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Wordless Sounds: Robust Speaker Diarization usir
Privacy-Preserving Audio Representations

Sree Hari Krishnan Parthasarastudent Member, IEEBHerve BourlardFellow, IEEE
and Daniel Gatica-Perddlember, IEEE

Abstract—This paper investigates robust privacy-sensitive au- a caveat of this approach is that the set of possible tasks is
dio features for speaker diarization in multiparty conversations: |imited by the output of the diarization system. Other sesrc
ie., a set of audio features having low linguistic information for ¢ information such as emotion. or the background inforomati

speaker diarization in a single and multiple distant microphone . . . S
scenarios. We systematically investigate Linear Prediction (LP) are inevitably lost. Another challenge with such a desighés

residual. Issues such as prediction order and choice of represen- Computational limitation imposed by the device [4].

tation of LP residual are studied. Additionally, we explore the Alternatively, one could store lower-level audio features
combination of LP residual with subband information from 2.5  with the constraint that neither intelligible speech noddel

kHz to 3.5 kHz and spectral slope. Next, we propose a supervised ;qntent can be reconstructed. Such features are referred to

framework using deep neural architecture for deriving privacy- . - - . .
sensitive audio features. We benchmark these approaches agsin as privacy-sensitive features in the literature [3]. Whilets

the traditional Mel Frequency Cepstral Coefficients (MFCC) audio features may appear to be restrictive, there arereiifte
features for speaker diarization in both the microphone scenarios applications that use only the nonverbal cues in speechnéor t
Experiments on the RTO7 evaluation dataset show that the study of social behavior [1].

proposed approaches yield diarization performance close to the A further issue inherent to capturing spontaneous conver-

MFCC features on the single distant microphone dataset. To ti . tabl d is th itv of h
objectively evaluate the notion of privacy in terms of linguistic in- S@UONS USING portable recorders IS the necessity of speec

formation, we perform human and automatic speech recognition Processing systems, including diarization, to be robust to
tests, showing that the proposed approaches to privacy-sdtise  single distant microphones (SDM). This is in contrast to enor

audio features yield much lower recognition accuracies compared conventional speaker diarization systems which work with
to MFCC features. multiple distant microphones (MDM). In this setting, thedp
Index Terms—Privacy sensitive audio features, speaker diariza- term scope of our work aims at robust privacy-sensitive @udi

tion, LP residual, deep neural networks, listening tests. features enabling conversation and acoustic scene amalysi
Our focus in this paper though is on features for speaker
|. INTRODUCTION diarization in SDM settings, exploring the tradeoff betwee

O UR work takes place in the context of analyzing Soci£|ar|zat|0n performance and audio privacy.

interactions using multimodal sensors with an emphasisFﬁature;’ used in staﬁe-of-the-art_ Sﬁezker d"';‘;‘za‘_m”‘m |
on audio [1]. Towards this we wish to capture conversationgf " 3s [5], in general, are a weighted combination of Me

and ambient sounds using portable audio recorders. Alsal))érequency Cepstral Coefficients (MFCC) and Time-Delay Of

of conversations can then proceed by modeling speaker tuﬁ{gval (TDOA). While such features have been shown to be

and durations using speaker diarization obust to single distant microphones, Milner et al. [6] shibat
A key impediment to making progress in the ubiquitou?r

capture of real-life audio is privacy. Recording and stgrin oPm M,FCC vectors.h . itive f h f
raw audio would breach the privacy of people whose con- revious approaches to privacy-sensitive features have fo

sent has not been explicitly obtained [2]. While the terrﬁused on either reinterpreting simple, frame-!evel héios's

“privacy-preserving” or “privacy-sensitive” can have fdifent or conversation analysis [3], [7], or computmg Iong-term_

connotations in different areas of computing, Wyatt et 4! | verages of standard features for indexing personal audio

suggest that the linguistic message in audio is perhaps tisé ogs [2]. -queyer thesg methqu were not proposed for

privacy-sensitive information. fspeaker dl_arl_zat|on, a chplce that is further supportedbylts
One approach to preserving this notion of privacy is tor our preliminary experiments.

implement an online speaker diarization system directlyhen Ir(; ﬁh|sf paper,hdraw(ljng 'motlvatlon from thellsogrce—f{lter
device and store information derived from its output. Hogrev model of speech pro uc_tlon, we s_ys_tematlca y |n\_/est|gate
linear prediction (LP) residual for diarization. Two diféant

S.H.K Parthasarathi is with Idiap Research Institute, BOx 592, CH- representations of LP residual are compared, namely, real-
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ighly intelligible speech signal can be reconstructectlgol
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of residual features. with the all pole model, can be considered to be privacy-
In addition to LP residual, we propose a supervised resigreserving. Depending on the prediction order, the LP tegid
ual, obtained by a deep neural network with a bottlenedontains mostly information about the excitation sourcéhef
architecture. We benchmark LP and deep neural netwasgeakers [14]. It has been shown that humans can recognize
residual against MFCC using the diarization system presenspeakers by listening to the LP residual signal [15].
in [9] on the SDM and MDM settings from the NIST RTO7 Previous works have exploited the speaker information in
dataset [10]. Experiments show that the proposed featutd? residual. For example, the residual has been used as a
yield performances close to the MFCC features in SDiomplimentary feature for speaker recognition in [16]. n a
condition. earlier work [17], we reinterpreted LP residual as a privacy
The notion of linguistic privacy in audio remains somesensitive feature for speaker change detection. The cludice
thing that is difficult to quantify and evaluate. Studies tsucthe LP order could be interpreted as a tradeoff betweengyriva
as [3] and [11] indicate that the main privacy concerns i@nd speaker information. The real-cepstral representaifo
audio are reconstructibility of intelligible speech ambiisistic residual was investigated for various prediction orders in
information. As ways to evaluate these, we present huma@mbination with subband MFCC and spectral slope. LP
speech recognition (HSR) and phoneme recognition studiegsidual has also been exploited for speaker recogniti¢ivip
with higher recognition accuracy being interpreted as fow&sing an autoassociative neural network.
privacy. Our studies show that the proposed approaches aréo our knowledge, this is the first work to investigate LP
more privacy-sensitive than MFCC. residual for speaker diarization in both single and mutipl
The contributions of this paper are: (a) a systematic inve@istant microphone scenarios. A diarization study invagyvi
tigation of LP residual based features for speaker diacdmat features with respect to single distant microphones isigart
in SDM and MDM conditions; (b) a deep neural network foklarly relevant to capturing spontaneous conversatiomsgus
privacy-sensitive features; and (c) framework and evanaif portable recorders. This setting is in contrast to meetoogr
audio privacy in terms of HSR and phoneme recognition. Tis@eaker diarization tasks which work with audio from muétip
findings of this paper are that the proposed privacy-semsitidistant microphones.
features yield a diarization performance close to the MFCCIn sensor data research, methods of obfuscating data rep-
features on the SDM data, while yielding much stricter pjva resentations to preserve privacy are well established [8].
in terms of intelligibility and phoneme recognition acatya Randomization is a form of obfuscating data. We derive
The rest of the paper is organized as follows. Section motivation from obfuscation methods and hypothesize that,
reviews the literature on LP residual and deep neural nésvorwhile temporal dynamics of the speech signal is important
The overall methodology of this paper is summarized #9r its intelligibility, it could be less important for spker
Section 1Il. A description and an analysis of the proposd§cognition tasks. We analyze local temporal randomimatio
features is given in Section IV, while Section V discusses tHWithin 250 ms) of LP residual based features for diarizatio
diarization setup. Parameters selection experimentciatsd
with the proposed features is described in Section VI. SuB: Deep neural networks
sequent validations on the RTeval07 dataset are presemted iWe briefly review here the relevant literature on deep neural
VII. We revisit privacy in Section VIII. Finally, conclusits networks as a means to represent phoneme information. In
are drawn in Section IX. subsequent sections, we describe and exploit privacyitsens
features derived from a deep architecture.
Multilayer feedforward neural networks with a 3-layer
architecture, also called multilayer perceptrons (MLRYyeh
In the introduction we briefly discussed existing worlbeen used for feature extraction in the automatic speeciyrec
on privacy-sensitive features. In this section, we sumrearinition (ASR) community for several years [18], [19]. Redgnt
relevant work in LP residual and deep neural networks.  deep neural networks, i.e., typically the number of layers
being more than three (alternatively, number of hiddenrkaye
being more than one), have been receiving attention frotn bot
machine learning and speech research community ( [20]) [21]
It is generally known that up to two or three formants aréue to their ability to represent knowledge compactly and in
required to synthesize intelligible speech or to recomstiive principled fashion. The motivation for this has been atifiol
lexical information [12]. Our approach to preserving pdya to results from complexity theory of circuits [22].
is based on adaptively filtering out information about these Of particular interest to our work are deep neural networks
spectral peaks. This approach is motivated by the souttee-filwith bottleneck architectures to represent phoneme irderm
model. tion. In the field of ASR, deep neural networks with bottldnec
Linear prediction (LP) analysis of speech [13] assumes thechitectures recently started to be investigated in thestqu
source-filter model and it estimates three components, lyam®wards obtaining better phoneme representation befare fu
an all-pole model, a residual and a gain. The vocal trattter processing by a HMM/GMM system [21]. For example,
response is modeled by the all-pole model, with the modiel [21] the output (before the sigmoid nonlinearity) takeon
capacity being determined by the prediction ordey. The the bottleneck layer of a trained five-layer MLP, was used in a
LP residual, obtained by inverse filtering the speech signadnventional HMM/GMM system to yield promising results.

Il. RELATED WORK

A. Linear prediction residual
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Diarization performance

A key issue in exploiting a deep neural networks is the inapproaches to privacy-sensitive features evaluation (b)
herent difficulty in training the weights. A gradient-bassati- for speaker diarization (a) Multple distant mic
mization starting from random initialization has been Mm@ | standard spectral-shape based feature meeting audio
to get trapped in local optima !eading to poor SO|L.Jti.0nS [22]] Baseline MFCC 5',';%';;1‘;‘33;{‘;&
This was also observed by us in our studies in training neurgl -

. . Xcitation source features .
networks with more than three layers for phoneme recognitio |p residual Ep\:illgg;lczg)of

on TIMIT, to the extent that deeper networks perform worse

than MLPs with one hidden Iayer. Data-driven features = |Human speech recogy
. . . epe Deep neural network based approach
Two common strategies to address this difficulty are, greedy ASR

layer-by-layer training [23], and an autoencoder traini2g].

In [24], features derived from the bottleneck layer of a 5- _ . . . ,

layer deep neural network trained with greedy layer-byetay %, o B(;"-C"Sd it four approach. A detailed discussibthe figure
proviaed In section .

method, was shown to yield promising performance for an

ASR task on over 100 hours of meeting audio data.

The constraints of privacy in features imply the necessity[16]) with a fixed number of 19 coefficients and a MFCC
to capture the complement of phoneme information captureshresentation with 19 coefficients. The MFCC represennati
by the bottleneck layer of a 5-layer MLP. In this context, ouk computed using HTK [25]. These representations have been
work exploits features derived from the bottleneck layeraof fixed at 19 dimensions so as to have the same dimensions
deep neural network as information that needs to be filtergd the baseline MFCC features. Feature selection expesmen
from the spectrum. In Section IV-B, we describe the propos@giestigating the choice of representation is presentetiiail
method in detail. in Section VI. We then study LP residual by varying the

prediction orders from 2 to 20. The choice of the LP order
IIl. OUR METHODOLOGY presents a tradeoff between privacy and SND performance.

In this section, we summarize our overall methodology, also (b) Subband informationPrevious studies have shown that
illustrated using a block diagram in Figure 1. These blogks athe spectral subband from 2500 Hz to 3500 Hz, carries
described below. speaker specific information [26]. In our earlier study [

(a): We begin with a detailed description of the featuregxploited the relative importance of the subband 2500 Hz to
extracted from LP residual and deep neural networks. S&500 Hz over the two neighboring subbands (1500 Hz - 2500
tions IV-A and IV-B describe these features in detail. Téiz and 3500 Hz - 4500 Hz) for a speaker change detection
gain insight into the features, this is followed by a moréSCD) task. We also showed that computing three MFCC
formal analysis of the proposed features in terms of mutuegefficients from this subband was better than computing the
information. logarithmic energy from the subband. A further advantage of

(b): Evaluating privacy-sensitive features entails a compahe MFCC representation is that it decorrelates the filtegba
ison of diarization performance as well as an evaluation ehergies and makes it suitable for a Gaussian Mixture Model
linguistic privacy. Details of the diarization system, tig@s, (GMM) with diagonal covariance matrices.
datasets, and the baseline performance figures are présente (C) Spectral shapeSpeakers differ from each other in
Section V. Parameter selection experiments associatedhet the distribution of spectral energies within their speeit s
proposed features for diarization is done on the developméals [27]. Further, it is known that male and female speakers
data (RTeval06) on single and multiple distant microphorxhibit different spectral energy distribution. In gerigthe
data (Section V). Results on evaluation data (RTeval07) sgectrum of female speakers show a steeper slope than male
presented in Section VII. speakers. Spectral slope (SS) is thus a way to charactbegze t

(c): This paper quantifies linguistic privacy using humashape of the spectrum. In [17] we showed that the first cdpstra
listening tests and automatic phoneme recognition studiesefficient ¢;) obtained from LP analysis can enhance SCD
Section VIII provides further details on the methodologywhen combined with LP residual features.

followed and the results obtained using these tests. (d) Obfuscation/local temporal randomizatioReature vec-
tors within a block of size § = 1,5,9,13) are shuffled. A
IV. PRIVACY-SENSITIVE FEATURES uniform pseudo-random number generator was used to shuffle

In this section, we first present the details in deriving thie frames in the block. It can be noted that a randomization

proposed features and follow that by an analysis based ¥n /Y frames could result in two successive frames being
mutual information framework. separated by - (N — 1) frames. In our work, we chose block

sizes up to 13 frames since results in [28] indicate that ption

. information in the speech signal up to 230 ms can be exploited
A. LP residual based features for phoneme recognition,

We now look at extracting features from LP residual,
subband information, and spectral slope.

(a) LP residual: LP residual is extracted every 10 msB- D€ep neural net based features
using a hamming window of size 30 ms. The representationsWe extract the bottleneck features derived from a 5-layer
of the residual studied are: a real-cepstrum representatMdLP, trained in a greedy layer-by-layer fashion. From [24],
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Fig. 2. 5-layer deep neural network with bottleneck arcttitee. (a) 5-layer

phoneme MLP is trained with phoneme targets using cross gntiggrion  Fig. 3. Steps involved in deep neural network based filterfap Estimated
(b) Keeping weights for the first 2 layers fixed, and removingt & layers, power spectrum of /iy/ sound (b) Reconstructed phoneme rgpedtom the
a reconstruction MLP is trained for the last two layers witjuared error bottleneck layer (c) Filtered spectrum

criterion.

) phoneme class and we use 39 units with softmax nonlinearity.
bottleneck features can be considered to capture phonemertipe phoneme classification network was trained by growing
formation. Using these bottleneck features, we train ars#co ), ps layer-by-layer on the TIMIT. Cascaded MLPs with 3,
3-layer regression neural network to reconstruct the powgr gng 5 layers are trained using standard back propagation
spectrum: i.e., the second neural network takes the bettlen algorithm by minimizing the cross entropy error criteridiie
features as input and outputs the estimated power spectrigi@iuded the ‘sa’ dialect sentences. The TIMIT trainingadat
of speech. Assuming a source-filter production model, HR@nsists of 3000 utterances from 375 speakers and the cross-
reconstructed spectrum is filtered from the original speotr yajidation data consists of 696 utterances from 87 speakers
of the speech signal. The hand-labeled dataset using 61 labels is mapped to the

This approach can be viewed as follows: A 5-layer phonemgyndard set of 39 phonemes [28].
MLP is trained with phoneme targets using cross entropy (b) Reconstruction MLPThere are three sets of parameters
criterion. Keeping weights for the first 2 layers fixed, angy the reconstruction MLP: the input from the bottleneckelay
removing last 2 layers, a reconstruction MLP is trained fier t () the expansion layer (H3), and the output layer (O2).
last two layers using squared error criterion. An illugtatof The input to the reconstruction MLP is the linear output
this is provided in Figure 2. We now analyze this architestur(j e pefore the nonlinearity) of the bottleneck layer bét
before ending this section with an illustration of our deeBhoneme network. No temporal context (1 frame) is used for
neural approach. the second MLP. The number of nodes in the expansion layer
(a) Phoneme MLPThere are five sets of parameters to thg43) is varied independent of H1 and H2. The primary choice
phoneme MLP: the input (I), the first expansion layer (H1or the output of the reconstruction MLP is the estimated
the bottleneck layer (B), the second expansion layer (H&), apower spectrum (257 coefficients). A further choice such as
the output layer (O1). 19 dimensional MFCC was explored. In either case, the units
Some reasonable choice of inputs to the phoneme MIHAve a linear activation function, and the MLP is trained on
include (i) MFCC or PLP; and (ii) DFT square magnituder|MIT train set using standard back propagation algorithm b
vectors (obtained from 512 point FFT) as estimated powgfinimizing the squared error criterion.
spectrum. For the sake of limiting the number of experiments (c) Filtering: Filtering is then performed to remove the
we analyzed both cases without explicit temporal context. |inguistic information. For the case where the output units
The number of units in first and second expansion layesge squared magnitude vectors, filtering is performed is thi
can be varied independently. In our experiments, the numhimain. The filtered squared magnitude vector is then con-
of nodes in H1 and H2 was kept same. This is done to redugsrted to an MFCC representation of 19 dimensions. In case
the number of experiments. Furthermore, experiments i) [28f the output units being MFCC, filtering is performed in this
varying the ratio of H1 to H2 did not did not show appreciabldomain. These parameters are analyzed in Section VI.
difference in ASR performance. (d) An example: Figure 3 illustrates this process for
We treat the bottleneck layer as a dimensionality reductigghoneme /iy/ using an example. Figure 3(a) plots the estithat
layer, similar to studies such as [21]. Reasonable choi€esppwer spectrum of /iy/. Observe that the broad spectraleshap
the number of units in the bottleneck layer can be between 2Ad the spectral details are manifest in the plot. Figur@ 3(b
to 40 [29]. In our analysis, the output of the bottleneck fayshows the reconstructed phoneme spectrum from the bot-
before the sigmoid activation is used. This is similar toeothtleneck layer. From the plot, it can be observed that the
studies. reconstructed spectrum consists mainly of the spectrgesha
The output layer of the phoneme MLP represents thban the fine, spectral details. Figure 3(c) shows the fitere
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spectrum. From this plot, it can be observed that the sgecteatropy training criterion can be written as:
shape (mainly the first formant) is filtered. N
pe (mainly ) T(61,62) = —Ex[>" Plal) log P(q]a)]
k

C. Mutual information based analysis = _/)(p(x)ZP(Qk‘”)log Plglz)da
k
In this section, we present an analysis of the privacy- P(qi|z)P(z)P(qy)
sensitive features using mutual information. Privacy idiau - */ ZP(%“") log P(x\P dz
. . - x5 () P(qr)
could be interpreted as a function that maximizes the mutual N )

information (MI) with speakers while minimizing the Ml _ 7/ ZP(qk,x)[log Play, + log Pgy)]dx
with linguistic information. This framework is discussedxn Jx 5 P(x)P(qx)

followed by an analysis of the features on TIMIT test data ) ~

(consisting of 1344 utterances from 168 speakers). = I(Q;X) - _ P(q)log P(q) (5)

k
1) MI framework: Given X, a multivariate continuous . -
. . : It can be seen from the above equation that minimum cross-
random variable denoting the log squared magnitude, an o . : : .
. . . entropy training is equivalent to maximum mutual inforroati
S, @ discrete random variables, denoting speaker and phoneme

labels respectively, the goal is to find a transformatjothat training [30]. Let B denote the random variable obtained at
maximizes the functior (¢(X); S) — I(g(X): Q). output from the bottleneck layer before the nonlinearityeit,
B =¢(X;01,D) (6)

g = ars mgaXI(g(X); 5) —1(g(X): Q) @ whered; is the set of parameters of the MLP up to the bottle-

neck layer. Furthermore, from data-processing inequsity,
This equation is in general difficult to solve without adalital

constraints or assumptions. Assuming thaand S are inde- 1(X;Q) 2 I(B:Q) 2 1(Z;Q) ™
pendent, the maximum of Eq (1) is reached for: However, given the constraints of the parametets &),
~ I1(Z;Q) is maximized. Similarly,I(B; Q) is maximized for

g (X)=S5 (2) 06,. This together with the fact that the dimension of the

output at the bottleneckH) is much smaller than that of
where S is a transformation of{ that has maximum mutual the dimension of inputX), means that bottlenecl3) serves
information with S. A further assumption of a source-filteras a compression of inpuX{() retaining information that has

model of speech production simplifies this to: maximum mutual information with the phonemeg)(
Therefore, it is reasonable to assume that as the dimension
F(X)=8§=X-X () of B is made much smaller tha®¥, other information such

as speakersy) is lost at bottleneck 8). We now consider
where X is a transformation of{ that has maximum mutual the sgcond. MLP, ngmely, the reconstruction M_LP: i.e., this
information with Q. MLP is trained taking bottleneck outputB] as input and

LP residual: In the case of LP, an independent source)-( as the training target, with minimizing the least-squares

filter model assumption is part of the modeling. The all-pole " cost function. The random variable at the output of thi
P P 9. P f(a/ILP (X) is a reconstruction oK and has therefore the same

. : - g . . . "Yifiension asx. It is, however, reconstructed usirtgy which
information (X) and it is obtained in an unsupervised fashio . T T .
H?S maximum mutual information wity (and has low Ml

as the smgothgd spectral envelope. The LP residual r]@'tur{f}wth S, because of dimensionality reductiona). Therefore,
becomeg*(X) in Eq 3.

. . , X can be considered to be an estimateQofinserting X so
Deep neural network filterAn alternative is to train a data-

. . e : obtained in Eq (3), we obtaif.
driven filter that yieldsX, given X as input. We shall show 2) MI analysis: In practice, we can introduce a variable

this. Let us consider a 5-layer MLP for phoneme classifimtio(A) in Eq (1) to make itZ(g(X);S) — A - I(g(X); Q) and
with a bottleneck archnegture. Léf denote the input, and let tune this variable for optimal values. Alternatively, weutt
Z denote the random variable at the output of the MLP. Theﬂlot I(X:;Q) versus I(X;S) and make more qualitative

assessments on the tradeoff between privacy and speaker
Z =1(X;61,62,D) (4)  information, in using these features. In this paper, we take
latter approach. Figure 4 shows such a plot. Thaf (X; Q)
wheref, 0 is the set of all parameters of the MLP (i.e., thgersus I(X;S), on the TIMIT test set. A highed (X;Q)
weights and the biases) before and after the bottleneck lageuld be interpreted as a feature with lower privacy. Siryija
respectively, and is the training data. Lef, denote thek'" 3 feature yielding highef (X;S) could be interpreted as a
phoneme and® denote the estimated probabilities. The crosgetter feature for diarization. An ideal privacy-sensitfeature
would be in the top-left of this plot.
1it might be that speakers can have biases towards choices rdvend For estimating the MI with phoneme and speaker labels, we
therefore towards phoneme use the following form of MI:I(X; A) = H(X) — H(X|A),
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i.e, it starts with a large number of clusters (hypothesized
speakers) and then iteratively merges similar clusterg iint
reaches the best model. After each merge, data are re-@ligne

using a Viterbi algorithm to refine speaker boundaries. The
PR ] initial HMM model is built using uniform linear segmentatio
and each cluster is modeled with a 5 component GMM.
The algorithm then proceeds with bottom-up agglomerative
clustering of the initial cluster models [33]. At each stefi,
possible cluster merges are compared using a modified wersio
of the BIC criterion [9].
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Mutual information between features and speaker labels
=

08f' Lpr20 SEZK 1 The diarization system uses 19 dimensional MFCC features
i ] and the time delay of arrival (TDOA) features from the
AR, beamformed signal. The MFCC vectors are extracted every 10
085 ; G > ms, with a hamming window of size 30 ms, using HTK [25].
’ Mutual information between features and‘phoneme labels Delta and acceleration features are not used.

Fig. 4. Plot showing mutual information between the featuresghonemes B. Privacy-sensitive features

versus mutual information between the features and spedk®Rsx denotes h . . f . |
residual features with LP order SEZKandAH denote the features from [7] The prOpOS?d pnvacy'ser?S't'Ve eatures LP reS|du.a are
and [3] respectively. Deepy refer to deep neural network based features wittompared against the baseline MFCC features by using the
bottleneck sizes corresponding dg. diarization system discussed in Section V-A. To summarize
Section IV, LP residual is represented using 19 dimensional
. . . MFCC features and 19 dimensional real-cepstrum to make
\;V:OTE?Xd%‘Ot\?VSe eultsheer-r%reiﬁ-srocﬁjssﬂrenr?r:e ?tg}rﬁ'ﬁg (t)é ) dist_he comparison with baseline MFCC features. The subband
cretize th‘e f,eature space. The featuresgaregthen binned frﬁ uency information between 2.5 kHz to 3.5 kHz is repre-
the normalized bin-C(E)unts. are then used to estinfélé; A) 806ted by 3 MFCC coefficients. Similarly, spectral slope)(SS
) - X o7 is represented using first cepstral coefficien) pbtained from
Model selection on the TIMIT tralnln_g dqta Is used to 'd.qm'fLP analysis. For temporal randomization, features areflglauf
th? nl’meer of clusters. B"'?‘S correction |s.perform.ed usieg twith a uniform random number generator for block sizes
Miller's formula on the estimated mutual information [32]. gN — 5,9,13). The deep neural network based features are
I

Figure 4 plots residual and deep neural network featur . : . .
represented using 19 dimensional MFCC. Standard features0 represented using a 19 dimensional MFCC represemtatio

for diarization such as MFCC have high values I¢fX; Q)
andI(X;S). For the residual features, it can be observed that Datasets
as the LP order increaselX; ) andI(X;S) decrease. LP  Experiments were performed on NIST RT06 and RTO7
residual, with a prediction order of 8 appears to have muelyaluation data for Meeting Recognition Diarization tas@][
less MI with phoneme than MFCC features. [34]. RT06 evaluation data is used as the development datase
The figure also illustrates deep neural network features fghd it contains nine meeting recordings of approximately 30
different bottleneck sizesH = 10,20,30). The input and minutes each. The best set of parameters is then used for
the reconstruction layers are squared magnitude vectt®s. benchmarking the proposed features against MFCC features
expansion layers were fixed at 1000. Furthermore, the filtergn the RT07 dataset using the baseline diarization systee. T
output is represented using 19 dimensional MFCC vectogsaluation dataset (RTO7) contains eight meetings of yearl
It can be seen that the deep neural network features yielg minutes each. MDM data is obtained by denoising the
much lower MI with phoneme labels than does residual whiladividual channels using Wiener filter and then beamfogmin
yielding lower mutual information with speaker labels. using the Beamformit toolkit [35]. SDM experiments were
Features from [7] and [3], denoted 8&ZKandAH, respec- performed on randomly selected individual MDM channels.
tively, are privacy-sensitive but have low speaker infdiota  Speech/nonspeech segmentation is obtained using a forced
alignment of the reference transcripts on close talkingronic
V. DIARIZATION SETUP phone data using the AMI RTO6 first pass ASR models [36].

This section discusses the baseline system, featuresetiataSince our interest in this paper is in evaluating the privacy

and the performance measure used to evaluate the featureggnsitive features for speaker segmentation and clugterin
the same speech/nonspeech segmentation is used across all

A. Baseline diarization system experiments.

The baseline system is an ergodic HMM as described _
in [9]. Each HMM state represents a cluster (speaker). Tkt Baseline performance
state emission probabilities are modeled by Gaussian Mixtu The results are reported in terms of Diarization Error Rates
Models (GMM) with a minimum duration constrain of 3(DER). DER is the sum of speech/nonspeech errors and
seconds. The algorithm follows an agglomerative frameworkpeaker errors. Speech/nonspeech errors is the sum ofdmisse
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speech and false alarm speech. For all experiments regarte
this paper, we include the overlapped speech in the evatuati +M'FCC

Table | lists the performance of the baseline diarizatic ~Real cepstrum| |
system on RT06 MDM and SDM evaluation data. The firs
3 columns list the performance of the speech/nonspee
detection system in terms of missed speech, false alai
and over all speech/nonspeech detection error. The ove
speech/nonspeech error rate over all the files on the RT
evaluation dataset is 66 The next two columns list the
performance of the baseline MFCC features in terms of tl
speaker error for both the MDM and the SDM scenarios. #

60,

Speaker error (%)

expected, MFCC features perform better on the developm 1o
MDM data. On RT06 we observe a performance gain of3.7
on the MDM data over the SDM data. T BT e
Prediction order
TABLE |

RTO6 evaluation data: The first 3 columns list the perforneaatthe

speech/nonspeech detection while the next 2 columns rppdidrmance of
P pbaseline MECC features for MDM and SD?\?. Fig. 5. Comparison between MFCC and real-cepstrum repratsems of the

LP residual on RT0O6 MDM evaluation data.

Evaluation | Miss | FA | Sp/nsp| Spkr err {5) | Spkr err (%) . .
MDM SDM For LP orders between 8 to 12, an increase in the LP
RT06 65 | 01] 66 171 208 order results in a bigger drop in performance. For instance,

an increase in LP order from 8 to 10 results in a drop of
nearly 8 in MDM and 5% in SDM. We note that the vocal

VI. PARAMETER SELECTION ONRTEVAL 06 tract system is typically characterized by up to five resoean

Recall that we use RTeval06 as the development dataset!qﬁhe 0 to 4 kHz range. An L.P ordgr in the range 8 to 12 can
del around 3 formants. Since higher order formants carry

Section IV-C, we presented an analysis of the features usin ker inf i te that i X aficti
Ml on the TIMIT test set. In this section we perform parametéF1 re speaxer intormation, we note that increasing premct

selection experiments for the proposed features using t%r%er beyond 8 results in greater speaker errors.

baseline diarization system on RTeval06. or the Ias_t segment (orders greater than_ 1.2)' we see a
smaller drop in the performance as the order is increased. We

note that the LP residual contains both modeling and exmitat

errors. As the LP order increases beyond 10, the contritutio

We address three issues in this section: (a) the choiceafthe error in the residual signal is mainly due to the exidta
representation (b) prediction order (c) combination withps error component.
and subband energies. It is also interesting to note that residual obtained By 2

1) Representations of LP residuadle study the 2 different order prediction performs slightly better than the baselin
representations of LP residual using the baseline digoizat MFCC features in both SDM and MDM cases. Revisiting
system described in Section V-A. Figure 5 shows the compaite performance versus privacy tradeoff, an LP order of 8
ison between the 2 representations on the RT06 MDM evaluseems appropriate for the diarization task, since the first
tion data. It can be observed that MFCC representationyeldtwo formants are important for synthesizing an intelligibl
better performance for all prediction orders. It is intéiresto  speech signal [12]. At this prediction order, residual ggel
observe that the gap between the two representations decr@aperformance 0£2.3% on the MDM data while yielding
as the prediction order increases. It could be due to MF(9.2% on the SDM data.
being better able to capture spectral peaks than real cepstr 3) Combination with subband and slope featurebhe
From here on, we use MFCC representation of the residuagffect of combining LP residual " order in MFCC repre-

2) Prediction order: The effect of LP order on MFCC sentation with slope and subband on MDM data is presented in
representation of residual on both MDM and SDM data Bigure 7. X-axis denotes the weight assigned to LP residual,
presented in Figure 6. Both curves exhibit similar behayiorwhile y-axis denotes the speaker error. We ran experiments
which can be analyzed separately in 3 relatively distinet rgarying the weights in steps of 0.05 starting from 0.05 to
gions: smaller drop in performance for increases in prasict 0.95. A weight of 1 denotes that LP residual is not used in
orders from 2 to 6, followed by a more dramatic drop irombination with the other features.
performance for prediction orders between 8 to 12, and thenlt can be observed from the plot that for either slope or
again a smaller drop afterward. subband energies, combining residual with weights less tha

Let us consider prediction orders between 2 to 6. AD.45 yields a lower performance than that achieved with LP
increase from 2 to 6 results in a drop b6% in the MDM residual alone. In general, combination with the subbared-en
case. This could be due to the loss of the first formardjes yields a slightly better performance over slope at lemnal
which carries more linguistic information [12]. Speakerogr weights. On the other hand, for weights over 0.4, the plot
therefore, seems to be relatively less affected. shows that the difference between slope and subband esergie

A. LP residual based features
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Fig. 6. Using MFCC representation of LP residual, predictirder vs Fig. 7. Combination of LP residual (MFCC representationhvétope and
speaker error is illustrated on MDM and SDM conditions of tieelopment subband. X-axis denotes the weight assigned to LP residual.
dataset (RTO06).

t be sianificant. For inst the best binatidh from 600 to 1400, in steps of 200. Preliminary experiments
may notbe significant. For Instance, the best combinatidn Wi, ji- o104 that 1000 nodes to be a reasonable choice for the
spectral slope yields a speaker error20f7% at a weight of

0.45, while the best combination with subband energy yielggsFtrgI:]d It:he trl’gr(; e?ipi;ﬁlot?el?sgzrogéhfhzro%em;'\élr:? for
a speaker error £0.9% at a weight of 0.6. 'gu , | v 1N g '

We note that combining both slope and subband energ?e”s reconstruction layer sizes, a bottleneck layer size ®f 2

yields a consistent gain over combining with either of tho Units seems 1o yield the lowest speaker error rates. When

features. Furthermore, combining both features with uaiidstﬁe number of units are higher or lower, the speaker error

yields improvement over residual by itself, for weights pencreases. A similar trend was observed for a 5 layer MLP

tween 045 to 0.8. The best performance of this combindd hitecture in [29]. We could infer that a bottleneck siZe o
' ", n 3 units is sufficient to capture phoneme information using a

system |sl8.6%.at a welght_of 0.6. At _th|s Cme'gur"’lt'on’.bottleneck architecture. With a larger bottleneck, soneaker
these features yield a promising comparison with the haeseli

MFCC features {7.1%). It is interesting to note that themfﬁrmﬁtlon couldhbe“car.)turleid.. £ th ion | .
diarization system which models the features using GamlssiigI urthermore, the “optimal” size of the expansion layer in

distributions is suitable for the proposed features as.well t_e reconstruction MLP is aroun_d 800 units. In ge_neral, for_
either more or less number of units, we observe an increase in

the speaker errors for the other bottleneck sizes. Inaljtiv
B. Deep neural architecture the reconstruction MLP is trying to reconstruct the input

We now analyze the parameter selection issues associd@gely with only the phoneme information. Consequentlis i
with the deep neural architecture, namely, input domainderstandable that it requires fewer units (H3) than tte fir
bottleneck size, and filtering domain. expansion layer (H1) of the phoneme MLP.

The phoneme and the reconstruction MLPs were trained onWe remark that the deep neural network features obtained
the TIMIT train dataset. Using these MLPs, filtered squardtPm the system with a bottleneck size of 20 yields a per-
magnitude vectors were obtained on the MDM developmel@rmance of16.5% on the MDM development data, which
data (RT06 eval). MFCC representation was obtained from tfePresents a gain @f£.6% over the baseline MFCC features.
squared magnitude vectors and the ICSI diarization systesnw 2) MFCC input: We now examine Figure 9. For this
used to analyze the features. plot, the input of the phoneme MLP was 19 dimensional

Figures 8 and 9 illustrate the effect of bottleneck sizewgrsMFCC vectors. The output of the reconstruction MLP was
speaker error rates on the development data. The inpurésati?57 dimensional squared magnitude vectors. For these set
are squared magnitude and MFCC vectors, respectively. Téfeexperiments, we only investigated 2 different bottldnec
size of the reconstruction MLP was varied as well. All theizes: 20 and 40. This was however, repeated for 5 different
other parameters of the phoneme MLP and the reconstructi@sonstruction layer sizes from 600 to 1400, in steps of
MLP were unchanged during the experiments. 200. Similar to previous experiments, preliminary expeins

1) Squared magnitude inputFor the experiments in Fig- indicated that 1000 nodes to be a reasonable choice for #e fir
ure 8, the input to the phoneme MLPs was 257 dimensiorgtid the third expansion layers of the phoneme MLP.
squared magnitude vectors. The output of the reconstructio For squared magnitude input space, it can be observed that,
MLP was 257 dimensional squared magnitude vectors as wéllt all reconstruction layer sizes, a bottleneck layer sife
We varied the bottleneck sizes from 10 to 40 in steps of 1R0 units seems to yield better performance than 40 units.
This was repeated for 5 different reconstruction layer ssizénterestingly, the optimal size of the expansion layer ia th
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Fig. 8. Performance of the deep neural network on the developdeta. Fig. 9. With input features as MFCC, performance of the deeyrate
Bottleneck size (B - in terms of number of units) versus speaker rates network. Bottleneck size (B - in terms of number of units) verspeaker
(%) for 5 different reconstruction layer sizes (H3). The infeatures are error rates %) for 5 different reconstruction layer sizes (H3).

squared magnitude vectors.

) ) i evaluation dataset is 3 On RTO7 evaluation data, we
reconstruction MLP again appears to be 800 units. observe an even higher performance difference for the MFCC

3) Filtering domain: We performed studies on MFCCtgatres between the SDM and the MDM, with the actual
being the output of the reconstruction MLP. Unfortunatelyitterence being 4.

the results were not satisfactory. Since the objective ef th

paper was not to optimize all the parameters of the proposed

deep neural architecture, but to analyze the feasibilityhef B. Comparison with MFCC on RTO7 MDM

architecture itself, we chose not to delve into the details 0 Taple 11l lists the diarization performance of the privacy-

why MFCC may not be the optimal filtering domain. sensitive features against the baseline MFCC featuresrirste

4) Selected deep neural architectur conclusion of the of speaker error in both MDM and SDM conditions. As part of
analysis in this section, we choose the deep neural artiéec notation, LPR8 denotes LP residual represented using MFCC,
with log-squared magnitude input (257-dimensional inputihile SB denotes subband information from 2.5 kHz to 3.5
1000 units for the first expansion layer of the phoneme MLRHz and SS denotes spectral slope. DeepNN is used to denote
20 units for the bottleneck layer, 1000 units for the seconfle deep neural architecture summarized in Section VI-B4,

expansion layer of the phoneme MLP, and 800 units for thghose phoneme and reconstruction MLPs are trained on
expansion layer of reconstruction MLP. The output is a 25TMIT train data.

dimensional log-squared magnitude input. It can be observed that the baseline MFCC features yield
the best speaker errors on MDM and SDM conditions. MFCC
VII. DIARIZATION RESULTS ONRTEVALO7 features in combination with TDOA features on the RTO07

Recall that we use RTeval07 as the evaluation datastDM evaluation data yielded a speaker errorl6f9%.
The results of diarization experiments on MDM and SDM TABLE Il
conditions are reported followed by results on phonemegeco rro7 evaluation data: Performance " order LP residual and deep

nition. The relationships suggested by feature analysises neural network based features. LPR8 denotes LP residuaésepted using
analyzed. MFCC. SB denotes subband information from 2.5 kHz to 3.5 WHie SS
denotes spectral slope.

A. Baseline MFCC Features Spkr err o) | Spkr err (o)
. . . MDM SDM
Table 1l lists the performance of the baseline diarization MFCC (baseline) 6.4 11.2
system RTO7 MDM and SDM evaluation data. The perfor- LPR8 12.9 12.0
LPR8 + SB 11.9 11.9
TABLE Il LPR8 + SS 11.3 12.2
RTO7 evaluation data: The first 3 columns list the perforneaotthe LPR8 + SB + SS 11.0 115
speech/nonspeech detection while the next 2 columns régogerformance DeepNN 14.5 13.9

of baseline MFCC features for MDM and SDM.

Evaluation | Miss | FA | sp/nsp| Spkr err %) | Spkr err %) On the MI,:)M conQ|t|on, the speaker er,ror _Of thee"
MDM SDM order LP residual using MFCC representation is ab@fit
RTO7 37 [00] 37 6.4 11.2 below the baseline. This drop in performance is similar to
the drop that was observed on the development data. On
mance of the speech/nonspeech detection system on the Rif@/MDM development data, combination with spectral slope
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Fig. 10. Meetingwise analysis of the 9 meetings in the RTOTuew®n dataset. The upper plot shows the comparison on th&MDdio while the lower
plot shows the comparison the SDM audio. The meeting humberssgamd to the first column in Table IV.

and subband energies yielded a performance gain of nearlgeting is NIST-20051104-1515 with a length of around 70

4%, bringing the speaker error close to that of the MFC@inutes, while the shortest meeting is VT-20050408-1500,

features. On the RTO7 MDM data, while a gain of neaJy with a length of 25 minutes. In almost all meetings there

is observed, however, the difference with the MFCC featurase 4 speakers, with the exception of NIST-20060216-1347

is still 4.6%. and VT-20050408-1500, where there are 6 and 5 speakers,
It can be observed from Table Il that DeepNN yieldsespectively.

a performance ofl4.5% on the RTO7 MDM data. This

represents a performance drop of neaty in comparison Statistics of thLAIE'II_%?I\t/avaluation dataset

with the MFCC features. This is in contrast to the perfornganc '

of the deep neural r_letwork on the development data where it rsxg Meetings Cength | Speakers| Turns
yielded a gain, albeit small, df.6% absolute. minutes

1 | CMU-20061115-1030] 41 4 758

2 | CMU-20061115-1530] 29 4 708

C. Comparison with MFCC on RT07 SDM 3 EDI-20061113-1500 | 50 4 873

) 4 EDI-20061114-1500 | 48 4 557

Table Il also lists the performance of the proposed feature 5 NIST-20051104-1515] 70 i 650

on the RTO7 SDM condition. On SDM condition, however, 6 NIST-20060216-1347] 47 6 630

i ; 7 VT-20050408-1500 25 5 508

the performance of the MFCC feature drops significantlysThi 5 VTIOOS 7100 = 3 s

results in a much smaller difference in speaker error batwee
the MFCC features and the LP residual based feature%j§0.8
Adding spectral slope to the residual based features daes nd '9uré 10 compares the speaker error rates of the proposed
yield a gain. Similarly, adding subband information betwed€atures on RT07 MDM and SDM for each meeting in the
2.5 kHz to 3.5 kHz does not improve the performance. JR! 07 dataset. The upper plot shows the comparison on the
the other hand, adding both spectral slope and the subbAfigM audio while the lower plot shows the comparison the
energies also yields a small gain ©5%. The performance SDM audlq. There are 9 blocks of results_. Thg 8 meetings in
of the residual based feature set is robust to SDM conditioffi¢ evaluation dataset correspond to the first eight blothe.
and compares well with the baseline MFCC features, yieldiﬁEnth block corresponds to the overall speaker error rag ov
a difference 0f0.3%. the entire dataset.

From Table Ill, it can be seen that DeepNN yields a On the_ MDM dataset, the performance gain of the MFCC
performance 013.9% on the RTO7 SDM data. This representéeatures in terms of the overall speaker error rate alsslatas
a performance drop of.7% in comparison with the MFCC to gains over individual meetings. However, on meetings$ tha

features. The results also show the deep neural netwdfie more than 47 minutes, the performance of the LP residual
features to be robust to SDM conditions. based feature set compares as well as or better than the MFCC

features. It is interesting to note that the best perforraaofc
the DeepNN system is on the longest meeting.

On the SDM dataset, the performance of the MFCC features
We now analyze the RTO7 evaluation dataset more closelyops substantially over meetings 1, 4, and 8 from Table IV.
Table IV presents a summary statistics of the dataset. T@a the other meetings, MFCC exhibits a more stable behavior.
average length of the 8 meetings is 43 minutes. The long®¥¢ note that on the SDM dataset, the residual based feature se

D. Meetingwise comparison
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. . TABLE VI
compares well with the MFCC features over all the meetings. 20 semantically unpredictable sentences in the dataset.

Furthermore, the performance of the residual based feagire
does not drop from MDM to SDM. In fact, some gains can be
observed on meetings 1, 4, and 8. On the other hand, while
DeepNN system is is still worse than MFCC and the residual
based feature set, it yields substantial gains over theeking
meeting.

Sentence ]

The dust leaned through the broad hat.
The task joined the staff that coped.
The pure word cleaned the mind.
When does the flow guide the blue front?
Use the length or the export.
The youth knelt with the fresh state.
The road dared the growth that slipped.
The large wine blamed the store.
How does the thing cut the true wall?
Bear the truth and the pool.

The foot gazed under the dead spring
The suspect mixed the pain that crept
The nice block paid the blood.
Why does the jazz hit the brown bar?
Bite the book and the stress.

The health went down the dark square].

The dog built the wife that walked.
The good man marked the tree.
Where does the post need the poor rade?
Export the son or the firm.

E. Obfuscation method

In Section IV-A, we mentioned another strategy that can be
gainfully employed for improving privacy of audio featurés
this section, we present speaker error rates of MFCC and LPR8
features that are randomized with block sizds= 1,5,9,13)
on the RTO7 MDM evaluation dataset in Table V. In the

TABLE V
Effect of randomization on MFCC and LPR8 on the RT07 MDM d&tas
Randx is used to denote randomization with block size of mdém

N B B R B R R R R R e P
S| ©| | N of 01| K| W No| ~| | ©| X N| @ G B W NS

Feature | LPR8 %) | MFCC
Spkr err | Spkr err

Rand5 13.4 6.7 ) )
Rand9 138 7.1 as conversations, news, phonetically confusable sergeonce

Rand13 13.7 6.8 semantically unpredictable sentences
In this study, we used open set, semantically unpredictable

table, “Randx” is used to denote randomization with blockentences (SUS) [37]. This is done so that the test evaluates
size x frames. We note that randomizing the MFCC featur@sly the acoustic aspect of intelligibility instead of thege

with various block sizes does not change the performangiéive aspect of prediction. SUS are usually constructedhfr
significantly € 1%). Similarly, the performance of the LPSimple grammatical templates.

residual remains unaffected by local temporal randonumati 1) HSR setup:For our experiments, we used the 20 SUS
from EMIME bilingual database [38], with a vocabulary size

of 88 words. The list of sentences is given in Table VI. In this
) ) ) database, there are 7 female and 7 male native english speake
So far we have investigated LP residual and deep neural ngli different accents. We chose one female and one male
work based features for speaker diarization. We now procegghaker, resulting in 10 sentences being spoken by femdle an
to make an analysis of the privacy aspects. _ 10 being spoken by male speakers. The speech from the close
To our knowledge, quantitatively analysis of audio fea&;“r%lking microphone, sampled at 22 kHz, was downsampled to
for privacy has not been studied before in the literaturg¢g |,
Wyatt et al. [3] and [11] indicate that the main concems \ye generated the following features from this audio: (a)
with respect to privacy in audio are the reconstructibitify 5sejine MFCC features; (b) MFCC representation 8f 8
an m_telllglble speech signal and of t_he linguistic infotroa. order LP residual; and (c) MFCC representation of deep heura
In this paper, we explore two possible ways to analyze thigwork features. Upon reconstructionve now have audio
notion of privacy: human speech recognition rates (HSR) gfm the 3 sets of features for each of the 20 sentences. Since
the synthesized speech from the privacy-sensitive fea@mé o, 60| of listeners were mostly non-native in english, we
autom_aUc speech recognition (ASR) rates using thg Prvacyyded the raw waveform as thé &et of audio (or 4 systen
sensitive features. ASR accuracies are generally reportée ¢, the 20 sentences. This is done to estimate the upper bound
literature using phoneme recognition rates or word red@@ni o performance that can be achieved by non-native listeners
rates. Since the latter is more complex for assessing rivac gecause we expected few listeners (and eventually had 27),
due to the differences in vocabulary sizes, dictionari®sl ajn the tradeoff between reasonable estimates of inteiligib
language models, we prefer phoneme recognition studies. yersys repeating each sentence as few times as possible, we
chose the following strategy: we divided the 80 utteran@és (

A. Analysis using human speech recognition sentences 4 systems) into 2 groups of 40 each. Each group
One way to assess privacy in audio is to estimate ﬂqé 40 utterances were obtained with a Latin square design to
intelligibility of speech synthesized from features. I tteld maximize coverage of the four systems and the 20 sentences.
In, order that listeners do not get used to a predetermined

of HSR, one aspect of the test is whether the vocabula% ¢ audio f the 4 . domized th
is open set or closed set. Another aspect of these studie§ §guence of audio lrom the 4 Systems, we randomize N
quences in both groups. Each listener was assigned to one

whether one tests on individual units such as nonsense syﬁg

bles or on fully-formed sentgnces. Furthgrmore, fullyried 2We obtained a noise-excited reconstruction from MFCC usiedRASTA-
sentences could be semantically meaningful sentences sMa library: http://www.ee.columbia.edwtpwe/resources/matlab/rastamat/

VIII. A NALYSIS OF PRIVACY
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of the two groups and she/he listened to 40 utterances with d€quences corresponding to the utterances for each graep we
utterance from each system. Each listener, thereforenkst randomized and therefore there is no systematic bias teward
to each sentence twice. privacy-sensitive or the non privacy-sensitive systems.

A web-based application was setup so that listeners could
listen using their headphones or speakers. After listeriimaey . . . .
had to type-in the sentences they heard. They could complgt'eAnaIySIs using automatic phoneme recognition
the task in multiple sessions. Listeners were asked toicestr Another approach to assessing linguistic privacy is to
the number of times they could listen to an utterance tosiudy automatic phoneme recognition accuracies for privac
maximum of 5 times. If an utterance was not intelligible aftesensitive and MFCC features. In our experiments, phoneme
5 listening tests, they were asked to type “Not intelligible recognition studies were performed on TIMIT database. Ex-
Out of the 27 listeners who did the test, one was a natiggriments were conducted excluding the ‘sa’ dialect sewten
english listener. The training data consists of 3000 utterances from 375 speak

2) HSR experimentsBefore scoring, we preprocessed th€rs, cross-validation data consists of 696 utterances 8@m
listeners’ typed-in responses. This was done to ensure tRRgakers, and the test data set consists of 1344 utteranges f
spelling mistakes or punctuation marks do not show up 488 speakers. The phoneme set corresponds to the stantlard se
errors in intelligibility. For example, some listeners dseof 39 units [28].
ellipsis or “?” to indicate words they missed. These were 1) Phoneme  recognition  system: Features  are
removed from the responses. We used the HResults tool [P8¢an/variance normalized across the training data set.
to score the number of words correctly recognized. Thisés tA three layered MLP is used to estimate the phoneme
ratio of number of correct words to the total number of wordgosterior probabilities. MLP consists of 1000 hidden units

The results of scoring the features are listed in Table Will. land 39 output units with softmax nonlinearity, represemtin
addition, we also obtained an ordering of listeners acogrdithe phoneme classes. The input layer uses a temporal context
to the percentage of words correctly recognized. In Table VPf 9 frames on the features generated at a frame rate of 100
the two rows correspond to the performance of the 4 systehig. For all the features studied (baseline MFCC, LP residual
scored over all the listeners, or scored only over the top ¥8th MFCC representation, deep neural network features
best performing listeners. The four columns indicate perfovith MFCC representation), the input to the MLP was 13-
mance corresponding to the 4 systems: (a) raw waveform; @mensional MFCC with delta and acceleration coefficients.
reconstruction from MFCC; (c) reconstruction from MFCChe MLP is trained using standard back propagation algorith
representation o§*" order LP residual; and (d) reconstructiorPy minimizing the cross entropy error criterion. The phoeem

from MFCC representation of deep neural network featuregecognition experiments are performed using the hybrid
HMM/MLP system reported in [18]. The phoneme sequence

TABLE VI is decoded using the Viterbi algorithm, where each phoneme

HSR performance of the 4 systems over all the listeners artheetop 10 . . .
best performing listeners. The four columns indicatingf@enance is represented by a left-to-right, 3-state HMM, enforcing a

correspond to raw waveform, reconstruction from MFCC, fiHaCC minimum duration of 30 ms. The emission likelihood in each

representation o8*" order LP residual, and from MFCC representation of of the three states is the same. and is derived from the output
DeepNN features, respectively. ’

of the MLP.
l [ Wav [ MFCC | LPRMFCT [ DeepNNMFCT | 2) Phoneme recognition experimentBigure 11 plots the
Total | 8521 713 13.7 5.8 recognition accuracies with respect to increasing LP arder
Top-10 | 91.8 | 79.4 289 16.9 using the phoneme recognition system. It can be observed tha

as the LP order increases the recognition accuracies drep. W

It can be seen that for both sets of listeners (total, and topete that an increase in LP order by 2 can allow an extra
10), listening to the raw waveform vyielded the best perforomplex conjugate pole pair to be modeled, possibly modelin
mance. Reconstruction from MFCC also yielded very goath extra formant. Since lower order formants generallyycarr
intelligibility, i.e., around71% for all the listeners and aroundmore linguistic information, one could expect the perfonee
79% intelligibility for the top-10 listeners. In general, leting to drop when the LP order is increased.
to speech reconstructed from the MFCC representatigii’of ~ From Figure 11, we observe that the LP residual with
order LP residual appears much less intelligible, with atbu a prediction order of 8, yields arountb% lower phoneme
50 % to 60% drop in intelligibility. This could partially be due recognition accuracy in comparison with the MFCC features.
to the loss of the first formant, which carries more linguistiWe remark that the phoneme recognition experiments using
information [12]. In addition, there is a further loss inanf simple features proposed in [7], namely, spectral flatness,
mation from LP residual by representing it using MFCC. Deegnergy, zero-crossing rate, and kurtoSgZKand the features
neural network based features yield the lowest intelliigipi proposed in [3], hamely, autocorrelation and relativectiad
yielding aroundr% intelligibility over all listeners and around entropy @H), with delta and acceleration coefficients, and
17% over the top-10 listeners. with a 9 frame context, yielded accuraciestof8% and31.2%

Furthermore, since listeners listen to each sentence jtwicespectively. The performance of aff &rder LP residual lies
some listeners reported that this led to them performingebetbetween that of the simple features and the MFGE2%).
on systems having lower intelligibility (having alreadgténed Phoneme recognition experiments using the MFCC repre-
to a cleaner version before). On the other hand, the twentation of deep neural network features yield&d%. This
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o phoneme information in the short-term spectrum of the digna
A second MLP was utilized to reconstruct the spectrum. The
reconstructed spectrum was used as a phoneme filter. In terms
of diarization performance, this approach performed $igh
worse than the LP residual based approach. However, these
oor features proved to be more privacy-sensitive then residual
features. Future work on this approach will investigate im-
provements such as training the deep MLP on meeting data.
5) Putting privacy and diarization togetheiVe attempted
to quantify the abstract notion of privacy in audio through
phoneme recognition and intelligibility studies. On theeon
hand, standard spectral features such as MFCC yielded,
not surprisingly, good linguistic reconstruction. Proposap-
proaches to privacy-sensitive audio feature extracti@hdgd
substantially lower linguistic performance compared te th
Fig. 11. Phoneme recognition accuracy for the residual based featur \\EFCC features.
yarious LP %rgegﬁozgnréM;Z(‘:uTrgg%s( shows the LP order while the y-\y/hjle the diarization performance of the LP residual fea-
tures are similar to the baseline MFCC features, the perfor-

recognition accuracy is much lower than thatséf order LP Mance of the deep neural network based features were about
residual. 2% lower than MFCC features. However, the effect o2’

We then performed recognition experiments for the obfugIOp in diarization performance on socially relevant tasksh
cation method or8t" order LP residual. We note here thafS dominance estimation have been shown to be minimal, if
randomization can be performed for (a) only test data; or (B}Y [39]- _ _
both train and test data with different seeds. The diffeeenc ©) Future Work: Nonverbal cues in audio have been ex-
between the two stems from the fact that in the second caBl9red in developing computational models of face-to-face
the MLP has been trained with noisy targets. While randorfiman behavior. However, most work done in this domain
ized training £9.3%) improves the performance marginally®® from meeting room audio. Our future work will utilize
over clean training 48.2%), we still observed a substantialth® Privacy-sensitive audio features in this paper to aaptu
drop in phoneme recognition performance over residuaFitsd @l-world audio. Patterns of speech/nonspeech detedtion
Although our HSR experiments in the previous section show@§Zation, and indoor/outdoor classification can then bedus
that reconstructing speech from MFCC representatiotbf [0 analyze social interactions.
order LP residual is unintelligible, this result suggestatt
randomization can be used to enforce further privacy.

Phoneme recognition accuracy (%)

L s L L L L
2 4 6 8 10 12 14 16 18 20
Linear Prediction Order
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In this paper we presented two different approaches NCCR) IM2.
privacy-sensitive audio features for robust speaker zh#ion,
namely, LP residual based and and deep neural network
based. We systematically investigated both sets of feafore [1]
speaker diarization in single and multiple distant micrapd
conditions. The SDM scenario, however, is more relevant to
portable audio recorder scenario. The notion of audio pyiva
is interpreted as linguistic privacy. We now summarize cay k [3]
conclusions.

IX. SUMMARY AND CONCLUSION
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