(i.e. 1 − Pr(Xc = false|γ1−1)) is less than or equal to the one without constraint (i.e.

1−Pr(Xc = false)). In other words, the 1-1 constraint supports reducing the error rate

when the aggregated value is false.

6.4.2.3 Aggregating with Cycle Constraint

Figure 6.4(B) depicts an example of cycle constraint for three correspondences c1, c2,

c3. After receiving the answer set from workers and applying probabilistic model (sec-

tion 6.4.1), we obtained the probability Pr(Xc1 = true) = Pr(Xc2 = true) = 0.8

and Pr(Xc3 = true) = 0.5. When considering c3 independently, it is hard to con-

clude c3 being true or false. However, when taking into account c1, c2 under the

cycle constraint, c3 tends to be true since the cycle created by c1, c2, c3 shows an

interoperability. Therefore, following probability theory, the conditional probability

Pr(Xc3 = true|γ1−1) ≈ 0.9 > Pr(Xc3 = true). In the following we will formulate

cycle constraint in terms of probability and then show how to compute the conditional

probability Pr(Xc|γ�).

104

6.4 Answer Aggregation

Formulating cycle constraint. Following the notion of cyclic mappings in [CMAF06a],

we formulate the conditional probability of a cycle as follows:

Pr(γ�|Xc0 , Xc1 , . . . , Xck) =

1 If m = k + 1
0 If m = k
∆ If m < k

(6.5)

where m is the number of Xci assigned as true and ∆ is the probability of compensating

errors along the cycle (i.e., two or more incorrect assignment resulting in a correct

reformation).

Computing conditional probability. Given a closed cycle along c0, c1, . . . , ck, let

denote the constraint on this circle as γ� and pi as Pr(Xci = true) for short. Without

loss of generality, we consider c0 to be the favorite correspondence whose probability

p0 is obtained by the answers of workers in the crowdsourcing process. Following the

Bayesian theorem and equation 6.5, the conditional probability of correspondence c0

with circle constraint is computed as:

Pr(Xc0 = true|γ�) =
Pr(γ�|Xc0 = true)× Pr(Xc0 = true)

Pr(γ�)
=

(
∏k
i=1 (pi) + ∆(1− x))× po∏k

i=0 (pi) + ∆(1− y)
(6.6)

where x =
∏k
i=1 (pi) +

∑k
i=1 [(1− pi)

∏k
j=1,j 6=i pj]

y =
∏k
i=0 (pi) +

∑k
i=0 [(1− pi)

∏k
j=0,j 6=i pj]

x can be interpreted as the probability of the case where only one correspondence

among c1, . . . , ck except c0 is disapproved. y can be interpreted as the probability of

the case where only one correspondence among c0, c1, . . . , ck is disapproved. The de-

tail derivation of equation 6.6 is given as follows. According to Bayesian theorem,

Pr(Xc0 |γ�) =
Pr(γ�|Xc0)×Pr(Xc0)

Pr(γ�) . In order to compute Pr(γ�|Xc0) and Pr(γ�), we

also express Pr(γ�|Xc0) as the sum from the full joint of γ1−1, c0, c1, . . . , ck and then

express the joint as a product of conditionals. After some transformations, we can obtain

equation 6.6.

Theorem 3. Given a correspondence c together with other correspondences c1, . . . , ck

creating a closed cycle γ� = {c0, c1, . . . , ck}, the conditional probability Pr(Xc = true|γ�)

is greater than or equal to the probability Pr(Xc = true), Pr(Xc = true|γ�) ≥ Pr(Xc =

true) if 1
∆ ≥

∑k
i=1

1−pi
pi

.

Proof. After some transformations, we can derive Pr(Xc = true|γ�) ≥ Pr(Xc = true)

is equivalent to (1 − p0)
∏k

1 pi ≥ ∆(x − y). Moreover, we have x − y = (1 −
p0)
∑k

i=1 [(1− pi)
∏k
j=1,j 6=i pj]. Therefore, we conclude Pr(Xc = true|γ�) ≥ Pr(Xc =

false) if 1
∆ ≥

∑k
i=1

1−pi
pi

.

Note that the condition of ∆ is often satisfied since ∆ closed to 0 and pi closed to 1.

From this theorem, we conclude that the error rate is reduced only when the aggregated

105

6. Crowdsourced Reconciliation

value is true. With an appropriately chosen ∆, in equation 6.1 and 6.2, the error rate

with cycle constraint (i.e. 1−Pr(Xc = true|γ�)) is less than or equal to the one without

constraint (i.e. 1− Pr(Xc = true)). In other words, circle constraint supports reducing

the error rate when the aggregated value is true.

6.4.2.4 Aggregating with Multiple Constraints

In general settings, we could have a finite set of constraints Γ = {γ1, . . . , γn}. Let denote

the aggregation with a constraint γi ∈ Γ is gγiπ (c) = 〈aic, eic〉, whereas the aggregation

without any constraint is simply written as gπ(c) = 〈ac, ec〉. Since the constraints are

different, not only could the aggregated value aic be different (aic 6= ajc) but also the error

rate eic could be different (eic 6= ejc). In order to reach a single decision, the challenge

then becomes how to define the multiple-constraint aggregation gΓ
π (c) as a combination

of single-constraint aggregations gγiπ (c).

Since the role of constraints is to support reducing the error rate and the aggregation

gπ(c) is the base decision, we compute the multiple-constraint aggregation as gΓ
π (c) =

〈ac, eΓ
c 〉, where eΓ = min({eic|aic = ac} ∪ ec). We take the minimum of error rates in

order to emphasize the importance of integrity constraints, which is the focus of this

work. Therefore, the error rate of the final aggregated value is reduced by harnessing

constraints. For the experiments with real datasets described in the next section, we will

show that this aggregation reduces half of worker efforts while preserving the quality of

aggregated results.

6.5 Worker Assessment

It is important to assess the quality of workers in the crowd. Indeed, a major drawback

of crowdsourcing paradigm is that the degree of accuracy of the crowdsourced results is

often low. This low accuracy is directly inherited from the crowd, since the crowd workers

usually come from a diverse labor pool of genuine experts, novices, and spammers. To

improve the overall quality of crowdsourced reconciliation, it is essential to assess the

worker expertise and control the validation feedbacks. Worker assessment is important,

especially for crowdsourcing marketplaces, in quality management tasks such as profiling

worker performance and filtering high-quality works. Addressing this requirement, the

state-of-the-art research focuses on two key issues: (i) detecting spammers (i.e. low-

quality workers) in the crowd, and (ii) detecting the dependency between workers. In

this section, we discuss the details of these issues and propose some estimation methods.

6.5.1 Detect Spammers

In general, a spammer is a low quality worker who gives random answers. Spammers

always exist in online communities, especially in crowdsourcing. Many experiments

[VdVE11, DDCM12] showed that the proportion of spammers in the crowd could be up

to 40%. There are some situations that the validation data are dominated by spammers,

thus leading to false-positive and false-negative results. Spammers can significantly

106

6.5 Worker Assessment

increase the cost (since they need to be paid) and at the same time decrease the accuracy

of final aggregated results.

A mechanism to detect and eliminate spammes is a desirable feature for any crowd-

sourcing application. Once spammers are detected, we can greatly improve the result

accuracy (e.g. reject the answers of spammers). In the following, we propose three such

mechanisms to detect spammers.

Detect by trapping questions. We use a set of trapping questions whose true answer

is already known to test the expertise of workers. Workers who fail to answer a specified

number of trapping questions are neglected as spammers and removed. Specifically, the

trapping questions can be used in two schemes:

• Pre-processing: we ask workers to answer n trapping questions in advance. For

a worker, denote k is the number of trapping questions he answers correctly. His

reliability is measured as the ratio k/n. Then we define a reliability threshold α.

If k/n < α, the associated worker will be evaluated as a spammer. Nonetheless,

one disadvantage of this scheme is that since the spammers already know they are

tested, they can work honestly to bypass the test.

• Random injection: the trapping questions are injected randomly into the question

set. The reliability of workers is still evaluated as above and the spammers are

filtered out by a pre-defined reliability threshold. The advantage of this scheme is

that the spammers are not prepared for being tested. However, this scheme would

incur more cost as we might still have to pay for the trapping questions.

Detect by thresholding. Sometimes the trapping questions are not available for

detecting spammers; e.g. even the requester does not know the ground truth. We

need an algorithm that detects the spammers based only on the crowd itself. More

specifically, we define a scalar metric, called reliability, to represent the expertise of

workers. Spamers have a reliability close to zero and the good workers have a reiliability

close to one. Since the same question is answered by multiple workers and a worker

answers multiple questions, we can use the answers of good workers to eliminate those

of spammers. The core idea is that spammers often give answers different to all of the

others; and thus, their reliability will be reduced while the others’ increases.

We leverage the results of aggregation techniques to realize our algorithm. Most of

answer aggregation techniques return the reliability of each worker, beside the aggre-

gated answer and error rate of each question [NNTLNA13]. However, they do not have

a mechanism to explicitly detect spammers. To overcome this limitation, we devise such

a mechanism by iteratively thresholding on the worker reliability. Particularly, we elim-

inate the workers with reliability less than pre-defined threshold (e.g. 0.1), re-estimate

the reliability of remaining workers, and repeat this procedure until no further spammer

is removed.

107

6. Crowdsourced Reconciliation

Detect by integrity constraints. We can further refine the reliability of a worker via

the integrity constraints. So far we have assumed that these constraints are of paramount

importance to control the quality of schema matching networks. As aforementioned in

Section 4.3.2, we can detect constraint violations in the input of any worker. Based

on this detection, spammers can be treated as ones who have more than a pre-define

numbers of violations or ones who have distinctly more violations than other workers.

For brevity sake, we omit the formal details of this mechanism.

6.5.2 Detect Worker Dependency

Another issue of worker assessment is that the crowd workers might be dependent (i.e.

ones copy the answers from others). There are many reasons for this phenomenon (e.g.

workers collaborate to bypass the system or the accounts of good workers are hacked),

but investigating these reasons further is out of the scope of this work. In the presence of

dependency, the final aggregated decision would be compromised since false answers may

be duplicated and dominate the result. In order to increase the quality of crowdsourced

reconciliation, it is essential to determine the dependency between workers. Knowing

the dependency between workers can help to aggregate the worker answers better, e.g.

by eliminating the copied answers.

Example 13. Consider five workers w1, w2, w3, w4, w5 validating a correspondence

whose correct answer is yes. Assume w4 and w5 copy from w3. The answers of five

workers are {yes, yes, no, no, no} respectively. Without knowing the dependence between

workers, the aggregated answer is no (w.r.t. majority voting). If we can detect this de-

pendence and eliminate w4 and w5, the aggregated answer is yes (w.r.t majority voting).

It is challenging to identify the dependency between workers correctly. Indeed, if

two workers, for instance, are falsely identified as dependent, the aggregated decision

could be altered if we remove one of them. Naively comparing their answers one by

one to measure the dependence between them is not adequate. In practice, there are

several scenarios that make the dependency detection challenging, including (i) incident

dependency – two honest workers independently provide all the same (true) answers but

falsely identify as dependent, (ii) partial dependence – a worker only copies a subset of

answers of another worker (or combine from many), and (iii) correlated information –

some correspondences are highly correlated due to integrity constraints thus giving the

same false answers for these correspondences should be considered as more dependent.

There are many estimation methods to translate these scenarios of worker dependency

into probabilities. In the following, we attempt to model the problem with preliminary

ideas.

Probability of dependence between two workers. Let W is a set of crowd workers

who participate in the crowdsourced reconciliation. Given two workers w1, w2 ∈ W , we

denote w1 ∼ w2 as the case two workers w1 and w2 are dependent and denote w1 ⊥ w2

otherwise. Among all answers of the two workers, we are interested in three sets of

108

6.5 Worker Assessment

answers: At denotes the set of true answers both w1 and w2 provide, Af denotes the set

of false answers both w1 and w2 provides, and Ad denotes the set of answers on which

w1 and w2 provide different values. Denote A = At ∪ Ad ∪ Af , which is also the union

of all answers of w1 and w2. We apply Bayesian theory to compute the probability that

w1 and w2 are dependent given their answers:

Pr(w1 ∼ w2|A) =
Pr(A|w1 ∼ w2)Pr(w1 ∼ w2)

Pr(A|w1 ∼ w2)Pr(w1 ∼ w2) + Pr(A|w1 ⊥ w2)Pr(w1 ⊥ w2)
(6.7)

where α = Pr(w1 ∼ w2) = 1− Pr(w1 ⊥ w2) (0 < α < 1) is the a-priori probability that

two workers are dependent. Now we need to compute the two probabilities Pr(A|w1 ∼
w2) and Pr(A|w1 ⊥ w2). To do so, we denote r (0 ≤ r ≤ 1) as the probability that an

independently provided answer is true.

For the sake of simplicity, we assume that all correspondences are independent and

a copying worker copies all the answers of the copied worker. The probability of the

answer set A = At ∪ Af ∪ Ad has |At| = kt true answers, |Af | = kf false answers, and

|Ad| = kd different answers, given that w1 and w2 are independent, is:

Pr(A|w1 ⊥ w2) = r2kt(1− r)2kf (2(1− r))kdrkd (6.8)

Similarly, the probability of the answer set A = At ∪ Af ∪ Ad has |At| = kt true

answers, |Af | = kf false answers, and |Ad| = kd different answers, given that w1 and w2

are dependent, is:

Pr(A|w1 ∼ w2) = rkt(1− r)kf (6.9)

Put it altogether, we have a concrete calculation of eq. (6.7) as follows.

Pr(w1 ∼ w2|A) =

(
1 + (

1− α
α

)rkt(1− r)kf (2(1− r))kdrkd
)−1

(6.10)

This equation captures several intuitions we expect in practice. For example, when

there is no different answer (kd = 0) and the number of same false answers increases (kf

increases), the probability that two workers are dependent increases. This is because

two independent workers rarely give all the same incorrect answers.

Probability of dependence with integrity constraints. Using integrity constraints

can further refine the probability of dependence above. Given the answer set A = At ∪
Af ∪Ad of two workers w1 and w2, we detect all constraint violations V = {v1, . . . , vn},
each of which involves a set of approved correspondences (whose answers are yes). In

our model, we assume that each violation contributes +1 to the number of incorrect

answers both given by two workers (and equivalently, contributes −1 to the number of

correct answers given by both workers); i.e. |At| ← |At| − |V | and |Af | ← |Af | + |V |.
Formally, we have an adjusted formula for the probability in eq. (6.10).

Pr(w1 ∼ w2|A) =

(
1 + (

1− α
α

)rkt−|V |(1− r)kf+|V |(2(1− r))kdrkd
)−1

(6.11)

109

6. Crowdsourced Reconciliation

Answer aggregation with worker dependency. After obtaining the probabilities

of any two workers are dependent given the answer set of all workers, we integrate this

information to answer aggregation in the following. For each pair of workers w1 and w2,

we compute Pr(w1 ∼ w2|A). If this probability is greater than a pre-defined threshold

(e.g. 0.8), we consider they are dependent. We model this dependency relationship as

a graph G = (W,E) where each node of W is a worker and each edge (wi, wj) ∈ E

indicates the dependency between two workers wi and wj . To obtain an answer set

without dependency, we have to remove some nodes such that the remaining graph has

no edge. Since crowd answers are invaluable and costly information (we pay for each

answer), we aim to retain the number of workers as many as possible. This objective

is equivalent to the Maximum Independent Set problem. For brevity sake, we simply

apply well-known algorithms for this problem in literature [HR97, Rob86].

6.6 Experiments

The main goal of the following evaluation is to analyze the use of crowdsourcing tech-

niques for schema matching networks. To verify the effectiveness of our approach, four

experiments are performed: (i) effects of contextual information on reducing question

ambiguity, (ii) relationship between the error rate and the matching accuracy, (iii) effects

of the constraints on worker effort, and (iv) effects of constraints on detecting worker de-

pendency. We proceed to report the results on the real datasets using both real workers

and simulated workers.

6.6.1 Experimental Settings

We use the same datasets and tools as in Section 3.6. To simulate workers, we assume

that the ground truth is known in advance (i.e. the ground truth is known for the

experimenter, but not for the (simulated) crowd worker). Each simulated worker is

associated with a pre-defined reliability r that is the probability of his answer being

correct against the ground truth.

6.6.2 Effects of Contextual Information

In this experiment, we select 25 correct correspondences (i.e., exist in ground truth) and

25 incorrect correspondences (i.e., do not exist in ground truth). For each correspon-

dence, we ask 30 workers (Bachelor students) with three different contextual information

elements: (a) all alternatives, (b) transitive closure, (c) transitive violation. Then, we

collect the worker answers for each correspondence.

Figure 6.5 presents the result of this experiment. The worker answers of each case

are presented by a collection of ‘x’ and ‘o’ points in the plots. In that, ’o’ points indicate

correspondences that exist in ground truth, whereas ‘x’ points indicate correspondences

that do not exist in ground truth. For a specific point, X-value and Y-value are the

110

6.6 Experiments

0

10

20

30

0 10 20 30

#
D

is
ap

p
ro

va
ls

(a)

0

10

20

30

0 10 20 30
#Approvals

(b)

0

10

20

30

0 10 20 30

(c)

Figure 6.5: Effects of contextual information. (a) all alternatives, (b) transitive closure, (c) transitive
violation

number of workers approving and disapproving the associated correspondences, respec-

tively. Therefore, we expect that the ‘o’ points are placed at the right-bottom of the

coordinate plane, while the ‘x’ points stay at the left-top of the coordinate plane.

Comparing Figure 6.5(b) with Figure 6.5(a) , the ‘o’ points tend to move down to the

bottom-right of the baseline (# ‘approve’ answers increases and # ‘disapprove’ answers

decreases). Whereas, the movement of the ‘x’ points is not intensive. This can be

interpreted that presenting the transitive closure context help workers to give feedback

more exactly but also make them misjudge the incorrect correspondences.

In order to study the effects of transitive violation, we compare Figure 6.5(c) with Fig-

ure 6.5(a). Intuitively, the ‘x’ points move distinctly toward the top-left of the baseline,

while the position of ‘o’ points keeps stable. This observation indicates that transitive

violations help workers identify the incorrect correspondences, in contrast to the effect

of transitive satisfactions mentioned above.

Since in real settings the ground truth is not known before-hand, we cannot choose

appropriate design type for each question. Following the principle of maximum entropy,

in order not to favour any of the design types, we design each question in type (b) and

(c) with probability of 0.5. In case the given correspondence is not involved in any

transitive satisfaction and violation, we design its question in type (a).

6.6.3 Relationship between Error Rate and Matching Accuracy

In order to assess the matching accuracy, we borrow the precision metric from infor-

mation retrieval, which is the ratio of (true) correspondences existing in ground truth

among all correspondences whose aggregated value is true. However, the ground truth is

not known in general. Therefore, we use an indirect metric—error rate—to estimate the

matching quality. We expect that the lower error rate, the higher quality of matching

results.

The following empirical results aim to validate this hypothesis. We conduct the

experiment with a population of 100 simulated workers and their reliability scores are

generated according to normal distribution N(0.7, 0.04). Since the purpose of this ex-

periment is to study the relationship between error rate and matching accuracy only, we

do not consider spammers and worker dependency in the crowd. Figure 6.6 depicts the

relationship of the error rate and precision. In that, we vary error threshold ε from 0.05

111

6. Crowdsourced Reconciliation

 0.6

 0.7

 0.8

 0.9

 1

0.05
0.1

0.15
0.2

0.25
0.3

P
re

ci
si

on

Error Rate

Constraint

NoConstraint

Figure 6.6: Relationship between error rate and precision

to 0.3, meaning that the questions are posted to workers until the error rate of aggre-

gated value is less than the given threshold ε. The precision is plotted as a function of

ε. We aggregate the worker answers by two strategies: without constraint and with con-

straint. Here we consider both 1-1 constraint and cycle constraint as hard constraints,

thus ∆ = 0.

The key observation is that when the error rate is decreased, the precision approaches

to 1. Reversely, when the error rate is increased, the precision is reduced but greater

than 1−ε. Another interesting finding is that when the error rate is decreased, the value

distribution of precision in case of with and without constraint is quite similar. This

indicates our method of updating the error rate is relevant.

In summary, the error rate is a good indicator of the quality of aggregated results.

Since the ground truth is hidden, our goal was to verify if the error rate is a useful

metric for matching quality. The result indicated that there was no significant difference

between the two metrics. In terms of precision, the quality value is always around 1− ε.
In other words, the error threshold ε can be used to control the real matching quality.

6.6.4 Effects of Constraints on Worker Effort

In this experiment set, we will study the effects of constraints on the expected cost in real

datasets. In Section 6.4.2, we already saw the benefit of using constraints in reducing

error rate. Therefore, with given requirement of low error, the constraints help to reduce

the number of questions (i.e., the expected cost) that need to be asked from the workers.

More precisely, given an error threshold (ε = 0.15, 0.1, 0.05), we iteratively post questions

to workers and aggregate the worker answers until the error rate is less than ε. Similar

to the above experiment, we use simulated workers with reliability r varying from 0.6

to 0.8 and we set ∆ = 0. For simplicity sake, we do not simulate spammers and worker

dependency in the worker population. The results are presented in Figure 6.7.

A significant observation in the results is that for all values of error threshold and

worker reliability, the expected cost of the aggregation with constraints is definitely

smaller (approximately a half) than the case without constraints. For example, with

worker reliability is r = 0.6 and error threshold ε = 0.1, the expected number of questions

is reduced from 31 (without constraints) to 16 (with constraints). This concludes the fact

112

6.6 Experiments

 0

 20

 40

 0.6 0.65 0.7 0.75 0.8

E
xp

ec
te

d
C

os
t

ε=0.15

 0

 20

 40

 0.6 0.65 0.7 0.75 0.8

ε=0.10

Worker Reliablity

NoConstraint Constraint

 0

 20

 40

 0.6 0.65 0.7 0.75 0.8

ε=0.05

Figure 6.7: Effects of constraints on worker effort

that the constraints help to reduce the error rate, and subsequently reduce the expected

cost.

Another key finding in Figure 6.7 is that, for both cases (using vs. not using con-

straints in the aggregation), the expected cost increases significantly as the value for

error threshold ε decreases. For example, it requires about 20 questions (without con-

straints) or 10 questions (with constraints) to satisfy error threshold ε = 0.15. Whereas,

it takes about 40 questions (without constraints) or 20 questions (with constraints) to

satisfy error threshold ε = 0.05. This result supports the fact that to reduce error rate,

we need to ask more questions.

6.6.5 Effects of Constraints on Detecting Worker Dependency

In this experiment, we would like to study the worker dependency as described in Section

6.5.2. To do so, we simulate 100 workers, 40 of which are copiers (i.e. workers who copy

answers from others). A copier is simulated by randomly choosing one of 60 independent

workers and copying all of his answers. Two workers are dependent if one copies from

another (one independent and one copier) or both of them copy from a same worker (two

copiers). There are 50 correspondences given to all workers for validation. We detect

dependence for each pair of workers and count the number of true-positive and false-

positive detections. We use F-score as metric (F-score = 2×precision×recall
precision+recall), in which the

precision is computed as the number of true-positive detections over the total number

of detections and the recall is computed as the number of true-positive detecitons over

the total pairs of dependent workers. The results are averaged over 100 runs.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

F
-s

co
re

Worker Reliability

NoConstraint
Constraint

Figure 6.8: Accuracy of detecting dependence between workers

113

6. Crowdsourced Reconciliation

Figure 6.8 illustrates the result. The X-axis is the reliability of 60 independent

workers (normal distribution with variance = 0.1), varying from 0.5 to 0.9. The Y-

axis is the F-score. Two settings are studied: (i) NoConstraint – the probability of

dependence is calculated without constraints, and (ii) Constraint – integrity constraints

are considered when computing the probability of dependence. A key observation is that

the presence of integrity constraints makes the dependency detection more accurate, from

about 37% up to about 55% of F-score. This is because the constraints help to identify

the incorrect answers that are copied across the answer set.

Another interesting finding is that although the detection accuracy goes up when

the worker reliability increases, it goes down a little bit when the worker reliability is

greater than 0.8. This is reasonable because of two reasons. First, the detection is

only useful if many incorrect answers are copied. When the worker reliability is small,

correct and incorrect answers are mixed, thus leading to misidentification between copied

answers and independent answers. Second, the detection becomes insignificant if there

are too many correct answers. Indeed, when the worker reliability is higher than 0.8,

most of the answers (both independent and copied ones) are correct and it is difficult

to identify which correct answers are copied. Moreover in practice, it is shown that the

average reliability of crowd workers (not counting spammers) is around 0.75 as surveyed

in [VdVE11]. This statistical finding supports the fact that our dependence detection

technique works well for practical applications, as the F-score is already high (nearly

0.85) with worker reliability = 0.75.

6.7 Summary

We have presented a crowdsourcing platform that is able to support reconciling a schema

matching network. The platform takes the candidate correspondences that are generated

by schema matching tools and generates questions for crowd workers. The structure of

the matching network can be exploited in many ways. First, as this is a contextual infor-

mation about the particular matching problem, it can be used to generate questions that

guide the crowd workers and help them to answer the questions more accurately. Sec-

ond, natural constraints about the attribute correspondences at the level of the network

enable to reduce the necessary efforts, as we demonstrated this through our experiments.

While our focus was to reduce the efforts in the post matching phase, we should remem-

ber that schema matchers themselves reduce the necessary work: constructing all the

correspondences manually would require significant efforts.

In our work we did not assume any formalism for the schemas. We have worked

with relational schemas and relational schema matchers, but one could have used other

formalisms e.g. ontologies (with their corresponding alignment tools). There is no lim-

itation w.r.t. the formalism for which our techniques could use, however the type of

constraints we used for reducing the necessary efforts, esp. the cycle constraint assumes

certain consistency conditions, thus it is more promising to aim effort reduction in set-

tings where such consistency conditions are relevant.

114

6.7 Summary

Our work opens up several future research directions. First, one can extend our

notion of schema matching network and consider representing more general integrity

constraints (e.g., functional dependencies or domain-specific constraints). Second, one

can devise more applications which could be transformed into the schema matching

network. While our work focuses on schema matching, our techniques, especially the

constraint-based aggregation method, can be applied to other tasks such as entity reso-

lution, business process matching, or Web service discovery.

115

6. Crowdsourced Reconciliation

116

Chapter 7
Conclusion

7.1 Summary of the Work

Using shared datasets in meaningful ways frequently requires interconnecting several

sources, i.e., one needs to construct the attribute correspondences between the concerned

schemas. The schema matching problem has, in this dissertation, a completely new

aspect: there are more than two schemas to be matched and the schemas participate in

a larger schema matching network. This network can provide contextual information to

the particular matching tasks.

Schema matching network is a novelty and the heart of this work to tackle data inte-

gration problems. There are numerous benefits derived from the notion of schema match-

ing network, opening up potential application scenarios and research directions. First, it

allows the decentralization and separation of problematic matchings, avoiding the single

point of failure such as in the mediated schema approach. Second, the schema matching

network is scalable and easily maintainable, especially when the schemas change or new

ones are added frequently. Third, it opens up a new paradigm to exchange and im-

prove the matchings between schemas by systematically detecting and eliminating the

matching inconsistencies.

In this thesis we proposed several methods for modeling and reconciling schema

matching networks. Chapter 3 formulated the concept of schema matching network and

its properties. In that, we described how to encode the most representative integrity

constraints using ASP. We then introduced a probabilistic model to measure the uncer-

tainty of a schema matching network and guide the reconciliation for reducing network

uncertainty. Last, but not least, we discussed some network modularity techniques to

decompose a schema matching network into small partitions, avoiding overwhelming for

users and speeding up the reconciliation process.

We proposed in-depth solutions for three different settings of reconciling a schema

matching network. Particularly, we focused on leveraging the human knowledge from a

single expert, multiple experts, and crowd workers.

117

7. Conclusion

• Reconciliation with single expert. A single expert was employed to validate the cor-

rectness of correspondences in a pay-as-you-go fashion. We aimed for minimizing

user efforts for the reconciliation and instantiating a single trusted set of corre-

spondences even not all necessary user input is collected. The empirical results

highlighted that the presented approach supports pay-as-you-go reconciliation. In

that, we were able to guide user feedback precisely, observing improvements of up

to 48% over the baselines. Also, we demonstrated that the approach improves the

quality of instantiated matchings significantly in both precision and recall.

• Reconciliation with multiple experts. The reconciliation was studied in a collabo-

rative setting where multiple experts validate the correspondences simultaneously

and work together to reach an agreement. We leveraged the theoretical advances

and multiagent nature of argumentation to facilitate this collaborative reconcilia-

tion. We implemented an argumentation-based negotiation support tool for schema

matching (ArgSM) [NLM+13], which realized our methods to help the experts in

the collaborative reconciliation.

• Reconciliation with crowd workers. In this setting, we leveraged a large number of

crowd workers to improve the quality of schema matching networks. In doing so,

we focused on enforcing the high quality of validation results as well as minimiz-

ing the effort budget for worker labour. The core technique is a constraint-based

aggregation mechanism, which is built upon an existing aggregation technique, to

reduce the error rate of the aggregated answers. Our theoretical and empirical

results showed that by harnessing the integrity constraints, the questions are de-

signed effectively and the constraint-based aggregate technique outperforms the

existing techniques, up to 49%.

Through the above reconciliation settings, the notion of schema matching network

has proven to be robust and beneficial in its own right. The presented findings highlighted

the ability of schema matching networks in capturing the semantic interoperability in a

uniform fashion, independent of used matching tools and data integration tasks. Schema

matching networks also enable collaborative integration scenarios, and scenarios where

the monolithic mediated schema approach is too costly or simply infeasible. Moreover,

because of its nature representation, the schema matching network allows to formulate

and extend integrity constraints that relate to user expectations in both literature and

practice.

7.2 Future Directions

We recognize that the novel approaches described in this dissertation can be strengthened

in a number of ways and open many opportunities for future work. We suggest the

following research directions.

118

7.2 Future Directions

7.2.1 Managing Schema Matching Networks

On top of schema matching networks, we can develop a wide range of potential appli-

cations such as e-commerce, enterprise information integration, and information reuse.

To reduce the development complexity, it is desirable to bootstrap a management sys-

tem and supporting tools for all of these applications. To design and implement such a

management system, we envision the following key questions:

• How to visualize a schema matching network at large scales? In real-world set-

tings, there is a large number of schemas and each schema has a large number of

attributes, resulting in a large number of matchings generated. In fact, users do

not always want to view an exhaustive list of all generated correspondences but

rather important patterns in the network. Traditional visualization techniques,

which simply display attribute correspondences as lines in a graph, is often over-

whelming since users have to examine a sheer number of lines displayed at once.

As a result, visualizing large-scale matching networks becomes a challenge for the

field. In future work, we approach to use a two-dimensional matrix to represent the

schema matching network, in which rows are attributes and columns are schemas.

This representation allows to not only show the general properties of the network

but also emphasize the specific relationships between attribute correspondences.

With this approach, we can apply existing matrix-based algorithms for further

graphical analysis and exploration.

• How to search information in a schema matching network effectively? The pres-

ence of a schema matching network brings many benefits in facilitating the discov-

ery and reuse of existing schema information for querying purposes. For example,

when users query data about customer information, relevant schemas as well as

their attribute correspondences will be returned. Regardless of the types of search

queries, the problem of searching schema information is challenging since schemas

in the network are inherently heterogeneous and there is no generic measurement

to quantify the similarity between these schemas.

To realize this vision, we should provide means to explore the available schemas,

and decide which schemas satisfy pre-defined search criteria in terms of coverage

and relevance. Designing effective techniques for the search problem requires two

key aspects. The first aspect is related to clustering relevant schemas into separate

groups. This helps to reduce the searching complexity as well as facilitate further

explorations. The second aspect is about defining quantitative measurements to

quantify the coverage and relevance of schemas. An effective search technique

should be able to return schema information with a good measurement value.

The schema matching network representation already enables a lot of graph-based

measurement, such as Jaccard and co-clustering indexes. In future work, we rely

on the matrix representation to develop further techniques

119

7. Conclusion

7.2.2 Big Data Integration

The concept of schema matching network can be used in not only traditional data in-

tegration but also big data integration, in which data is also collected and linked from

multiple sources, but at large scales. There are some basic differences (and are also the

challenges) between big data integration and traditional one, including (i) network size

– the number of schemas exceeds any limitations of existing techniques (e.g. millions

of schemas), (ii) continuous changes – schemas are incrementally collected and updated

over time, and (iii) heterogeneity – schemas are more syntactically and semantically het-

erogeneous. Traditional schema matching approaches, such as constructing a mediated

schema, is simply infeasible as no single schema can cover all the variances of schema

attributes in a large-scale network. As a result, schema matching network becomes an

invaluable tool to address the challenges of big data integration in a natural and sys-

tematic scheme. Since the notion of schema matching networks is independent of users

and data integration tasks, large-scale techniques can be developed on top of our model

for further applications.

To overcome the challenges of big data integration, we are planning to develop a

pay-as-you-go approach that involves two main tasks:

• Selecting and filtering data sources: Big data integration opens an opportunity

to construct a diverse schema matching network, as each source might contain a

wide range of data in different domains. The more data sources, the higher diver-

sity of data application domains. However, it is imprudent to integrate all data

sources because of three reasons: (i) integration cost - expenses for purchasing

data, cleaning, reformatting, and integrating data, (ii) source dependency - some

data sources may copy data from other sources and publish the copied data with-

out provenance, and (iii) irrelevant data - not all collected data is relevant and

consistent for particular application domains. As a result, the goal of this step

is to select and filter the data sources before integration, while considering the

balance between diversity of collected data and integration cost. The data sources

should be prioritized according to their potential “benefit” for the integration. By

this way, the resulting schema matching network is scaled up incrementally in a

systematic way.

• Dynamic Reconciliation: So far in this work, we assumed that the reconciliation

is static; i.e. all candidate matchings are generated before-hand and user(s) are

employed to validate the correctness of the generated matchings. This assump-

tion is no longer valid when we integrate the data sources incrementally since the

matchings will be generated on-the-fly. In particular, newly generated matchings

might contradict with existing ones, leading to extra re-validation efforts as user

input is not always perfect in practice. In future work, we will refine the proposed

reconciliation techniques in order to minimize these additional validation efforts,

while assuring the quality of the matchings.

120

7.2 Future Directions

7.2.3 Generalizing Reconciliation for Crowdsourced Models

While our work focuses on schema matching, our techniques and especially the reconcili-

ation settings, can be applied to reconciling other crowdsourced models such as business

processes and ontology alignment.

• Business processes. Collaboration is a key strategy for enterprises in solving tech-

nological problems and adapting market requirements. The collaborative enter-

prises participate in a large networked infrastructure to explore and integrate their

business models. Since each enterprise model has its own definitions of processes

and resources, there is a need of integration techniques to bridge the data hetero-

geneity and enable semantic interoperability. In such a collaboration setting, busi-

ness processes can be modeled as a network of schemas, in which each “schema” is

a meta-data description of business processes. By this formulation, our proposed

techniques for modeling and reconciling schema matching networks can be ap-

plied to integrate the business process descriptions exchanged within the network.

This direction opens further opportunities for fostering the collaboration, in which

common knowledge is built and evolves over time for improving and envisioning

business operations of network members.

• Ontology alignment. The fast growth rate of the Web today brings the field of

Semantic Web, in which the contents of Web pages are enriched by semantic de-

scriptions. The enrichment is done by using ontologies to define the semantics and

concepts of the Web contents. An ontology can be viewed as a set of vocabularies

to define the conceptual models of some particular domain. The distinctive feature

of ontologies with other semantic models (e.g. database schemas, XML schemas)

is that its logical representation is independent of the underlying systems and the

relationships between concepts are specified explicitly. However, ontologies from

different Web pages are heterogeneous due to the differences in syntactic, termi-

nological, and conceptual representation between the sources. This motivates the

need of establishing semantic correspondences between ontologies of the sources,

namely ontology alignment, to reduce the heterogeneity. The established network

of ontologies resembles with the concept of schema matching network, in which

the notion of schema is now replaced by the ontology representation. Such resem-

blance enables us to apply the proposed techniques for modeling and reconciling

the “ontology matching network” as well as opens up further research directions

in the field.

121

7. Conclusion

122

Bibliography

[ACMH03] Karl Aberer, Philippe Cudré-Mauroux, and Manfred Hauswirth. Start

making sense: The Chatty Web approach for global semantic agreements.

JWS, pages 89–114, 2003. 4, 5, 16

[ACMO+04] Karl Aberer, Philippe Cudre-Mauroux, Aris M. Ouksel, Tiziana Catarci,

Mohand-Said Hacid, Arantza Illarramendi, Vipul Kashyap, Massimo Me-

cella, Eduardo Mena, Erich J. Neuhold, Olga De Troyer, Thomas Risse,

Monica Scannapieco, Felix Saltor, Luca De Santis, Stefano Spaccapietra,

Steffen Staab, and Rudi Studer. Emergent semantics principles and issues.

In DASFAA’04, pages 25–38, 2004. 4

[ADMR05a] David Aumueller, H.H. Do, Sabine Massmann, and Erhard Rahm. Schema

and ontology matching with COMA++. In SIGMOD, pages 906–908,

2005. 20, 38

[ADMR05b] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm.

Schema and ontology matching with coma++. In SIGMOD, pages 906–

908, 2005. 17, 39, 55

[AGPS09] Liliana Ardissono, Anna Goy, Giovanna Petrone, and Marino Segnan.

From service clouds to user-centric personal clouds. In Cloud Computing,

2009. CLOUD’09. IEEE International Conference on, pages 1–8. IEEE,

2009. 4

[AHPT12] Bogdan Alexe, Mauricio Hernández, Lucian Popa, and Wang-Chiew Tan.

Mapmerge: correlating independent schema mappings. JVLDB, pages

191–211, 2012. 48

[AK95] Charles J. Alpert and Andrew B. Kahng. Recent directions in netlist

partitioning: a survey. Integr. VLSI J., 19(1-2):1–81, August 1995. 52

[ASS09] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. Improving xml

schema matching performance using prüfer sequences. Data Knowl.

Eng., pages 728–747, 2009. 16

123

BIBLIOGRAPHY

[BAMN10] Jamal Bentahar, Rafiul Alam, Zakaria Maamar, and Nanjangud C. Naren-

dra. Using argumentation to model and deploy agent-based b2b applica-

tions. KBS, pages 677–692, 2010. 29

[Bar03] Chitta Baral. Knowledge representation, reasoning and declarative prob-

lem solving. Cambridge university press, 2003. 24

[BCV99] S. Bergamaschi, S. Castano, and M. Vincini. Semantic integration of

semistructured and structured data sources. SIGMOD Rec., pages 54–59,

1999. 15

[BDG11] Pietro Baroni, Paul E. Dunne, and Massimiliano Giacomin. On the

resolution-based family of abstract argumentation semantics and its

grounded instance. Artif. Intell., 175(3-4):791–813, 2011. 29

[BDV03] Martin Brain and Marina De Vos. Implementing oclp as a front-end for

answer set solvers: From theory to practice. In Answer Set Programming,

2003. 24

[BE99] Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended

logic programs. Artificial intelligence, 109(1):297–356, 1999. 24

[Bel11] K Belhajjame. User feedback as a first class citizen in information inte-

gration systems. In CIDR, pages 175–183, 2011. 83

[BEP+08] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie

Taylor. Freebase: a collaboratively created graph database for structuring

human knowledge. In SIGMOD, pages 1247–1250, 2008. 1

[BET11] Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński. Answer set

programming at a glance. Communications of the ACM, 54(12):92–103,

2011. 90

[BGPR10] Philippe Besnard, Éric Grégoire, Cédric Piette, and Badran Raddaoui.

Mus-based generation of arguments and counter-arguments. In IRI, pages

239–244, 2010. 26

[BH01] Philippe Besnard and Anthony Hunter. A logic-based theory of deductive

arguments. Artificial Intelligence, 128(1):203–235, 2001. 25

[BH08] Philippe Besnard and Anthony Hunter. Elements of Argumentation. The

MIT Press, 2008. 80, 81, 84, 85, 92

[BLT86] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently

updating materialized views. In SIGMOD, pages 61–71, 1986. 46, 95

[BM02] Jacob Berlin and Amihai Motro. Database schema matching using ma-

chine learning with feature selection. In CAiSE, volume 2348, pages 452–

466. Springer, 2002. 5, 15

124

BIBLIOGRAPHY

[BM07] Philip A. Bernstein and Sergey Melnik. Model management 2.0: manip-

ulating richer mappings. In SIGMOD, pages 1–12, 2007. 1

[BMC06] Philip A. Bernstein, Sergey Melnik, and John E. Churchill. Incremental

schema matching. In VLDB, pages 1167–1170, 2006. 17, 18, 19

[BMPQ04] Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, and Christoph

Quix. Industrial-strength schema matching. SIGMOD Rec., pages 38–43,

2004. 16, 17

[BMR11a] P.A. Bernstein, J. Madhavan, and Erhard Rahm. Generic Schema Match-

ing, Ten Years Later. In VLDB, 2011. 2, 13, 19, 44

[BMR11b] Philip A. Bernstein, Jayant Madhavan, and Erhard Rahm. Generic

Schema Matching, Ten Years Later. PVLDB, 4(11):695–701, 2011. 29

[BSZ03] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordi-

nation: a new approach and an application. In The Semantic Web-ISWC

2003, pages 130–145. Springer, 2003. 15

[BTK93] Andrei Bondarenko, Francesca Toni, and Robert A. Kowalski. An

assumption-based framework for non-monotonic reasoning. In LPNMR,

pages 171–189, 1993. 85

[BW02] Daniel G Bobrow and Jack Whalen. Community knowledge sharing in

practice: the eureka story. Reflections, 4(2):47–59, 2002. 36

[CAM01] Luigia Carlucci Aiello and Fabio Massacci. Verifying security protocols

as planning in logic programming. ACM Transactions on Computational

Logic (TOCL), 2(4):542–580, 2001. 24

[Cam06] Martin Caminada. Semi-stable semantics. In COMMA, pages 121–130,

2006. 28

[CAS09] Isabel F. Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreement-

maker: efficient matching for large real-world schemas and ontologies.

Proc. VLDB Endow., pages 1586–1589, 2009. 17

[CCIL08] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola

Leone. Computable functions in asp: Theory and implementation. In

ICLP, pages 407–424, 2008. 90, 93

[CDA01] Silvana Castano and Valeria De Antonellis. Global viewing of heteroge-

neous data sources. Knowledge and Data Engineering, IEEE Transactions

on, 13(2):277–297, 2001. 15

[CHW+08] Michael J. Cafarella, Alon Halevy, Daisy Zhe Wang, Eugene Wu, and

Yang Zhang. Webtables: exploring the power of tables on the web. Proc.

VLDB Endow., pages 538–549, 2008. 4

125

BIBLIOGRAPHY

[CL98] Jason Cong and Sung Kyu Lim. Multiway partitioning with pairwise

movement. In Proceedings of the 1998 IEEE/ACM international confer-

ence on Computer-aided design, ICCAD ’98, pages 512–516, New York,

NY, USA, 1998. ACM. 52

[CMAF06a] P. Cudré-Mauroux, Karl Aberer, and A. Feher. Probabilistic message

passing in peer data management systems. In ICDE, page 41, 2006. 103,

105

[CMAF06b] Philippe Cudré-Mauroux, Karl Aberer, and Andras Feher. Probabilistic

Message Passing in Peer Data Management Systems. In ICDE, pages

41–52, 2006. 16

[CT04] Stefania Costantini and Arianna Tocchio. The dali logic programming

agent-oriented language. In Logics in Artificial Intelligence, pages 685–

688. Springer, 2004. 24

[CWW12] Gunther Charwat, Johannes Peter Wallner, and Stefan Woltran. Uti-

lizing asp for generating and visualizing argumentation frameworks. In

ASPOCP, pages 51–65, 2012. 92, 93

[CWW13] Günther Charwat, Johannes Peter Wallner, and Stefan Woltran. Utiliz-

ing asp for generating and visualizing argumentation frameworks. arXiv

preprint arXiv:1301.1388, 2013. 26

[DBC11] Fabien Duchateau, Zohra Bellahsene, and Remi Coletta. Matching and

alignment: what is the cost of user post-match effort? In OTM, pages

421–428, 2011. 21

[DCBM09a] Fabien Duchateau, Remi Coletta, Zohra Bellahsene, and Renée J. Miller.

(not) yet another matcher. In CIKM, pages 1537–1540, 2009. 21

[DCBM09b] Fabien Duchateau, Remi Coletta, Zohra Bellahsene, and Renée J. Miller.

Yam: a schema matcher factory. In CIKM, pages 2079–2080, 2009. 21

[DCSW09] Umeshwar Dayal, Malu Castellanos, Alkis Simitsis, and Kevin Wilkinson.

Data integration flows for business intelligence. In Proceedings of the 12th

International Conference on Extending Database Technology: Advances

in Database Technology, pages 1–11. Acm, 2009. 4

[DDCM12] Djellel Eddine Difallah, Gianluca Demartini, and Philippe Cudre-

Mauroux. Mechanical cheat: Spamming schemes and adversarial tech-

niques on crowdsourcing platforms. In CrowdSearch, 2012. 106

[DDH01a] AnHai Doan, Pedro Domingos, and Alon Y Halevy. Reconciling schemas

of disparate data sources: A machine-learning approach. In ACM Sigmod

Record, volume 30, pages 509–520. ACM, 2001. 17

126

BIBLIOGRAPHY

[DDH01b] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas

of disparate data sources: a machine-learning approach. In SIGMOD,

pages 509–520, 2001. 40

[DFKK11] AnHai Doan, Michael J. Franklin, Donald Kossmann, and Tim Kraska.

Crowdsourcing applications and platforms: A data management perspec-

tive. PVLDB, 4(12):1508–1509, 2011. 36

[DH05] AnHai Doan and Alon Y. Halevy. Semantic-integration research in the

database community. AI Mag., pages 83–94, 2005. 13

[DLHPB09a] Giusy Di Lorenzo, Hakim Hacid, Hye-young Paik, and Boualem Bena-

tallah. Data integration in mashups. SIGMOD Rec., pages 59–66, 2009.

2

[DLHPB09b] Giusy Di Lorenzo, Hakim Hacid, Hye-young Paik, and Boualem Benatal-

lah. Data integration in mashups. SIGMOD, pages 59–66, 2009. 4

[DLK+08] Pedro Domingos, Daniel Lowd, Stanley Kok, Hoifung Poon, Matthew

Richardson, and Parag Singla. Just add weights: Markov logic for the

semantic web. In URSW, pages 1–25, 2008. 46

[DM04] Sylvie Doutre and Jérôme Mengin. On sceptical versus credulous accep-

tance for abstract argument systems. In JELIA, pages 462–473, 2004.

88

[DMD+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos,

and Alon Halevy. Learning to match ontologies on the semantic web. The

VLDB Journal?The International Journal on Very Large Data Bases,

12(4):303–319, 2003. 17

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy.

Learning to map between ontologies on the semantic web. In Proceedings

of the 11th international conference on World Wide Web, pages 662–673.

ACM, 2002. 15

[DR02a] H.H. Do and Erhard Rahm. COMA: a system for flexible combination

of schema matching approaches. In PVLDB, pages 610–621, 2002. 5, 14,

15, 17, 20, 55

[DR02b] Hong Hai Do and Erhard Rahm. COMA - A System for Flexible Combi-

nation of Schema Matching Approaches. In VLDB, pages 610–621, 2002.

17, 55

[DR07] Hong-Hai Do and Erhard Rahm. Matching large schemas: Approaches

and evaluation. Inf. Syst., pages 857–885, 2007. 15, 16, 52

127

BIBLIOGRAPHY

[DRH11] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. Crowdsourcing

systems on the world-wide web. Commun. ACM, 54(4):86–96, April 2011.

36

[dro] https://www.dropbox.com. 4

[DS79] A P Dawid and A M Skene. Maximum likelihood estimation of observer

error-rates using the EM algorithm. Journal of the Royal Statistical So-

ciety Series C Applied Statistics, 28(1):20–28, 1979. 101

[DSFG+12] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee,

Fei Wu, Reynold Xin, and Cong Yu. Finding related tables. In SIGMOD,

pages 817–828, 2012. 1

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person games.

Artif. Intell., pages 321–358, 1995. 9, 26, 28, 29, 80, 81, 84, 86, 87

[DVV99] Marina De Vos and Dirk Vermeir. Choice logic programs and nash equi-

libria in strategic games. In Computer Science Logic, pages 266–276.

Springer, 1999. 24

[DVV03] Marina De Vos and Dirk Vermeir. Logic programming agents playing

games. In Research and Development in Intelligent Systems XIX, pages

323–336. Springer, 2003. 24

[EFL+01] Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel

Polleres. System description: The dlvk planning system. In Logic Pro-

gramming and Nonmotonic Reasoning, pages 429–433. Springer, 2001. 24

[EFST01] Thomas Eiter, Michael Fink, Giuliana Sabbatini, and Hans Tompits. A

framework for declarative update specifications in logic programs. In

IJCAI, volume 1, pages 649–654. Citeseer, 2001. 24

[EH11] Vasiliki Efstathiou and Anthony Hunter. Algorithms for generating ar-

guments and counterarguments in propositional logic. Int. J. Approx.

Reasoning, 52(6):672–704, 2011. 26

[EIK09a] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer

set programming: A primer. In Reasoning Web, pages 40–110, 2009. 22,

23

[EIK09b] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer

set programming: A primer. In Reasoning Web, pages 40–110, 2009. 81

[ENP11] Chukwuemeka D. Emele, Timothy J. Norman, and Simon Parsons. Ar-

gumentation strategies for plan resourcing. In AAMAS, pages 913–920,

2011. 29

128

https://www.dropbox.com

BIBLIOGRAPHY

[ER60] P. Erdős and A. Rényi. On the evolution of random graphs. In Publication

Of The Mathematical Institute Of The Hungarian Academy Of Sciences,

pages 17–61, 1960. 73

[ES04] Marc Ehrig and Steffen Staab. Qom - quick ontology mapping. In ISWC,

pages 683–697, 2004. 17

[ESS05] Marc Ehrig, Steffen Staab, and York Sure. Bootstrapping ontology align-

ment methods with apfel. In ISWC, pages 186–200, 2005. 17

[eye] http://www.eyeos.com. 4

[fac] http://www.factual.com. 1

[Fan08] Wenfei Fan. Dependencies revisited for improving data quality. In SIG-

MOD, pages 159–170, 2008. 48

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From databases to

dataspaces: a new abstraction for information management. SIGMOD

Rec., pages 27–33, 2005. 3, 6, 67

[FKK+11] Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and

Reynold Xin. Crowddb: answering queries with crowdsourcing. In Pro-

ceedings of the 2011 ACM SIGMOD International Conference on Man-

agement of data, pages 61–72. ACM, 2011. 36

[FN11] SeanM. Falconer and NatalyaF. Noy. Interactive techniques to support

ontology matching. pages 29–51, 2011. 17

[Gal06a] Avigdor Gal. Managing uncertainty in schema matching with top-k

schema mappings. pages 90–114, 2006. 18

[Gal06b] Avigdor Gal. Why is schema matching tough and what can we do about

it? SIGMOD Rec., 35:2–5, 2006. 5

[Gal11] Avigdor Gal. Uncertain Schema Matching. Morgan & Claypool, 2011. 40

[GCM12] Kathrin Grosse, Carlos Ivan Chesnevar, and Ana Gabriela Maguitman.

An argument-based approach to mining opinions from twitter. In AT,

pages 408–422, 2012. 29

[GHJ+10] Hector Gonzalez, Alon Y. Halevy, Christian S. Jensen, Anno Lan-

gen, Jayant Madhavan, Rebecca Shapley, Warren Shen, and Jonathan

Goldberg-Kidon. Google fusion tables: web-centered data management

and collaboration. In SIGMOD, pages 1061–1066, 2010. 1

[GHKR10] Anika Gross, Michael Hartung, Toralf Kirsten, and Erhard Rahm. On

matching large life science ontologies in parallel. In DILS, pages 35–49,

2010. 16

129

http://www.eyeos.com
http://www.factual.com

BIBLIOGRAPHY

[GHS07] CP Gomes, J Hoffmann, and A Sabharwal. From sampling to model

counting. In IJCAI, pages 2293–2299, 2007. 46

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability;

A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New

York, NY, USA, 1990. 51, 52

[GKK+08] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski,

Torsten Schaub, and Sven Thiele. A user?s guide to gringo, clasp, clingo,

and iclingo, 2008. 24

[GKS+13] Avigdor Gal, Michael Katz, Tomer Sagi, Karl Aberer, Zoltán Miklós,

Quoc Viet Hung Nguyen, Eliezer Levy, and Victor Shafran. Completeness

and ambiguity of schema cover. In CoopIS, 2013. 18, 49

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for

logic programming. In ICLP/SLP, pages 1070–1080. MIT Press, 1988.

22, 23

[GL91a] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-

grams and disjunctive databases. New generation computing, 9(3-4):365–

385, 1991. 21

[GL91b] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-

grams and disjunctive databases. Journal of New Generation Computing,

9(3/4):365–386, 1991. 22

[GM86] Fred Glover and Claude McMillan. The general employee scheduling prob-

lem. an integration of ms and ai. COR, pages 563–573, 1986. 70

[GMM03] Paolo Giorgini, Fabio Massacci, and John Mylopoulos. Requirement en-

gineering meets security: A case study on modelling secure electronic

transactions by visa and mastercard. In Conceptual Modeling-ER 2003,

pages 263–276. Springer, 2003. 24

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley Longman, 1989. 70

[GSW+12] A. Gal, T. Sagi, M. Weidlich, E. Levy, V. Shafran, Z. Miklós, and N.Q.V.

Hung. Making sense of top-k matchings: A unified match graph for

schema matching. In IIWeb, 2012. 40

[GSY04] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-Match: an

algorithm and an implementation of semantic matching. Springer, 2004.

14, 15

[Haa06] Laura Haas. Beauty and the beast: the theory and practice of information

integration. In ICDT, pages 28–43, 2006. 1

130

BIBLIOGRAPHY

[HAB+05] Alon Y. Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise

Draper, Jeff Pollock, Arnon Rosenthal, and Vishal Sikka. Enterprise infor-

mation integration: successes, challenges and controversies. In SIGMOD,

pages 778–787, 2005. 1

[HC03] Bin He and Kevin Chen-Chuan Chang. Statistical schema matching across

web query interfaces. In Proceedings of the 2003 ACM SIGMOD interna-

tional conference on Management of data, SIGMOD ’03, pages 217–228,

2003. 16

[HdlPR+12] Stella Heras, Fernando de la Prieta, Sara Rodriguez, Javier Bajo, Vi-

cente J. Botti, and Vicente Julien. The role of argumentation on the

future internet: Reaching agreements on clouds. In AT, pages 393–407,

2012. 29

[Hel99] Keijo Heljanko. Using logic programs with stable model semantics to solve

deadlock and reachability problems for 1-safe petri nets. Fundamenta

Informaticae, 37(3):247–268, 1999. 24

[HFM06] Alon Halevy, Michael Franklin, and David Maier. Principles of datas-

pace systems. In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages 1–9. ACM,

2006. 3

[HL00] David W. Hosmer and Stanley Lemeshow. Applied logistic regression.

Wiley-Interscience Publication, 2000. 34

[HMH01] Mauricio A Hernández, Renée J Miller, and Laura M Haas. Clio: A semi-

automatic tool for schema mapping. In ACM SIGMOD Record, volume 30,

page 607. ACM, 2001. 21

[HMN00] Maarit Hietalahti, Fabio Massacci, and Ilkka Niemela. Des: a challenge

problem for nonmonotonic reasoning systems. arXiv preprint cs/0003039,

2000. 24

[HMST11] PJ Haas, PP Maglio, PG Selinger, and WC Tan. Data is Dead Without

What-If Models. In PVLDB, pages 11–14, 2011. 89

[HMYW03] Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Wise-integrator:

An automatic integrator of web search interfaces for e-commerce. In Pro-

ceedings of the 29th international conference on Very large data bases-

Volume 29, pages 357–368. VLDB Endowment, 2003. 16

[How06] Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

30

131

BIBLIOGRAPHY

[HQC08] Wei Hu, Yuzhong Qu, and Gong Cheng. Matching large ontologies: A

divide-and-conquer approach. Data Knowl. Eng., pages 140–160, 2008.

16

[HR97] Magnús M Halldórsson and Jaikumar Radhakrishnan. Greed is good:

Approximating independent sets in sparse and bounded-degree graphs.

Algorithmica, 18(1):145–163, 1997. 110

[HSB10] Vaughn Hester, Aaron Shaw, and Lukas Biewald. Scalable crisis relief:

Crowdsourced sms translation and categorization with mission 4636. In

Proceedings of the First ACM Symposium on Computing for Development,

ACM DEV ’10, pages 15:1–15:7, New York, NY, USA, 2010. ACM. 31

[HT73] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms

for graph manipulation. Communications of the ACM, pages 372–378,

1973. 49

[HV03] Stijn Heymans and Dirk Vermeir. Integrating description logics and an-

swer set programming. In PPSWR, pages 146–159. Springer, 2003. 24

[ICL+03] Giovambattista Ianni, Francesco Calimeri, Vincenzino Lio, Stefania Gal-

izia, and Agata Bonfa. Reasoning about the semantic web using answer

set programming. In APPIA-GULP-PRODE, pages 324–336, 2003. 24

[IPW10] Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. Quality manage-

ment on amazon mechanical turk. In Proceedings of the ACM SIGKDD

Workshop on Human Computation, HCOMP ’10, pages 64–67, New York,

NY, USA, 2010. ACM. 10, 32, 34, 101

[JFH08] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-go

user feedback for dataspace systems. In SIGMOD, pages 847–860, 2008.

18, 83

[JMSK09] Yves R. Jean-Mary, E. Patrick Shironoshita, and Mansur R. Kabuka.

Ontology matching with semantic verification. Web Semant., pages 235–

251, 2009. 16

[KAKS99] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hyper-

graph partitioning: applications in vlsi domain. Very Large Scale Inte-

gration (VLSI) Systems, IEEE Transactions on, 7(1):69 –79, march 1999.

52

[Kar72a] R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity

of Computer Computations, pages 85–103. 1972. 68

[Kar72b] Richard M Karp. Reducibility among combinatorial problems. Springer,

1972. 54

132

BIBLIOGRAPHY

[KKMF11] Gabriella Kazai, Jaap Kamps, and Natasa Milic-Frayling. Worker types

and personality traits in crowdsourcing relevance labels. In CIKM, 2011.

32

[KM03] Hristo Koshutanski and Fabio Massacci. An access control framework

for business processes for web services. In Proceedings of the 2003 ACM

workshop on XML security, pages 15–24. ACM, 2003. 24

[KN05] Misa Keinänen and Ilkka Niemelä. Solving alternating boolean equation

systems in answer set programming. In Applications of Declarative Pro-

gramming and Knowledge Management, pages 134–148. Springer, 2005.

24

[KOS11] DR Karger, S Oh, and D Shah. Iterative learning for reliable crowdsourc-

ing systems. In NIPS, 2011. 35

[KSA11] FK Khattak and A Salleb-Aouissi. Quality Control of Crowd Labeling

through Expert Evaluation. In NIPS, 2011. 34

[KSS97] Henry Kautz, Bart Selman, and Mehul Shah. Referral web: combining

social networks and collaborative filtering. Communications of the ACM,

40(3):63–65, 1997. 36

[KWS03] LI Kuncheva, CJ Whitaker, and CA Shipp. Limits on the majority vote

accuracy in classifier fusion. Pattern Analysis, pages 22–31, 2003. 33

[LCW10] Kyumin Lee, James Caverlee, and Steve Webb. The social honeypot

project: protecting online communities from spammers. In WWW, 2010.

34

[Lif02] Vladimir Lifschitz. Answer set programming and plan generation. Artif.

Intell., 138(1-2):39–54, 2002. 24

[LMR90] Witold Litwin, Leo Mark, and Nick Roussopoulos. Interoperability of

multiple autonomous databases. ACM Computing Surveys (CSUR),

22(3):267–293, 1990. 3

[LP82] Harry R Lewis and Christos H Papadimitriou. Symmetric space-bounded

computation. Theoretical Computer Science, pages 161–187, 1982. 49

[LPF+06] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gott-

lob, Simona Perri, and Francesco Scarcello. The dlv system for knowledge

representation and reasoning. ACM Trans. Comput. Logic, 7:499–562,

July 2006. 24

[LRS01] Nicola Leone, Riccardo Rosati, and Francesco Scarcello. Enhancing an-

swer set planning. In IJCAI-01 Workshop on Planning under Uncertainty

and Incomplete Information, pages 33–42, 2001. 24

133

BIBLIOGRAPHY

[LSDR07] Yoonkyong Lee, Mayssam Sayyadian, AnHai Doan, and Arnon S. Rosen-

thal. eTuner: tuning schema matching software using synthetic scenarios.

JVLDB, pages 97–122, 2007. 17

[LTLL09] Juanzi Li, Jie Tang, Yi Li, and Qiong Luo. Rimom: A dynamic multi-

strategy ontology alignment framework. Knowledge and Data Engineer-

ing, IEEE Transactions on, pages 1218–1232, 2009. 17

[LTT99] Vladimir Lifschitz, Lappoon R Tang, and Hudson Turner. Nested expres-

sions in logic programs. Annals of Mathematics and Artificial Intelligence,

25(3-4):369–389, 1999. 23

[LY12] Matthew Lease and Emine Yilmaz. Crowdsourcing for information re-

trieval. SIGIR Forum, 45(2):66–75, January 2012. 36

[LYHY02] Mong Li Lee, Liang Huai Yang, Wynne Hsu, and Xia Yang. Xclust:

Clustering xml schemas for effective integration. In CIKM, pages 292–

299, 2002. 52

[MAL+05] Robert McCann, Bedoor AlShebli, Quoc Le, Hoa Nguyen, Long Vu, and

AnHai Doan. Mapping maintenance for data integration systems. In

Proceedings of the 31st international conference on Very large data bases,

pages 1018–1029. VLDB Endowment, 2005. 4

[MBDH05] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, and Alon Halevy.

Corpus-based schema matching. In ICDE, pages 57–68, 2005. 16

[MBR01] Jayant Madhavan, Philip A Bernstein, and Erhard Rahm. Generic schema

matching with cupid. In VLDB, volume 1, pages 49–58, 2001. 5, 14, 15,

21

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity

flooding: A versatile graph matching algorithm and its application to

schema matching. In Data Engineering, 2002. Proceedings. 18th Interna-

tional Conference on, pages 117–128. IEEE, 2002. 5, 14, 15

[Mil95] George A Miller. Wordnet: a lexical database for english. Communica-

tions of the ACM, 38(11):39–41, 1995. 15

[Mos10] APS Mosek. The mosek optimization software. Online at http://www.

mosek. com, 2010. 54

[MRA+11] Sabine Massmann, Salvatore Raunich, David Aumüller, Patrick Arnold,

and Erhard Rahm. Evolution of the coma match system. Ontology Match-

ing, page 49, 2011. 20

134

BIBLIOGRAPHY

[MSD08] Robert McCann, Warren Shen, and AnHai Doan. Matching Schemas in

Online Communities: A Web 2.0 Approach. In ICDE, pages 110–119,

2008. 18, 32, 97, 100

[MSK97] David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants

in local search. In AAAI, pages 321–326, 1997. 46

[MWJ99] Prasenjit Mitra, Gio Wiederhold, and Jan Jannink. Semi-automatic inte-

gration of knowledge sources. Proceedings of Fusion’99, July 1999, 1999.

15

[NB12] Duy Hoa Ngo and Zohra Bellahsene. YAM++ : (not) Yet Another

Matcher for Ontology Matching Task. In BDA, 2012. 21

[NFP+11] Hoa Nguyen, Ariel Fuxman, Stelios Paparizos, Juliana Freire, and Rakesh

Agrawal. Synthesizing products for online catalogs. PVLDB, pages 409–

418, 2011. 4

[Nie99] Ilkka Niemelä. Logic programs with stable model semantics as a con-

straint programming paradigm. Annals of Mathematics and Artificial

Intelligence, 25(3-4):241–273, 1999. 24

[NLM+13] Quoc Viet Hung Nguyen, Xuan Hoai Luong, Zoltán Miklós, Tho Quan

Thanh, and Karl Aberer. An mas negotiation support tool for schema

matching (demonstration). In AAMAS, pages 1391–1392, 2013. 10, 80,

118

[NLMA13] Quoc Viethung Nguyen, Hoai Xuan Luong, Zoltán Miklós, and Karl

Aberer. Collaborative schema matching reconciliation. In CoopIS, 2013.

18

[NM01] Natalya F. Noy and Mark A. Musen. Anchor-prompt: Using non-local

context for semantic matching. In IJCAI, pages 63–70, 2001. 14

[NNMA13] Quoc Viet Hung Nguyen, Thanh Tam Nguyen, Zoltán Miklós, and Karl

Aberer. On leveraging crowdsourcing techniques for schema matching

networks. In DASFAA, pages 139–154, 2013. 18

[NNTLNA13] Quoc Viet Hung Nguyen, Tam Nguyen Thanh, Tran Lam Ngoc, and Karl

Aberer. An Evaluation of Aggregation Techniques in Crowdsourcing. In

WISE, 2013. 10, 107

[Noy04] Natalya F Noy. Semantic integration: a survey of ontology-based ap-

proaches. ACM Sigmod Record, 33(4):65–70, 2004. 15

135

BIBLIOGRAPHY

[NS97] Ilkka Niemelä and Patrik Simons. Smodels?an implementation of the sta-

ble model and well-founded semantics for normal logic programs. In Logic

Programming and Nonmonotonic Reasoning, pages 420–429. Springer,

1997. 24

[PBR10] Eric Peukert, Henrike Berthold, and Erhard Rahm. Rewrite techniques

for performance optimization of schema matching processes. In EDBT,

pages 453–464, 2010. 17

[PER11] E. Peukert, J. Eberius, and E. Rahm. AMC - A framework for modelling

and comparing matching systems as matching processes. In ICDE, pages

1304–1307, 2011. 21, 38, 39, 55

[PGMP+12] Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis

Polyzotis, Aditya Ramesh, and Jennifer Widom. Crowdscreen: algorithms

for filtering data with humans. In SIGMOD, pages 361–372, 2012. 97,

101

[Pra12] Henry Prakken. Some reflections on two current trends in formal argu-

mentation. In Logic Programs, Norms and Action, pages 249–272, 2012.

25

[PSGM+11] Aditya Parameswaran, Anish Das Sarma, Hector Garcia-Molina, Neoklis

Polyzotis, and Jennifer Widom. Human-assisted graph search: it’s okay

to ask questions. Proceedings of the VLDB Endowment, 4(5):267–278,

2011. 36

[PVH+02] Lucian Popa, Yannis Velegrakis, Mauricio A Hernández, Renée J Miller,

and Ronald Fagin. Translating web data. In Proceedings of the 28th

international conference on Very Large Data Bases, pages 598–609. VLDB

Endowment, 2002. 19

[QB11] Alexander J. Quinn and Benjamin B. Bederson. Human computation: a

survey and taxonomy of a growing field. In Proceedings of the 2011 annual

conference on Human factors in computing systems, CHI ’11, pages 1403–

1412, New York, NY, USA, 2011. ACM. 36

[QCS07] Yan Qi, K. Selçuk Candan, and Maria Luisa Sapino. Ficsr: feedback-

based inconsistency resolution and query processing on misaligned data

sources. In SIGMOD, pages 151–162, 2007. 83

[Rah07] Andreas Thor David Aumueller Erhard Rahm. Data integration support

for mashups. 2007. 4

[RB01a] Erhard Rahm and Philip A Bernstein. A Survey of Approaches to Auto-

matic Schema Matching. JVLDB, pages 334–350, 2001. 2, 44

136

BIBLIOGRAPHY

[RB01b] Erhard Rahm and Philip a. Bernstein. A survey of approaches to auto-

matic schema matching. JVLDB, pages 334–350, 2001. 13, 18

[Rei80] Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-

2):81–132, 1980. 22

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the

ACM (JACM), page 17, 2008. 49

[RG06] Haggai Roitman and Avigdor Gal. Ontobuilder: fully automatic extrac-

tion and consolidation of ontologies from web sources using sequence se-

mantics. In EDBT, pages 573–576, 2006. 21, 39, 55

[RIS+10] Joel Ross, Lilly Irani, M. Six Silberman, Andrew Zaldivar, and Bill Tom-

linson. Who are the crowdworkers?: shifting demographics in mechanical

turk. In CHI, pages 2863–2872, 2010. 32

[RNC+95] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Ma-

lik, and Douglas D Edwards. Artificial intelligence: a modern approach.

Prentice hall Englewood Cliffs, 1995. 63

[Rob86] John Michael Robson. Algorithms for maximum independent sets. Jour-

nal of Algorithms, 7(3):425–440, 1986. 110

[RYZJ09] VC Raykar, S Yu, LH Zhao, and A Jerebko. Supervised learning from

multiple experts: Whom to trust when everyone lies a bit. In ICML, 2009.

34

[RZR07] Iyad Rahwan, Fouad Zablith, and Chris Reed. Towards large scale ar-

gumentation support on the semantic web. In AAAI, pages 1446–1451,

2007. 29

[SBH08] Khalid Saleem, Zohra Bellahsene, and Ela Hunt. Porsche: Performance

oriented schema mediation. Inf. Syst., pages 637–657, 2008. 15

[SDH08] Anish Das Sarma, Xin Dong, and Alon Y. Halevy. Bootstrapping pay-

as-you-go data integration systems. In SIGMOD, pages 861–874, 2008.

18

[SE81] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. Jour-

nal of the ACM (JACM), pages 1–4, 1981. 49

[SMH+10] Len Seligman, Peter Mork, Alon Halevy, Ken Smith, Michael J. Carey,

Kuang Chen, Chris Wolf, Jayant Madhavan, Akshay Kannan, and Doug

Burdick. Openii: an open source information integration toolkit. In

SIGMOD, pages 1057–1060, 2010. 17, 20

137

BIBLIOGRAPHY

[SMM+09a] Ken Smith, Michael Morse, Peter Mork, Maya Li, Arnon Rosenthal, David

Allen, Len Seligman, and Chris Wolf. The role of schema matching in large

enterprises. In CIDR, 2009. 3, 52

[SMM+09b] Kenneth P. Smith, Michael Morse, Peter Mork, Maya Li, Arnon Rosen-

thal, David Allen, Len Seligman, and Chris Wolf. The role of schema

matching in large enterprises. In CIDR, 2009. 2

[SMM+09c] Kenneth P. Smith, Michael Morse, Peter Mork, Maya Hao Li, Arnon

Rosenthal, M. David Allen, and Len Seligman. The role of schema match-

ing in large enterprises. In CIDR, 2009. 21

[SN98] Timo Soininen and Ilkka Niemelä. Developing a declarative rule language

for applications in product configuration. In practical aspects of declara-

tive languages, pages 305–319. Springer, 1998. 24

[SP08] Victor S Sheng and Foster Provost. Get Another Label? Improving Data

Quality and Data Mining Using Multiple, Noisy Labelers. In KDD, 2008.

101

[SSC10a] Barna Saha, Ioana Stanoi, and Kenneth L. Clarkson. Schema covering:

a step towards enabling reuse in information integration. In Proceedings

of the 26th International Conference on Data Engineering, ICDE 2010,

pages 285–296, 2010. 15, 18, 52, 54

[SSC10b] Barna Saha, Ioana Stanoi, and Kenneth L Clarkson. Schema covering: a

step towards enabling reuse in information integration. In ICDE, pages

285–296, 2010. 48

[SSC10c] Barna Saha, Ioana Stanoi, and Kenneth L. Clarkson. Schema covering: a

step towards enabling reuse in information integration. In ICDE, pages

285–296, 2010. 52, 53

[ST97] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection?

SIAM J. Sci. Comput., 18(5):1436–1445, September 1997. 52

[Sur05] James Surowiecki. The wisdom of crowds. Random House Digital, Inc.,

2005. 36

[SW48] Claude Elwood Shannon and Warren Weaver. A mathematical theory of

communication, 1948. 48

[SWL06] Weifeng Su, Jiying Wang, and Frederick Lochovsky. Holistic schema

matching for web query interfaces. In EDBT, pages 77–94, 2006. 16

[Syr00] Tommi Syrjänen. Including diagnostic information in configuration mod-

els. In Computational Logic?CL 2000, pages 837–851. Springer, 2000.

24

138

BIBLIOGRAPHY

[ubu] https://one.ubuntu.com. 4

[vA09] L. von Ahn. Human computation. In Design Automation Conference,

pages 418 –419, july 2009. 29, 35, 100, 101

[VAD04] Luis Von Ahn and Laura Dabbish. Labeling images with a computer

game. In Proceedings of the SIGCHI conference on Human factors in

computing systems, pages 319–326. ACM, 2004. 36

[Val99] Petko Valtchev. Construction automatique de taxonomies pour l’aide à la

représentation de connaissances par objets. PhD thesis, 1999. 15

[VdVE11] J. Vuurens, A.P. de Vries, and C. Eickhoff. How much spam can you

take? an analysis of crowdsourcing results to increase accuracy. In CIR,

2011. 32, 106, 114

[Ver96] Bart Verheij. Two approaches to dialectical argumentation: admissible

sets and argumentation stages. In J.-J. Ch. Meyer and LC van der Gaag,

editors, Proceedings of the Eighth Dutch Conference on Artificial Intelli-

gence (NAIC?96), pages 357–368. Citeseer, 1996. 28

[VLA87] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing.

Springer, 1987. 47

[WES04] Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling:

exploiting random walk strategies. In AAAI, pages 670–676, 2004. 46

[WRW09] Jacob Whitehill, Paul Ruvolo, and Tingfan Wu. Whose vote should count

more: Optimal integration of labels from labelers of unknown expertise.

In NIPS, 2009. 35

[YAA08] Jiang Yang, Lada A. Adamic, and Mark S. Ackerman. Crowdsourcing and

knowledge sharing: strategic user behavior on taskcn. In Proceedings of

the 9th ACM conference on Electronic commerce, EC ’08, pages 246–255,

New York, NY, USA, 2008. ACM. 31

[YEN+11] Mohamed Yakout, Ahmed K. Elmagarmid, Jennifer Neville, Mourad Ouz-

zani, and Ihab F. Ilyas. Guided data repair. In VLDB, pages 279–289,

2011. 18

[YK10] Tingxin Yan and Vikas Kumar. CrowdSearch: exploiting crowds for accu-

rate real-time image search on mobile phones. 8th international conference

on Mobile, pages 77–90, 2010. 97, 101

[YKG10] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. Crowdsearch: ex-

ploiting crowds for accurate real-time image search on mobile phones. In

Proceedings of the 8th international conference on Mobile systems, appli-

cations, and services, pages 77–90. ACM, 2010. 36

139

https://one.ubuntu.com

BIBLIOGRAPHY

[ZLL+09] Qian Zhong, Hanyu Li, Juanzi Li, Guotong Xie, Jie Tang, Lizhu Zhou,

and Yue Pan. A gauss function based approach for unbalanced ontology

matching. In SIGMOD, pages 669–680, 2009. 16

[ZS06] Anna V. Zhdanova and Pavel Shvaiko. Community-Driven Ontology

Matching. In ESWC, pages 34–49, 2006. 18

140

Nguyen Quoc Viet Hung
Ph.D., EPFL, Switzerland

EPFL IC LSIR, BC 142, Station 14
1015 Lausanne

Switzerland
T +41 (21) 693 7573

B quocviethung.nguyen@epfl.ch
Í people.epfl.ch/quocviethung.nguyen

Research Interests
Data Integration, Spatio-temporal Data Management, Spatio-temporal Data Mining,
Meta-heuristics, and Constraint Programming

Education
2010-now Ph.D., Ecoly Polytechnique Federale de Lausanne (EPFL), Switzerland.
2008–2010 Master of Computer Science, Ecoly Polytechnique Federale de Lausanne (EPFL),

Switzerland, (Specialization: Internet Computing).
2000–2005 Bachelor of Computer Science and Engineering, HCMUT, Vietnam.

Work Experience
2008 Lecturer, Faculty of Computer Science and Engineering (CSE), HCMUT, Vietnam.

2005-2007 Assistant lecturer, CSE, HCMUT, Vietnam.

Honors
2013 Best student paper award - DASFAA 2013
2010 PhD fellowship at EPFL

2008 & 2009 "Excellence Scholarship" for master study at EPFL
2000 The first honor rank in the entrance examination to HCMC University of Technology

(perfect score 30/30 and more than 100.000 examinees)

Research Projects
2010-2013 FP7 NisB - The Network is the Business
2010-2014 FP7 PlanetData - A European Network of Excellence on Large-scale Data Man-

agement
2011-2015 FP7 EINS - Network of Excellence on Internet Science

Publications

1. Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltan Miklos, Karl Aberer,
Avigdor Gal and Matthias Weidlich, Pay-as-you-go Reconciliation in Schema
Matching Networks. In ICDE 2014.

2. Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, Karl Aberer, An
Evaluation of Aggregation Techniques in Crowdsourcing, In WISE 2013.

3. Nguyen Quoc Viet Hung, Xuan Hoai Luong, Zoltan Miklos, Tho Quan Thanh,
Karl Aberer, Collaborative Schema Matching Reconciliation, In CoopIS 2013.

4. Avigdor Gal, Michael Katz, Tomer Sagi, Karl Aberer, Zoltan Miklos, Nguyen
Quoc Viet Hung, Eliezer Levy, Victor Shafran. Completeness and Ambiguity
of Schema Cover , In CoopIS 2013.

5. Nguyen Quoc Viet Hung, Tri Kurniawan Wijaya, Zoltan Miklos, Karl Aberer,
Eliezer Levy, Victor Shafran, Avigdor Gal and Matthias Weidlich, Minimizing
Human Effort in Reconciling Match Networks, In ER 2013.

6. Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Lam Ngoc Tran, Karl Aberer, A
Benchmark for Aggregation Techniques in Crowdsourcing, In SIGIR 2013.

7. Nguyen Quoc Viet Hung, Xuan Hoai Luong, Zoltan Miklos, Tho Quan Thanh,
Karl Aberer, An MAS Negotiation Support Tool for Schema Matching, In
AAMAS 2013.

8. Nguyen Quoc Viet Hung, Nguyen Thanh Tam, Zoltan Miklos, Karl Aberer, On
Leveraging Crowdsourcing Techniques for Schema Matching Networks ,
In DASFAA 2013 (Best Student Paper Award)

9. Avigdor Gal, Tomer Sagi, Matthias Weidlich, Eliezer Levy, Victor Shafran, Zoltan
Miklos, Nguyen Quoc Viet Hung, Making Sense of Top-K Matchings. A Unified
Match Graph for Schema Matching , In IIWeb 2012.

10. Nguyen Quoc Viet Hung, Hoyoung Jeung, Karl Aberer, An Evaluation of Model-
Based Approaches to Sensor Data Compression, In TKDE 2013.

	Cover page
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Applications of Schema Matching Networks
	1.1.2 The Need of Schema Matching Reconciliation

	1.2 Goals and Research Questions
	1.3 Contributions and Thesis Organization
	1.4 Selected Publications

	2 Background
	2.1 Schema Matching
	2.1.1 Matching Techniques
	2.1.1.1 Techniques for Pair-wise Matching
	2.1.1.2 Techniques for Multiple Schemas
	2.1.1.3 Techniques for Large Schemas
	2.1.1.4 Combined Techniques
	2.1.1.5 Semi-Automatic Techniques

	2.1.2 Matching Tools
	2.1.2.1 Commercial Prototypes
	2.1.2.2 Research Prototypes

	2.2 Answer Set Programming
	2.2.1 Introduction
	2.2.2 Knowledge Representation in ASP
	2.2.3 Applications

	2.3 Argumentation
	2.3.1 Introduction
	2.3.2 Logical Argumentation
	2.3.3 Abstract Argumentation Frameworks
	2.3.3.1 Model
	2.3.3.2 Semantics

	2.3.4 Applications

	2.4 Crowdsourcing
	2.4.1 Introduction
	2.4.2 Crowdsourcing Services
	2.4.3 Quality Control in Crowdsourcing
	2.4.3.1 Worker Quality
	2.4.3.2 Answer Aggregation

	2.4.4 Crowdsourcing Applications

	3 Schema Matching Network - Modeling, Quantifying, and Partitioning
	3.1 Introduction
	3.2 Elements of a Schema Matching Network
	3.2.1 Schema
	3.2.2 Interaction graph
	3.2.3 Attribute Correspondences
	3.2.4 Integrity constraints

	3.3 Representation in ASP
	3.3.1 Encoding Elements of a Schema Matching Network
	3.3.2 Detecting Constraint Violations

	3.4 Quantifying the Network Uncertainty
	3.4.1 Probability of Correspondences in the Network
	3.4.2 Approximating the Probabilities
	3.4.3 Network Uncertainty

	3.5 Network Partitioning
	3.5.1 Decomposition by Connected Components
	3.5.2 Decomposition by k-way Partitioning
	3.5.3 Decomposition by Schema Cover

	3.6 Evaluation Methodology
	3.7 Summary

	4 Pay-as-you-go Reconciliation
	4.1 Introduction
	4.2 Model and Approach
	4.2.1 Motivating Example
	4.2.2 Framework
	4.2.3 Reconciliation Process

	4.3 Minimize User Effort
	4.3.1 Effort Minimization by Ordering
	4.3.2 Effort Minimization by Reasoning

	4.4 Instantiate Selective Matching
	4.4.1 Problem Statement
	4.4.2 Heuristic-based Algorithm

	4.5 Empirical Evaluation
	4.5.1 Experimental Setup
	4.5.2 Evaluations on Minimizing User Effort
	4.5.3 Evaluations on Instantiating Selective Matching

	4.6 Summary

	5 Collaborative Reconciliation
	5.1 Introduction
	5.1.1 Motivating Example
	5.1.2 Overall Approach

	5.2 Model and System Overview
	5.2.1 Task Partitioning
	5.2.2 Collaborative Reconciliation

	5.3 Detecting Conflicts in User Inputs
	5.3.1 Arguments for Schema Matching networks
	5.3.2 Construct Argumentation Framework
	5.3.3 Detection Mechanism

	5.4 Guiding the Conflict Resolution
	5.4.1 Interpretation of Conflict Structures
	5.4.2 What-If Analysis

	5.5 Implementation
	5.5.1 Instantiate Argumentation Framework
	5.5.2 Realizing Services
	5.5.2.1 Conflict Detection.
	5.5.2.2 Interpretation of Conflict Structures.
	5.5.2.3 What-If Analysis.

	5.6 Tool - ArgSM
	5.6.1 User Interface
	5.6.2 Technical Challenges

	5.7 Summary

	6 Crowdsourced Reconciliation
	6.1 Introduction
	6.2 Model and Overview
	6.3 Question Design
	6.4 Answer Aggregation
	6.4.1 Aggregating Without Constraints
	6.4.2 Leveraging Constraints to Reduce Error Rate
	6.4.2.1 Aggregating with Constraints
	6.4.2.2 Aggregating with 1-1 Constraint
	6.4.2.3 Aggregating with Cycle Constraint
	6.4.2.4 Aggregating with Multiple Constraints

	6.5 Worker Assessment
	6.5.1 Detect Spammers
	6.5.2 Detect Worker Dependency

	6.6 Experiments
	6.6.1 Experimental Settings
	6.6.2 Effects of Contextual Information
	6.6.3 Relationship between Error Rate and Matching Accuracy
	6.6.4 Effects of Constraints on Worker Effort
	6.6.5 Effects of Constraints on Detecting Worker Dependency

	6.7 Summary

	7 Conclusion
	7.1 Summary of the Work
	7.2 Future Directions
	7.2.1 Managing Schema Matching Networks
	7.2.2 Big Data Integration
	7.2.3 Generalizing Reconciliation for Crowdsourced Models

	Bibliography
	Curriculum Vitae

