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SUMMARY

Glutamate and its receptor N-methyl-D-aspartate
receptor (NMDAR) have been associated with
cancer, although their functions are not fully under-
stood. Herein, we implicate glutamate-driven
NMDAR signaling in a mouse model of pancreatic
neuroendocrine tumorigenesis (PNET) and in
selected human cancers. NMDAR was upregulated
at the periphery of PNET tumors, particularly invasive
fronts. Moreover, elevated coexpression of NMDAR
and glutamate exporters correlated with poor prog-
nosis in cancer patients. Treatment of a tumor-
derived cell line with NMDAR antagonists impaired
cancer cell proliferation and invasion. Flow condi-
tions mimicking interstitial fluid pressure induced
autologous glutamate secretion, activating NMDAR
and its downstream MEK-MAPK and CaMK effec-
tors, thereby promoting invasiveness. Congruently,
pharmacological inhibition of NMDAR in mice with
PNET reduced tumor growth and invasiveness.
Therefore, beyond its traditional role in neurons,
NMDAR may be activated in human tumors by fluid
flow consequent to higher interstitial pressure,
inducing an autocrine glutamate signaling circuit
with resultant stimulation of malignancy.
INTRODUCTION

Invasion and metastasis is a defining hallmark in the pathogen-

esis of most forms of human cancer (Hanahan and Weinberg,

2011; Nguyen et al., 2009). Metastasis is amajor cause of cancer

morbidity, and invasiveness contributes both to metastatic

dissemination as well as to locally invasive tumor growth with

concomitant tissue damage. The limited efficacy of most

conventional and targeted anticancer therapies may relate in

part to their largely ineffectual inhibition of cancer progression

via invasion and metastasis.

Previously our laboratory identified an invasion modifier locus

on chromosome 17 in the RIP1-Tag2 transgenic mousemodel of

pancreatic neuroendocrine tumorigenesis (PNET) (Chun et al.,
86 Cell 153, 86–100, March 28, 2013 ª2013 Elsevier Inc.
2010). Within this locus, an N-Methyl-D-aspartate receptor

(NMDAR)-associated gene, dlgap1, was one of several candi-

date proinvasive genes selectively upregulated in invasive

carcinomas. We were led, therefore, to consider the potential

involvement of the NMDAR in PNET tumorigenesis, especially

in invasion.

NMDAR is a receptor governing synaptic plasticity in the CNS,

where it plays important roles in learning, memory, and neuron

maturation. NMDARs have also been detected in various human

tumor samples and cell lines, and patch-clamp experiments in

several cancer cell lines have demonstrated receptor function-

ality (Stepulak et al., 2009). However, the functional importance

of NMDAR signaling in cancers is unclear. Notably, the mecha-

nistic contributions and pathologic significance of NMDAR

activation in elaborating cancer phenotypes are poorly under-

stood (Prickett and Samuels, 2012).

Glutamate, themajor physiological agonist of the NMDAR, has

long been implicated in cancer (Rzeski et al., 2001). A role in

promoting tumor growth and invasion was first established in

glioma (Takano et al., 2001). Subsequently, an increasing

number of cancer cells have been found to secrete glutamate

(Seidlitz et al., 2009; Sharma et al., 2010) although the effector

mechanisms and functional importance of secreted glutamate

remain elusive. Glutamate is a ligand for two classes of receptors

that are either G protein coupled or ion channels; NMDAR is

a member of the ionotropic class. Protumoral effects of gluta-

mate have been attributed to its signaling via G-protein-coupled

glutamate receptors (Nicoletti et al., 2007) or via the AMPA

receptor (Herner et al., 2011), another ionotropic glutamate

receptor; in contrast, there is little evidence implicating gluta-

mate signaling via NMDAR in cancer phenotypes. Motivated

by these various considerations, we sought to determine

whether the NMDAR and its ligand glutamate might be involved

in invasive growth in the mouse model of PNET and, if so, to

investigate the regulation and mechanistic effects of NMDAR

signaling in such tumors and the possible translational relevance

to human cancer.

RESULTS

NMDAR Is Upregulated in Genetically Engineered
Mouse Models of Cancer
The RIP1-Tag2 line of transgenic mice presents a genetically

engineered mouse model (GEMM) of human PNET (Hanahan,
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1985). We found that both subunits of the heterodimeric

NMDAR, namely NR1 (Figure S1 available online) and NR2b (Fig-

ure 1A), were expressed in PNETs arising in this model. NR2b

expression was elevated toward the tumor periphery (Figures

1A and 1B, i), particularly at invasion fronts (Figure 1C). The

increased NR2b expression at the tumor periphery was evident

in 96.6% of PNETs examined (Figure 1B, i), and the elevation

of NR2b expression toward the tumor periphery was more

evident as tumor size increased (Figure 1B, ii). Moreover, NR2b

phosphorylation at Y1252, which enhances NMDAR activity

(Takasu et al., 2002), was more pronounced at the tumor

periphery than in the tumor center (Figure 1D). We also examined

the expression of NMDAR in mouse models of pancreatic

ductal adenocarcinoma (PDAC) (Grippo and Tuveson, 2010)

and breast cancer (Fantozzi and Christofori, 2006). NR2b was

also variably upregulated at the tumor periphery or in invasive

cells in these GEMMs (Figures 1E–1G and Table S1). Although

the RIP1-Tag2 model is highly synchronized, presenting with

discrete tumors as a function of age that renders them easily

quantifiable, both the breast and PDAC models are temporally

and histologically heterogeneous, withmerged lesions of varying

tumor grades noted in late stage disease. Thus we were not able

to quantify the patterns of NMDAR expression in these two

GEMMs.

NMDAR Pathway Is Evident in Multiple Human Cancers
and Is Associated with Poor Cancer Patient Prognosis
Having documented the elevated expression of NMDAR in

several GEMMs of human cancer, we next audited NMDAR

expression using human tissue microarrays (TMA). High NR2b

expression was noted in some samples from pancreatic ductal

carcinoma (Figure S2A), breast cancer (Figures 2A and 2B),

ovarian cancer (Figure 2C), and glioma (Figure 2E), but not in

others (Table S2). In the breast cancer TMA, we found that

high NR2b expression was associated with the HER2 subtype,

whereas negative NR2b expression was observed more in the

luminal subtype (Figures 2A and S2B), suggesting that NR2b

had different expression patterns among different subtypes.

Interestingly, one patient sample in the breast cancer TMA ex-

pressed an intermediate to high level of NR2b and showed inva-

sion into adjacent adipose tissues (Figure 2B), whereas a paired

sample from the same patient in the same TMA, which was not

immediately adjacent to the invasion fronts, expressed only

low level of NR2b (Figure 2B).

Glutamate is the major agonist for NMDAR. In neurons, vesic-

ular glutamate transporters (vGlut1, -2, and -3) export glutamate

to initiate signaling. Thus we assessed vGlut expression in

conjunction with NMDAR for possible association with cancer

patient survival in the TCGA database. In our survey of human

cancer, TMAs we had found overexpression of NR2b in glioma

(Figure 2E) and in ovarian cancer (Figure 2C). When we segre-

gated glioblastoma (grade 4 glioma) patients by levels of both

NR2b and vGlut2 into higher and lower expressing groups (see

Extended Experimental Procedures), the difference was striking:

the median survival was 4.4 months longer in the vGlut2/NR2b-

low group, reaching 15.2 months as compared to 10.8 months

for the vGlut2/NR2b-high group (Figures 2F and S2D). Notably,

vGlut1 and vGlut3 levels had a similar correlation (Figure S2D).
We also analyzed the ovarian cancer data set in TCGA and found

a similar trend: the median survival was one year longer in the

NR2b/vGlut2-low expression group than in the high expression

group (Figures 2D and S2C). In contrast, in the TCGA lung squa-

mous cell carcinoma data set, low versus high expression of

NR2b/vGluts was not associated with differential patient prog-

nosis (Figure S2E), suggesting, quite reasonably, that not all

tumor types are affected by variable levels of NMDAR.

Inhibiting NMDAR Has Antiproliferative and
Anti-Invasive Effects In Vitro
Motivated by our observations that the NMDAR was expressed

at elevated levels in various human cancer types compared to

cognate normal tissues and that patients whose tumors had

comparatively higher levels had worse prognosis, we returned

to the mouse PNET model to investigate possible roles of

NMDAR signaling in this form of cancer. First, we employed

the bTC-3 cancer cell line, derived from a PNET tumor in a

RIP1-Tag2 mouse (Efrat et al., 1988), to investigate the potential

involvement of NMDAR in cancer cell phenotypes in vitro. We

used an NMDAR antagonist, MK801, to study the possible

contributions of NMDAR—via its inhibition—on proliferation

and apoptosis. MK801 is a selective, noncompetitive NMDAR

inhibitor. MK801 blocks the calcium channel of the NR1 subunit

with high affinity; as such it is one of the most potent known

NMDAR antagonists. We applied MK801 to cultures of bTC-3

cancer cells and observed a time-dependent decrease in prolif-

eration and increase in apoptosis (Figure 3A).

In our previous experience, cultured PNET cancer cells (exem-

plified by the bTC-3 cell line) are weakly invasive in the traditional

transwell invasion assay (Du et al., 2007). Therefore, we em-

ployed a modified invasion assay developed by Swartz and

colleagues (Shields et al., 2007) (Figures 3B and S3), which

uses hydrostatic pressure to create a mimetic of interstitial fluid

pressure and consequent fluid flow. As compared to the tradi-

tional static invasion assay, the flow-based invasion assay

(Figure 3B) significantly increased bTC-3 invasiveness, which

could be blocked by MK801, indicating a substantive role for

NMDAR in cancer cell invasion in this ex vivo assay (Figure 3C).

Because AMPAR, another glutamate receptor, has previously

been implicated in promoting cancer invasion (Herner et al.,

2011), we also examined the effect of an AMPAR antagonist—

GYKI52466—in the flow-based invasion assay. Modest anti-

invasive activity was observed, albeit much weaker than that of

MK801 (Figure 3C).

To verify that these were not off-target effects of MK801, we

knocked down the obligatory NMDAR subunit NR1 in bTC-3

cells and found that NR1 siRNA phenocopied the effects of the

NMDAR inhibitor MK801 on cancer cell survival and invasive-

ness (Figure 3D).

In our TMA survey, both pancreatic adenocarcinomas (Fig-

ure S2A) and breast cancers (Figures 2A and 2B) were found

to express NR2b. Therefore, we performed some of the key

in vitro experiments on a panel of human breast and pancreatic

cancer cell lines that covered a variety of different subtypes

(Table S3). Varying responses in terms of reduced cell survival

(Figure 3E) and (flow-guided) invasion (Figure 3F) were noted in

MK801-treated groups. Notably, the effect of MK801 on
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invasiveness was in general more pronounced than on survival.

When the tested cell lines were divided into three groups accord-

ing to their invasiveness in themodified invasion assay, we found

that within both highly and moderately invasive groups, the

response to MK801 correlated with NR2b mRNA expression

(Figure 3G). In contrast, NR2b was barely detectable in the

weakly invasive group, and in this group the treatment response

was instead associated with NR2a expression (Figure 3G). Inter-

estingly, there was no association between the level of NR2b or

other NMDAR subunits and reduced cell survival upon treatment

with MK801 (data not shown). Overall, the results suggest that

elevated levels of NR2b expression are particularly deterministic

for flow-mediated invasion.

NMDAR Signaling in PNET Is Autologous and Can Be
Activated by Interstitial Flow
In light of demonstrating that NMDAR signaling was enhancing

the cancer cell phenotypes of proliferation and invasiveness in

conditions mimicking interstitial pressure-driven flow, we sought

to assess the possible involvement of its ligand glutamate in

regulating such phenotypes.

By analyzing mRNA isolated from different stages of PNET

tumorigenesis using qRT-PCR, we found increased vGlut gene

expression in the solid tumor stage, as compared to normal

pancreatic islets and premalignant stages (Figures 4A and

S4A). This result is consistent with previous studies showing

that vGluts are not expressed in normal mouse islet b cells but

are detectable and fully functional in bTC-6 (Bai et al., 2003),

another PNET cell line derived from the RIP1-Tag2mouse model

(Poitout et al., 1995). Notably, the expression level varied consid-

erably among tumors, as shown by the floating bars covering

minimum to maximum values (Figure 4A). This observation is

indicative of heterogeneous activation of NMDAR signaling

among PNETs, consistent with the considerable range of NR2b

staining in different tumors (Figure 1B).

To pinpoint the cellular sources of glutamate, we used fluores-

cence-activated cell sorting (FACS) to separate PNETs into their

different constituent cell types. In neurons, classical paracrine

NMDAR signaling involves presynaptic neurons expressing
Figure 1. Involvement of NMDAR Signaling in Genetically Engineered M

(A) In the RIP1-Tag2 mouse model of pancreatic neuroendocrine tumors (PNET)

periphery as compared to tumor center (images were taken from the same tumo

(B) Semiquantification of NR2b expression in mouse PNETs. (i) A pair of images w

periphery. Image pairs from 59 PNETs excised from nine mice were digitally qua

Procedures), which revealed that NR2b was in most tumors significantly overexp

under the red dashed-line (slope = 1) representing equal level of staining at the

generated by dividing the average staining intensity for NR2B at the tumor periphe

with tumor diameter measured on semithin tissue sections (nonparametric corre

(C) NR2b overexpression was particularly evident at invasion fronts; immunostaini

the cancer cells.

(D) Phsopho-NR2b, indicative of signaling activity, was also preferentially detected

was observed in fields near the tumor center.

(E) In the MMTV-PyMT mouse model of breast cancer, increased NR2b expressio

compared to those at the tumor core. (Blue asterisks, adipocytes; green asterisk

(F) High magnification of breast cancer cells invading into the muscle layer showed

muscle layer; red arrow heads, invading cancer cells).

(G) In a mouse model of pancreatic ductal adenocarcinoma (PDAC), a similar tre

center (ii) was also noted.

See also Figure S1 and Table S1.
vGluts that mediate glutamate secretion to stimulate postsyn-

aptic neurons expressing the glutamate receptor NMDAR, as

well as glial cells (and sometimes neurons) expressing EAATs

(excitatory amino-acid transporters) that remove extracellular

glutamate tomodulate NMDAR signaling. By qRT-PCR, we iden-

tified cancer cells as the major expressers of all three compo-

nents of this signaling loop (Figures 4B and S4B), indicative of

autocrine NMDAR signaling. We also examined another gluta-

mate transporter, xCT, and found it to be highly expressed by

infiltrating immune (inflammatory) cells (Figure S4B). Therefore,

paracrine glutamate signaling from immune inflammatory cells

to the cancer cells might be operative in PNETs as well.

vGlut family proteins were also expressed in the bTC-3 cancer

cell line (Figure 4C), and immunostaining showed a typical punc-

tate localization of vGlut3 in the cytoplasm (Figure 4D). The

finding that the glutamate transporters and NMDAR were coex-

pressed in bTC-3 cancer cells led us to investigate whether

autocrine glutamate secretion was involved in their capability

for invasion. Our initial experiments revealed that bTC-3 inva-

siveness was enhanced by hydrostatic flow (Figure 3C). Congru-

ently, we found increased levels of glutamate in medium condi-

tioned by bTC-3 cancer cells in flow conditions (Figure 4E),

consistent with interstitial flow enhancing glutamate secretion

and autocrine signaling via NMDAR in PNET cancer cells.

Interstitial Flow Promotes NMDAR Surface Localization
Having determined that autologous glutamate secretion was

enhanced under the flow conditions that promoted bTC-3 inva-

sion in the modified invasion assay, we added glutamate to the

traditional (static) invasion assay. Interestingly, adding glutamate

could not fully recapitulate the degree of invasiveness seen in the

flow-based invasion assay (data not shown). Therefore, the

following question emerged: in addition to increasing the levels

of secreted ligand, might interstitial flow be directly affecting

the glutamate receptor NMDAR?

We used flow cytometry to analyze NMDAR surface expres-

sion in regular 2D-cultured (static) bTC-3 cancer cells and found

heterogeneous surface expression of both NR1 and NR2b

(Figure S5A), which was also observed by immunostaining
ouse Models of Cancer—Descriptive Evidence

, expression of the NMDAR subunit 2b (NR2b) is selectively elevated at tumor

r).

as taken from each tumor analyzed, one from the center and the other from the

ntified for NR2b staining intensity (as described in the Extended Experimental

ressed at the periphery. Only three out of 59 tumors (spots marked in red) fell

periphery and center. (ii) Using the data from (i), a ratio for each tumor was

ry with that of the center. This ratio of overexpression was positively associated

lation, two-tailed Spearman’s test, with rs = 0.6621).

ng for the oncoprotein expressed by the transgenic RIP1-Tag oncogene reveals

at the tumor periphery; a transition frompositive to equivocal/negative staining

n was observed in cancer cells invading into adipose tissues and muscle layers

s, muscle layer; red arrow heads, invading cancer cells).

elevated NR2b staining compared to cells in the tumor core. (Green asterisks,

nd of NR2b overexpression at the tumor periphery (i) compared to the tumor
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Figure 2. Involvement of NMDAR Signaling in Human Cancers—Descriptive Evidence

(A) A nonexhaustive survey involving human cancer tissue microarrays (TMA) revealed varying intensity of NR2b staining in the tumor samples. The staining

intensity was categorized into four levels: negative, low, intermediate, and high. The percentage of each category from the TMA was documented. Interestingly,

NR2b staining was associated with different breast cancer subtypes. p < 0.05, Chi-square test.

(B) In one patient sample in the TMA, breast cancer cells with intermediate to high level of NR2b expression were invading into the adjacent adipose tissue,

whereas a paired sample that was not immediately adjacent to an invasive front showed negative to low levels of NR2b expression. (Green asterisks, adipocytes;

blue arrows, cancer cells).

(C) Example from a similar analysis of an ovarian cancer TMA, which also revealed elevated NR2b expression in a subset of cancer cells. (Blue arrow: ovarian

cancer cells).

(legend continued on next page)
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(Figure S5B). However, when we stained for both surface and

intracellular NMDARs, uniform levels of NR1 and NR2b were

detected (Figure S5A). This result suggested that there was an

intracellular pool of NMDARs primed for surface recruitment in

response to appropriate signals, similar to the situation in

neurons (Lau and Zukin, 2007). This observation suggested

that interstitial flow might be involved in regulating the surface

expression of NMDAR. Indeed, flow cytometry analysis revealed

that the levels of the two NMDAR subunits on the cell surface

were increased in flow conditions as compared to the static

condition (Figure 5A). Thus interstitial flow modulates surface

localization of NMDAR as well as glutamate secretion.

Interstitial Flow Activates the CaMK and MEK-MAPK
Pathways Downstream of NMDAR
Ligand-stimulated NMDAR induces calcium influx in neurons,

which activates two major downstream signaling circuits: the

Ca2+/calmodulin kinase (CaMK) pathway and the MEK-MAPK

pathway (Hardingham and Bading, 2010); both lead to phos-

phorylation of the transcription factor CREB (cAMP response

element-binding protein) at Ser133 (Figure 5B), a prerequisite

for recruiting the transcriptional coactivator CREB-binding-

protein (CBP) to the promoter regions of effector genes.

To clarify which pathway(s) downstream of NMDAR is

involved in cancer cell invasion, we analyzed phosphoprotein

expression in bTC-3 cancer cells in the invasion assay. We

found that interstitial flow increased NR2b phosphorylation (Fig-

ure 5C), which is known to potentiate NMDAR activity (Takasu

et al., 2002) and to promote NR2b surface localization

(Braithwaite et al., 2006) in neurons. We also observed increased

phosphorylation of calmodulin kinase type II (CaMK-II), calmod-

ulin kinase type IV (CaMK-IV), MAPK/ERK kinase (MEK), and

p44/p42 mitogen-activated protein kinase (MAPK) in flow condi-

tions as compared to static conditions, leading to a modest

increase in CREB phosphorylation at Ser133 (Figure 5C).

Consistent with our hypothesis that NMDARmediates flow-acti-

vated signaling, the addition of the NMDAR antagonist MK801 to

the flow-stimulated invasion assay markedly decreased the

phosphorylation of these effector proteins, with the exception

of CAMK-IV (Figure 5C). Strikingly, pretreatment with BAPTA-

AM, a potent intracellular calcium chelator commonly used to

block intracellular calcium signaling, in particular calcium-

dependent NMDAR signaling (Marsden et al., 2007), was able

to abolish flow-induced protein phosphorylation of all these

effectors in both MEK-MAPK and CAMK pathways, including

CAMK-IV (Figures 5D and S5D). The results establish that the

flow-mediated activation of the CaMK and MEK-MAPK path-

ways is calcium-dependent, principally involving the calcium-

dependent NMDAR.
(D) Querying the TCGA database of ovarian cancer patients for the combination

expression levels of both NR2b and vGlut2 (belowmean) hadmore than one year o

mean). Median survival, 49.4 months in NR2b/vGlut2 low group; 36.9 months in

(E) NR2b was also expressed in samples from a glioma TMA, as exemplified by

(F) Survival analysis using glioblastoma patient data in the TCGA data set revealed

(median survival, 14.9 months in NR2b low group versus 11.5 months in NR2b h

vGlut2 further separated the curves (median survival, 15.2 months in NR2b/vGlu

See also Figure S2 and Table S2.
In Vivo the NMDAR Antagonists Have Therapeutic
Efficacy
Having characterized NMDAR signaling in assays involving

cultured cancer cells, we proceeded to perform experimental

therapeutic trials in the RIP1-Tag2 mouse model in order to

assess the importance of NMDAR signaling for tumors in vivo.

The synchronized, multistage tumorigenesis pathway to PNET

in RIP1-Tag2 mice renders this GEMM a powerful tool for exper-

imental trials of mechanism-targeted drugs. By 12–14 weeks of

age, 2%–4% of the approximately 400 pancreatic islets have

progressed through premalignant stages to become solid

tumors with varying degrees of invasiveness (Chun et al.,

2010), and the mice reach end stage at around 14–16 weeks.

Several distinctive experimental trial regimens have proved infor-

mative about the molecular, histological, and pathologic effects

of anticancer drugs: intervention trials start at 10–11 weeks of

age and last 3–4 weeks, aiming to determine if a drug can inter-

vene in the expansive growth of nascent solid tumors; regression

trials start at 12–13 weeks, to assess a drug’s effect when

substantial solid tumors have developed, and the mice are at

a late stage of disease progression (Bergers et al., 1999).

Regression trials in this mousemodel therefore mimic a common

situation in the clinic, when treatment commences in patients

with advanced solid tumors.

In an intervention trial with MK801, tumor burden (cumulative

volume of multiple tumors in the pancreas) and tumor number

were both decreased by the treatment (Figure 6A), concomitant

with reduced proliferation (Figure 6B). Tumor invasiveness was

also attenuated (Figure 6A). In addition, NR2b expression and

phosphorylation at the tumor periphery were decreased in

MK801-treated tumors (Figure 6B). We then performed a regres-

sion trial, and found that MK801 was even more effective in

decreasing tumor burden at this late stage of progression (Fig-

ure 6C). We also tested a much weaker, clinically approved

NMDAR antagonist, memantine, and observed an antitumoral

effect in the late stage regression trial, but not in the early stage

intervention trial (Figure S6A), perhaps reflecting its weaker

activity. We then performed a preclinical trial with MK801 in

a second mouse model, involving orthotopic transplantation of

primary breast cancer cells from MMTV-PyMT transgenic

mice. After 3 weeks of treatment, we observed a trend toward

decreased tumor burden (Figure S6B); we infer that the lack of

statistical significance reflects similar heterogeneity in NMDAR

expression to what we described above both in breast tumors

in the GEMM and in patient samples (by immunohistochemistry

and mRNA profiling). Collectively, the preclinical trials support

the implications from the analysis of clinical data that NMDAR

signaling is functionally important in some tumor types (Figure S2

and Tables S1 and S2) and that individual tumors of particular
of NR2b and the glutamate transporter vGlut2 revealed that a group with low

f survival advantage compared to a distinctive NR2b/vGlut2 high group (above

NR2b/vGlut2 high group.

one tumor.

that NR2b expression levels alone were significantly associated with prognosis

igh group). Moreover, the combination of low versus high levels of NR2b plus

t2 low group versus 10.8 months in NR2b/vGlut2 high group).
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A D

B C

E F

G H

(legend on next page)

92 Cell 153, 86–100, March 28, 2013 ª2013 Elsevier Inc.



cancer types and subtypes could have heterogeneous expres-

sion and consequently variable responses to MK801 treatment

(Figure 3E).

DISCUSSION

The results presented herein provide provocative evidence for

a functional role of the NMDAR signaling pathway in tumor

progression. In addition, they unveil a mechanism of NMDAR

pathway activation in cancer: physical cues in cancer microenvi-

ronment, namely interstitial pressure differences and fluid flow,

serve to activate an autocrine pathway that stimulates prolifera-

tion and invasiveness of cancer cells (Figure 7).

Glutamate Is Subject to Flow-Regulated Secretion for
Autocrine Stimulation of NMDAR
We have revealed a mechanism that regulates glutamate

bioavailability in the tumor microenvironment, demonstrating

that during tumorigenesis, glutamate bioavailability and sig-

naling are evidently elevated by three mechanisms. First, the

vGlut genes are transcriptionally upregulated in the cancer cells.

Second, increased interstitial pressure and flow in the microen-

vironment elicit increased glutamate secretion by those cancer

cells. Third, flow conditions increase both expression and cell-

surface localization of the glutamate receptor NMDAR so as to

enable stronger signaling in response to the glutamate ligand.

Concordantly, the combination of higher expression of NR2b

and vGluts was predictive of poor prognosis for cancer patients.

Interstitial Flow as a Microenvironmental Signal
Deciphering the complex crosstalk between cancer cells and

their microenvironment stands as an important challenge to

the cancer field (Hanahan and Weinberg, 2011). Among the

various environmental parameters, cancer-associated stromal

cells are prominent, and their importance is increasingly well es-

tablished (Hanahan and Coussens, 2012). In contrast, invisible

cues, such as the physical forces within the tumor microenvi-

ronment, have been less well studied and appreciated.

Recently, mechanotransduction has begun to emerge as an
Figure 3. Functional Importance of NMDAR Signaling in Cancer—In Vi

(A) Treating cultured PNET cancer cells with the NMDAR antagonist MK801 dec

(B) Schematic of the modified invasion assay that mimics interstitial fluid pressu

(C) In the modified invasion assay shown in (B), flow significantly increased canc

MK801 and (to a lesser extent) by the AMPAR antagonist GYKI52466.

(D) The invasion- and growth-inhibiting effects of MK801 could be recapitulated

(E and F) Treatment of a panel of human breast and PDAC cancer cell-lines with

invasion assay (F).

(G) Out of the 14 cell lines shown in (E), 9 cell lines were selected for evaluation o

according to their invasiveness: high (DanG, BT549, HCC1806), intermediate (SK

expression was associated with the response to MK801 within high and interme

group; instead,MK801’s effects on invasion were associated with differing levels o

not responsive to MK801, indicative of its specific targeting of NMDAR.

(H) Among the cell lines, DanG expressed the highest level of NR2b and was

representative picture from the MK801-treated DanG cells showed markedly decr

originally taken in DAPI channel with monochromic camera, shown with inverted

Data are represented as mean with SEM; a two-tailed Student’s t test was perfor

were normalized to the control group each time, thus a two-tailed one-sample

hypothetical value 1, representing the control. *p < 0.05, **p < 0.01, ***p < 0.001

See also Figure S3 and Table S3.
instructor for cancer progression (DuFort et al., 2011). Elevated

tumor interstitial fluid pressure (IFP) and consequently

increased interstitial flow have been associated with tumor inva-

sion and lymph node metastasis (Shieh and Swartz, 2011) and

with poor patient prognosis (Heldin et al., 2004). Interstitial

flow is typically highest at tumor margins due to the differential

interstitial fluid pressure between tumor and adjacent normal

tissue (Dafni et al., 2002; Harrell et al., 2007). Congruently, as

demonstrated in Figure 5, flow conditions increased both

surface expression of NMDAR and NR2b phosphorylation and

enhanced invasion by PNET cancer cells, consistent with the

observation that NR2b expression and NR2b phosphorylation

preferentially occurred at the periphery of PNET tumors (Figures

1A–1D). Moreover, IFP and interstitial flow are known to

increase significantly as tumor size increases (Gutmann et al.,

1992), consistent with our observation that peripherally elevated

expression of NR2b was positively associated with tumor size

(Figure 1B, ii). Notably, the therapeutic benefit of the NMDAR

inhibitors MK801 and memantine are much more significant in

the late stage regression trial than in the early stage intervention

trial (Figures 6A, 6C, and S6A), again implicating the preferential

activation of NMDAR in late stage tumors via increased intersti-

tial pressure and consequent flow, leading to heightened

malignancy.

Proliferation and Invasion May Be Governed by Distinct
Branched Pathways Downstream of NMDAR
In the in vitro assay, the anti-invasive effect of MK801 (evident

within overnight culture) occurred much faster than its antiproli-

ferative and proapoptotic effects (evident after 3 days) on cancer

cells in vitro (Figures 3A and 3C). This result suggests that

NMDAR-mediated invasion might involve different downstream

effectors than those that modulate survival. The analysis of

protein phosphorylation in the invasion assay (Figure 5C)

provides some insights into the downstream pathways of

NMDAR.

By comparing cells in flow conditions with those in flow plus

MK801 conditions, we could attribute the observed reductions

in invasion by MK801 in flow conditions (Figure 5C) to the
tro Evidence

reased proliferation and increased apoptosis.

re-mediated pressure gradients and fluid flow.

er cell invasiveness, which could be inhibited both by the NMDAR antagonist

with siRNA-mediated knockdown of the obligatory NMDAR subunit 1 (NR1).

MK801 variably reduced cell survival (E), and invasiveness using the modified

f NR2a/b mRNA expression. The 9 cell lines could be divided into three groups

BR3, SUIT2, 3.27), and weak (MCF7, MDAMB157, BxPC3). Interestingly, NR2b

diate invasiveness groups. NR2b was barely detectable in the weakly invasive

f NR2a expression in that group. Cell lines expressing neither NR2 subunit were

the most responsive to MK801 treatment in the modified invasion assay. A

eased numbers of invading cells compared to the control group. Pictures were

black and white.

med to compare control and treatment groups from (A)–(E); in (F) and (G); data

t test was performed to determine if the ratio was significantly different from

.
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Figure 4. The NMDAR Circuit in PNET: Upstream Activators

(A) Comparative analysis of mRNA levels of the glutamate transporters in the different stages in PNET tumorigenesis revealed that expression of both vGlut1 and

-2 was increased in PNETs as compared to normal pancreatic islets and premaligant stages. Normal islet: three independent islet pools; hyperplastic and

angiogenic islet: one islet pool each; PNETs: 14 tumors. Floating bars showing minimum to maximum with line showing the mean.

(B) Ex vivo, qRT-PCR with cDNA generated from FACS-sorted constituent cell types from PNETs revealed that cancer cells were the major expressers of NR1,

vGlut1, and vGlut2, consistent with possible autocrine glutamate to NMDAR signaling. Data shownwas from one cell sorting. Sortings were repeated three times,

with similar results. Each cell sorting was performed by pooling multiple PNETs from one to two mice. FACS, fluorescence-activated cell sorting.

(C) In vitro, all three vGlut family proteins were expressed in bTC-3 cancer cells generated from amouse PNET, as shown by flow cytometric analysis with specific

antibodies.

(D) Immunocytochemistry confirmed typical punctate cytoplasmic staining of vGlut3 in bTC-3 cells. (Red arrow heads, vGlut3.)

(E) Interstitial flow (Figure 3B) increased glutamate concentration in the medium of the transwell invasion assay as compared to the static condition. Unpaired t

test, one-tailed. The data are represented as mean with SEM; the data shown was from one of >5 replicate experiments, each with similar trends.

See also Figure S4.
decreased phosphorylation of NR2b and its downstream effec-

tors. Notably, however, MK801-treated cancer cells in the modi-

fied invasion assay were still more invasive than cancer cells in

the static assay (Figure 3C). It is possible that the CaMK-IV phos-

phorylation was sufficient to confer the remaining 1.5-fold

increase in invasiveness when compared to the static group,

whereas the other phosphorylated proteins contributed to the
94 Cell 153, 86–100, March 28, 2013 ª2013 Elsevier Inc.
near-6-fold higher levels of the flow group with no inhibition of

NMDAR. Concordantly, the knockdown of CaMK-IV expres-

sion with siRNA, which largely abrogated invasiveness with

minimal effect on proliferation, supports the selective in-

volvement of this kinase in orchestrating an invasive program

(Figure S7). Taken together, we infer that the MEK-MAPK

pathway is preferentially governing proliferation and survival



Figure 5. The NMDAR Circuit in Cancer: Downstream Effectors

(A) Hydrodynamic pressure and flow through transwells enhanced cell-surface expression of the NMDAR on bTC-3 cells, as revealed by flow cytometry analysis

with live cancer cells. Data are represented as mean with SEM.

(B) Schematic of NMDAR signaling: receptor activation leads to calcium-dependent stimulation of two major downstream signaling pathways: the CaMK-II/IV

pathway and the MEK-MAPK pathway; NR2b phosphorylation at Y1252 and Y1336 are known to potentiate NMDAR activity. CaMKII, calmodulin kinase type II;

CaMKIV, calmodulin kinase type IV;MEK,MAPK/ERKkinase;MAPK, p44/p42mitogen-activated protein kinase; CREB, cAMP response element-binding protein.

(C) Flow in the modified transwell invasion assay promoted NR2b phosphorylation in bTC-3 cells, and activated both CaMK and MEK-MAPK pathways

downstream of NMDAR, which led to CREB phosphorylation. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001) MFI, mean fluorescence intensity; DMFI,

difference of MFI between staining and negative control. One-sample t test was performed to determine if the ratio generated from each experiments was

significantly different from 1, representing DMFI of the static group. Data are represented as mean with SEM.

(D) These flow-mediated effects could be abolished by an intracellular calcium chelator BAPTA-AM; the red shadow (baseline control, static group) and blue line

(flow group) almost totally overlapped in the BAPTA-AM-treated group (right), as compared to the separate lines in the control group (left).

(E) A schematic, based on theMFI analysis, suggesting that theMEK-MAPK and CaMK pathways are differentially activated. In static conditions, theMEK-MAPK

pathway was already highly activated. In flow conditions, including increased secretion of glutamate, the increased NMDAR phosphorylation only modestly

increased MEK-MAPK pathway activity. In contrast, the CaMK pathway activity, which was comparatively low in static condition, is appreciably upregulated by

flow conditions.

See also Figure S5.
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Figure 6. Functional Importance of NMDAR Signaling in Cancer—In Vivo Evidence

(A) A preclinical intervention trial targeting early-staged tumors in the RIP1-Tag2 model of PNET using the NMDAR antagonist MK801 decreased tumor burden,

tumor number, and the incidence of highly invasive carcinomas in RIP1-Tag2 mice (n = 9–12 mice per group). Definition: IT, tumor margin < 10% invasive; IC1,

margin 10%–50% invasive; IC2, margin > 50% invasive. At least 39 tumors per group were graded.

(legend continued on next page)
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Figure 7. A Model: Interstitial Flow Activates Glutamate-to-NMDAR

Signaling in the Tumor Microenvironment

At the margins of solid tumors, an interstitial fluid pressure (IFP) drop and

consequent fluid flow into adjacent normal tissue induces membrane locali-

zation and phosphorylation of the mechanosensitive NMDAR, and elevates

expression of glutamate transporters and consequent secretion of glutamate,

constituting an autocrine signaling circuit that stimulates cancer cell prolifer-

ation (data not shown) and invasiveness. Downstream of glutamate-activated

NMDAR, the CaMK-II/IV and MEK-MAPK signal transducers in turn phos-

phorylate and activate the transcription factor CREB, which associates with

the CREB-binding protein (CBP) to regulate a presumptive transcriptional

program that mediates tumor growth and invasion. See also Figure S7.
downstream of NMDAR activation, whereas the CaMK pathway,

in particular CaMK–IV, is playing themajor role in invasion. Still to

be clarified in future studies is the role of glutamate-stimulated

AMPAR signaling, which is implicated in invasion (Figure 3C);

AMPAR signaling would also be abrogated by BAPTA but not

MK801, thus potentially explaining the differences in degrees

of inhibition of downstream effector phosphorylation and of

invasiveness.
(B) MK801 treatment decreased tumor proliferation (BrdU staining), NR2b expres

three mice per group; NR2b, n = 11–16 tumors/four to five mice per group; p-NR

(C) Similarly, a regression trial targeting late-stage tumors with MK801 also had

Data are represented as mean with SEM. See also Figure S6.
Therapeutic Benefits of Inhibiting NMDAR Signaling in
Tumors
The NMDAR inhibitor MK801 has previously shown antitumoral

effects when used to treat various xenograft tumors (North

et al., 2010a; North et al., 2010b). Our study broadens the scope,

demonstrating therapeutic efficacy of MK801 in an immunocom-

petent mouse model of endogenous tumor progression. In addi-

tion, whereas tissue invasion cannot be thoroughly assessed in

traditional subcutaneous xenografts, this GEMM revealed a

role for NMDAR in cancer invasion. Notably, the effect of

MK801 in vivo was not as striking as that in vitro, and we suggest

an explanation: MK801 has a very short half-life, of about an hour

(Wegener et al., 2011). Therefore, in tumors in vivo the exposure

was only for 1 hr a day, whereas in the flow-modified invasion

assay, the drug was continuously present. As mentioned previ-

ously, we infer that PNET survival and invasion are governed

by different downstream pathways. Thus, the 1 hr daily exposure

experienced by tumors in vivo might be sufficient to markedly

impair proliferation but insufficient to fully inhibit invasion.

Although demonstrably important, NMDAR is not the sole

driver of invasion in the RIP1-Tag2 model: various regulatory

pathways have been proved instrumental for PNET invasion,

including IGF-2/IGF-1R signaling (Christofori et al., 1994; Lopez

and Hanahan, 2002), loss of E-cadherin and altered NCAM

function (Perl et al., 1999; Perl et al., 1998), loss of desmosomal

adhesions (Chun and Hanahan, 2010), and extracellular matrix

degrading enzymes supplied by immune cells (Joyce et al.,

2004). Therefore, the incomplete inhibition of PNET tumor inva-

siveness by NMDAR antagonists may also reflect parallel, inde-

pendent capabilities manifested by these other signaling events;

the possibility that flow-activated glutamate-to-NMDAR sig-

naling regulates one or another of these various proinvasive

signaling pathways deserves future investigation.

Implications of NMDAR Pathway Activation in Human
Cancer
Our experimental design, which focused on the mechanism and

effects of NMDAR activation in a GEMM of human cancer,

involved only a limited (albeit provocative) survey for evidence

of NMDAR signaling in different forms of human cancer. There

are, therefore, several considerations. First, because NMDAR

is in some cases evidently upregulated at the tumor periphery

or in tissue-invading cancer cells, TMAs composed of core

needle biopsies may miss the informative margins. Moreover,

genome-wide expression-profiling data (e.g., from TCGA) may

in some cases fail to identify such focal upregulation of mRNA

at the margins, obscured by the predominant core of large solid

tumors. Second, although we clearly implicated the NR2b

subunit in the stimulation of tumor invasion and aggressiveness

in the PNET model, we cannot exclude the involvement of alter-

native NMDAR subunits in other tumor types. In our in vitro

survey of human cancer cell lines, some did not express high

NR2b, but rather NR2a (such as MDAMB157, SUIT2), and these
sion at tumor periphery, and NR2b phosphorylation. BrdU, n = 14–25 tumors/

2b, n = minimum of six mice per group.

antitumoral effects. n = 9–12 mice per group.
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were also responsive to MK801; in contrast, cell lines expressing

neither subunit were poorly responsive to MK801. Finally, the

three vGlut transporters may be variably expressed; whereas

all were expressed in the PNET model, this might not be the

case in other tumor types. Thus the three vGluts as well as the

various NMDAR subunits should be audited in the context of

surveying human tumor types, ideally incorporating in situ histo-

logical methods that can detect localized upregulation at tumor

margins and invasive fronts.

Translational Implications of NMDAR Antagonists
for Cancer Therapy
The results collectively suggest that inhibition of NMDAR

signaling could have therapeutic benefit in some forms of human

cancer. There are, nevertheless, additional considerations. First,

patient selection will likely be important. We observed heteroge-

neous expression of NMDAR in the human cancer TMA survey,

as well as varying responses to MK801 treatment in a panel of

human cancer cell lines and in a mouse model of breast cancer.

Therefore, NMDAR antagonists may be more effective in

patients with broader (less focal/peripheral) and higher expres-

sion/activation of the NMDAR signaling axis. Additionally,

combination therapies with conventional drugs targeting the

tumor core along with NMDAR inhibitors targeting the invasive

periphery might prove beneficial; moreover, because AMPAR

is implicated as a second proinvasive glutamate receptor (Fig-

ure 3C), it will be of interest to explore combinatorial targeting

of NMDAR and AMPAR.

A second and important consideration is that refined NMDAR

inhibitors are needed. Asmentioned previously, the short half-life

of MK801 may partially account for its incomplete inhibition of

tumor invasiveness; as such, a second-generation drug with

a longer half-life and better exposure would likely improve effi-

cacy. Additionally, in light of the well-known (side) effects of

NMDAR antagonists on learning, memory, and behavior (Wu

et al., 2005), it would be highly desirable to develop new NMDAR

antagonists that don’t cross the blood-brain-barrier. Although

such drugs might not have optimal efficacy in glioma, they would

likely prove more tolerable clinically for patients with NMDAR-

expressing tumors outside of the CNS. Finally, inhibitors of gluta-

mate biosynthesis and secretion are also worth investigating as

agents for targeting this proinvasive signaling axis.

Perspective
In conclusion, this study reveals how cancer cells hijack the

glutamate-to-NMDAR signaling pathway operative in neurons

to instead promote invasive tumor growth. These findings poten-

tially link the long-recognized existence of high interstitial fluid

pressure (IFP) in tumors with the hallmark capability for tumor

invasion, whereby comparatively higher IFP in solid tumors

creates a pressure drop at the tumor margin, with consequent

fluid flow into adjacent normal tissue. Via mechanosensory

transduction, this pressure drop and fluid flow evidently activate

autocrine glutamate secretion, concomitant with NMDAR

phosphorylation and transport to the cell surface to engage the

glutamate ligand, with consequent activation of downstream

signaling (Figure 7). The results establish a potentially wide-

spread mechanism for inducing tumor invasiveness. This mech-
98 Cell 153, 86–100, March 28, 2013 ª2013 Elsevier Inc.
anism offers a potentially important target for future cancer

therapeutics, whereby long-lasting, periphery-acting NMDAR

antagonists may have promise for treating certain human

cancers.

EXPERIMENTAL PROCEDURES

Genetically Engineered Mouse Model of Cancer

The RIP1-Tag2 mice (Hanahan, 1985) were bred and genotyped as previously

described (Herzig et al., 2007). In brief, RIP1-Tag2 mice are transgenic mice,

inbred into C57Bl/6, carrying a hybrid oncogene composed of the SV40 early

region, encoding the large and small T antigen oncoproteins (Tag), fused to rat

insulin gene promoter (RIP). Male mice heterozygous for the RIP1-Tag2

transgene are used for breeding with wild-type C57Bl/6J females. Pups

were genotyped for SV40 oncogene using qRT-PCR by Transnetyx (Cordova,

TN, http://www.transnetyx.com/). The qRT-PCR probes are designed by the

company and procedures are detailed on the company’s website. The probes

for conventional genotyping using PCR detection are listed as following:

forward primer 50-GCTCTGCTGACATAGAAGAATGG-30; reverse primer

50-GTACTCATTCATGGTGACTATTCCAG-30 (amplicon 454 bp). Male RIP1-

Tag2 mice are typically larger in size than females, therefore, only male mice

with body weight over 23 g at starting point of an experiment were included

for trials and analysis (See e.g., Chun et al., 2010). The MMTV-PyMT mice

were bred and genotyped as previously described (Malanchi et al., 2012).

The genetic modifications of the PDAC GEMMs used were listed in the Table

S1. The PDAC mice were bred as described previously (Olson et al., 2011).

Modified Invasion Assay

The hydrostatic-pressure-based modification of the classic Boyden chamber

assay was performed as previously described (Shields et al., 2007). In brief,

cells were seeded into amixture of 1.2mg/ml rat tail collagen type I (BDBiosci-

ences, NJ) and 10%–20% of growth factor reduced matrigel (356231, BD

biosciences, NJ), then placed onto transwell inserts (Millipore http://www.

millipore.com/catalogue/module/C10504, 12 mm PCF, 8.0 mm pore size),

and then incubated for one hour at 37�C to solidify the matrix. Additional basal

mediumwas added to the top of thewells to generate�1cmwater head (650 ml

on the top, 150 ml in the bottom for flow condition; 150 ml on the top, 650 ml on

the bottom for the static condition). After overnight incubation, the gels were

discarded and the upper side of the membrane was cleaned carefully with

cotton tips to ensure that all the cells that didn’t cross the membrane were

removed. Then, cells on the bottom side of the membrane were fixed with

ice-cold methanol and stained with DAPI. Five images/well were taken at

constant positions (as illustrated in Figure S3) with a 103 objective, which in

sum covered most of the area of the membrane. The results were quantified

using Fiji Image Analysis software, as described (Schindelin et al., 2012).

Each experiment was performed in triplicate and repeated at least three times.

Analysis of Protein Phosphorylation in the Invasion Assay

The cancer cells were incubated on 6-well hanging inserts (FA-353493, BD

Biosciences, NJ) in three different conditions as described in Figure 3B: static,

flow and flow plus MK801, following the same gel casting protocol described

in Modified Invasion Assay. The gels from the invasion assays mimicking 3D

culture were collected from the transwells and digested with collagenase D

(11088866001, Roche) according to manufacturer’s protocol to release the

cells. The cells were counted using a cell counter (Countess Cell Counter,

Life Technologies), and equal numbers of cells were distributed into individual

wells or tubes for antibody staining. For the intracellular staining, the cells were

fixed with Cytofix/Cytoperm buffer (BD Biosciences, NJ), whereas for analysis

of NMDAR surface expression, the cells were not fixed. Then the cells were

blocked with an anti-mouse CD16/32 Fc blocking agent (BioLegend http://

www.biolegend.com/). Primary antibodies were diluted 1:100 in the blocking

solution, and secondary antibodies (donkey-anti-rabbit IgG Alexa488

A21206, donkey-anti-rabbit IgG Alexa568 A10042, goat-anti-mouse IgG

Alexa488 A11029, donkey-anti-mouse Alexa647 A31571, all from Life Tech-

nologies) were diluted at 1:1000 in the staining solution (BD Biosciences,

NJ). Staining was performed on ice for�30 min. Samples were then subjected

http://www.transnetyx.com/
http://www.millipore.com/catalogue/module/C10504
http://www.millipore.com/catalogue/module/C10504
http://www.biolegend.com/
http://www.biolegend.com/


to flow cytometry in a CyAn ADPS flow cytometry analyzer (Beckman Coulter)

in the EPFL flow cytometry core facility. Flow cytometry data were analyzed

with FlowJo software, and mean fluorescence intensity (MFI) was calculated

using geometric mean.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and four tables and can be foundwith this article online at http://dx.doi.

org/10.1016/j.cell.2013.02.051.
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and Jean-Paul Abbühl for help with animal experiments; Yunyun Han, Hsin-

Ying Huang, Sukhvinder Sidhu, and all Hanahan lab members for biological

samples and discussions; Melody Swartz, Adrian C. Shieh, and Jacqueline

Shields for advice and instruction on the modified invasion assay; Janet Iwasa

for the schematic figure; and the EPFL School of Life Sciences technology

cores and animal care facility. This research was supported by a core grant

from EPFL. Some results are based on data generated by the TCGA pilot

project.

Received: September 26, 2012

Revised: January 8, 2013

Accepted: February 21, 2013

Published: March 28, 2013

REFERENCES

Bai, L., Zhang, X., and Ghishan, F.K. (2003). Characterization of vesicular

glutamate transporter in pancreatic alpha - and beta -cells and its regulation

by glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G808–G814.

Bergers, G., Javaherian, K., Lo, K.M., Folkman, J., and Hanahan, D. (1999).

Effects of angiogenesis inhibitors on multistage carcinogenesis in mice.

Science 284, 808–812.

Braithwaite, S.P., Adkisson, M., Leung, J., Nava, A., Masterson, B., Urfer, R.,

Oksenberg, D., and Nikolich, K. (2006). Regulation of NMDA receptor

trafficking and function by striatal-enriched tyrosine phosphatase (STEP).

Eur. J. Neurosci. 23, 2847–2856.

Christofori, G., Naik, P., and Hanahan, D. (1994). A second signal supplied by

insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369,

414–418.

Chun, M.G., and Hanahan, D. (2010). Genetic deletion of the desmosomal

component desmoplakin promotes tumor microinvasion in a mouse model

of pancreatic neuroendocrine carcinogenesis. PLoS Genet. 6, e1001120.

Chun, M.G., Mao, J.H., Chiu, C.W., Balmain, A., and Hanahan, D. (2010).

Polymorphic genetic control of tumor invasion in a mouse model of pancreatic

neuroendocrine carcinogenesis. Proc. Natl. Acad. Sci. USA 107, 17268–

17273.

Dafni, H., Israely, T., Bhujwalla, Z.M., Benjamin, L.E., and Neeman, M. (2002).

Overexpression of vascular endothelial growth factor 165 drives peritumor

interstitial convection and induces lymphatic drain: magnetic resonance

imaging, confocal microscopy, and histological tracking of triple-labeled

albumin. Cancer Res. 62, 6731–6739.

Du, Y.C., Lewis, B.C., Hanahan, D., and Varmus, H. (2007). Assessing tumor

progression factors by somatic gene transfer into a mouse model: Bcl-xL

promotes islet tumor cell invasion. PLoS Biol. 5, e276.

DuFort, C.C., Paszek, M.J., and Weaver, V.M. (2011). Balancing forces: archi-

tectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12, 308–319.

Efrat, S., Linde, S., Kofod, H., Spector, D., Delannoy, M., Grant, S., Hanahan,

D., and Baekkeskov, S. (1988). Beta-cell lines derived from transgenic mice
expressing a hybrid insulin gene-oncogene. Proc. Natl. Acad. Sci. USA 85,

9037–9041.

Fantozzi, A., and Christofori, G. (2006). Mousemodels of breast cancer metas-

tasis. Breast Cancer Res. 8, 212.

Grippo, P.J., and Tuveson, D.A. (2010). Deployingmousemodels of pancreatic

cancer for chemoprevention studies. Cancer Prev. Res. (Phila.) 3, 1382–1387.

Gutmann, R., Leunig, M., Feyh, J., Goetz, A.E., Messmer, K., Kastenbauer, E.,

and Jain, R.K. (1992). Interstitial hypertension in head and neck tumors in

patients: correlation with tumor size. Cancer Res. 52, 1993–1995.

Hanahan, D. (1985). Heritable formation of pancreatic beta-cell tumours in

transgenic mice expressing recombinant insulin/simian virus 40 oncogenes.

Nature 315, 115–122.

Hanahan, D., and Coussens, L.M. (2012). Accessories to the crime: functions

of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322.

Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next gener-

ation. Cell 144, 646–674.

Hardingham, G.E., and Bading, H. (2010). Synaptic versus extrasynaptic

NMDA receptor signalling: implications for neurodegenerative disorders.

Nat. Rev. Neurosci. 11, 682–696.

Harrell, M.I., Iritani, B.M., and Ruddell, A. (2007). Tumor-induced sentinel

lymph node lymphangiogenesis and increased lymph flow precedemelanoma

metastasis. Am. J. Pathol. 170, 774–786.

Heldin, C.H., Rubin, K., Pietras, K., and Ostman, A. (2004). High interstitial fluid

pressure - an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813.

Herner, A., Sauliunaite, D., Michalski, C.W., Erkan, M., De Oliveira, T., Abiatari,

I., Kong, B., Esposito, I., Friess, H., and Kleeff, J. (2011). Glutamate increases

pancreatic cancer cell invasion and migration via AMPA receptor activation

and Kras-MAPK signaling. Int. J. Cancer 129, 2349–2359.

Herzig, M., Savarese, F., Novatchkova, M., Semb, H., and Christofori, G.

(2007). Tumor progression induced by the loss of E-cadherin independent of

beta-catenin/Tcf-mediated Wnt signaling. Oncogene 26, 2290–2298.

Joyce, J.A., Baruch, A., Chehade, K., Meyer-Morse, N., Giraudo, E., Tsai, F.Y.,

Greenbaum, D.C., Hager, J.H., Bogyo, M., and Hanahan, D. (2004). Cathepsin

cysteine proteases are effectors of invasive growth and angiogenesis during

multistage tumorigenesis. Cancer Cell 5, 443–453.

Lau, C.G., and Zukin, R.S. (2007). NMDA receptor trafficking in synaptic plas-

ticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8, 413–426.

Lopez, T., and Hanahan, D. (2002). Elevated levels of IGF-1 receptor convey

invasive and metastatic capability in a mouse model of pancreatic islet tumor-

igenesis. Cancer Cell 1, 339–353.

Malanchi, I., Santamaria-Martı́nez, A., Susanto, E., Peng, H., Lehr, H.A.,

Delaloye, J.F., and Huelsken, J. (2012). Interactions between cancer stem cells

and their niche govern metastatic colonization. Nature 481, 85–89.

Marsden, K.C., Beattie, J.B., Friedenthal, J., and Carroll, R.C. (2007). NMDA

receptor activation potentiates inhibitory transmission through GABA

receptor-associated protein-dependent exocytosis of GABA(A) receptors. J.

Neurosci. 27, 14326–14337.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Ethics Statement
All mice used in this study were maintained in a pathogen-free barrier animal facility of the Swiss Federal Institute of Technology

Lausanne (EFPL) in accord with Swiss regulations for the care and use of mice in experimental research.

Immunocytochemistry on Cultured Cells and Immunohistochemistry on Tissue Sections
For immunocytochemistry (ICC), cells were cultured on matrigel-coated slide chambers and fixed with methanol. For immunohisto-

chemistry (IHC) on tissue sections, anaesthetized mice were cardiac-perfused with zinc-formalin and PBS. Harvested tissues were

fixed in zinc-formalin overnight and then embedded in paraffin. Antigen retrieval was performed in a citrate buffer (pH = 6.0) in a water

bath at 95�C for 20 min. Primary antibodies were incubated at 4�C overnight, and biotinylated secondary antibodies (donkey anti-

rabbit IgG 711-065-152 and donkey anti-mouse IgG 715-065-150, both from Jackson Immunologicals Research) were incubated

at room temperature for 30 min, followed by incubation with avidin/biotinylated enzyme complex (Vectastain Elite ABC kit [Vector

Labs http://www.vectorlabs.com/]) for 30 min at room temperature, and finally were visualized with the peroxidase substrate DAB

(Sigma-Aldrich, D5637-1G) for 8 min at room temperature. Finally, the stained tissue sections were counterstained with Meyer’s

hematoxylin.

Semiquantification of NR2b Staining in Mouse PNET
The pictures were taken with 403 objectives, and NR2b staining was semiquantified with Fiji Image Analysis Software (Schindelin

et al., 2012) using similar methodology to that described previously (Prykhozhij, 2010). In brief, the images were split into three chan-

nels (red, green, and blue) by the Fiji software. In our experiments, the red channel corresponded to theMeyer’s hematoxylin staining

of the cells, whereas the blue channel corresponded to the NR2b (DAB) staining. Therefore, the red channel was used tomeasure the

total tumor area, whereas the blue channel was used to measure the DAB-stained area. By comparing these two values, one can

measure the percentage of DAB (NR2b) staining to all (tumor) area. Stronger DAB staining results in higher signal in the blue channel,

thus the increased percentage to all area. This percentage thus represents ameasure of both staining intensity and stain area, instead

of the percentage of positively stained cells only.

Antibodies
NR1, antibody: Thermo Scientific (PA3-102) for both IHC and flow cytometry. NR2b: Neuromab (clone N59/36) for ICC and flow cy-

tometry; Thermo Scientific (PA3-105) for IHC. Phospho-NR2b (pY1252 and pY1336) antibodies: Life Technologies (485200 and

485300, respectively) for both IHC and flow cytometry. vGlut antibodies: Neuromab (Clone: N28/9 for vGlut1; N29/29 for vGlut2;

N34/34 for vGlut3). Phospho-CaMKIV antibody: Abcam (ab59424). Phospho-CaMKII: Cell Signaling (3361). Phospho-MEK1/1:

Cell Signaling (9154). Phospho-p44/42 MAPK: Cell Signaling (9101). Phospho-CREB: Cell Signaling (9191). Antibodies used for

FACS sorting were all fluorophore-conjugated antibodies: APC/Cy7-CD45 (BioLegend 103116), APC-CD45 (eBioscience

17-0454-82), FITC-CD31 (BioLegend 102506), APC-CD140a (eBioscience 17-1401), PE-CD140a (eBioscience 12-1401-81),

PE-CD11b (eBioscience 12-0112-85), FITC-Gr1 (553127, BD Biosciences, NJ). The antibodies were used at 1:100 dilution for

flow cytometry experiments, and at 1: 500 for ICC and IHC.

Chemicals
MK801 and GYKI52466 were purchased from Sigma-Aldrich and Tocris (http://www.tocris.com/), respectively, and both were used

at 100 mM for in vitro experiments. Memantine was purchased from Tocris. BAPTA-AM was purchased from Enzo (http://www.

enzolifesciences.com/).

Proliferation/Apoptosis Assay
Proliferation assays were performed in vitro using a BrdU staining kit (BD Biosciences, NJ). BrdU was added to the culture medium

and incubated for 2 hr at 37�C. Apoptosis assays were performed in vitro using a PI/AnnexinV kit (BD Biosciences, NJ). Cells were

washed twice with PBS (Life Technologies) and trypsinized using TryPLE Express (Life Technologies). The stainings were performed

as described in the protocols in the kits, and the cells were analyzed by flow cytometry. For the screening ofMK801 effects on various

human cancer cell lines, cell viability analyses were performed with the CellTiter-Glo Luminescent Cell Viability Assay (Promega

http://www.promega.com/) following manufacture’s protocol. In brief, 1,250–5,000 cells were seeded per well in 96-well plates on

day 0, and the next morning the medium was changed to either complete medium (control group) or complete medium with

100 mM MK801 (MK801 treatment group). The analysis was performed on day 3. Experiments were performed in quadruplicates

and repeated at least four times.

siRNA Transfection
Predesigned siRNAs by the manufacturer (FlexiTube siRNA service, Qiagen, http://www.qiagen.com/) were transfected using

Lipofectamine 2000 (Life Technologies) according to the protocol from the manufacturer. Assays were performed 48–72 hr

posttransfection.
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Fluorescence-Activated Cell Sorting of PNETs
Cancer cells were collected from tumors excised from 14-to 17-week-old mice. The samples were prepared as described previously

(Song et al., 2005). Tumors were carefully separated from adjacent acinar cells, and digested with collagenase II (17101015, Life

Technologies), collagenase IV (17104019, Life Technologies) and DNase (18047019, Life Technologies) to release individual cancer

cells. Surface markers were used to separate PNETs into several different compartments: infiltrating immune (inflammatory) cells

(CD45+) or nonimmune cells (CD45�), further subdivided by other cell-surface markers, for b tumor cells (CD45�, CD140a�,

CD31�), endothelial cells (CD45�, CD140a�, CD31+) and fibroblasts (CD45�, CD140a+).

mRNA Reverse Transcription and Quantitative Real-Time PCR
mRNA extractions from cultured cell lines were performed with the Qiagen RNeasy kit (74106), and extractions from FACS-sorted

PNETs with the Qiagen miRNeasy kit (217004). Reverse transcription into cDNA was performed with Superscript II (Life Technolo-

gies). qRT-PCR was performed with vendor-designed Taqman probes purchased from Applied Biosystems (See Table S4), using

the Rotor-Gene Q system (Qiagen). For assessing FACS sorted samples, mRNA was generated from sorted cells derived by pooling

all excisable solid tumors from one or two mice. All qRT-PCR reactions were performed as duplicates or triplicates. Results were

normalized to the housekeeping genes rpl19 (for mouse) and rpl14 (for human).

Measurement of Glutamate Concentration
Glutamate levels were measured with the Amplex Red glutamine acid/glutamate oxidase assay kit (Life Technologies), following

protocols described in the manual.

BAPTA-AM Treatment
BAPTA-AM (Enzo) was diluted in DMEM medium to 3 mM and applied to the cells. After a 30 min incubation at 37�C, the cells were

washed twice with PBS and then incubated for another 30min at 37�C in complete DMEM. The cells were then used for experimental

analysis.

Gene Expression Analysis in the Different Stages of Tumorigenesis
mRNA from normal, hyperplastic and angiogenic islets, and solid tumors was collected and generated by Hanahan lab staff at UCSF

as described previously (Chun et al., 2010; Olson et al., 2009). Reverse transcription into cDNA and real-time PCR was performed as

described in mRNA Reverse Transcription And Quantitative Real-Time PCR.

Preclinical Trials with MK801 in RIP1-Tag2 Mice
Intervention trials ran for 3.5 weeks, from 10.5–14 weeks of age in the highly synchronous RIP1-Tag2 mouse model of

tumorigenesis, whereas regression trials involved treating tumor-bearing mice from 13–16 weeks of age. MK801 was diluted in

normal saline and given intraperitoneally at 1 mg/kg daily, 5 days a week. Memantine was also diluted in normal saline, and given

at 10 mg/kg following the same protocol. Cohorts were matched by age and weight (littermates were used if available), and were

given weight-matched amount of normal saline; only male mice were used in light of body weight and tumor volume differences

between males and females.

Preclinical Trials with MK801 in Orthotopic Transplantation Model of MMTV-PyMT Breast Cancer
The detailed protocol was described previously (Malanchi et al., 2012). Harvested breast cancer cells from a mammary tumor in

a female MMTV-PyMT mouse were cultured on collagen-coated plates overnight (with or without 100 mM MK801). The next day,

equal numbers of cells from either control or MK801-treated groups were orthotopically injected (immersed in matrigel) into a single

mammary fat pad (either the ninth [right abdominal], or both the ninth [right] and the fourth [left abdominal]) in cohorts of nine wide-

type FBVN females. Treatment with MK801 started 2 days after the transplantation, following the same dosing regimen as detailed in

Preclinical Trials withMK801 in RIP1-Tag2Mice.Micewere sacrificed after 3weeks of treatment, and tumor burdenwas assessed by

weight (g) of excised tumors.

Tissue Microarrays
Tissue microarrays were purchased from US Biomax http://www.biomax.us/ (Pancreatic cancer: PA481. Ovarian cancer: OV241a.

Breast cancer: BCA961. Glioma: GL241a. Prostate cancer: PR481). The staining was performed as described in Immunocytochem-

istry on Cultured Cells and Immunohistochemistry on Tissue Sections. For the analysis of the breast cancer TMA, we categorized the

samples into 4 levels of NR2b expression according to the NR2b IHC staining intensity. In the meantime, according to the data listed

on manufacturer’s website (http://www.biomax.us/tissue-arrays/Breast/BRC961), we categorized the samples into 3 clinical

subtypes: luminal, basal and HER2. Samples with HER2 expression +++ or ++/+++ were defined as belonging to the HER2 group;

the remaining samples were defined as luminal subtype if ER and or PR staining was positive, and the basal subtype was defined as

ER and PR negative. Out of the 11 samples defined as basal subtype, two samples from one patient showed ER negativity but low

positivity for PR staining and was assumed to be false positive.
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Statistic Analysis
Statistics were performed with Prism 5 (GraphPad Software) and Excel. Unless stated otherwise, the Student’s t test was used for

nonpaired experiments, and the paired Student’s t test was used for paired experiments. For paired experiments that did not follow

a Gaussian distribution, the two-tailed Wilcoxon matched pairs test was performed, and a test for effective pairing was also per-

formed and quantified by calculating the nonparametric Spearman correlation coefficient (rs). For paired experiments that were

each time normalized to a control sample, a ratio was obtained. The ratios from repeated experiments were then analyzed with

the one-sample t test to determine if the ratio was different from 1 (control).

In the preclinical trials, Grubbs’ outlier test (also known as the ESD [extreme studentized deviate] method) was performed for data

pertaining to tumor burden or tumor number, using online software from GraphPad website (http://graphpad.com/quickcalcs/

Grubbs1.cfm). Samples with p < 0.05 was considered as outliers of that experiment. A maximum of one outlier per group was elim-

inated. The Mann-Whitney test was used for assessing the differences in tumor burden and tumor number. A p value < 0.05 was

considered significant. Error bars shown in figures represent standard error of the mean (SEM).

Clinical Data Analysis
Detailed patient data were obtained from the TCGA (The Cancer Genome Atlas) website through the controlled access data tier. This

access was authorized by the NIH. The publically available gene expression data were downloaded from the TCGA data portal, in

which the AgilentG4502A_07 Z score was used to assess gene expression levels; the Z score of each sample represents the number

of standard deviations away from the mean of the whole analyzed data set. The patients’ clinical data and their corresponding gene

expression data were matched manually, and only patients with both valid clinical and gene expression data were included in the

analysis. By setting z = 0 as a cut off value, we divided patients into NR2b (grin2b) low (Z score < 0) and NR2b high (Z score > 0)

groups. For vGlut gene expression analysis, we divided the three vGlut genes (slc17a6, slc17a7, slc17a8) into low and high

expressers, again by using z = 0 as cut-off within both NR2b low and high groups. The survival analysis was done using the Log-

rank (Mantel-Cox) test and presented as Kaplan-Meyer curves (Figures 2D, 2F, and S2). For combined analysis of NR2b and vGlut

family genes, the Logrank test for trend was performed to determine if there was a trend in the four groups. The NR2b/vGlut low and

NR2b/vGlut high groups were isolated, and the Logrank test was performed again to compare only the two groups. p < 0.05 was

considered significant.
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Figure S1. NR1 Is Also Expressed in PNETs, Related to Figure 1

Immunohistochemistry revealed that the NMDAR subunit 1 (NR1) was expressed by the PNETs in the RIP1-Tag2 mouse model. More than ten tumors from five

mice were analyzed, and the picture shown is representative.
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Figure S2. Involvement of NMDAR Signaling in Human Cancers—Descriptive Evidence, Related to Figure 2

(A) In a limited survey of human pancreatic adenocarcinoma TMA, high expression of NR2bwas identified in a subset of cancer cells. One representative image is

shown.

(B) The NR2b was differentially expressed in different breast cancer subtypes. The subtypes were defined as described in the Extended Experimental Proce-

dures. The contingency table was analyzed with Chi-square test, with Chi-square = 13.08, degree of freedom = 6, and p = 0.0418. A total of 72 breast cancer

samples from 36 patients in the TMA were analyzed. Two sarcoma samples were excluded, as were seven other cancer samples due to poor sample quality,

tissue detachment from the slides, etc. Thus NR2b expression was assessed in 63 breast cancer samples.

(C) NMDAR signaling is implicated in ovarian cancer, as high expression of vGlut2 and NR2bwas a signature for poor prognosis in advanced stage ovarian cancer

patients. The prognosis difference was not significant when patients from all different stages were pooled. However, when only stage III patients were included,

who represented the majority of patients in the TCGA data sets (391 stage III patients out of 503 total patients with documented survival data) the survival

difference was significant with median overall survival increasing from 36.9 months in NR2b/vGlut2 high patients to 49.4 months in NR2b/vGlut2 low patients.

(D) High expression of NR2b alone was a signature for poor prognosis in glioblastoma (GBM) patients. Subdividing patients into vGlut high/low groups in both

NR2b low and high group further separated the survival curves. Because GBM is twice as common in white people compared to black people and is 40%more

prevalent in males than in females (Wen and Kesari, 2008), we selected white, male patients for survival analysis.

(E) Similar analysis was performed in the TCGA squamous cell lung carcinoma data set, and NMDAR signaling axis didn’t show prognostic significance in this

data set.

n.s., not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Log rank test was performed for the survival analysis, and P values were shown on the

Kaplan-Meier curves. For data withmore than two curves, i.e., combined analysis of NR2b and vGlut family genes, log rank test for trendwas performed to assess

if therewas a survival trend in the four curves analyzed. In addition, in the combined analysis of NR2b and vGlut family genes, two curves presumably representing

low and high NMDAR signaling axis, i.e., the NR2b-low/vGlut-low versus the NR2b-high/vGlut-high groups, were isolated for another log rank test to compare

these two groups. Also see Table S2.
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Figure S3. Detailed Schematic of the Invasion Assay Mimicking Interstitial Pressure-Driven Flow Conditions, Related to Figure 3

In the traditional transwell invasion assay, cells are seeded onto a layer of matrigel above a porous disc. The system is static, with no fluid flow. In the modified

invasion assay developed in the laboratory of Melody Swartz at EPFL (Shields et al., 2007), cells are seeded onto the porous disc immersed in amatrigel/collagen

gel mixture as a 3D culture, and then medium is placed on top of the gel, creating a hydrostatic pressure gradient that generates fluid flow down through the gel/

cell mixture and the porous disc into the lower chamber.
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Figure S4. Additional Evaluation of Glutamate Transporter Expression in PNET, Related to Figure 4

(A) Comparative analysis of mRNA levels of the glutamate transporters in the different stages in PNET tumorigenesis revealed that expression of vGlut3 was

increased in PNETs as compared to normal pancreatic islets and premaligant stages. Normal islet: three independent islet pools; hyperplastic and angiogenic

islet: one islet pool each; PNETs: 14 tumors. Floating bars showing minimun to maximum, and line showing mean.

(B) Ex vivo, qRT-PCR with cDNA generated from FACS-sorted constituent cell types from PNETs revealed that CD45�, nonimmune cells (with the vast majority

being cancer cells) were the major expressers of EAAT2, a membrane-bound glutamate transporter that removes extracellular glutamate. On the other hand,

CD45+, infiltrating immune (inflammatory) cells were the major expressers of xCT, a glutamate-cystein antiporter implicated in cancer previously. Data shown

was from one cell sorting. Sortings were repeated three times, with similar results. Each cell sorting was performed by pooling multiple PNETs from one to two

mice.
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Figure S5. Further Documentation of NMDAR Expression and Pathway Activity, Related to Figure 5

(A) bTC-3 cells have a heterogeneous surface expression of NMDAR:

Staining for surface NMDAR subunits NR1 and NR2b identified two populations of bTC-3 cells in normal culture conditions, whereas the staining for total (both

surface and intracellular) NMDARs showed a uniform population.

(B) The heterogeneous NR2b surface expression was also observed by immunocytochemistry staining.

(C) Illustration of the phosphoprotein analysis in static and flow conditions: to evaluate the interstitial flow-relevant change of protein phosphorylation, we included

both negative control and baseline control in the flow cytometry analysis. The negative control (2nd antibody control) was to assess both the nonspecific binding of

the 2nd antibody and the auto-fluorescence of the analyzed cells. The difference of mean fluorescence intensity (MFI) between each staining and its corre-

sponding negative control (DMFI) represented the specific staining from the 1st antibody. The baseline control (DMFI of the static condition) was intended to

assess the basal level of protein phosphorylation of cells in 3D culture.We normalized theDMFI of the flow and flowplusMK801 conditions to the baseline control,

and plotted the ratio in each condition. The baseline control (DMFI of the static condition) was set as 1 in the bar charts in Figure 5C.

(D) A detailed comparison of protein phosphorylation in control/BAPTA-AM-treated cells is shown. The different conditions didn’t significantly change the au-

tofluorescence of the cells, and the MFI of negative controls from different conditions had negligible differences, and thus are not shown in Figure 5D.
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Figure S6. Preclinical Trials with NMDAR Antagonists, Related to Figure 6

(A) A preclinical trial was performed with a second NMDAR antagonist, memantine. The treatment was not effective in the intervention trial, but tumor burden was

decreased in the regression trial. (The Mann-Whitney U test was performed) (Intervention trial: n = 10–11 mice/group; regression trial: n = 8–11 mice/group. The

control group was the same data shown in Figure 6).

(B) A preclinical trial with MK801 was performed in MMTV-PyMT orthotopic transplantation model, following the same dosing regimen as for the PNET trials. The

mice were sacrificed and tumors harvested after 3 weeks of treatment (n = 7–8 tumors/four to five mice/group; some mice were bilaterally transplanted while

others were unilaterally transplanted).

Data are represented as mean with SEM.
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Figure S7. CaMKIV Is Important for Flow-Guided Invasion, Related to Figure 7

Knocking down CaMK-IV with siRNA reduced bTC3 invasiveness, thereby confirming the crucial involvement of CaMK pathway in tumor invasion (A). Cancer cell

survival was not affected by the CaMKIV siRNA knockdown (B). Data are represented as mean with SEM.
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Table S1. Involvement of NMDAR Signaling in GEMMs—Summary of GEMMs Used, Related to Figure 1 

GEMM Onco-Genetic 
Modification 

Samples Examined Percentage of  

NR2b-positive Tumors 

Pancreatic 
Neuroendocrine 

Tumor (PNET) 

 

Rip1Tag2 

 

59 Tumors/9mice 

94.9% 

(56 /59 Tumors) 

 

Breast Cancer 

 

 

MMTV-PyMT 

 

8 Tissues / 6 mice 

 

62.5% 

(5 /8 Tissues) 

 

Pacreatic Ductal 
Adenocarcinoma 

(PDAC) 

 

LSL-KrasG12D; 
p53Flox/WT; p48cre 

 

3 Tissues / 3 mice 

 

100% 

(12 /12 Tissues) 

 

LSL-KrasG12D; 
p53LSLR172H; p48cre 

 

9 Tissues / 9 mice 

 

For the PNET GEMM, discrete tumors can be observed in pancreatic tissue sections. Therefore, NR2b 

expression was analyzed for individual tumors. In light of evident differential NR2b expression at the 

PNET center vs. margins, we only scored PNET margins to define positivity. In addition, although NR2b 

was differentially and heterogeneously expressed in PNET centers and margins, its expression pattern 

was relatively homogeneous locally (See Figure 1A), so we didn’t need to manually determine the 

percentage of cells expressing NR2b. In brief, a PNET was considered positive for expression of NR2b if 

the staining at its margins was obviously positive compared to 2nd antibody-only control staining.  (The 

same criteria was applied to both human and mouse samples. See Figure 2A for the intensity definition, 

in which low, intermediate and high are all considered to be positive.)  

  

For the breast cancer and PDAC GEMMs, merged lesions of varying tumor grades were noted on the 

tissue sections, thus we were not able to analyze the expression for each tumor. Therefore, positive 

NR2b expression is defined as “Positive staining in >5% of cancer cells on the whole tissues section”. The 

definition is similar to the intensity score of ER/PR expression in breast cancer samples, in which only the 

staining of tumor cells, but not their normal tissue counterparts, was taken into account (Harvey et al., 
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1999; Onitilo et al., 2009), as normal breast tissues could also express ER/PR (van Agthoven et al., 1994), 

but ER/PR on tumor cells are still prognostically important (Harvey et al., 1999). 
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Table S2. Involvement of NMDAR Signaling in Human Cancers—Summary of TMA Findings, Related to 
Figure 2 

Human TMA (catalogue number) Samples Examined 
Percentage of NR2b-positive 

tumor samples 

Ovarian Cancer (OV241a) 12 samples / 6 patients 50% 

Pancreatic Cancer (PA481) 24 samples / 12 patients 100% 

Breast Cancer (BRC961) 63 samples / 34 patients 92.1% 

Glioma (GL241a) 20 samples / 10 patient 40% 

Prostate Cancer (PR481) 24 samples / 12 patients 0% 

 

Positive staining is defined as >5% of cancer cells with evident NR2b staining, regardless of staining 

intensity, the same criteria as the analysis of PDAC and breast cancer GEMMs (see Supplementary Table 

1). (Also see Figure 2A, in which low, intermediate and high are all considered to be positive). “Positive 

NR2b staining percentage” thus indicates the fraction of patient samples analyzed on a TMA whose 

tumors, according to this criterion, were judged to contain cancer cells positive for NR2b staining.  
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Table S3. Human Cancer Cell Lines Used to Assess Invasion and NMDAR Signaling, Related to Figure 3 

Cancer Types Cell-line Subtype Clinical Subtype 

Breast Cancer  

(Heiser et al., 2012) 

MCF-7 
Luminal ER/PR Positive 

MDA-MB-453 

SKBR3 
ERBB2 HER2/ERBB2 

HCC1954 

HCC1806 Basal 

Triple Negative 
BT549 

Claudin-Low HCC38 

HCC1395 

Pancreatic Ductal 
Adenocarcinoma 

(Collisson et al., 2011) 

SUIT2 

Classical BxPC3 

HPAF_II 

3.27 
Quasi-Mesenchymal 

DanG 
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Table S4. List of qRT-PCR (Taqman) Probes Used in This Study, Related to Extended Experimental 

Procedures “mRNA reverse transcription and quantitative real time PCR (Q-PCR)” 

Species Gene Name Gene Symbol Taqman Probes 

Human 

Rpl14 (reference gene) Rpl14 Hs03004339_g1 

NR1 Grin1 Hs00609557_m1 

NR2a Grin2a Hs00168219_m1 

NR2b Grin2b Hs00168230_m1 

Mouse 

Rpl19 (reference gene) Rpl19 Mm02601633_g1 

NR1 Grin1 Mm00433790_m1 

NR2b Grin2b Mm00433820_m1 

vGlut1 Slc17a7 Mm00812886_m1 

vGlut2 Slc17a6 Mm00499876_m1 

vGlut3 Slc17a8 Mm00805413_m1 

EAAT2 Slc1a2 Mm00441457_m1 

xCT Slc7a11 Mm00442530_m1 
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