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Abstract

Bipedalism is considered as one of the first distinctive feature developed by the early
hominids, compared to their cousins apes. This unique characteristic of human beings has
always intrigued scientists and thus has been extensively studied. In the past decades,
modeling of human walking has gained particular interest in research, with the venue
of computers and increasing computational power. Modeling of human walking is of
particular interest in the biomechanical and medical field, as it can give insights in the
design of limb prosthesis, providing crucial information regarding the movement of the
limb. Moreover, it is also important for the design of limb orthoses, devices used to modify
the skeletal and neuromuscular systems, which are used in rehabilitation by assisting
movement of people with walking difficulty (e.g. due to neurodegenerative diseases, such
as multiple sclerosis or due to spinal cord injury), or assisting people with injuries during
their rehabilitation.

To grasp the context of this project, it is necessary to introduce animal movement
modeling. Animal movement can be modeled as a system of differential equations, coupled
trough interactions of the system with the environment (i.e. sensors to send information
to the system, and actuators send information to the environments). In this framework,
walking can be viewed as a limit cycle; the system oscillates, its trajectory is confined
around the mean of the system trajectory. This limit cycle possesses a relative resistance
to perturbations, i.e., the walking can be more or less stable.

Walking gaits of various animals have been modeled using this framework of differential
equations, and more specifically, using network of coupled oscillators. In these models,
oscillators are coupled among themselves and thus influence each other. Nerve signals
generating swimming in the Lampreys have been modeled using such a system. When the
lamprey swims, nerve influxes are observed as activity burst, repeated at defined intervals.
These bursts are observed along the spinal cord, with a delay in the burst onset that is
proportional to the position along the spinal cord. These neural oscillatory networks are
called central pattern generator (CPG), and have also been observed in the locomotion of
other animals, such as the salamander or the cheetah.

These oscillatory networks were successfully used to model several swimming animals.
However, results obtained with walking animals have been rather disappointing, except for
the salamander, whose movements are relatively simple and slow. This is not surprising,
since this system does not take into account interaction with the environment for shaping
the movement, which should be more important for walking animals.

To show the importance of interaction with the environment, work by H. Geyer and
his group (2010) should be introduced. They have developed a human walking model
solely based on reflexes (i.e. interactions between the body and the environment). This
model includes limb dynamic information (muscles, tendons and sensors) and shows the
importance of reflexes pathways in movements shape. Applied to the human, this model,
based on simple reflex rules, is capable of producing a stable gait, comparable to the real
human gait.

In an adaptation of the model made by J. Wang (2012), both walking and running
were obtained by simply varying the parameters of the system. Implementing both the H.
Geyer (referred to as the FBL model, for Feedback Based Locomotion) and the J. Wang
model (referred to as FBL+) is the purpose of the first part of this project.



The presented FBL model shows the importance of the interaction between the body
and the environment. Biologically, it is known that reflex loops do exist, but a walking
100% based on reflexes is not possible. The presence of a feedforward component allowing
control of gait parameter (such as speed, frequency, step size) seems obvious. The question
is therefore: What is the feedforward component and how can it be integrated to the
existing model? It is plausible - though extensively debated and unproven - that a CPG
component acting on locomotion exist in the human spinal cord. In this project we make
the hypothesis of the presence of such a component. Since reflexes can generate signals that
place the system in a limit cycle, and taken into account the hypothesis that a feedforward
component exist, we can make the new hypothesis that the feedforward component must
be hidden behind those reflex signals.

The analysis of the signals generated by the reflex loops of the FBL model is the
starting point of the second part of this report, where it is demonstrated that when the
FBL model produces a stable locomotion, most of the signals oscillate at a quasi constant
frequency, with only slight variation in shape. Most stable signals are then modeled as
oscillators that can generate waves of arbitrary shapes and/or basal constant input.

We then test the properties of such a system by combining/replacing some reflex loops
by their feedforward counterparts (either as a basal input or as a CPG). We show that, not
only those new models are stable with characteristics close to the original model, but with
online control they showed a clear increase of the robustness compared to the FBL and
FBL+ models. Moreover, modifications of some general parameters of the feedforward
component allow easy changes in gait characteristics, such as gait speed.
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Nomenclature

General abbreviations

CNS Central nervous system

CPG Central pattern generator

FBL Feedback based walking

FBL+ Feedback based walking extension inspired by [30]

IN Interneuron

MN Motoneuron

INCPG CPG interneuron

INFF Feedforward interneuron

INSD State dependent interneuron

INSEN Sensory interneuron

cFOOT Contraleteral Foot

iFOOT Ipsilateral Foot

ANKLE Ankle joint

HIP Hip joint

KNEE Knee joint

GLU Hip extensor muscle

HF Hip flexor muscle

VAS Knee extensor muscle

GAS Ankle extensor muscle

TA Ankle flexor muscle

HAM bi-articular hip extensor and knee flexor muscle

SOL bi-articular knee flexor and ankle extensor muscle

EC Solution evaluation criterion

PSO Particle swarm optimization

SC Solution run stopping criterion

Muscles components

be muscle parallel passive element 1 (buffer elasticity)

ce muscle contractil element

pe muscle parallel passive element 2 (parallel elasticity)

se muscle serial passive element (serial elasticity)

Muscles variables

1



Fce ce force

Fmtu MTU force

Fse se force

lce ce length

lmtu MTU length

lse se length

Muscles parameters

θmax Joint angle at which for a given MTU tθ→τ is maximum

θref Reference joint angle which corresponds to the angle of the joint at the initialisation of the
MTU

c = log(0.05)

Fmax MTU maximum force

K = 1.5

l0mtu Initial muscle length

N = 5.0

pennetation Factors accounting for fibers muscle orientation bias

vmax ce maximum shortening velocity

Joint variables

θ Joint angle

tθ→τ MTU Force to joint torque transfer function

Joint parameters

δmax Maximum joint angle before soft limit engages

δmin Minimum joint angle before soft limit engages

r0 Moment arm for a given MTU joint connection

Optimization criterion

Cangles Criterion used for similarity with human angle maximization

Cleft right Criterion used for left right assymetry minimization

Csteplengths Criterion used for step lengths variability minimization

Ctrunk Criterion used for minimizing trunk leaning

Cspeed(vopt) Criterion used for optimization toward a given speed vopt

Csteplength(sopt Criterion used for optimization toward a given steplength sopt

Feedbacks

MFF Muscle Force Feedback

MLF Muscle Length Feedback

GCF Ground Feedback

GIF Ground & Stability Feedback

OPF Joint over extension prevention Feedback
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Chapter 1

Introduction

In the first part of the report we will describe a walking model inspired by the work of
H.Geyer [9, 8] and J. Wang [30].

In 2010, the H. Geyer group designed a bipedal walking model based on a simple reflex
loop, that was able to produce stable walking gait using sensory information solely [9]. This
model is hereafter referred to as FBL; feedback-based locomotion. Sensory modalities from
muscles (i.e. the Golgi tendon and muscle spindle), from feet (pressure sensors) and from
the vestibular system were modeled as simple system (muscle spindle were modeled has
an affine transform of the muscle length, Golgi tendon as being proportional to the muscle
forces, pressure sensors under each foot being proportional to the reaction force with the
ground and finally sensory modalities from the vestibular system were modeled as a simple
PD control which tries to bring the angle of a joint (e.g. the trunk) toward a reference
angle). Muscle activity was then obtained as a linear combination of the different sensors.
The coefficients of the sensors-muscles linear map were determined using optimization
algorithms. This methodology led to gaits of various characteristics, some resembling
the human gait, others totally unnatural. However, with carefully chosen optimization
criteria, the results - both in term of muscle activation pattern and movements - were
comparable to real human walking.

An important feature of the H.Geyer model is its link with biological structures. The
different biological structure captured by the FBL model are presented below. The detail
concerning the modeling is described in section 2.1.3.

1.1 Biological muscle

Skeletal muscles are made of multiple bundles named the fascicles, each of which contains
many muscle fibers, the individual muscle cells. Within the muscle cells are the myofibrils,
which are the muscle contractile units. They are themselves made of repeating units: the
sacomeres, which consist of organized actin and myosin filaments which, by sliding along
each other shorten the fiber, provoking the muscle contraction (see figure 1.1). The active
force generated by the contraction of the sarcomeres can be modeled at the muscles level
by a bell shaped curve with a maximum occuring close to muscle resting length. When
stretched behond a certain length, the elastical property of a protein called titin (which is
part of sarcomere) generates, at the muscle level, a passive repealing force in the opposite
direction (e.g. acting against its elongation) [10].
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Figure 1.1: Illustration of the skeletal muscle anatomy and contraction process. Adapted from [25]

1.1.1 Force-length relationship

The relation between the length of a muscle and the force generated can be understood by
looking at the property of sarcomeres to generate an active force with a bell shaped profile
and a passive repealing force when stretched beyond a certain length. The resulting shape
of the muscle force-length relationship is shown in figure 1.2, left panel.

1.1.2 Force-velocity relationship

The relationship between the shortening velocity during concentric contractions (shorten-
ing contractions) and the force generated by the muscle represents the dynamic property
of the actin - myosin interaction cycle. The force-velocity profile has a inverted sigmoidal
shape. The force generated is maximum when the muscle is lengthening and goes to ze-
ros when the muscle is shortening [11]. The right panel of figure 1.2 shows a plot of the
force-velocity relationship.

1.1.3 Muscle contraction

Muscle contraction occurs when receiving signals from efferent nerves from the central
nervous system. There are three different types of contractions: concentric contraction
(i.e. when contraction occurs while muscle is shortening), eccentric contraction (i.e. when
contraction occurs while muscle is lengthening, meaning that the force generated by the
muscle is less than the tension applied to the muscles) and isometric contraction (i.e.
when the muscles generate force without changing its length, for example, when gripping
an object). During walking, mainly concentric and eccentric contractions occurs.

1.1.4 Muscle fibers types

Skeletal muscles are composed of two types of fibers: the type I and type II fibers, called
slow and fast twitch fibers, respectively. Fast twitch fibers are activated faster than slower
ones and can produce more energy but they fatigue more quickly. This difference is

8



Figure 1.2: Left panel: muscle force-length relationship. Right panel: muscle force-velocity relation-
ship. F refers to the force generated by the muscle, Fmax is the maximal force that can be generated by
the muscle, L is the muscle length, Lrest is the muscle reference length, v is the muscle contractile velocity,
vmax is the maximum muscle velocity.

due to the fiber composition; slow twitch fibers composition favors aeorobic metabolism
(i.e. they contain many mitochondria and are surrounded by many capilllaries), whereas
fast twitch fibers have a composition which favors anaeorobic metabolism (mostly lactic
acid fermentation) [27]. In order to understand why the type II fibers contract faster
but fatigue quicker than the type I fibers we have to look at the mechanisms by which
cells produce energy. Cells produce energy mainly by regenerating their stock of Adenosine
triphosphate (ATP) from Adenosine di and monophosphate (respectively ADP and AMP).
In animal cells, this can be achieved through different processes, depending on the presence
or absence of oxygen. One of the main reaction chain used in both aerobic (with oxygen)
and aneorobic (without) conditions to regenerate the ATP is the transformation of oxygen
into pyruvate. This is done through a reaction chain called glycolysis. The overall chemical
reaction of glycolysis is:

Glu + 2 NAD+ + 2 Pi + 2 ADP −−→ 2 Py + 2 NADH + 2 ATP + 2 H+ + 2 H2O + heat

Where, Glu is the gluscose, Py the pyruvate, ADP the adenosine dyphosphate, ATP the
adenosine triphosphate.

Then, in the presence of oxygen, the pyruvate will be transformed to acetyl-CoA and
enter in the krebs cycle (a chain of 10 reactions that involves many different compounds)
while in absence of oxygen, pyruvate undergoes a process of fermentation which oxidizes
the NADH by-product of glycolysis back to NAD+, thus regenerating the NAD+ needed
by the glycolysis.

Therefore, what makes the muscles fibers II faster than fibers I is the fact that the
fermentation is much faster in regenerating the NAD+ stock than the electron transport
chain. However the fermentation process produces lactic acid which accumulates and
makes prolonged effort painful.

1.1.5 Muscle spindles

Muscles spindles are sensory receptors found in the central part of the muscles, which
provide sensory feedback information to the central nervous system (CNS). They are
composed of two different afferent fibers called primary and secondary nerve fibers. The
firing rate of the primary fibers is mainly related to changes in muscle velocity, while the
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firing rate of the secondary fibers is mainly related to changes in muscle length [20]. The
response of the primary and secondary fibers muscle spindles to change in velocity and
length, respectively, can be modulated by efferent neurones called γ motoneurons.

1.1.6 Tendon

The tendon is a viscoelastic structure connecting muscles to bones. It is composed of
parallel collagen fibers. At the junction between the muscles and the tendon, is the golgi
tendon organ, which is a proprioceptive structure conveying the muscle force information
to the CNS.
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Chapter 2

Methods

2.1 Modeling

The FBL model is presented in the two next sections. In the first section, the different
subcomponents of the model are presented (muscle models, sensors models). In the second
section, the different subcomponents are combined into a physical model of the lower part
of a human body (implemented in Webots), where the muscles of both limbs and the
trunk are represented; each limb is modeled by seven muscles that acts on three joints
(hip, knee and ankle) and a model allowing the gait generation is then added to the lower
limb model, where the activity of each muscles is generated by different feedback rules.

This model is able to produce stable locomotion at different speed, with characteristics
close to human walking, by solely using sensory information. In short, a direct mapping is
created between a set of sensors (the different sensors modeled are: muscle sensors (length
and force sensors), joint sensors, ground sensors) to the muscle input.

2.1.1 Humanoid subcomponents modeling

2.1.1.1 Muscle model

The muscle model presented here is based on the Hill model and was developed by the H.
Geyer group published in 2004 in Neural Systems and Rehabilitation Engineering [8]. In
this model, the muscle is modeled together with its respective tendon and is called a muscle
tendon unit (MTU). An active, contractile element (ce) with two passive parallel elements
(buffer elasticity be and parallel elasticity pe) form the muscle, see figure 2.1. The active
element represents the muscle contraction, while the two passive elements simulates the
physical properties of the muscle fibers. The be element prevent muscle from collapsing,
while the pe prevent muscle length from going beyond a certain length. The tendon is
modeled as a passive element in series with the muscle, called series elasticity (se), see
figure 2.1.
In the normal state, only the ce and se element are active. pe and be engages only when
the muscle is slack (i.e if lmtu − lce < lslack) or stretches beyond its optimal length (i.e if
lce > lopt).

General equations
Because of the physical connection between the muscle and the tendon (se), the total force
of the MTU is equal to the force coming from the tendon (se) and will always equal the

11



PE
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BE

SE

Figure 2.1: Schematic view of a muscle tendon unit (MTU) adapted from [9]. In the normal state, only
the serial element (se) and the contractile element (ce) are active. Two other passive elements are added in
parallel of ce: be that engages if tendon is slack (i.e if lmtu− lce = lse < lslack), preventing muscle collapse,
and pe, that engages when the muscle stretches beyond its optimal length (i.e if lce > lopt), preventing the
muscle to extend beyond a certain length.

contribution from the muscle. We thus have :

Fm = Fse (2.1)

= Fce + Fpe − Fbe (2.2)

The contribution of the be is opposite to the action of ce because it acts against the
contraction, as be acts to prevent the muscle from collapsing. Conversely, the contribution
of the pe is positive as it acts in the same direction as the muscle contraction. The force
of the muscle depends on its activity (A), on its length through the fl function and on its
velocity through the fv function. The three functions are restricted to the [0; 1] interval,
and the maximum muscle force (Fmax) is reached, obviously, when the three functions are
equals to one. The equation governing the muscle force is given by :

Fce = A · Fmax · fl(lce) · fv(vce) (2.3)

with:

fl(lce) = exp

(
c

∣∣∣∣ lce − loptloptw

∣∣∣∣3
)

(2.4)

fv(vce) =

{
vmax−vce
vmax+Kvce

if vce < 0

N + (N − 1) vmax+vce
7.56Kvce−vmax if vce > 0

. (2.5)

dA

dt
= τ(S(t)−A) (2.6)

The activity of the contractile element A is modeled as a first order differential equation
of the stimulation S sent to the muscle accounting for neural delay. The fl function has
a bell shaped profile. It models the relationship between the active force generated by
the muscle and the length of the muscle. The fv function has an inverted sigmoid shape
given by biological muscles force - velocity relationship, see section 1.1.2. The passive force
of the muscle is modeled by the pe spring. The be is added to prevent muscle to reach
zero length. The pe element engages when muscle extends beyond its optimal length
(lce > lopt) and the be element engages when muscle is slack (lmtu − lce > lslack). The
passive elements be, pe and se are modeled as unidirectional non linear spring damper,
acting in one direction. They are modeled as monotonical non-linear functions. be acts
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against muscle contraction movement and engages only when muscles is close to minimal
length, its force should monotonically increase as the muscle length decreases. pe acts
against muscle elongation and models the macroscopic effects of titin molecules present in
each sarcomeres (see section 1.1). The equations of the two passive parallel elements (pe
and be) are given by :

Fbe =

{
Fmax(

lopt−w−lce
loptw/2

)2 if lmtu − lce > lslack

0 else
. (2.7)

Fpe =

{
F ∗pe · fv(vce) = Fmax(

lce−lopt
loptw

)2 · fv(vce) if lce > lopt

0 else
. (2.8)

The tendon is function of the tendon length (lse) and acts against its elongation. It is active
only if it extends beyond its slack length (lse > lslack) and its force should monotonically
increase as the length of the tendon increases. There is also a constraint that the maximum
force generated by the tendon should not exceed the maximum force of the muscle Fmax.
Here the tendon force is modeled as a square function of the normalized tendon length
ε(lse) = lse−lslack

lslack
:

Fse =

{
Fmax · ( ε

εref
)2, if ε > 0

0 else
. (2.9)

The general equations used in the model are summarized in table 2.1.

Force calculation
In order to simulate an MTU, we need to compute the force for a given MTU state, which
is given by its muscle length (lce) and speed (vce) and the corresponding tendon length
(lse). The resolution of the MTU is done in three steps:

1. Solve the general muscle force equation 2.1 for fv

(a) Compute Fse, F
∗
pe, Fbe using:

Fse =

{
Fmax · ( ε

εref
)2, if ε > 0

0 else
. (2.10)

Fbe =

{
Fmax( lmin−lceloptw/2

)2 if lmtu − lce > lslack

0 else
. (2.11)

F ∗pe =

{
(
lce−lopt
loptw

)2 if lce > lopt

0 else
. (2.12)

(b) Replace in eq. 2.1 :

Fce = Fse − Fpe + Fbe (2.13)

= Fse − F ∗pe · fv + Fbe (2.14)

(c) Then, compute fl and the activation A. Since Fpe depends linearly on fv we
can easily solve the equation for fv. Using equations 2.3 and 2.14 we obtain:

fv =
Fse + Fbe

Fmax(A · fl(lce) + F ∗pe)
(2.15)
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Table 2.1: Main equations of the muscle model from H.Geyer.

Main equations

Name Equation Signification

Fmtu Fm = Fse = Fce + Fpe − Fbe Force of generated by the MTU

Fse Fse =

{
Fmax · ( ε

εref
)2, if ε > 0

0, else
. Force generated by the tendon

Fpe Fpe =

{
Fmax(

lce−lopt
loptw

)2 · fv(vce) if lce > lopt

0 else.
Force of the parallel element pre-
venting muscle overextension

Fbe Fbe =

{
Fmax(

lopt−w−lce
loptw/2

)2 if lmtu − lce > lslack

0 else
. Force of the parallel element pre-

venting muscle to collapse

Fce Fce = A · Fmax · fl(lce) · fv(vce) Force generated by the muscle (ce)

A dA
dt

= τ(S(t)−A) Muscle activation is equal to the in-
tegral of the input signal I(t). Bi-
ologically, the input signal can be
viewed as the normalized frequency
of neuronal spike that reaches the
muscle (i.e. restricted to the [0; 1].
interval). The activation is thus
also limited to this interval.

fl(lce) fl(lce) = exp(c
∣∣∣ lce−loptloptw

∣∣∣3) Muscle force - muscle length rela-
tionship function (function of the
muscle length (lce)

fv(vce) fv(vce) =

{
vmax−vce
vmax+Kvce

if vce > 0

N + (N − 1) vmax+vce
7.56Kvce−vmax

if vce < 0
. Muscle force - muscle velocity re-

lationship function (function of the
muscle velocity (vce)

vce(fv) vce(fv) =

{
vmax · 1−fv

1+K∗fv iffv < 1.0

vmax · fv−1
7.56K(fv−N)+1−N else

. Inverse of the muscle force - velocity
function. This function is used for
the resolution of the muscles equa-
tions.

lce lce = dvce
dt

Muscle (ce) length

lse lse = lmtu − lce Tendon (se) length

lmtu lmtu = lslack + lopt + ∆lmtu MTU length

∆lmtu ∆lmtu = pennation · r0 ·
∫ θ
θref

tθ→τ (θ, θmax) MTU length changes from MTU
slack length
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2. Using the inverse of the muscle force - velocity relationship defined in eq. 2.4, we get
the muscle contraction speed vce:

vce(fv) =

{
vmax · 1−fv

1+K∗fv if fv < 1.0

vmax · fv−1
7.56K(fv−N)+1−N else

. (2.16)

3. Integrating the muscle speed we get the muscle length lce. At each time step, the
changes in length of the contractile element dlce is related to the contraction speed
by dlce/dt = vce = [fv(vce)]

−1, which is integrated using a runge-kutta fourth order
resolution method.

4. Using the total force Fmtu = Fce of the muscle we can deduce the torque that will
generate the changes in angle of joint(s) on which the muscle is acting. This is done
through the webots controller by numerically solving the physical constraints.

5. Finally, the new angle θ is used to compute lmtu (length of the muscle-tendon unit)
using eq. 2.24, which gives the length of the serial element lse through the relation
lmtu = lse + lce. (See 2.1.1.1 for details on the calculation of lmtu.)

Torque generation
Each MTU contributes to the movement of one or two joints depending on the type of
muscles (“normal” vs “bi-articular” muscles). In the original article of H.Geyer [8], the
torque is calculated as:

τ = tθ→τ (θ) · Fmtu (2.17)

Where tθ→τ is a function limited to the interval [0; 1] that translates the ability of the
muscle in rotating the joint onto which it acts. The function tθ→τ is maximal at the angle
θmax, which corresponds to the angle at which the torque generated by the muscle on the
joint is maximal. The tθ→τ function used in [9] is defined as:

tθ→τ = 1 (2.18)

for the hip joints and

tθ→τ = cos(θ − θmax) (2.19)

for ankle and knee joints.

Note on the calculation of tθ→τ
When approximating a muscle as a straight line, an exact transfer function can be easily
derived using the sine and cosine laws. The resulting transfer function is :

tθ→τ =
sin(θ)

(1 + a2 − 2a · cos(θ))1/2
(2.20)

Where a = cos(θmax) (see below for calculation detail). This function is, under the
assumption made on the muscle shape, a geometrically correct version of the function
defined in equation 2.19. As expected, when comparing the two functions (see figure 2.2),
the major features are the same (i.e. maximum at θmax and monotonically decreasing
on each side of the maximum). Furthermore in the range of action of the joints during
human walking the error is negligible between the two functions. Both 2.18 and 2.19 can
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Figure 2.2: Comparison of the different tθ→τ functions. All functions are normalized by r0. In blue the
transfer function used by H.Geyer for knee and ankle joints (see eq. 2.19), in green the one used for hip
joints and in red the function derived in this section.

be viewed as approximation of the function just defined. Concerning the hip joints tranfer
function, the fact that the range of the hip joint is small is a good justification in the
choice made by H.Geyer to choose a constant transfer function tθ→τ .

Below we give the detail of the calculation of tθ→τ .
We are looking at the force that contributes to the joint torque τ (see figure 2.3)

and thus only the component perpendicular to the the displacement vector r0 (i.e. the
vector from the point from which torque is measured to the point where force is applied)
contributes to the force.

τ = F · tθ→τ = F · x

with

x = r0 · sin(α)

then, from the sine and cosine laws:

sin(α)

l0
=

sin(θ)

lmtu

lmtu = (r20 + l20 − 2l0r0cos(θ))
1/2

It follows

tθ→τ = x/r0 =
sin(θ)

lmtu
· l0 =

sin(θ)

(r20 + l20 − 2l0r0cos(θ))1/2
· l0 (2.21)

To compare with the H. Geyer model, we should express l0 as a function of θmax. θmax
corresponds to the angle at which the force generated by the muscles is maximum. If we
assume that the muscle fibers are parallel to the vector formed by the attached point of
the muscle on the bones, the angle formed by the closest anchor point to the joint and the
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muscle would be close to 90 degrees as noted in fig. 2.3. Therefore, we can approximate
that cos(θmax) = r0

l0
and eq. 2.21 becomes:

tθ→τ =
sin(θ)

((r0/l0)2 + (l0/l0)2 − 2l0r0/(l20)cos(θ))1/2
· l0/l0

=
sin(θ)

((r0/l0)2 + 1− 2(r0/l0)cos(θ))1/2

=
sin(θ)

(1 + a2 − 2a · cos(θ))1/2

Where a = cos(θmax).

Figure 2.3: Geometric approximation of the Biceps femoris (the muscle responsible for knee flexion)
muscle attachment. The muscle is approximated by a straight rigid body attached at a position r0 from
the knee in the tibial bone and at a position l0 from the knee in the femur bone. The Force generated by
the muscle is assumed to be parallel to the rigid body (the force vector is in blue). When the angle formed
by the femur and the tibial is θmax the torque is maximum (||τ || = ||Fmtu||).

MTU length calculation
The approach used for the calculation of the MTU length (lmtu) is based on an estimation
of the changes in the MTU length based on changes in joint angles. The change in MTU
length dlmtu can be modeled as follow :

dlmtu = r0 · tθ→τ (2.22)
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Intuitively, this modeling is justified by the property of tθ→τ . Indeed this function is
maximal (equals one) when all the force generated by the MTU contributes to changes
in joint angle. This happens when the angle formed by the MTU and the joint is equal
to pi/2, which corresponds to the joint angle θ = θmax. We thus have - as expected for
θ = θmax - a change in muscle length of dlmtu = r0.

Given a joint angle θ and a reference angle θref , changes in the length of an MTU can
be calculated by integrating tθ→τ , the function defined in the previous paragraph (eq. 2.18
and eq. 2.19).

∆lmtu = pennation · r0 ·
∫ θ

θref

tθ→τ (θ, θmax) (2.23)

then, the total length of an MTU is given by

lmtu = lslack + lopt + ∆lmtu. (2.24)

The pennation factor is added to take into account the fact that muscle fibers are not
perfectly aligned with the muscle attachment position.

Initialization
To initialize an MTU, its length (lmtu) must be calculated using the eq. 2.24.
From the MTU length, both the length of the contractile element (lce) and the length of
the serial element lse can be derived. The initial speed of contraction/elongation (vce) as
well as the activation level (A) are assumed to be equal to zero. The MTU length depends
on whether the MTU is slack or not. If the MTU is slack (e.g. Fse = 0), then

lce = lopt (2.25)

lse = lmtu − lce (2.26)

If the MTU is not slacked then Fse > 0 and since Fce = 0, we have

Fpe = Fse (2.27)

(
lce − lopt
loptw

)2 · fv(vce) = (
ε

εref
)2 (2.28)

From which we can get:

lse = lslack
loptw + εref (lmtu − lopt)

loptw + εref lslack
(2.29)

lce = lmtu − lse (2.30)

2.1.1.2 Biological sensors models

There are four informations sensors that sends signal to the muscles (shown in figure 2.4):

1. Muscle sensors. There are two muscle feedbacks types. A muscle length feedback,
modeling the muscle spindle, and a muscle force feedback, modeling the Golgi tendon.
The muscle length feedback equation for a given MTU m (Fbl(m)) is defined as
follow:

Fbl(m) =
lmce
lmopt
− lmoffset (2.31)

Where,
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Figure 2.4: In the FBL model, the walking cycle is divided in three different part (swing (sw), stance
(st) and stance end stend). The activity of a muscle in each cycle part is governed by a linear combination
of signal from different sources: muscles length and force sensors, joint sensors and ground sensors.

- the exposant m refers to a specific MTU
- lmoffset is a parameter found by optimization
- lmce, l

m
opt are respectively the ce length and the ce optimal length of MTU m.

The muscle force feedback equation for a given MTU m (Fbf (m)) is defined as follow:

Fbf (m) =
Fmmtu
Fmmax

(2.32)

Where,

- Fmmtu corresponds to the current force generated by the mtu m
- Fmmax corresponds to the maximum force that can be generated by the mtu m

2. Joint overextension prevention sensors. This sensor is used to prevent knee
joint overextension. It is modeled as a simple correction term proportional to the
differences between max tolerated angles φoff and actual joint angle φ. The sensors
output for a joint j is given by:

Fbo(j) =

{
(φj − φoffj ) if ∆θ > 0, ω/ωref > −1

0 else
(2.33)
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3. Ground sensors. There are two ground sensors that feel the reaction forces on
the ground; one located at the toe and one at the heel level. In order to ensure a
smooth variation of the sensors values, the output of the sensors is modeled as linear
differential functions of the reaction forces. For instance, the equation governing the
toe sensor output is given by

dF

dt
= τf (2.34)

Where,

- F is the sensors feedback
- f is the reaction force
- τ = 100 is the convergence speed

The ground feedback (Fbg) on side s is defined as being equal to the sum of the two
ground sensors normalized by the total weight of the model:

Fbg(s) = kbw
F stoe ground + F sheel ground

M · g
= kbw

F sground
M · g

(2.35)

Where,

- g is the gravity
- M the mass of the model
- s is the side (i.e ipsilateral if feedback acts on motoneurone of the same side

and contralateral otherwise)
- kbw is a parameter found by optimization.

4. Stability feedback. The stability sensors are used to insure stability. They work
by trying to bring a joint toward a reference angle using a PD control adapted to
act at the muscle level.The feedback acts on the muscles in order to bring the angle
of a joint toward a reference angle δref . The feedback is given by :

Fbs =
{
kp · (δ − δref ) + kdδ̇

}
±

(2.36)

Where,

- δ corresponds to the actual joint angle we want to bring toward a reference
angle

- δref is the reference angle.

The sign of the brackets depends on the action of the muscles on the trunk; Negative
if the action of the muscle is in the direction of positive angle changes and positive
otherwise [30].

In the FBL model, this feedback is used to maintain the trunk straight. This is done
by sending a signal to hip muscles (i.e. GLU, HAM and HF) during stance phase
(st). In order to account for the fact that only the leg in contact with the ground
can be used to stabilize the trunk, the stability feedback signal is combined with the
ground sensors of the same leg, allowing the leg bearing most of the weight (i.e. more
stable) to be used to maintain the trunk. It has be shown that this combination of
the stability feedback and ground sensors is not necessary if during double stance
support the stability feedback is applied only to muscles of the leg in stance end
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phase (stend) [30], see section 2.1.2.3 for description of cycle phases description. The
exact same kind of feedback rule is used by J. Wang to bring the hip and knee joint
toward a target reference angle during the end of the swing phase (see section 2.1.3
for details).

A biological link with the function of the cerebellum can be made. Indeed, as
seen in 5.1.2, one of the function of the cerebellum is to adapt to perturbation by
reducing the error that it induces. Note that for the trunk joint, δ and δref are
angles calculated in a global reference frame (i.e. with respect to the vertical axes).
If this kind of feedback exists it should not only involve the cerebellum but also
the vestibular system. Indeed, as it can feel the gravity, a vertical global reference
frame could emerge from structure having afferent from the vestibular system. It is
thus likely that this kind of feedback would emerge from the reticular formation as
it integrates information from both the cerebellum and the vestibular system (see
section 5).

2.1.2 Humanoid modeling

2.1.2.1 Lower limbs description

In order to obtain a walking human model, the MTUs previously defined must be associ-
ated to form a working lower body. The lower limb model is defined as a two dimensional
system composed of seven degrees of freedom, corresponding to the seven joints of the
lower limbs: one degree of freedom for the trunk and one degree of freedom for each ankle,
knee and hip joint of both limbs. In those seven MTUs per limb, five are normal MTUs
and two are bi-articular MTUs (acting on two joints simultaneously). The hip joints are
driven by two normal MTUs: the gluteus (GLU) and the hip flexor (HF) MTU permit-
tingF respectively extension and flexion of the joints. The ankle joints are also driven
by two normal MTUs: the gastrocnemius (GAS) and the tibialis (TA) MTUs, permit-
ting extension and flexion of the joints, respectively. The knee joints are driven by only
one normal MTUs: the vasilus (VAS) MTU, permitting the joint extension. The knee
flexion is ensured by two bi-articular MTU: the hamstring (HAM) and the soleus (SOL),
generating knee flexion and respectively hip and ankle extensions. The MTUs and joints
corresponding to the MTUs and the values of their associated parameters are given in
table 2.2. A schematic view of the system is presented in figure 2.5.
The physical model used as starting point was implemented on webots by Steve Berger
during its master thesis at BioRob in 2011. The weight and length of the different segments
are based on anthropometric data from [31] (see table 2.2).
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Figure 2.5: View of the lower limb model with the 14 MTUs and the joints onto which they act, figure
inspired from [9].

2.1.2.2 Muscles to Joints mapping

The torque acting on one joint is given by the combination of the action of the different
muscles that can act on it. The torque at joint J is thus defined as :

τJ =
∑
MεJ

τMJ =
∑
MεJ

rM0 · tMθJ→τ (θ) · FMmtu (2.37)

Where,

- J represents a joint
- M represents a MTU
- FMmtu the force generated by M
- rM0 the moment arm of M on J
- tMθJ→τ (θJ) the transfer function that account, given a joint angle θJ for the contri-

bution of M to τJ
- τJ the actual torque acting on J .

The action of one muscle on a joint has been described in detail in section 2.1.1.1.

Joint Soft limit
The model previously described does not take into account the effect of ligaments. Liga-
ments form the joint that maintains two bones together and also keep the angle formed by
the joined within a given range. Its action is against the movement and engages only when
the angle is beyond certain limit, which depends on the joints (see table 2.3). Here we
model the ligament as non linear spring damper acting as soft limit on the joints [9, 26]
that is added to τJ , if the joint angle is outside its normal range.

When the angle goes beyond the limit of the joint and the angular speed is not big
enough to bring back the joint in its normal range a force is generated. The resulting
torque τ acting on the joint is modeled as :

τ =

{
k ·∆θ · (1− ω/ωref ) if ∆θ > 0, ω/ωref > −1

0 else
(2.38)
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Where,

- k = 17.19[Nm/rad] is the spring damper stiffness.
- ωref = 1.74 · 10−2[rad/s] is the reference angular speed, used to normalize the joint

angular speed.
- ∆θ is the angle by which the joint limit is exceeded (i.e. difference between the

actual angle and the limit angle). Note that the axes are chosen so that ∆θ > 0
when the joint limit is passed.

- ω[rad−1] is the angular speed. Note that the axes of rotation are chosen so that
ω > 0 when the angle is going toward the joint limit angle.

- τ is the torque acting on the joints. The direction of the torque is chosen in order
to maintain the joint angle in its range of operation.

Note that this model of non linear spring damper is also used in the model of H.Geyer
to model the ground reaction forces to foot contact. Here the contact of the robot with
the ground are managed by the physical simulator of webots, thus we use this model only
for modeling the ligaments.

2.1.2.3 Sensors to muscles mapping

Cycle phase description
In the FBL model the activity of the motoneurons depends on the cycle phase. In the
model of H.Geyer the cycle is divided in three parts :

• Stance (st) phase

• Swing (sw) phase

• Stance end (stend) phase

The ground sensors - as defined in eq. 2.34 - are used to detect the state of the limb
(i.e. st / sw). A threshold is put on the summed signals from toe and heel ground sensors.
If reached, the limb is assumed to be in st phase. The stend phase corresponds to the
double stance support phase when the contralateral limb just touched the ground.

Figure 2.6 shows a schematic view of the FBL model regarding the cycle phase sepa-
ration.

Feedback rules
The FBL model developed by H.Geyer is a pure feedback model (i.e. it has no feedforward
component). In the FBL, the activity of each MTU depends solely on a delayed weighted
sum of different sensory inputs (called reflexes or feedbacks).

For each muscle, a signal SM (t) is generated as a basal activity (S0
M ), plus a linear

combination of the weighted feedback signals Fbi,j(t). The signal SM (t) can be viewed
as the normalized spiking frequency of the motoneurons pool of a muscle M or, in other
words, its normalized “activity”:

SM (t) =


S0
M +

∑
iεmuscles

∑
jεsensorsWi,j · Fbi,j(t) if 0 6 SM (t) 6 1

0 if SM (t) < 0

1 if SM (t) > 1

. (2.39)

Note that, for each muscle, only a small part of the sensors are used; most of the weightWi,j

are equals to zero (see table 2.4 for detailed reflex equations for each muscle). Information
about the sensors used by each muscle is based on the work of H. Geyer.
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* occurs during contact of both limb. An extra term is added to the HF and GLU muscles to help the transfer of the 
weight from the leg that was already in contact with the ground to the one that just touches the groundFigure 2.6: Schematic view of the reflex based walking model from H.Geyer. Ground sensors are used to

detect whether the limb is on stance or swing phase. Then, depending on whether the limb is in contact
with the ground, different reflex rules are generated (all reflex rules are shown on table 2.4). An extra
term is added to the hips flexor (i.e. HF) and hips extensor (i.e. GLU) to facilitate the weight bearing
transfer during the end of the stance, when the other limb touches the ground (i.e. during the double
stance support). Figure inspired from [9].

The motoneurons output SM (t) is related to the muscle activity AM (t) through the
first order linear equation :

d

dt
AM = τ(SM (t)−AM (t)) (2.40)

This differential equation models the delay that exists between the firing of motoneurons
and their action on the muscle contraction. The delay is modeled as a first order differential
equation. The law governing the activities of each muscles during the different cycle phases
are presented in table 2.4. This model uses the 2D physical model of lower limbs described
in the previous section, and adds the MTU activity rules.
The input to a motoneuron can be different depending on the limb cycle phase. There is
a set of rules for st phase (sstM ) and another for the sw phase (sswM ). There is also an extra
term added to the hips flexor (i.e. HF) and hips extensor (i.e. GLU) motoneurons signals
during the stend phase, this extra term is added to facilitate the weight bearing transfer.
The table 2.4 shows all the different sM input signal to motoneurons associated to each
muscles.

Model parameters
All muscles parameters and joints ranges are taken from [9]. Parameters of the lower limbs
are based on anthropometric data taken from [31]. The only parameters that are optimized
are the parameters associated with the sensors-muscles mapping, whose rules are shown in
table 2.4. There are 28 parameters (5 for stability feedback, 6 for muscle force feedbacks, 6
for muscle length feedbacks, 7 for basal muscle activity and 4 other parameters) which are
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found by optimization, the table 2.5 presents the parameters together with their respective
range. In this project, we used the Particle Swarm Optimization PSO method (described
in section 2.2) to found optimal parameters values.

2.1.2.4 Energy consumption model

One of the main feature used as optimization criterion is the energy consumption of the
system. The energy consumption model is inspired from [3], as used in [30]. The model
also separates the activation heat rate and the maintenance rate in two terms: one for
slow twitch fibers, and one for fast twitch fibers. Slow twitch fibers are activated more
slowly than fast twitch fibers (see section 1.1.4 for details). The full model of energy of
one MTU M with :

- m : mass
- tI : type I fiber percentage
- s : neural stimulation
- a : muscle activity
- F : active force generated by the muscle
- Ft : the total force generated by the MTU

can be written as:

E = A+M + S +W (2.41)

Where:

- A = m · fA(s) is the activation heat rate, with :

fA(s) = 40 · tI · sin(π/2 · s) + 133 · tII · (1− cos(π/2 · s) (2.42)

- M = m · g(lce/lopt) · fM (a) is the maintenance heat rate, with :

g(l) =


0.5 if 0.0 6 l 6 0.5

1 if 0.5 < l 6 1.0

−2l + 3 if 1.0 < l 6 1.5

0 else

(2.43)

fM (a) = 74 · tI · sin(π/2 · a) + 111 · tII · (1− cos(π/2 · a) (2.44)

- S =

{
0.25 · Ft · vce if vce > 0.0

0.0 else
is the shortening heat rate,

- W =

{
F · vce if vce > 0.0

0.0 else
is the work rate. vce is the shortening speed, lce the

muscle length and lopt : the optimal muscle length.

The change in energy consumption at time t is given by:

dE = dt ·
∑

mεmuscles

Em, with Em = Am +Mm + Sm +Wm
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2.1.3 FBL model extension inspired from J. Wang

In this section we describe an extension of the FBL model implemented for comparison
robustness comparison purpose. The extended model is referred to as FBL+ in the rest
of the report and is inspired by work of J. Wang [30]

The main difference is the addition of a fourth cycle phase; in addition to the sw, st,
swend phases a swing end (swend) phase is added. During this phase, three new stability
feedback rules are added (see eq. 2.36). Two rules control the hip joint through the HF and
GLU muscles and the last rule controls the knee joint through the VAS muscle. Theses
rules aim at directing the KNEE and HIP joint angles toward a reference angle during the
swend phase, thus adjusting the limb position before touching the ground. Both HF and
GLU stability rules share the same δref reference angle. Theses rules adds 8 parameters
to be optimized (see table 2.6).

The other differences with the FBL model is how it enters in the swend and stend
phases. Instead of simply entering the stend phase when the other limb touches the ground
(i.e. during the double stance support), it can also enter when the horizontal distance
(normalized by the foot length) between the center of gravity of the model and the toe
reaches a certain threshold. The same method is used to define the criterion for entering
in swend phase.

The two threshold parameters are optimized, as well as the parameters associated with
the new feedback rules. We thus have 10 new parameters to optimize. The new parameters
and their associated range are given in table 2.6.

2.2 Optimization

Optimization can be viewed as finding one particular solution of a subset of solutions that
satisfies some criteria. Most of the optimization problems can be formulated mathemati-
cally as finding the minimum of a given fitness function or objective function, i.e.

[x ε A,∀y ε A, f(x) = min(f(y))], f(x) : An → R, A ε R

In order to use the framework of iterative optimization algorithms, we need a) a set of
parameters, usually from a subset of the multidimensional space of real numbers (noted A
in the previous equation, often referred to as the search space) that controls the behavior
of the system and b) a way to evaluate the system.

Various optimization techniques can be used, such as genetic algorithm, particle swarm
optimization (PSO) or gradient descent algorithm. Here we chose PSO because it has
been shown to give good results in the same kind of problems (see work of Steve Berger,
former master student at Biorob [2]), and because its computational cost is small and
implementation easy.

2.2.1 PSO algorithm

PSO algorithm is a method used for the optimization of non linear continuous functions,
but adaptations to discrete space exists [29, 28, 13]. It is inspired by the movement of
swarm observed in nature, hence the name. The PSO algorithm is an iterative optimiza-
tion algorithm. It starts with a set of solution (randomly chosen or not) in the search
space A. After each iteration, the performance of each particle is evaluated using an ob-
jective function f , then each particle moves in the search space with a speed direction and
amplitude that takes into account
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- personal best performance noted xpb
- the best performance of the whole swarm so far xgb

At each iteration, the whole swarm moves in the search space and particles smoothly
influence each other. The speed vi and the position xi of particle i at iteration t are given
by [22]:

vi(t+ 1) = ωvi(t) + c1rnd()(xpb − x(t)) + c2rnd()(xgb − x(t)) (2.45)

xi(t+ 1) = vi(t+ 1) + xi(t) (2.46)

Where,

- vi and xi are respectively the speed and the position in the search space A of particle i
- c1 and c2 are the “cognitive factor” and the “social factor”, respectively. If c1 is too

large compared to c2, each particle will converge to another direction and the whole
swarm will not converge to a specific solution. If c2 is too large compared to c1, the
algorithm will converge prematurely. Here c1 = c2 = 2.05 (adapted from [22])

- ω is the constriction factor. w < 1.0 and prevent failure to converge due to un-
bounded increase of the speed. Here we take : w = 0.729. We further limit the
maximum normalized velocity vn to 0.3, where the component on dimension d of vn
is given as vnd = vd/|max(Ad)−min(Ad)|.

2.2.1.1 Multi-objectives functions evaluation

The objective function often combines different criteria. The consequence is that it is not
always easy to manage interactions between the different criteria (see section 2.2.3. A
simple solution is to prevent interaction by using multiplicative parameters of different
order of magnitudes for each objective (criteria with highest magnitude order parameters
(Chigh) will be optimized first, while criteria with lowest magnitude order parameters
(Clow) will be optimized last). However in presence of noise, some criteria might not be
optimized. In practice, it is very unlikely - and difficult to verify - that the Clow will be
optimized at all. Indeed, if any criterion has a variability bigger than the magnitude order
of the next criteria, those criteria will never be optimized.

2.2.1.2 Stage PSO

The stage PSO algorithm is a simple extension added to the PSO algorithm (developed by
Jesse Van den Kieboom at BioRob) which aims at facilitating the optimization process with
multi-objectives functions. Instead of using one global evaluation function that combines
all the different objectives, the optimization is split into different stages. At each stage a
simple objective function is used to evaluate the solution (i.e. traveled distance, energy
consumption, speed, step length or similarity with human gait). To enter a stage the
particle should satisfy a criterion called entrance criterion. All stages have a entrance
criterion except the first one. All the particle are initialized in the first stage. At each
iteration, a particle at stage N is evaluated for all previous stages, and the next stage
(i.e. n 6 N + 1), and is set at n∗, the lowest stage whose entrance criterion was not
validated. At the next iteration, this particle, now at stage n∗, will be evaluated for all
stages n 6 n∗ + 1, and will be set at a the lowest stage whose entrance criterion was not
validated.
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2.2.2 Robot evaluation

2.2.2.1 Initial conditions

The choice of the model initial state is crucial for the subsequent optimization to be
effective. We tested two starting conditions:

• Start in standing position
With the FBL model, starting from a standing position is possible. Indeed, there
is an immediate feedback from the ground (since the feet are in contact with the
ground) and the stability feedback from the trunk (as the trunk starts falling). Those
two feedbacks permit the first foot to detaches from the ground and activates other
feedbacks, generating locomotion.
Although stable locomotion can be found following optimization, the first steps are
highly instable; the robot starts stumbling before entering in a limit cycle. This
stumbling phase can be greatly reduced by a) intializing the ground sensors to 100
N value, b) filter the information from ground sensors using a first order differential
equation (see eq. 2.34).

• Start with an non-zero initial velocity
Here we propose to start with a walking gait (obtained from optimization with the
standing position as initial condition), and then change the parameters after a few
steps (when the limit cycle of the starting gait is reached). This solution presents
the advantage of minimizing the initial perturbation to the system.

After evaluation of the two initial states, we decided to use this initial state in our exper-
iments.

Evaluation criterion (EC)

The evaluation of the robot is based on different criteria, which make use of different
variables summarized below:

- d: distance traveled in [m]
- v: mean speed [m/s]
- t: duration of the run in [s]
- E: energy consumed as defined in section 2.1.2.4
- c: number of cycles
- θ̄trunk : mean trunk angle with regards to vertical axes
- corrankle: correlation of ankle angle produced by the model with human data from [31]
- corrknee: correlation of knee angle produced by the model with human data from [31]
- corrhip: correlation of hip angle produced by the model with human data from [31]
- slSNR: step length stability based on signal to noise ratio (SNR) measurement.
- left right: step length left right similarity criterion based on SNR measurement.

The criteria are described in details in section 2.2.3 and summarized in table 2.7.

Stopping criterion (SC)

Each set of parameter is evaluated on the Webots physical simulator. The run is stopped
if the robot falls or if the SC is reached. The following SCs were investigated:

- Distance limit: the run is stopped when the robot reaches the distance limit (dlim).
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- Time limit: the run is stopped when the robot has walked without falling longer
than the time limit (tlim).

- Energy limit: the run is stopped when the energy spent by the robot reaches Elim.

The SCs are chosen big enough to ensure that the robot has entered in a limit cycle. If
not specified dlim > 30[m] is chosen. The corresponding time limit tlim > 23[s], assuming
that the walking speed is 1.3[m/s]. Elim is estimated based on the energy consumption of
a human of 70 [kg] walking at 1.3 [m/s] (∼ 210[J/m] data from [33]). If not specified the
stopping criterion dlim is used.

2.2.3 Objective function

IN PSO, the objective function evaluates multiple criteria at the same time. Not only
the robot should be able to walk, but the gait should also resemble the human gait both
in term of energy consumption and in term of gait shape. The objective function should
thus take into account human gait characteristics, such as step length or speed.

Here we build the objective function step by step. Starting with an objective function
able to produce stable walking gait, several constraints are subsequently added:

1. Generate a stable walking gait with energy minimization constraints
In this simple initial objective function, two criteria are satisfied at the same time:
the robot should walk, but at the least energy cost. Several objective functions can
produce a solution that walks; any measure of distance, such as the number of steps
or the distance traveled, is enough to make the solution walk. Here we decided to
use d as the objective function parameter. In order to optimize for minimal energy
consumption E is also added. With dlim as stopping criterion the function can be
written as :

F = d− α · E with SC = dlim (2.47)

Where α is a parameter to be carefully determined. Indeed the optimization process
should first optimize for the distance d, thus ensuring that the solution walks, and
then only the energy consumption should be optimized. The term corresponding to
the energy (i.e. α ·E) should therefore be small compared to the distance. Note that
this works because the distance is limited to dlim, thus once the model walks without
falling the noise on d will be extremely small in the magnitude of the distance that
can be traveled in 0.001[s] (the duration of one time step).

2. Increase similarity with human gait
When optimizing using the objective function described above, the produced gait
can significantly differ from human gait (see section 3.1.2), both in terms of joint
angles and produced torques. In order to increase resemblance with human gait, a
similarity criterion was introduced: the correlation corr between joint angle data of
walking human (data from [31]) and joint angle of the robot.

corr(X,Y ) =
cov(X,Y )√
var(X)var(Y )

(2.48)

Where:

- The covariance between to dataset of the same length is given by :

cov(X,Y ) =
1

N − 1

N∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
(2.49)
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- The variance of a dataset is given by :

var(X) =
1

N

N∑
i=1

(xi − x̄)2 (2.50)

The corr is calculated for each joint of one arbitrarily chosen limb (we assume that
the gait is symmetric) over the last full walking cycle. Note that because the corre-
lation is calculated between two sequences of the same length, the angles extracted
from the robot are linearly interpolated to have the same length as the human angle
sequence. The final criterion is the minimum correlation of the three joints. Because
the measure of correlation is not sensitive to the mean of the signal, the difference
in mean angle between robot and human could be added in the criterion. The opti-
mizations with and without the criterion accounting for the difference in mean angle
between robot and human joints shows no real improvement in the resulting gait.
The similarity is finally simply chosen as:

Cangles = min {corrankle, corrknee, corrhip}
(2.51)

The objective function used becomes :

F = d− α · E + β · Cangles with SC = dlim (2.52)

Since the correlation is comprised between 0 and 1, it will have little effect at the
beginning of the optimization. Thus the optimization will first find a solution that
is able to walk with minimal energy consumption and then optimize for maximizing
the resemblance between robot and human gait.

3. Increase step length stability
In order to avoid step length variation, a measure of the stability of the step lengths is
used: the signal to noise ratio (SNR) of the step length during the trial is calculated.
The SNR is defined as:

SNR = log(
X̄

var(X)
) (2.53)

Where X̄ is the mean of the vector X and var(X) is the variance of the vector X
The criterion for step length stability is given as :

Csteplengths = SNR(sls) (2.54)

Where sls is the vector of all the step lengths.
The fitness function becomes:

F = d− α · E + β · Cangles + γ · Csteplength with SC = dlim (2.55)

4. Control gait speed & step length size
Here, constraints on gait characteristics - speed and step length - are added. In both
cases, the function chosen should present a unique maximum at the desired speed
vdesired or step length sldesired. The simplest function presenting this characteristic
is the absolute function. The constraint for speed are thus written as :

Cspeed = −|vdesired − v| (2.56)
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where v is the mean of the step lengths during one run. Similarly, the constraint for
step length are written as

Csteplength = −|sldesired − sl| (2.57)

where sl is the mean of the step lengths during one run.

The final objective function can be written as a sum of all the constraints :

F = d− α · E
+ β · Cangles

+ δ · Cspeed

+ ζ · Csteplength with SC = dlim

with the distance limit dlim as SC.
A similar objective function can be written for the other stopping criteria. For example,
with the energy limit Elim as SC, the objective function becomes :

F = d

+ β · Cangles

+ δ · Cspeed

+ ζ · Csteplength with SC = Elim

Other criteria have been developed for specific use and are described here for com-
pleteness purpose.

1. Minimizing cost of transport
This criterion is used as last stage (see stage PSO) when optimizing for robustness.
It takes into account not only the energy expenditure but also the traveled distance
so that its better to go further but only if the increase in energy consumption rate
is not to high. The criterion to maximize is defined as :

Ccot =
d

E
· d (2.58)

Where α = 0.001 is a normalizing factor, E is the energy expenditure, d is the
traveled distance.

2. Maximizing left and rigth step length similarity
This criterion has been designed to maximize the gait symmetry. It was used at
early stage of the project to prevent symmetry issues, but appeared not necessary.
The criterion is based on the comparison of left and right steplength. Given two
sequences x and y of the same length, the similarity criterion is:

SNR(x, y) = log

(∣∣∣∣ x̄

var(x)
− ȳ

var(y)

∣∣∣∣) (2.59)

Where x̄ is the mean of the vector x and var(x) is the variance of the vector x The
criterion for step length stability is given as :

Cleft right = SNR(slleft, slright) (2.60)

Where slleft is the vector of left limb step lengths, slright is the vector of right step
lengths.
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3. Trunk leaning prevention This criterion was designed in order to prevent opti-
mized gait to have their trunk leaning forward when optimizing for high speed or
for perturbed environment. The criterion is defined so as to be maximized when
0 < Ctrunk < 0.105.

Ctrunk =

{
|θ̄trunk − 0.105| if θ̄trunk > 0

0 else
(2.61)

2.2.3.1 Stage PSO criteria

The adaptation of the previous objective function of stage PSO is straightforward. For
each stages a criterion should be chosen among the criterion defined in table 2.7. All stages
except the first one should have an “entrance criterion” that says when the previous stages
is enough close to the desired value. Note that all criteria for whom a clear desired value
is not know (like for example the criterion for energy consumption minimization) can be
put at the last stage. Using dlim as SC, the objective function in the previous section can
be split into five stages:

- Stage 0 : maximize the traveled distance
- Stage 1 : maximize similarity with human gait
- Stage 2 : bring the speed in a given range
- Stage 3 : maximize step length SNR
- Stage 4 : minimize energy

Stages objective functions and entrance conditions are detailed in table 2.8.

2.2.4 Environments

The robot is evaluated in different environments:

1. Flat ground
2. Unique push on flat ground: one unique push of constant amplitude is applied at a

random time to the robot.
3. Random push on flat ground: a serie of random pushes are applied at random time

to the robot (see section 2.2.4.1)
4. Wavy ground: the robot walks on an environment made of wave of increasing slope

at random length (see section 2.2.4.2).
5. Increasing slope

2.2.4.1 Random push

The pushes are modeled as short forces happening at random time and applied at different
position and with different orientations. The force amplitude of the push increases with
time. The duration between two pushes is randomly chosen following a F-distribution.
The parameters of each push (height, orientation, duration) follow different probability
distributions (see figure 2.7 and legend for details). The amplitude is drawn from a normal
distribution with mean increasing push after push toward a maximum mean amplitude f .
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Figure 2.7: The force of the ith push is modeled has a constant input of amplitude Fi and duration dperti ,
where the amplitude of the force is drawn from a normal distribution. The mean and standard deviation
increase linearly push after push. The duration of the push follows a gamma distribution. The angle of
the force with respect to the ground follows a normal distribution with mean 0 and standard deviation of
π/2. The height of the push follows a uniform distribution with a range equal to the trunk height. Finally,
the duration of the non pushing period follows a F-distribution with parameters chosen so that the push
arises approximately each seconds.

2.2.4.2 Wavy ground

The wavy ground is modeled as a serie of small trapezoidal structures. The angle of the
structure increases structure after structure towards a maximum angle. The length of
each structure and the space between them follow a Gaussian probability distribution.
(see figure 2.8 for detail).

...

Probability distribution function

Figure 2.8: The length of each structure and the space between the different structures follow a normal
distribution. For each trapezoidal structure, the up and down angles are the same, and increase between
structures, toward a maximal angle αmax.
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2.3 Human Walking Data

Walking experiments on a human have been carried out in Poland at the university of
PJWSTK in the laboratory of Prof. Wojciechowski. For each experiments, walking data,
ground reaction forces and EMG data of the major limb muscles were extracted. The
subject of the experiment was a male of 1.8 m and 80 kg.

2.3.1 Experiments

The experimental setup is shown in figure 2.9. Three different experiments have been
carried out:

1. Low speed walking
2. Normal speed walking
3. Slow running

Figure 2.9: Experimental setup of the motion capture system. In yellow are two of the 10 infrared
cameras, in red the two plates that record the ground reaction forces and in green the position of limb
EMG electrode. The small dots on the body of the subject are the captor detect by the infrared cameras.

2.3.2 Walking data

The walking data was extracted using a Motion Capture Systems from Vicon. 40 captors
were placed on the body and their position during walking were recorded using 10 infrared
cameras. From the position of the captors, the joint angles of both limb were extracted
using the Matlab toolbox Biomechanical Toolkit. Figure 2.10 shows the angle movement of
the hip, knee and ankle joints in the sagittal plane. We observe that the general shape of
the angle evolution curves are similar between all experiments, especially between the slow
walking and normal walking (the only significant difference being the maximum amplitude
of the hip angle). However, between walking and running, several differences are noted:
We observe that the peak of the knee angle during the stance is increasing in amplitude
with speed (i.e., very small in the case of slow running, higher for normal walking, and
even higher for slow running). This is due to the fact that this peak corresponds to the
propulsion of the limb, and thus is more important when the locomotion is faster. We
also note that the ankle angle evolution has an extra peak at the limit between swing
and stance (i.e. when the foot touches the ground) in the two cases of walking, but not
in the case of running. This is due to the fact that when walking, the heel touches the
ground first (i.e., the toes are up), which is not the case when running. Moreover, the
peak of knee and ankle angle during the stance overlap in the case of running, whereas
they are consecutive in the case of walking (first the knee and then the ankle peak). This
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is due to the fact, in the case of running, the knee and ankle extend together to better
propel the body forward. Finally, We also observe the swing and stance phases have the
same durations for the slow and normal walking, whereas they are shorter in the case of
running, due to the fact that the whole cycle is shorter. As expected, the duration of the
swing is shorter than that of the stance in the case of walking, whereas it is the opposite
in the case of running.
Given the similarity between slow and normal walking, we will not further study the slow
walking data, and rather focus on the normal walking and running data.
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Figure 2.10: Angle recorded during experiment of walking. From top to bottom; angles during slow
walking, normal walking and slow running.

2.3.3 Ground Reaction Forces

Ground reaction forces (GRF) were recorded using two plates from Kistler. The figure 2.11
presents a schematic view of a ground reaction forces plate and the different axes (left),
as well as the ground reaction forces in the different axes during normal walking and slow
running (right). Similarly to what is found in the literature [4], the vertical forces have a
double bell shape for walking and a one bell shape for running. Moreover, the forces in the
coronal plane present the characteristic sinusoidal shape for both walking and running,
with a stiffer slope in the case of walking.

2.3.4 Surface eletromyogram (EMG) data

EMG data of external limb muscles were recorded using the 1400a Surface EMG from
Noraxon MyoSystem (16 channels). Recorded muscles are presented in figure 2.12. Com-
pared to the lower limb model presented in section 2.1.2.1, five muscles where recorded
for comparison with EMG from [12].

The hip flexor muscles (HF) were not recorded, because this group of muscle is com-
posed of many thin muscles, leading to poor signal. The soleus muscles (SOL) were also
not recorded, as they are not accessible from the skin (i.e. they are behind the Gastroc-
nemius muscle group). The raw data is unusable as it. A common way of processing it is
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Figure 2.11: Left: schematic view of a ground reaction forces plate and the different axes. Right:
Ground reaction forces (GRF), presented as percent of the total body weight (from left to right: walking
experiment, slow running experiment).

the use of a butterworth filters as explained in [17]. Before applying the butterwoth filter,
some preprocessing are done on the signal:

- Low pass filter of order 8 and cut off frequency of 300Hz
- High pass filter of order 2 and cut off frequency of 2Hz
- Band stop filter that removes the 50 Hz and its harmonics (at 100Hz, 150Hz, 200Hz,

250Hz)

After the pre-processing the EMG signal, a low pass butterworth filter of order 4 with
2Hz cut-off frequency is applied to obtain a linear envelope of the signal. The figure 2.12
shows the processed data of the recorded muscles during an experiment of normal walk.
Unfortunately, because the maximum force of the muscles has not been recorded, the EMG
signal can not be normalized. We are only able to compare the shape of the EMG signal
with the muscle activity of the model.

0 20 40 60 80 100 0 20 40 60 80 100

% of stride

EMG Envelope

Quadriceps Femoris

Tibialis Anterior

Biceps Femoris

Gluteus (Maximus+Medius)

Gastrocnemius Lateralis

Figure 2.12: Left: EMG signal from [12] of a human walking at 1.25[m/s]. Right: processed EMG
signal of the corresponding recorded muscles. In the FBL model this corresponds to the GLU, HAM, VAS,
GAS and TA muscles (from top to bottom).
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Table 2.2: The first table shows the muscles used in the model, the joint onto which they act and the type
of movement they induce (flexion or extension), each of which being modeled as one MTU. Two variables
θmax and θref are also given (values retrieved from the H. Geyer article [9]). The first variable corresponds
to the angle at which the force generated by the muscle contributes the most to the joint movement, the
second variable is the initial angle of the muscle. The second table gives the muscle parameters, as selected
by H. Geyer. The third table gives the segments weight and length based on anthropometric data from [31].

Muscles and joints corresponding to the MTUs

Abbrev. Name Action r0 θmax θref

GLU Gluteus hip extension 0.1 - 150
HF Hip flexor hip flexion 0.1 - 180
VAS Vasilus knee extension 0.06 165 125
GAS Gastrocnemius knee extension 0.05 110 80
TA Tibialis ankle flexion 0.04 80 110

HAM Hamstring Bi-articular muscle, hip and
knee flexion

0.08 - for hip, 180
for knee

155 for hip,
180 for knee

SOL Soleus Bi-articular muscle, ankle
extension and knee flexion

0.05 110 for ankle,
140 for knee

80 for ankle,
165 for knee

Muscles parameters

HF GLU VAS HAM GAS SOL TA

Maximal muscle force (Fmax[N ]) 2000 1500 6000 3000 1500 4000 800
Maximal speed of the muscle (vmax[m/s]) 12.0 12.0 12.0 12.0 12.0 6.0 12.0
Optimal length of the muscle (lopt[m]) 0.11 0.11 0.08 0.10 0.05 0.04 0.06
Optimal length of the tendon (lslack[m]) 0.10 0.13 0.23 0.31 0.40 0.26 0.24
Pennation factor (ρ[]) 0.5 0.5 0.7 0.7 0.7 0.5 0.7
Type I fibers percentage 0.5 0.5 0.44 0.54 0.81 0.7 0.5

Lower limbs segments parameters

Segment Mass (kg) Length (m)

Trunk 53.5 0.8
Thigh 8.5 0.5
Shin 3.5 0.5
Foot 1.25 0.16
Ankle 0 0.1
Total body 70 1.8
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Table 2.3: Range of joints angle outside of which soft limit engages. The soft limit models the action of
ligaments to work against unnatural movement, thus preventing injuries [9].

Joint θmin θmax

Hip 20◦ 230◦

Knee 45◦ 175◦

Ankle 70◦ 130◦

Table 2.4: Motoneurons signal equations for each MTU. In brown the MTU feedback, in blue the stability
feedback and in green the ground feedback. We can see that during swing only MTUs feedback are used
except for the hip flexor that has an extra term klean(φTO − φref ). Where φTO is the angle of the trunk
when the limb detaches from the ground, and φref is the trunk reference angle. This term permits the
swing movement to increases with the trunk inclination, simulating the biological reflex of making a larger
step to prevent falling. This term thus increases the stability of the model.

Motoneurons signal during stance

sstGLU = s0GLU + Fb′s · Fbg(ipsi)

sstHF = s0HF + Fbs · Fbg(ipsi)

sstHAM = s0HAM + Fbs · Fbg(ipsi)

sstV AS = s0V AS + wV AS,V ASf
· Fbf (V AS)− wV AS,KNEEo

· Fbo(knee)

sstSOL = s0SOL + wSOL,SOLf
· Fbf (SOL)

sstTA = s0TA + wTA,TAl
· Fbl(TA)− wTA,SOLf

· Fbf (SOL)

sstGAS = s0GAS + wGAS,GASf
· Fbf (GAS)

Motoneurons signal during stance end

sstV AS − = Fbg(contra)

sstGLU − = ∆S

sstHF + = ∆S

Motoneurons signal during swing

sswGLU = s0GLU + wGLU,GLUf
· Fbf (GLU)

sswHF = s0HF + wHF,HFl
· Fbl(HF )− wHF,HAMl

· Fbl(HAM) + klean(φTO − φref )

sswHAM = s0HAM + wHAM,HAMf
· Fbf (HAM)

sswV AS = s0V AS

sswSOL = s0SOL

sswTA = s0TA + wTA,TAl
· Fbl(TA)

sswGAS = s0GAS
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Table 2.5: FBL model parameters list and their respective range. The parameters are tuned by optimiza-
tion (using PSO). Under “others” are presented the parameters related to weight bearing transfer and the
knee overextension feedbacks.

Stance phase stability control

Name Range Extra information

kbw [ 0.8; 1.4 ]
kp1 [ 0.8; 1.4 ] Used for the Fbs feedback rule
kp2 [ 0.5; 1.4 ] Used for the Fb′s feedback rule
kd [ 0.8; 1.4 ] Used for the Fbs and Fb′s feedback rule
δref [ 0.8; 1.4 ] Used for the Fbs and Fb′s feedback rule

Muscle force feedback

Name Range

wSOL,SOLf [ 0.8; 1.6 ]
wTA,SOLf [ 0.1; 0.8 ]
wGAS,GASf [ 0.3; 1.6 ]
wV AS,V ASf [ 0.9; 1.8 ]
wHAM,HAMf [ 0.2; 1.0 ]
wGLU,GLUf [ 0.2; 0.9 ]

Muscle length feedback

Name Range

wTA,TAl [ 1.0; 3.0 ]
wHF,HFl [ 0.2; 1.5 ]
wHF,HAMl [ 0.0; 3.0 ]
lTAoffset [ 0.0; 1.0 ]
lHFoffset [ 0.2; 1.0 ]
lHAMoffset [ 0.7; 1.0 ]

Basal activity

Name Range

s0SOL [ 0.01; 0.1 ]
s0TA [ 0.01; 0.1 ]
s0GAS [ 0.01; 0.1 ]
s0V AS [ 0.01; 0.1 ]
s0HAM [ 0.01; 0.1 ]
s0GLU [ 0.01; 0.1 ]
s0HF [ 0.01; 0.1 ]

Other parameters

Name Range

klean [ 0.0; 2.0 ]
kδknee [ 0.0; 3.0 ]
kδkneeoff [ 2.8;π ]

∆S [ 0.0; 1.05 ]
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Table 2.6: FBL+ additional parameters list and their respective range.

Swing end phase feedback rules

Name Range

khfp [ 0.0; 2.0 ]

khfd [ 0.0; 1.0 ]

kglup [ 0.0; 2.0 ]

kglud [ 0.0; 1.0 ]
kvasp [ 0.0; 2.0 ]
kvasd [ 0.0; 1.0 ]

δhipref [ −1.0; 0.0 ]

δkneeref [ 0.0; 1.14 ]
stend [ 0.0; 3.0 ]
swend [ −2.5; 0.0 ]

Table 2.7: The table summarizes the different evaluation criterion that are used in the optimization
process.

Optimization evaluation criterion

EC Passing criterion

Cangles Cangles > 0.8
Csteplengths Csteplengths > 5
Ctrunk 0.0 < Ctrunk < 0.105

Cspeed(vopt) |v − vopt| < 0.05

Table 2.8: The five stages defined in the stage PSO of experiment 3, and their associated entrance
condition. All evaluated criterion are maximized. If not specified in an experiment of stage PSO, the
entrance criterion defined in this table are used

stage eval. criterion entrance condition detail

0 d d is the distance and dlim is the SC
1 Cangles d > 0.99 · dlim The Cangles criterion captures the

similarity of the angles compared to
human. The criterion is defined in
eq. 2.51

2 Cspeed Cangles > 0.8
3 Csteplengths Cspeed + vdesired < 0.05 The Csteplengths criterion captures

the variability of the step lengths and
is defined in eq.2.54.

4 −E Csteplengths > 6 E is the energy consumed during the
run.
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Chapter 3

Results

Here are presented the results of the FBL model optimization on a flat ground, using
different optimization criteria (presented in section 2.1). The different experiment are
compared, and their similarity to to human gait is evaluated (section 3.1). Then, the
robustness of both the FBL and the FBL+ model is tested on two different environments
(i.e. pushes and wavy ground, section 3.2).

3.1 Optimization on flat ground

Four different optimization experiments with the FBL model have been carried out on a flat
ground (presented in table 3.2). The three first experiments make use of the stage particle
swarm optimization (stage PSO, see section 2.2.1.2). Those three stage PSO experiments
differs among them by the number of stages that are used (three, four and five). The
fourth experiment uses a simple particle swarm optimization (see section 2.2.1) with the
multi-objectives function defined in section 2.2.3. The first experiment has three stages:
the maximization of traveled distance, the optimization toward a speed of 1.3[m/s] and
the minimization of the energy consumption. The second experiment has one additional
stage: the maximization of the step length SNR, optimized before the stage of energy con-
sumption minimization. The third experiment has another extra stage, which maximizes
the correlation of the computed joint angles with human joint angles, also optimized before
the stage of energy consumption minimization (see section 2.2.3.1) The last experiment is
a simple PSO experiment which uses the fitness function defined in eq. 2.58, this function
tries to optimize all the criteria mentioned above in parallel. For all experiments, the SC
used is the distance, with dlim = 35m. In order to ensure convergence we used a large
number of iterations (150). The experiments were repeated several times (data not shown)
to make sure that the obtained results are reproducible. Here we analyze one solution of
each experiment. Note that even if some difficulties can arise when using multi-objectives
functions (as shown in section 2.2.1.1), the convergence speed is much faster because all
criteria are evaluated at the same time.

3.1.1 Experiments comparison

Here we compare the results obtained for the step length SNR, the angle correlation and
the energy presented in table 3.2 and figure 3.1. The speed is not studied here since the
optimal value of 1.3[m/s] was reached in all experiments. Videos are available at [6].

We observe that the step length SNR is smaller in experiment 1, which was expected
since this criterion was not considered in the optimization process of this experiment.
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Table 3.1: Details of the different experiments. The rows are in order : 1) the experiments id, 2) the
environments used for optimization, see 2.2.4, 3) The model used during optimization, either FBL or
FBL+, 4) The pso type optimization algorithm used, either stage or standard, 5) The list of stages (only
for stage PSO), the prefixes used are the same as those presented in table 2.8 and defined in section 2.2.3,
6) The number of iterations and 7) The number of particle are defined in the last two rows.

Experiments details

Optimization on flat ground

Exp. Env. Models PSO Stage list Iter. Part.

1 1 FBL Stage (d,Cspeed, E) 150 60

2 1 FBL Stage (d,Cspeed,Csteplengths, E) 150 60

3 1 FBL Stage (d,Cspeed,Csteplengths,Cangles, E) 150 60

4 1 FBL Std. 150 60

Optimization on environments with perturbation

Exp. Env. Models PSO Stage list Iter. Part.

5 2 FBL+ Stage (d,Ctrunk,Cspeed,Cangles,Ccot) 150 60

6a 3 FBL Stage (d,Ctrunk,Cspeed,Cangles,Ccot) 150 60
6b 3 FBL+ Stage (d,Ctrunk,Cspeed,Cangles,Ccot) 150 60

7a 4 FBL Stage (d,Ctrunk,Cspeed,Cangles,Ccot) 150 60
7b 4 FBL+ Stage (d,Ctrunk,Cspeed,Cangles,Ccot) 150 60

Table 3.2: Optimization results of the experiments on flat ground. The second row gives the values of
energy obtained and the last row the value of step lengths SNR. Speed is not shown because all solutions
converged to the optimal speed of 1.3 [m/s]. For clarity purposes, the results concerning the correlation
between the computed and human joint angles are presented separately in figure 3.1.

Experiments results on flat ground

Exp. Energy[J/m] step length SNR

1 131.4 1.5
2 257.1 6
3 148.6 7.5
4 200.0 5
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Note also that the step length SNR of experiment 4 (standard PSO with one global multi-
objectives function) is lower than the one of experiments 2 and 3. However, since a step
length SNR of 5 or more is satisfying (i.e. the step length is stable enough, empirically
determined), there is no clear distinction in gait stability between experiments 2, 3 and 4.

Concerning the angle correlation (see figure 3.1), we note - as expected - that the corre-
lation is lower for experiment 1 and 2, where the angle correlation was not a criterion. We
also note that when the step length is used as a criterion, the hip joint shows an excellent
correlation with human data, meaning that the maximization of step length stability is
done mainly at the hip joints level. Overall, we observe that the best results are obtained
with the full stage PSO experiment (experiment 3) as expected, see section 2.2.1.2.

Finally, concerning the energy consumption, we observe that even if the results are in
the same range in all cases, there is a significant differences between experiments. This
can be explained by the fact that, for stage PSO experiment, energy consumption is the
last optimized criterion. There is therefore not values below which the optimization of
this criterion stops and the optimization enters the next stage, and thus this criteria is
optimized until the number of iterations (here 150) is reached. Therefore, depending on
the number of stages, the optimization will enter the last stage after different number of
iterations and thus there will be more or less iterations devoted to energy minimization.
This is confirmed by the increase in energy consumption observed between experiment
1 and 2; experiment 2 having one extra criteria to optimize, the number of iterations
devoted to energy optimization is decreased. The same tendency could be expected for
experiment 3, as yet another extra criteria is optimized. It is however, not the case; indeed,
a lower energy consumption is observed, compared to experiment 2. The net decrease in
energy consumption of experiment 3 can be explained by the fact that we add a criterion
for similarity with humans. Human gait being optimized to generate movements that
minimize the energy consumption, it is expected that a gait resembling that of the human
will also spend less energy.

A human with same weight walking at the same speed as our model would consume
210[J/m] [33]. Therefore, the energy consumption model used (defined in section 2.1.2.4)
gives an energy consumption (between 131.4[J/m] and 257.1[J/m]) comparable to human.

3.1.2 Human gait reproduction

Here we compare data obtained from human walking with data extracted form the solution
of the experiments 1, 2, 3 and 4.

Figure 3.1 and 3.2 compares the joint angles between the human data and the model.
We observe that the correlation values are higher in experiment 2 compared to 1. This
result suggests that the additional criterion present in experiment 2 (i.e. the step length
SNR) significantly influences the resemblance between the model and human walk. Ex-
periment 3 has correlation values higher than experiment 1 and 2. This is expected since
the correlation of the joint angle is the additional criterion that is optimized in this experi-
ment. Finally the experiment 4, which uses standard PSO, shows a joint angle correlation
similar to what is obtained in experiment 3, suggesting that the number of criterion used,
rather than the method (i.e. standard PSO vs. stage PSO) influences the correlation
between the model and human walk.

Figure 3.4 compares the vertical ground reaction force (GRF) between the human data
and the model. We observe that, for all four experiments, the general shape of the vertical
GRF in a cycle is similar to the human data (i.e. the two typical peaks are observed in all
cases). However, small differences can be observed; notably, experiment 1 shows a higher
amplitude of GRF, meaning that the feet touch the ground with a velocity that is higher
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than what is observed in human walking, possibly because it would wear out human joints.
Conversely, experiments 2, 3 and 4 show decreasing vertical GRF amplitude, indicating
more resemblance to human walking.
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Figure 3.1: Angle correlation between the computed (experiment 1 to 4) and human hip, knee and ankle
joint angles.
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Figure 3.2: Hip, knee and ankle angle comparison between model and human for experiment 1 to 4.

We then compared the muscle activity of the experiments 1 to 4 with a EMG profile
of the corresponding muscles of a human walking at 1.25 m/s (data from [12]). It is
important to keep in mind that raw EMG data are unusable (several filters are needed
to obtain the presented EMG profile see section 2.3.4). Furthermore the quality of the
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Figure 3.3: Vertical ground reaction forces comparison between model and human for experiment 1 to
4. The data from the models as been filtered with a linear filter of order 100.

data is not excellent, as EMG are recorded on the skin. We thus need to be careful with
conclusions made when comparing the muscle activity of the model with human EMG
profile.

In agreement with what was observed with the joint angle correlation (see above), the
similarity between the human data and the model generally increases with the number of
criteria optimized (see figure 3.5 Left). The correlation between human EMG profile and
model data (see figure 3.2 Right) shows that, as expected, the best scores are obtained
for experiments 3 and 4 for the HF the HAM and the TA muscles. The GLU and SOL
muscles correlation is good in all experiments. The GAS shows good correlation for all
experiments, although there is a small decrease for experiment 3 and 4. Moreover, there
is a clear decrease in correlation for the VAS muscle for experiments 3 and 4, especially
for the experiments 3. This differences is confirmed at the level of joint torques where the
KNEE torque show a bad correlation with human data (see figure 3.4), but not at the
level of joint angles, where the correlation with human is excellent. This low scores can be
explained by the lack of both body elasticity and toes in the model. Indeed, in absence of
toes and elasticity, which act as spring and damper shocks, the knee will directly absorb
forces from the foot contact with the ground, leading to muscle activity and torques at the
knee joint that do not resemble human ones. Supporting this hypothesis, this difference
is observed mainly during the stance phase, when the toes are most active. Experiments
3 and 4 are more sensitive to this shortcoming, compared to experiment 1 and 2, possibly
because they are optimized to have joint angles close to those of human, but the absence
of toes do not permit both the joint angles and the joint forces to be consistent with those
of human.

3.2 Robustness optimization

The FBL and FBL+ models are optimized on environments 3 and 4, respectively the flat
ground with random pushes and the wavy ground (see section 2.2.4 for details on the

45



0 0.5 1
−1

−0.5

0

0.5

1

1.5
hip

no
rm

al
iz

ed
to

rq
ue

0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
knee

% ( )cycle
0 0.5 1

−0.5

0

0.5

1

1.5

2
ankle

human data exp 1 exp 2 exp 3 exp 4

Figure 3.4: Hip, knee and ankle torque comparison between model and human for experiment 1 to 4.
The data from the models was filtered with a linear filter of order 100.

environments). In order to avoid false good scores (obtained by chance) each particle is
evaluated 5 times with random perturbations and only the worst score is kept. Note that
during the optimization on environment 4, a different wavy ground is generated on the
fly for each evaluated particles and each iteration, ensuring that the optimization will not
optimize for one specific type of wavy ground.

The optimized solutions are then evaluated on three different environments (Note that
the experiment 3 is also evaluated for comparison purposes.):

- flat ground for similarity with human assessment
- wavy ground to estimate the wave slope limit
- random push environment to estimate the force limit

The optimization algorithm used is the stage PSO. The stages used for experiment 5,
6 and 7 differs from experiment 3 by several aspects.

- First, instead of using d > 0.99dlim for the entrance condition of the second stage
we now use d > 10.0 to ensure that the model can make some steps. Indeed, unlike
in experiment 3 (i.e. without perturbations), we don’t know how far the model will
be able to walk before falling but still want to allow the model to enter the second
stage. Note that dlim = 120[m] is used.

- Second, the criterion of the last stage becomes minimization of the cost of transport
(Ccot), instead of the minimization of the energy. This criterion is used because here
we use d > 10.0 as entrance condition for stage, but we still want the model to go
as far as possible, while spending a reasonable amount of energy.

- Third, the stage of step length similarity maximization is not used. Indeed, as we
optimize on a perturbed environment, the step length can significantly vary, due
to the perturbations, while being stable when evaluated on a flat ground. We can
therefore not use this criterion to ensure stable gait. However, we can assume that
the perturbations themselves play the role of gait stability criterion. In fact, the
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Figure 3.5: Muscle activity of the model (experiments 1, 2, 3 and 4) compared to EMG profile of
a human walking at 1.25 m/s (data from [12]). The recorded muscle are in order (from top to bottom):
rectur femoris (HF), gluteus maximus + gluteus medius (GLU), biceps femoris (long head)+semitendinosus
(HAM), vastus medialis+vastus lateralis (VAS), gastrocnemius medialis+gastrocnemius lateralis (GAS),
tibialis anterior (TA), soleus (SOL) (see figure 2.5 for anatomical localization). Left: muscles activity of
the model compared to EMG profile (dashed black line). Right: correlation between muscles activity of
the model and human EMG profile for each experiment. Most of the activities show similarity in shape,
with increasing similarity with increasing number of criteria optimized. .

obtained gaits are always stable when evaluated on flat ground, which makes sense
because perturbation resistance can be viewed as a stability criterion, but instead of
having it encoded in the fitness function, it is now directly encoded in the interaction
of the model with the environment.

- Finally, a new stage is added to prevent the model of having the trunk leaning
forward, resulting in gait with unnaturally large steps. The selection of gaits making
large steps (which in the model often implies leaning forward) is often favored during
the optimization process on environment with random pushes, because it increases
the ability of the model to resists to strong pushes. The stage is added just after
the first stage. It uses the Ctrunk criterion and the passing criterion is: 0 < θ̄trunk <
0.105, where θ̄trunk is in [rad] and corresponds to the mean trunk angle with respect
to the vertical axis.
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exp 3) optimization on flat ground

exp 6) optimization with random pushes
exp 7) optimization on wavy ground
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Figure 3.6: Results of evaluation of experiment 3, 6, 7. A) Joint angles correlation with human for the
different experiments and the two FBL models. B) Mean maximum push force amplitude resistance. C)
Mean maximum slope change (in %) resistance .

3.2.1 Human similarity assessment

To assess the quality of the gait obtained on perturbed environments, we start by looking
at how similar to humans the different optimized gaits are. Indeed, as we optimize on
environments presenting different kinds of perturbations, we want to make sure that the
optimization do not lead to unnatural gaits that managed to maximize their resistance,
at the cost of a decrease in the quality of the gait. In other words, we want to verify that
the gait did not specialize to much.

As expected, when evaluated on flat ground, all optimized gaits are visually good
(videos available at [6]) and show a good correlation of joint angles compared to human
(approximately 0.8), see Figure 3.6 A. The correlation of the activity of the muscles is
also comparable to what was found in previous section (data not shown). We can thus
conclude that the gaits are not to over-specialized.

3.2.2 Resistance to pushes

There is a clear increase in the maximum push force amplitude from which the gait can
recover for gaits optimized on the random pushes environment, compared to gaits opti-
mized on flat ground, see Figure 3.6 B. It is interesting to note that gaits optimized on
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the wavy ground are also good when evaluated against resistance to pushes. This holds
true for both FBL and FBL+ models. The gait optimized on perturbed environment can
resists to 80 [N] pushes of 0.25[s] mean duration (to visually appreciate the effect of pushes
of different amplitude see videos available at [6]).

In order to give an idea of the kind of perturbation applied to the robot let’s use the law
of conservation of momentum and its relation to impulses. Given the mean push duration
of 0.25[s], the perturbation is an impulse of J = F ·∆T = 15 [Ns]. Since impulse is related
to the change in momentum by J = ∆p = m · v1−m · v0, we can estimate the speed of the
robot after the push. Assuming that, during the push, the robot is a point object moving
at constant speed with no other resistance, we have: v1 = J/m + v0 = 1.4875 [m/s].
Using the conservation of momentum we can make the correspondence with another robot
walking at constant speed and pushing the robot by the back. Lets assume that the other
robot as the same mass m = 80 [kg], then using conservation of momentum, we can say
that the momentum at the beginning of the push and at the end are the same. Assuming
that at the end of the push the second robot as a speed equals to the speed of the robot
we have:

mava0 +mbvb0 = v1 · (ma +mb) (3.1)

vb0 =
v1 · (ma +mb)−mava0

mb
(3.2)

vb0 =
1.4875 · (80 + 80)− 80 · 1.3

80
(3.3)

vb0 = 1.675[m/s] (3.4)

Thus, under the mentioned conditions, the change in momentum of the system would be
equivalent to the effect of a collision with an other robot coming by the back with a speed
30% higher.

3.2.3 Resistance to wavy ground

As with the resistance to pushes, there is a clear increase in the maximum slope from
which the gait can recover for gaits optimized on the wavy ground environment, compared
to gaits optimized on flat ground, see Figure 3.6 C. As noted with the resistance to
pushes, gaits optimized on wavy ground are as good as gaits optimized on random push
environment. Thus there is no clear distinction in the resistance to perturbations for both
experiment 6 and 7 and both perturbations.

We can also note that the maximum slope is only of 5% which is not really high. When
looking at the optimized gait walking on this environment (see attached video available
at ), the robots falls because the feedbacks used do not take into account the necessity
to give more energy when going up. What changes between the gait optimized on flat
ground (experiment 3) and gaits from experiments 6 and 7 is more the shape of the gait.

We observe that, generally, the FBL+ model do not show more stable gaits, compared
to the FBL model. We will therefore not further investigate this extended model, so as
not to complicate the model for non significantly gains.

3.3 FBL extensions

3.3.1 Discovering running gait with the FBL+ model

It has be showed by J.Wang that the addition of the 3 feedbacks rules to prepare the limb
position before landing and the addition of new sub cycle phases (see section 2.1.3) are
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enough to give the FBL the ability to generate running gait. This extension has been
implemented in the FBL+ model, and as expected some running gait were found (see
example video at [6]). The experiment 5 has been designed to generate running gait. It
uses the FBL+ model defined in section 2.1.3. The optimization algorithm used is the
stage PSO. The stages used are the same as the one of experiment 2. The only differences
is that the model is optimized for a walking speed of 2.5 m/s (i.e. the passing criterion
for the second stage is changed from v > 1.3 to v > 2.5 m/s ). The figure 3.7 shows the
ground reaction forces differences between a running gait (results of experiment 5) and a
walking gait (results of experiment 3).

Figure 3.7: Vertical ground reaction forces between a running FBL+ model (Left) and a walking one
(Right). The data has been filtered with a linear filter of order 100.
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Chapter 4

Discussion

4.1 Optimization of the FBL model

It has been shown in the results that the addition of criterion accounting for the quality of
the gait are necessary to discover good gait (i.e. steplength SNR, joint angles correlation
with human). The minimization of the step length variation is crucial for finding stable
gait, this is shown when comparing the step length SNR value of experiment 1 and 2 (see
table 3.2). This can be more appreciated when comparing video of experiment 1a (without
the criterion accounting for the stability of the step length) with video of experiment 2a
(with the criterion accounting for the stability of the step length) [6]). The addition of
the criterion accounting for similarity with human gait improved remarkable the shape of
the gait, especially for the KNEE and ANKLE joint (see figure 3.1). However the gait
didn’t show a good correlation of forces acting at the level of the knee joint during the
stance phase (see figure 3.4). This can be explained a) by the absence of toes that can
play the role of absorbing the shock arising from foot ground contact and b) because the
body segments have no elasticity (except at their junction where joint soft limit are used
to model the effect of ligaments).

4.2 FBL Similarity with human

Human limbs are made of many muscles whose actions overlaps. More than 20 different
muscles act on the hip joint, 10 on the knee and 10 on the ankle [19]. The model used here
only include 7 modeled muscles, i.e., the minimal subset of muscles necessary to drive the
different limb joint in the sagittal plan (flexion and extension). In this model, the only
overlap in actions comes from the two bi-articular muscles (SOL and HAM muscles). Even
with this small number of muscles, produced gaits are visually very close to real human
gait. This visual observation is confirmed by the good correlation of muscle activity, angles
and torques compared to human data (see figures 3.2, 2.10, 2.9).

Main differences are observed for the VAS and GAS muscles, which seems to have an
effect only at the knee torques level. However, this difference is not visible at the angles
level (see figure 3.2). As the force applied on the knee joint is not comparable to humans,
whereas the shape of the knee joint angles is really close to humans, it is very likely
that this discrepancy is due to model simplifications at different levels (e.g. modeling of
body segments, lack of several structures (such as toes, cartilages and bones), interactions
between the model and the environment, reduction of muscles number). The fact that the
differences appears at the knee joint is thus not surprising. Indeed, the shock arising from
foot - ground contact is mainly absorbed by the knee joint. This shock - in the physical
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simulator - is overestimated because the elasticity of the body is not modeled and, maybe
most importantly, because toes are not modeled. In order to circumvent this issue, a
simple passive toe could be added, modeled as an overdamped spring. Furthermore, the
contact could be amortized by adding damping at the contact point between foot and
ground (as it was the case in [9]).

4.3 Model robustness

An important feature of the FBL model is certainly its ability to resist to pushes of remark-
ably high amplitude, (80 [N] during 0.5 [sec] applied at the trunk level, see section 3.2.2).
This is of crucial importance when thinking about the possible applications of this kind
of model. Indeed, if applied to intelligent lower limb prosthesis, the device would benefit
from this intrinsic high robustness to pushes.

However, when looking at the ability of the FBL model to adapt to slope changes,
the results are quite disappointing. Indeed, the best experiment is only able to resist to
change in slope of 5% and walk upward on a slope of 7.0%. However, as it will be shown
in the next part of the report, the addition of a feed-forward component inspired by CPG
can greatly improve this results (after introduction of the feed forward component the
so-called 3FBL model is able to walk upward on slope of 30%).

4.4 J. Wang based extensions

In the FBL + model, 3 reflex rules are added to prepare the limb position before landing,
and a new sub cycle phases (see section 2.1.3) is also added. Contrary to what could be
expected, preparing the limb before touching the ground did not significantly improve the
resistance of the gait toward perturbation (see section 3.2). The introduction of the new
feedback rules acting on the HF, GLU and VAS muscles in order to bring the hip and knee
joint of a limb toward a reference angle just before touching the ground did not improved
the robustness of the gait to the designed perturbations. However, these additional rules
were proved to be useful in other situations. Indeed, it has be showed by J.Wang that
those extensions are enough to give the FBL the ability to generate running gait. This
extension has been implemented in the FBL+ model, and as expected, running gait were
observed (see example video at [6]). The bell shaped characteristic vertical ground reaction
forces observed (see figure 3.5) is comparable to ground reaction forces found in human
running [18].
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Part II

FBL extension : addition of a
Central Pattern Generator (CPG)
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Chapter 5

Introduction

In this second part, we add a feedforward component to the FBL model described in
the first part. The feedforward component is modeled by constant inputs acting on an
interneuron network made of sensory interneurons, basal interneurons and cpg interneuron
mimicking the action of a central pattern generator (CPG).

First, we give a mathematical description of the CPG model that is used (section 6.3).
Then we describe how the CPG is generated (section 6.4). Since the FBL model can
generate stable locomotion, we decided to add a feedforward component that minimizes
the differences with the FBL model by mimicking the signals generated by the the feedback
loops (i.e. interaction between the body and the environment). Indeed, as locomotion can
be viewed - in a dynamical system point of view - as a limit cycle, it makes sense to assume
that most of the sensory information will also be represented by a limit cycle. The CPG
will thus mimic the oscillatory pattern generated by the sensors of the FBL model that are
the most stable among periods. In order to analyze those patterns, the simple feedback
rule of the FBL model is explicitly split into three stages: the sensory input, the sensory
interneurons (INSEN) and the motoneurons MN stages (see section 6.1).

The addition of the intermediary INSEN stage is a step toward the modeling of the
spinal cord, that will be complemented by two kinds of feedforward interneurons (INFF):
the interneurons of the CPG (INCPG) and the basal interneurons (INBAS) . These INFF

will mimic the signals of certain INSEN. In order to choose which INSEN signals the
feedforward component will replace, a periodical stability assessment method will be used
(section 6.4.2). When applied to the INSEN signals, it will be shown that most INSEN are
- as expected - almost invariant between cycles. The signal of the INsSEN presenting the
smallest variations will be then modeled as a INBAS in the model named FBL- and as
INCPG and INBAS in a model called 3FBL (see section 6.2.1)

In the FBL-, the INBAS simply replaces the INSEN that showed the least variation. It
will be shown that even if a large part of the sensory information is lost, the model is still
able to generate stable locomotion comparable to the FBL model. In the second model a
CPG component is added to replace INSEN with low variation acting on proximal limbs.
This second models combine the three type of interneurons: INSEN, INCPG and INBAS.

Then control variables will be added to the model to mimick the action of upper brain
structures, like the reticular formation. The online modification of the control variables
will allow gait modulations (changes in speed and steplength) and gait adaptation such as
adaptation to increasing slope. The added control variables are inspired from neurobiology.
In particular, we attempt to model neural control of locomotion, whose biological relevance
is presented below,
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5.1 Neural control of locomotion

5.1.1 Vestibular system

The vestibular system acts in the management of balance and conveys information about
body orientation and movements to the CNS. The vestibular system is made of two main
structures: the otolith organs and the semi-circular canal. The otolith is sensitive to linear
acceleration and can thus detect the direction and magnitude of the gravity, as well as
other linear accelerations due, for example, to movements. The semi-circular canals are
sensitive to angular acceleration [23]; there are three semi-circular canals that are oriented
orthogonally to each other. By combining the information from the three different canals
the CNS generates a 3D representation of the head instantaneous speed [14]. The action
of the vestibular system on movements is made through the vestibulospinal tract whose
neurons are located in the vestibular nuclei (see figure 5.2). It acts on motoneurons of
extensor muscles. It also innervates muscles of the trunk, thus helping in coordinating
postural adjustment [21].

5.1.2 Cerebellum

The cerebellum is located at the base of the brain (see figure 5.1). It receives information
from higher brain structures (through the cerebrocerebellum) and has afferent and efferent
to the spinal cord; some direct through the spinocerebellum and others direct through
reticular formation. The direct connections play role in movement fine tuning. The
indirect connections (passing through the reticular formation) play an important role in
motor control, as well as in balance (it is also involved - to a lesser extent - in cognitive
functions such as emotions, attention or event pain [32]).

The cerebellum is made of several modules (enumerated below), each of which having
a specific role. The role of the cerebellum in motor control can be appreciated by looking
at the effects of injuries on the cerebellum. Depending on the damaged module of the
cerebellum different effects results:

• vestibulocerebellum The Vestibulocerebellum (by its connection to the vestibular
system) regulates balance and eye movements. When damaged, it can cause equi-
librium dysfunction and difficulties in balancing, apparent when walking, as an un-
naturally large stance and gait asymmetry.

• cerebrocerebellum The Cerebrocerebellum plays roles in planned movements execu-
tion and skilled movements generation. When damaged, patients develop difficulties
in reaching task, judging distances and sometimes also show tremor.

• Spinocerebellum The spinocerebellum plays role in whole-body movements coordi-
nation and fine movements. Damages to this part of the cerebellum can also have
consequences in the psychology and cognitive functions of the patient. Patients with
damaged spinocerebellum often show deficits in their ability to experience emotions
and are more likely to present depression [32].

The group of symptoms related to motor disfunction due to damages of the cerebellum is
called cerbellar ataxia. It has been suggested that the difficulties to coordinate movements
in cerebellar ataxia is due to an inability to manage the interaction between torques during
movement involving multiple joints movements [1].
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5.1.3 Reticular Formation

The reticular formation is part of the brain stem (located at the base of the brain, see
figure 5.1). It is involved, for example, in sleep phases control, pain modulation and
consciousness. Breathing and swallowing CPG are also located there. It has an important
role during locomotion; its descending pathway to the spinal cord (so-called reticulospinal
tract) has a major role in maintaining the body posture during locomotion, by acting on
the proximal limbs muscles and trunk muscles [7].

5.1.3.1 The Reticulospinal Tract

Some of the neurons of the reticular formation involved in locomotion project to the α
and γ motoneurons of the spinal cord through the reticulospinal tract. Their actions on
motoneurons of spinal cord can be both excitatory and inhibitory [7].

Figure 5.1: Schematic view of a brain together with the cerebellum and the brain stem.
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Figure 5.2: Schematic view of the effect of vestibulospinal and reticulospinal tract on the spinal cord [21].
The sensory information enters the spinal cord by the dorsal part while motoneurons project to muscles
through the ventral part of th spinal cord. Small interneuron network exists in the spinal cord with vertical
projections to other segments. Figure inspired from [21].
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Chapter 6

Methods

6.1 Sensors to muscles mapping reorganization

As mentioned in the introduction, the first step toward the addition of a feedforward
component is the analysis of the sensory signals present in the FBL model. In order to
permit an in depth analysis of the sensory signal generated by the FBL model, the direct
connection that exists between sensors and actuators in the FBL model is split into three
more realistic steps, presented in figure 6.1:

• SEN: The same four types of sensory inputs used in the model of H. Geyer (see
section 2.1.2.3) are here explicitly defined; each type of sensor output is isolated and
individually sent to interneurons.

• INSEN: The sensors described above send signals to sensory interneurons. Each
interneuron receives either one input (from either the muscles, the overextension
prevention or ground feedbacks) or two inputs for the stability feedback (i.e. the
ground and trunk posture feedbacks).

• MN: Each motoneurons receives a combination of inputs from a set of INSEN.

Note that this reorganization does not modify per se the FBL model. Indeed, the muscles
output remains the same, but the splitting performed is more biologically relevant and
allows analysis of sensory, inter- and motorneurons separately, providing depth analysis of
the feedback generated by the model (see section 7.3.3).

The connection between signals sent from sensors and received by INSEN and the con-
nection between the signal sent from INSEN and received by motoneurons are modeled by
a first order differential equation, similar to equation 2.40. One concern of this reogani-
zation is that it introduces two delays; one between sensors and INSEN and one between
INSEN and motoneurons. However, these changes will not affect the behavior of the model
if the delays are small enough.
Since input to motoneurons depends on whether the limb is on stance, swing phase, on
the double stance support finishing stance phase, or whether the joint is moving to fast
(for overextension feedback), three state-dependent interneurons (INSD) are added: one
that is active during stance, one that is active during swing and one that is active when
a joint is moving faster than its limit. Those interneurons are coupled to the previously
defined INSEN, with inhibitory connections. They can thus turn on/off INSEN activity
when needed. The table 6.1 presents the different INSEN of the FBL model.
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Table 6.1: List of the sensors used in the model. If not specified, the muscle onto which the sensor acts
is on the same side as the sensor (i.e. ipsilateral).

Sensors

Abbreviation Sensor(s) type From To Active in

GAS←GAS MFF, ST Muscle force GAS GAS Stance
GLU←GLU MFF, SW Muscle force GLU GLU Swing
HAM←HAM MFF, SW Muscle force HAM HAM Swing
SOL←SOL MFF, ST Muscle force SOL SOL Stance
VAS←VAS MFF, ST Muscle force VAS VAS Stance
TA←TA MLF CY Muscle length TA TA Cycle
HAM←HF MLF SW Muscle length HAM HF Swing
HF←HF MLF SW Muscle length HF HF Swing

HF←GIF ST Contact, Joint iFoot,Trunk HF Stance
HAM←GIF ST Contact, Joint iFoot HAM Stance
GLU←GIF ST Contact, Joint iFoot GLU Stance
VAS←GCF STend Contact cFoot VAS Stance end

HF TL SW Trunk lean Trunk HF Swing

VAS←KNEE OPF Overext. prev. KNEE VAS Swing

Ground

Muscles

T runk

Joints

f (x )

x

1

2

3

Figure 6.1: Extension of the H. Geyer model by explicitly splitting the reflex loop into sensors (SEN),
interneurons (INSEN) and motorneurons (MN)
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6.2 Feedforward extension of the FBL model

As mentioned in the introduction, modifications on the FBL model are made at the level
of the interneurons (IN). In the FBL model, all signals sent to motoneurons (MN) are
coming from sensors. Here, based on the conclusion of the analysis of the INSEN signals
(see section 7.3.3), two new kind of biologically inspired feedforward interneurons (INFF)
are created, replacing selected INSEN:

- INBAS: interneurons generating signals of constant output, which are sent to selected
MN. Biologically, these signals of constant input can be viewed as those generated by
the reticular formation and sent to the motoneurons, acting on limb muscles through
the reticulospinal tract (see section 5.1.3).

- INCPG: interneurons generating signals whose shape is inspired from signal of the
INSEN signals they replace, acting as central pattern generators. This kind of CPG
for controlling the locomotion of humans is purely speculative. Motor CPG, located
in the reticular formation, exists in humans for controlling. for example, breathing
or swallowing. As the reticular formation has efferent to motoneurons in the spinal
cord, it is a possible location for locomotor CPG. An other possible location is in
the gray matter of the spinal cord, where interneurons networks that projects to
different segments of the spinal cord exists (see section 5).

The properties of the feedforward units INFF are fully inspired by their INSEN counter-
part. Indeed, the INBAS have a constant input whose level equals the mean level of the
corresponding INSEN and the INCPG have a shape mimicking the one of the corresponding
INSEN. Figure 6.2 A shows the different type of sensory interneurons (note that state-
dependent interneurons (INSD) are not shown).

6.2.1 Sensory interneuron replacement

Based on the analysis of the INSEN signals, two new models are introduced:

- FBL- : Reduced FBL
- 3FBL : Feedforward and Feedback based locomotion

The figure 6.2 describes the differences between the FBL, the FBL- and the 3FBL models.
The FBL- and 3FBL models differ from the FBL model by the structure of the IN network.
Both models removes 70% of the sensory information coming from muscles. The FBL-
model replaces the removed INSEN by INBAS, whose output levels equals the mean activity
of their corresponding INSEN. The 3FBL model replaces the removed INSEN by INBAS and
INCPG. As the CPGs are introduced for controlling properties of the gait (such as speed
and step length), they are used for IN sending connections to MN acting on proximal
limb muscles (i.e. GLU and HF muscles). Figure 6.2 B shows the information flow from
IN to MTU through MN, and highlight the differences between models at the IN level.
The differences between the three models can be most appreciated in figure 6.2 C. The
tables summarizes the IN used in each model. They show which INSEN are removed in
the FBL- and 3FBL model (see gray crosses in the table) and by what kind of INFF they
are replaced.
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Figure 6.2: A: The different kind of interneurons; the sensory interneurons (INSEN), the basal activity
interneurons (INBAS) and the CPG interneurons (INCPG ). B: the information flow from IN to MTU
through MN; the FBL, FBL- and 3FBL models only differ at the IN level. C: table describing the
relationships between IN and MN for the three models (columns: MN, lines: IN) Left: the initial FBL
model. Middle: the reduced FBL model (FBL-). Right: the 3FBL model.
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6.2.2 System control parameters

In this section, we introduce two biologically inspired control laws applied at the level of
the interneurons. The two different types of control variables introduced are:

1. A: variable acting on the connection strength between two neurons. It models an
inhibitory connection acting on the axon of the postynaptic neuron (see figure 6.3
left) and controls the connection strength between the postsynaptic neuron and
the neuron on which it acts. Its effect is thus proportional to the activity of the
postsynaptic neuron.

2. O: variable adding a constant input to a neuron. It models a simple excitatory con-
nection between two neurons, where the presynaptic neuron has a constant activity
and act close to the soma of the postsynaptic neuron (see figure 6.3 right).

Figure 6.3: Schematic view of simple connection between neurons. Left: axo-axonic inhibitory connec-
tion. Right: axo-dendritc and axo-somatic excitatory connection.

Based on the those two control variables, 3 different control rules pairs are defined:

- A control rule pair acting on INSEN relaying information from ground feedback
(GCF), ground and stability feedback (GIF) and the most variable muscle length
feedbacks (MLF) and muscle force feedbacks (MFF), noted:
AINSEN

, OINSEN

- A control rule pair acting on INSEN relaying information from the least variable MLF
and MFF acting on HIP muscles and, for the 3FBL model, their associated INCPG,
noted:
AINCPG

, OINCPG

- A control rule pair acting on INSEN relaying information from the other least variable
MLF and MFF (i.e. those not acting on the HIP muscles) and, in the FBL- and
3FBL models, their associated INBAS, noted:
AINBAS

, OINBAS

The summary of the pair of rules used by each model is shown below. One extra
control rule, called ω and controlling the frequency of INCPG is also added to the 3FBL
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model. A set of control variable value is called a control vector and is noted C. Each
model has an associated Ctrl:

Ctrlfbl- = {AINSEN
, OINSEN

, AINBAS
, OINBAS

}
Ctrlfbl = {AINSEN

, OINSEN
, AINCPG

, OINCPG
, AINBAS

, OINBAS
}

Ctrl3fbl = {AINSEN
, OINSEN

, AINCPG
, OINCPG

, AINBAS
, OINBAS

, ω}

If not specified, the control vectors used for each model are:

Ctrlfbl- = {1.0, 0.0, 1.0, 0.0} (6.1)

Ctrlfbl = {1.0, 0.0, 1.0, 0.0, 1.0, 0.0} (6.2)

Ctrl3fbl = {1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.85} (6.3)

Note that the control presented here is specifically designed for the FBL- and 3FBL
models, but in order to determine whether the observed effects are due to the combined
effect of the added structures (i.e. the INFF) and the separation of the control variables
into the three control rules pairs, or whether it is simply a consequence of the latter, we
also test the FBL model. This means that the names chosen for the control rules (i.e.
INCPG and INBAS) do not implies - in the case of the FBP model - the actual presence of
a feedforward component. It simply refers to the corresponding INSEN in the FBL model.

The control variables are chosen based on biological observations. The introduction
of offset signals is in agreement with constant bursts sent by the reticular formation to
the spinal cord. The change in signal amplitudes is in agreement with the existence of
inhibitory connections sent by the cerebellum, and the vestibular nuclei to the spinal cord.
Here the inhibitory connections are assumed to acts on the connection weight between
two neurons. Finally, the control of frequency follows the assumption of the existence of
locomotor CPG [21].

6.3 CPG model

6.3.1 Arbitrary wave oscillator (AWO)

The dynamical system used to model signals generated by spinal circuits is an arbitrary
wave oscillator (AWO)[15]. This oscillator is able to produce any shape, as long as this
shape can be represented by a function that is both 1-periodic and is derivable. The
differential equation governing the oscillator is the following:

θ̇ = ω (6.4)

ẋ = γ(g(θ)− x) +
dg

θ
· θ̇ +K (6.5)

where :

- θ̇ is the frequency of the oscillator, see section 6.3.2 for details on how the frequency
is calculated.

- K is a perturbation term (set to zero).

- γ controls the speed of convergence of the oscillator output x toward the shaping
function g(θ). γ is set to 100.

- g(t) is the nominal function that shapes the output of the oscillator.
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x(t) is the output of the oscillator. This output has a shape given by the g(t) function.
Since several signals will be modeled, different AWO oscillators (noted awoi) are used,
each of them having its own gi(t) function.

6.3.2 Frequency control

Since the g(t) functions will be modeled from sensory signals, and that all signals have
been chosen to start at the same moment (i.e. at the swing/stance transition), there is
by definition no phase shift between the oscillators. The different oscillators can thus be
controlled by the same θ̇ phase differential equation (called central clock).

We construct this central clock, step by step. Let’s start with a clock with a constant
frequency:

θ̇ = ω (6.6)

Where the frequency ω is estimated from the speed of the underlying FBL model. In
order to account for the variation of the cycle duration two different strategies are used,
depending on whether the clock is too slow or too fast compared to the walking frequency:

1. If the central clock is too slow compared to the walking frequency, the phase of the
central clock is simply restarted (i.e. all oscillators acting on motoneurons of one
side are restarted when the corresponding limb touches the ground).

2. If the central clock is going to fast compared to the walking frequency, a slowing
down mechanism enters in action. It ensures that signals generated by the AWOs
will not start a new cycle before they should, i.e. before the limb touches the ground.
With the slowing down mechanism the frequency has the form:

θ̇ =

{
ω if t < p · 1w
c′(t) else

(6.7)

Where:

- p is the percentage of the phase at which the slowing down mechanism is turned
on

- c′(t) is a slowing down function that ensures that θ 6 1.0, ∀tεR

In order to find a satisfying c′(t) function, we looked at the evolution of θ. We want:

θ =

{
ωt if t < p · 1w
c(t) else

With, c(t) monotonically increasing and limt→∞ c(t) = 1.0. We can for example take
the class of exponential functions :

c(x) = 1− exp (−βx+ γ) , β > 0

In order to find the β and γ parameters we can enforce that, when t = p · 1w :

(a) There is a unique solution to t = c(t): 1− exp (−βp/w + γ) = p/w
(b) The transition from t to c(t) is continuous, i.e. c′(t) = w: c′(p) = a · exp(−β ·

p+ γ) = w
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The second condition can be easily solved for γ, we get :

γ = ln(ω/β) +
β · p
ω

Using this result in the first condition, we obtain

1− exp
(
−βp · 1

w
+ ln(ω/β) +

β · p
ω

)
= p

1− ω

β
= p

β = ω
1

1− p

If we want the slowing down mechanism to enters in action after 90% of the period
of the oscillator (e.g. p = 0.9) we get β = 10ω and γ = −ln(10) + 9, it follows that :

c(t) = 1− exp (−10ωx− ln(10) + 9) (6.8)

c′(t) = 10ω · exp(−10ωx− ln(10) + 9) (6.9)

6.4 CPG : pattern generation

Here we describe the method used to model signals generated by the INSEN as a dynamical
system. The method is based on the use of Arbitrary Wave Oscillator (AWO), which are
simple oscillators able to follow an arbitrary shape (see section 6.3.1 for details on the
AWO).

We first extract a normalized periodic functions named nominal functions from the
signals generated by the INSEN, based on a clear splitting criterion (here the transition
time between swing and stance phase). Then the periodic stability is verified, and only
the signals considered stable enough are selected to be modeled using AWOs. Indeed, to
be modeled as an AWO, the signal needs to be periodic with small variability between
periods. We therefore developed a method to assess the periodic variability of the signals
(see section 6.4.2 for a description of the variability assessment method). Finally, the mean
and standard deviation of the original signals combined with the normalized functions are
used to generate the AWOs.

6.4.1 Nominal function extraction

The first step towards the generation of the nominal function is thus the separation of the
signal S(t) into cycles split at the swing/stance transition. The swing/stance transition is
found using the ground sensors. Assuming that there are M transitions, the same number
of sub-signals Si[t] with iε{1, ..,M} are generated.
The second step consists in the generation of the stereotyped function starting from the
Si[t]. This is achieved by normalizing each cycle so that they have a mean (i.e. offset) of
zero and a standard deviation of one.

S̃ni (t) =
Si[t]− µi

σi
(6.10)

where µi and σi are respectively the mean and standard deviation of the sub signal i.
In order to obtain sequences of same lengths, a continuous version of the discrete S̃ni [t]
sub signals is generated using spline interpolation. Then, the sub signals are split into N
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equally spaced point. A set of discrete normalized sub-signal with the same length are
thus generated (noted Sni [t]). The length of the sub signals can be recorded for studying
the variability of the periodic pattern duration.

6.4.2 Periodical stability assessment

As previously mentioned, the signals need to be stable enough among periods in order to
be represented as an AWO and thus to be modeled in our CPG. Here we use two different
methods to ensure that this requirement is fulfilled:

Comparison with a reference signal Sref
A method to estimate the periodical stability is to compare each sub signal with a reference
signal Sref , and calculate a normalized stability factor s, that represents the error between
the reference signal and each sub signals. Here we use the mean of the normalized sub
signals as the the reference signal: Sref [i] = Sn[i] = 1

M

∑M
k=1 S

n
k [i] with iε{1, .., N} where

N is the number of data points and M the number of sub signals. The sum of squared
distances between the reference signal Sref and the different sub signals is then calculated:

s =

∑M
i=1

∑N
j=1(S

n[j]− Sni [j])2

M ·N
(6.11)

When the value of the normalized stability factor s is below an empirically determined
value, the signal is considered as periodically stable. To determine this limit value, we
investigated the value of the normalized stability factor s in different controlled situations.
We start with discrete reference signal Sref extracted from a M periods (with M = 1000)
of a full periodic pattern governed by y = sin(2πt). N data points are extracted per
period. Then different versions of this signal are generated by adding white noise, i.e.:

Sσ[i] = Sref [i] +Xσ , where Xσ ∼ N (0, σ2) (6.12)

Where Snσ is a noise-contaminated version of Sref [t] generated by adding a random noise
generated by the random variable X drawn from a Gaussian distribution with a mean of
zero and a standard deviation σ. Starting from the definition of the normalized stability
factor we have:

s =

∑M ·N
i=1 (Sref [i]− Sσ[i])2

M ·N

=

∑M ·N
i=1 (Sref [i]− (Sref [i] +X))2

M ·N

=

∑M ·N
i=1 X2

M ·N

Remembering that the mean of the random variable X is 0 (i.e. E[X] = 0) and that
the variance is equal to the mean of the square minus the square of the mean we (i.e.
Var(X) = E[X2]− E[X]) we can write:

Var(X) = E[X2]− E[X]

= E[X2]

Then, given that limN→∞
∑N
i=1X

2

N = E[X2], s is an estimation of the variance of Xσ :

s ≈ σ2 (6.13)
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Figure 6.4 shows the normalized stability factor s of Sσ signals with different level of noise.
From bottom to top the noise is generated from a distribution with 10%, 25%, 50% and
75% of the standard deviation σ of the reference signal Sref .
Because the purpose of the measure s is to help us define whether or not a signal can be
modeled properly by an AWO, the periodic pattern needs to be clearly stable. Visually,
we observe that the functions with a normalized stability factor s > 0.1 are not clearly
stable. We therefore consider that a signal needs to have a s < 0.1 to be properly modeled
by an AWO.
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Figure 6.4: Example dataset with different periodic stability: Sref is a sine function, the noise is generated
from a distribution with 10%, 25%, 50% and 75% of the standard deviation σ of Sref . A color scale is
associated with the value of s. When s > 0.1, the normalized stability of the function is considered low.

Variation of the periodic pattern
The value of normalized stability factor s is obtained on a normalized signal, and thus does
not take into account the potentially high variations in offsets and amplitudes between
different periods. In order to circumvent this issue, the values of µi and σi are compared
among cycles to determine their variability. The variability is assessed using the standard
deviation of the µi and σi and is noted vµ and vσ.

vµ = std(µ) (6.14)

vσ = std(σ) (6.15)

With µ being the vector of µi of each sub signal and σ being the vector of σi of each sub
signal Si(t).

6.4.3 Generation of differentiable functions

Since the final goal is the implementation of AWOs, another requirement need to be
fulfilled by the functions. Indeed, the function obtained need to be differentiable, since
the derivative of the function is needed in the implementation of the AWOs. To satisfy this
criterion, the normalized nominal function gn(t) is generated using a spline interpolation of
degree three of the mean of the fully normalized sub signals Sn(t). The number of regularly
spaced knots used for the interpolation controls the quality of the interpolation (here we
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considered 100 knots per cycle, which was empirically proven to be largely sufficient to
perfectly reproduce the stereotyped function).
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Chapter 7

Results

7.1 Pattern extraction from sensory information

7.1.1 Sensory signal periodic variability

For the sensory variability study, we use the methodology presented in section 6.4; we cal-
culate the periodical stability of a normalized signal using the normalized stability factor
s and then determine the variations in offsets and amplitudes using the two momentum
variability factors vµ and vσ. This analysis is crucial to determine which INSEN are peri-
odically variable and thus should remain modeled as feedbacks, and which ones are stable
enough to be replaced either by INBAS or INCPG. This analysis is performed on the FBL
based experiments presented in the first part of the report (list of the experiments and
specificities can be found in table 3.1).

The figure 7.1 presents the stability scores s (top panel), the standard deviation of
first momentum stability factors vµ (middle panel) and the standard deviation of second
momentum stability factors vσ (bottom panel) of the different INSEN (see section 6.4.2 for
how the different factors are calculated, and table 6.1 for the list of INSEN used by the
FBL model, their abbreviations and action on the muscles).

The INSEN relaying information from ground and trunk angles and responsible for
maintaining the body upright generate the most variable signals (the three stability factors
are large compared to others). Generally the INSEN relaying information from the muscle
sensors are really small. An exception is the INSEN relaying information from the VAS
muscle, that has the largest variability factor s. This result correlates with the observation
made in the first part of the report (section 3.1.2) that the model VAS muscles activity
poorly correlates with the human one. Indeed, it is likely that the missing structures (i.e.
elasticity and toes) not only affects similarity with human muscle activity, but also the
signal variability, as the shock is mainly absorbed at the knee level and might significantly
change between cycles.

7.1.1.1 Minimal FBL : FBL reduction

In this section, we reduce the sensory information used by the FBL model to its minimal
(called FBL-) and we compare FBL and FBL- gait characteristics. The experiment 7a
is used as starting point. The INSEN that show the least variability (red star on the
figure 7.1) are removed from the system and replaced by constant signals (of amplitude
equaling the mean of the signal). When tested on exp 7a, the resulting gait (see video [6])
looks similar to the original gait in many regards (see figure 7.2 for a comparison between
FBL and FBL- models regarding joint angles correlation with human and vertical ground
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Figure 7.1: INSEN signals variability of experiment 2, 3, 6, 7. Experiment 1 is not shown because the
variability was much to high compared to other experiments. .

reaction forces). The only notable difference between the two gaits is a decrease in speed
from 1.3 to 1.2 [m/s] for the FBL- gait. It is also interesting to note that there is no clear
decrease in robustness between the FBL and FBL- model (see section 7.2).

7.1.2 Pattern signal extraction

After analyzing the variability of the INSEN signals (see figure 7.1), we extract the nominal
pattern of each INSEN (see section 6.4.1 for the nominal function extraction method). The
figure 7.3 shows the INSEN nominal patterns of INSEN from experiment 3 (solid line)
and 7a (dashed line) evaluated on flat ground. It is interesting to note that nominal
patterns from experiment 3 and 7a correlate for the most periodically stables INSEN. Low
correlation is observed for the VAS ← VAS MFF ST INSEN, the only INSEN acting on
the VAS muscle (knee extensor). This INSEN is active only during stance phase and
is important for generating the forward movement of the body. Low correlation is also
observed for all INSEN responsible for postural control (INSEN from the joint trunk sensor
and force sensor on the foot). The model from experiment 7a differs from experiment 3
mainly at the level of the INSEN related to stability sensors (i.e. GCF and GIF), while
muscle INSEN are generally not modified, except the ones acting on VAS and TA, which
are important during stance (VAS and TA) and stance preparation (VAS). Based on the
fact that the most variable signals within one gait are also the ones that are modified in
gaits optimized on perturbed environments (exp 7a) compared to flat ground optimization
without perturbations (exp 3), we can make the hypothesis that the least periodically
stable INSEN are the one that are important for gait stability.
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Figure 7.2: Comparison of FBL (blue) and FBL- (green) models for experiment 7a. The FBL- model
has 5 INSEN removed from the initial 13 (see figure 7.1). A: HIP, KNEE and ANKLE angle comparison.
B: HIP, KNEE and ANKLE angle correlation with corresponding human joints angles. C: Normalized
vertical ground reaction force comparison..
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Figure 7.3: Normalized INSEN signals comparison between a solution of experiment 3 (solid line) and a
solution of experiment 7a (dashed line). See table 6.1 for INSEN signal details. The correlation between
corresponding signals of each experiment is shown in the top right of each graph. Left: Muscle feedback
active during swing. Middle: Muscle feedback active during stance or whole cycle. Right: Ground and
Trunk feedback

7.2 Robustness comparison

In this section we compare the robustness of the 3 different models (FBL, FBL-, 3FBL).
Here we use the solution of experiment 7a for the FBL model (note that similar results
are obtained when using the solution of experiment 6a, data not shown). See figure 6.2 for
FBL- and 3FBL model composition and comparison with the FBL model. The robustness
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is evaluated without on-line control, the default control vector is used (see eq. 6.1).
The results of the robustness evaluation are shown in the figure 7.4. We can see that

there is no clear difference between the different models regarding their correlation with
humans. There is a slight decrease in correlation at the level of the KNEE and ANKLE
joints for the 3FBL model. When inspecting the gait of the 3FBL model with the Ctrlstd

we see that it is going more slowly than the FBL and FBL- models, both of which are
going at the same speed as the human gait used for comparison. This could explains the
3FBL lower joint correlation, since a difference in speed is expected to modify the joints
movements. Regarding the resistance to pushes, all models are in the same range ( 80[N]).
Same holds for the resistance to slope change. We can note, however, that the variation
in the results is larger for the 3FBL and FBL- models, possibly because both models have
30% less sensors than the FBL model (they have less INSEN and therefore less information
about the body/environment interactions).

Figure 7.4: Left: Joint angles correlation with human for the the FBL, FBL- and 3FBL models.
Middle: Mean maximum push force amplitude resistance. Right: Mean maximum slope change (in %)
resistance

7.3 Online gait control

In this section we look at the new feature that an online control can bring to the different
models. The online control is made through the modification of the Ctrl control vector
(defined in section 6.2.2). The online control will be evaluated for changes in speed and
adaptation to increasing slope.

7.3.1 Walking on upward increasing slope

In this section, we look at the ability of the different models to negotiate an environment
with increasing slope (see figure 7.5 A, for a representation of the environment). The slope
increases from 0 to 30% in 160 meters. Each model is evaluated with and without online
control. The online control is made manually by a person trained to this task.

It seems logical that without controlling the gait, the maximum slope successfully
managed by the model can not be too steep, since changes in gaits are necessary to adapt
to increasing slope. This is indeed confirmed by the results (see blue bars on figure 7.5
B). As expected (and mentioned in the previous section), without online control, the best
model is the FBL model, since it uses more sensory information. However when varying
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the component of the Ctrl vector the results reverts. The best results are obtained with the
3FBL model. The control of the internal frequency of the CPGs is crucial in negotiating
slope steeper than 10%, as a decrease in frequency forces the movements to slow down and
thus provide sufficient force to climb up. Here, the online control is done manually, and
results are very promising. The next step regarding the online adaptation would be the
implementation of a neural network that uses different kind of feedbacks to control value
of the Ctrl control vector.

Figure 7.5: A: view of the increasing slope, the slopes increase from 0 to 30% in 160 meters. B: maximum
successfully managed slope percentage of the FBL, FBL- and 3FBL without online control (blue) and with
online control (orange).

7.3.2 Speed changes

In order to look at the effect of the modification of the Ctrl control vector on the charac-
teristics of the gaits, we implemented a simple systematic search algorithm that iteratively
modifies the Ctrl control vector. During one systematic search, only two components of
the Ctrl vector are modified and the others are kept constant. After each modification of
the Ctrl, we wait a certain amount of time (to ensure that the gait as stabilized) before
recording the gaits characteristics.

In this analysis, we focus on the 3FBL model, since the slope management experiment
showed that it can successfully negotiate slope up to 30%, which is more than three times
better than scores obtained by the two other models (i.e. FBL, FBL-). However, in
the future, an in depth analysis and comparison with the two other models would be
interesting.

The figures 7.6 and 7.7 shows two examples of systematic searches that lead to inter-
esting changes in the gait characteristics of the 3FBL model. Each figure is made of 4
sub-figures, each of which showing a specific gait characteristic (top-left the mean speed,
top-right the energy consumption, bottom-left the mean double stance duration per cycle
and bottom-right the mean cycle length).

When looking at the figure 7.6 where the amplitudes of both basal and CPG interneu-
rons are modified (i.e. AINBAS

and AINCPG
), we observe speed changes from 1.2 m/s to 1.5

m/s. It is interesting to note that changes in AINCPG
have almost no effect; neither on the

speed, nor on the energy consumption of the gait. However, we note that AINCPG
values

seem to have an effect on the double stance duration. Interestingly, some fast gaits show
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very small double stance durations, which indicates that the gait spent almost no time
with both foot on the ground, thus indicating that we are going toward a change in regime
from walking to running. However running gait could not be found using this model. It
is possible that the addition of a rule for entering in the end stance phase based J.Wang
works (see section 2.1.3) could help generating this change in regime.

Figure 7.6: Systematic search made by varying the AINBAS and AINCPG components of the Ctrl. Others
component are the same as for the Ctrlstd except the OINCPG that is set to -0.2. Top left: Speed, Top
right: Energy consumption, Bottom left: Double stance duration, Bottom right: Cycle length.

The figure 7.7 shows the results of a systematic search on the frequency of the CPG
interneurons and on the offset of the basal interneurons (i.e. ω and OINBAS

). The first thing
that can be noted is the correlation that exists between those two control variables and
the speed. We can draw a simple linear relationship that would bring the robot from its
the minimal speed of 0.8 to almost 1.4 m/s. Using a linear multidimensional minimization
(Nelder-Mead method implemented in the fminsearch Matlab function) we obtained the
following linear relationship :

f(OINBAS
, ω) = a1OINBAS

+ a2ω + a3 = S (7.1)

Where S is the speed, and (a1, a2, a3) = (4.40, 0.57, 0.63). This relationship can satisfactory
predict the speed of the model.

It is also interesting to note that the energy consumption does not always increases
with increasing speed, as it was illustrated in figure 7.7. Indeed, the gait of highest speed
is not the one that consumes the most energy. We can also note a clear and brutal decrease
in cycle length for frequency between 0.7 and 0.85 and OINBAS

smaller than -0.05.

7.3.3 Impact of basal interneurons in controllability

In this section we propose to test the effect of removing the basal interneurons in the
controllability of the gait (i.e. effects of changes in the control variables). A simple
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Figure 7.7: Systematic search made by varying the ω and OINBAS components of the Ctrl. Others
component are the same as for the Ctrlstd. Top left: Speed, Top right: Energy consumption, Bottom
left: Double stance duration, Bottom right: Cycle length.

systematic search experiment is designed. The search space is limited as follow: a) we fix
the AINSEN

and OINSEN
variables to their default value, this is motivated by the fact that

we don’t want to modify INSEN that showed an importance in stability (see section ), b)
variables 1 to 4 (respectively OINBAS

, OINCPG
, AINBAS

, AINCPG
) are tested to by two for 49

different pair values in the range defined in figure 7.8, c) for each pair values 6 different
frequency (ω) are tested. The search is made online. The control vector is updated
each ten seconds. Gait characteristics are collected during the last seconds seconds (four
seconds are devoted to gait stabilization after parameter changes).

Two different models are tested with this systematic search scheme. The 3FBL and
3FBL’ model. As we are interested in the impact of basal interneurons in controllability,
the 3FBL’ model is equivalent to the 3FBL model except that INBAS are replaced by
INSEN which are still controlled by their own variables: OINBAS

and AINBAS
).

The results of the systematic search with the 3FBL and 3FBL’ model are shown on
figure 7.9 and figure 7.10. Each quadrants shows one gait characteristic recorded (top left:
mean speed, top right: step length variance, bottom left: double stance support duration,
bottom right: gait frequency). In each cells, the white part indicate that the set of variable
is unstable and make the robot fall.

By comparing the white part on each cells, the first thing we can note is that the 3FBL
model (figure 7.9) is stable against changes in parameters in a larger range than the 3FBL’
model ( 7.10).

When looking at the variance of the step length (top right quadrant), which is a
measure of the gait stability, we can note that the variance of both 3FBL 3FBL’ models
in general increase with a decrease in frequency. However there are still set of parameters
that are stable even at low frequency.

When looking at change in speed we can see that in general the 3FBL goes slower than
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the 3FBL’. Which could be explained by the fact that some of the MFF and MLF INSEN

play the role of positive feedback rules. Especially some MFF and MLF INSEN projects
to the same muscles than they receives input from. If positive this kind of auto-feedback
increases the response of muscle, i.e it the same burst will generate a bigger response due
to the positive feedback loops and hence a faster gait.

The 3FBL speed vary from 0.70 to 1.35 [m/s] while the 3FBL’ speed vary from 0.70
to 1.60. Although the 3FBL model can be stable in all speeds the 3FBL’ is stable only
between 1.0 to 1.60 [m/s].

An interesting effect can also be observed at the level of double stance duration. Indeed
as it is visible on the 23 columns of the bottom left quadrants of figure 7.9 with frequency
of 1.11, the increase of the variable 2 and 3 (OINCPG

,AINCPG
respectively) shows a decrease

of the double stance duration from 0.2 while increasing the the frequency the double stance
duration decreases from 0.2 to almost zeros second possibly indicating that a change of
regime (from walking to running) could be possible in those region. However the model
like that seems impossible to run as this decrease in the double stance duration correlates
with an increase in the instability of the gait (indicating that some structure are possibly
missing, the implementation of the feedforward component on the J.Wang model (see
section 2.1.3) could be interesting).

To conclude, it is interesting to note that even if the frequency of the CPG as an impact
on the gait it is in not linked with its frequency as it could be expected. Indeed, increase
in speed can be observed without changing the gait frequency (combine column 24 of top
left and bottom right quadrants on figure 7.9). This indicates that in this model the effect
of the CPG is not the usually modeled one, where the system frequency synchronizes to
the one of the CPG. This indicates that our model of CPG is more like a vestige of CPG
network.

Control Variable

Id Name Range Std.

1 OINBAS [−0.01; 0.01] 0.0
2 OINCPG [−0.01; 0.01] 0.0
3 AINBAS [0.7; 1.6] 1.0
4 AINCPG [0.7; 1.6] 1.0
0 ω [0.65; 1.8] 0.85

Figure 7.8: Top: description of the organization of figures 7.10 and 7.9. Each column corresponds to
the variation of two control variables (shown as axis name). The title of each column is in the format
id1id2 where id1 is the id of the control variable on the x-axis and id2 is the id of the control variable on
the y-axis. Each line corresponds to a different frequency in ascending order. Bottom: table showing the
different control variable name, id, default values, and the range used in the systematic search. )
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Figure 7.9: Systematic search on the control variable (shown on figure 7.8) of the 3FBL model. The
parameters are modified two by two (each column), while each line corresponds to different frequency of
the CPG. On each quadrants a different gait characteristics is shown TOP LEFT: Mean speed [m/s].
TOP RIGHT: Step length variance. BOTTOM LEFT: Double stance support duration [s]. BOTTOM
RIGHT: Gait frequency [1/s].
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Figure 7.10: Systematic search on the control variable (shown on figure 7.8) of a slightly different
version of the 3FBL model (where INBAS are replaced by INSEN which are still controlled by their own
variables: OINBAS and AINBAS). The parameters are modified two by two (each column), while each line
corresponds to different frequency of the CPG. On each quadrants a different gait characteristics is shown
TOP LEFT: Mean speed [m/s]. TOP RIGHT: Step length variance. BOTTOM LEFT: Double stance
support duration [s]. BOTTOM RIGHT: Gait frequency [1/s].
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Chapter 8

Discussion

8.1 Model modifications

Given the quality of the results obtained with the FBL model despite its simplicity com-
pared to the complexity of the brain (see section 3), its use as starting point for the
addition of a biologically inspired feedforward component is fully justified. Therefore,
motivated by the goal of adding this component, the FBL model was dissected (see sec-
tion 6.1) in order to understand the relative importance of each of its components. Using
the simple methodology described in section 6.4.2 we showed that almost all signals gen-
erated by muscles feedbacks were perfectly periodic, (i.e. small variation between cycles,
see figure 7.1).

When comparing the signals generated by gaits resulting from experiment 3 and 7a
(see figure 7.3). Most of the feedbacks had similar shapes. Main differences came from
the stability feedbacks and muscle feedbacks controlling the VAS and TA muscles. This
is fully consistent with the sensors variability assessment within one gait (see figure 7.1).
Meaning that the feedbacks that shows the biggest differences between experiment 3 and
experiment 7a or 6a are also the one that are the most variable among cycles of a given
gait. The conclusion we can draw from this observation is that the feedbacks that are
the more variable during locomotion are the one responsible for brining stability to the
model. Indeed, when optimizing the gait for robustness and comparing the generated
feedbacks signals, only the one that were the more variable during locomotion are adapted
to increase the robustness of the gait. This confirms the importance of the ground and
trunk feedbacks in the stabilization of the gait.

Most interestingly, when replacing those less variable signal by constant input (5 from
the 13 feedback rules per limb where removed like that), the obtained reduced gait (so-
called FBL- model) showed characteristics remarkably close to the FBL model (see fig-
ure 7.2).

Those results opened the way toward the addition of a feedforward component, as the
possibility of using constant input signals is consistent with biological characteristics of
some descending neural pathways (see section 5.1). Furthermore, as the replaced signals
were almost periodical, they could be replaced by oscillators. These observations permitted
the implementation of a new model: 3FBL models (sensory + basal + CPG activity) (see
figure 6.2 for details).

The results obtained by the two new models (FBL- and 3FBL) without any other
changes than the replacement of some of the sensory interneurons by feedforward in-
terneurons did not show significant decrease in the quality of the gait (both in term of
human similarity and robustness).
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8.2 Online control

In order to verify the validity of the added feedforward component, a set of control rules
needed to be implemented. Inspired from biological facts, two basic control rules were
added (see section 6.2.2). Those rules give raise to a set of 6 control variables. The 3FBL
model had also an extra control variable to set the frequency of the CPG. By varying
those control rules, interesting properties were observed. Indeed, the models were able to
adapt their speed by varying only one or two control variables. Notably, the 3FBL model
showed capacity to go from 0.8 to almost 1.6 [m/s]. Some values set to control variables
also led to significant decreases in double stance support duration, bringing it close to 0.
When visually inspecting the gait, they were almost running.

Furthermore, the online adaptation of the control variables also permitted to walk on
slope up to 30% with the 3FBL. Whereas only slopes of 10% were manageable with an
online control on the FBL or FBL- model.

By combining the two characteristics of the online control (e.g. adaptation to envi-
ronment change and control of gait characteristics), the next stage would be the imple-
mentation of an artificial neural network taking as input sensory information (to adapt
to environment changes) and desired gait characteristics (such as speed changes), where
the output of the network would be the control variables. This artificial neural network
could corresponds to some higher brain structures such as the cerebellum or the reticular
formation, which are known to work has modular structures during locomotion.
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Chapter 9

Conclusion

In this project, we confirmed that the FBL model could reproduce human gait with satis-
factory similarity (see section 3.1.2). These results are particularly striking, as this model
is exclusively controlled by reflexes. We then showed that optimization of the gaits on
perturbed environments (i.e. wavy grounds and pushes, see section 3.2) could drastically
increase the gait resistance to pushing perturbations. Notably, only feedbacks associated
with gait stability were modified (i.e. those related to ground sensors and trunk position,
see section 7.1.2 ).

However, this model has its limitations: missing physical properties and elements, such
as toes or body elasticity still prevent the model to totally recapitulate the main features
of human gait (see section 3.1.2). Moreover, because of the simplicity of the model, both
robustness and adaptability to changes in slope were relatively limited (see section 3.2).
It is therefore clear that human walking is not simply generated through feedback, but
that other circuits are necessary.

This is why, after an in depth analysis of the FBL model, we moved toward the
implementation of different types of extensions that could provide the model with increased
capacities and similarity with real human gaits.

The first step was a reorganization of the model into three more realistic steps; the
sensory inputs (SEN), the sensory interneurones (INSEN) and the motoneurons (MN).
Interestingly, the sensory interneurones that were shown to vary during robustness opti-
mization, are also the ones that were the most variable during walking.

The INSEN that were shown not to vary among walking cycles (30% of the total INSEN,
as determined by the periodical stability assessment method described in section 6.4.2),
were modeled - based on their cyclic behavior- either as a constant input (both in the
FBL- and 3FBL models) or as CPGs (in the 3FBL model only), introducing a feedforward
component to the initial feedback based model.

Replacement of the selected INSEN by constant signals (i.e. the FBL- model, see
section 7.1.1.1) showed no significant differences in gait characteristic and robustness to
perturbations, as compared to the initial model, although 30% of the feedbacks (corre-
sponding to 70% of the muscle feedbacks) were removed. This result indicates that the
selected signals (i.e. those not involved in gait stabilization) do not have a crucial role in
gait generation and stabilization.

Moreover, in the 3FBL, where selected INSEN (acting on proximal limb muscles) were
replaced by CPG, the implementation of an online control of a set of variables successfully
allowed adaptation to changing environments (i.e. increasing slope) and speed modifica-
tions (see section 7.3). This results is mainly due to the creation of a variable that controls
CPGs frequency (ω), which could be related to the control of hypothetic oscillatory struc-
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ture present in interneurons networks of the spinal cord and modulated by input from the
reticular formation. An other variable controlling the amplitude of the signal generated
by interneurones was also shown to be important (see section 7.3.2), this control could
be related to inhibitory connection from the cerebellum, controlling the amplitude of the
spiking frequency of spinal cord interneurons. This result suggests that even simple control
circuits in upper brain structure like the reticular formation are enough to modulate the
generated movement, which would be almost fully encoded at the spinal cord level. Online
modulation of the set variable together with the control of the CPG frequency generated
modification of the gait permitting to walk on slope up to 30% (see section 7.3.1). These
results suggest the existence of a secondary layer of sensory control, acting closer to the
CNS. For instance, in humans, the cerebellum plays exactly this role of sensory integrator,
by adapting the gait to change in environment (see section 5.1.2). In the future, it would
be interesting to investigate further whether gait transition could be found by simply
varying the high level control variables. Indeed, preliminary results indicates an emerging
change in regime when the basal activity of some of the interneurons is modified. Indeed,
the duration of the double stance support phase was observed to decrease proportionally
to the increase in basal activity, while it was visually observed that the robot tried to run
(see section 7.3.2). It would be interesting to implement the feedforward component to
the J. Wang’s extension of the FBL model, to test the hypothesis of gait changes while
uniquely changing the global offset of the system.

Taken together, the results presented in this report show that simple extensions of
the H. Geyer feedback based model allows the implementation of a control that could
have various applications in medical field, such as intelligent prostheses and orthoses.
Indeed, the possibility of controlling gait characteristics (of a model generating movement
comparable to human walking) by simple signals could allow adaptation to the contently
changing environment that humans face while walking (e.g. slope, uneven ground, steps,
pushes). Therefore, the implementation of such prosthesis/orthosis could be of tremendous
interest in the medical field, where, up to now, no prosthesis possesses such adaptive
capabilities.
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