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Abstract

One of the main challenge in non-native speech recognition is how to handle acoustic variability
present in multi-accented non-native speech with limited amount of training data. In this paper, we
investigate an approach that addresses this challenge by using Kullback-Leibler divergence based hid-
den Markov models (KL-HMM). More precisely, the acoustic variability in the multi-accented speech is
handled by using multilingual phoneme posterior probabilities, estimated by a multilayer perceptron
trained on auxiliary data, as input feature for the KL-HMM system. With limited training data, we then
build better acoustic models by exploiting the advantage that the KL-HMM system has fewer number of
parameters. On HIWIRE corpus, the proposed approach yields a performance of 1.9% word error rate
(WER) with 149 minutes of training data and a performance of 5.5% WER with 2 minutes of training
data.

1 Introduction

Non-native speech recognition is a challenging task for reasons such as, a) there are large number of non-
native accents, and b) usually only a small amount of non-native speech data is available for training.
In literature, several methods based on acoustic model adaptation, pronunciation model adaptation, or
both have been proposed to improve automatic speech recognition (ASR) system performance on non-
native speech. In acoustic model adaptation based approaches, the native language acoustic models are
pooled and adapted to the non-native speaker/accent using small amount of non-native speech. In the
framework of hidden Markov models/Gaussian mixture models (HMM/GMM) system, traditional adap-
tation methods such as, maximum likelihood linear regression (MLLR), maximum a posteriori (MAP),
and model interpolation have been used Segura et al. (2007); Bouselmi et al. (2008). While, in the
framework of hybrid hidden Markov modesl/multilayer perceptron (HMM/MLP) system, linear hidden
network (LHN) based adaptation has been used to improve the performance Gemello et al. (2007). In
the area of pronunciation modeling, attempts have been made to detect and correct the non-native pro-
nunciations using small amount of non-native speech data Bouselmi et al. (2006).

Kullback-Leibler divergence based HMM (KL-HMM) is a recently proposed acoustic modeling ap-
proach where the acoustic class conditional probabilities are directly used as feature observation Aradilla
et al. (2008); Aradilla (2008). We refer to these features as posterior features. As described in detail
in Section 2, in this approach the emission distribution of each HMM state is modeled by a multinomial
distribution, and the cost function used to optimize the multinomial distribution is based on Kullback-
Leibler divergence.

The KL-HMM system provides flexibilities such as transfer learning, fewer number of parameters,
choice of acoustic classes (i.e., posterior features), and use of alternate subword units such as, graphemes.
These flexibilities can be exploited to address the challenges involved in non-native speech recognition.
In that regard, this paper investigates

1. an approach where the acoustic variation in multi-accented speech is modeled through the use of
universal phoneme class conditional probabilities as posterior features in the KL-HMM system. These
features are estimated by training an MLP on (auxiliary) multilingual speech data. We compare it
against the approach where the MLP is trained on monolingual speech data, in our case English
data.

2. the use of graphemes as subword units and compare it with the standard approach of using
phonemes as subword units. The use of graphemes eases pronunciation lexicon generation. In
addition, it could avoid the necessity to generate multiple pronunciation variants.
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3. fast acoustic model training/adaptation using small amounts of non-native speech data by exploit-
ing the flexibility that KL-HMM system has fewer number of parameters, especially when the pos-
terior extractor is trained on auxiliary data.

Experimental studies conducted on the HIWIRE corpus Segura et al. (2007) shows that a) universal
posterior features yield better performance than monolingual posterior features, b) systems based on
phoneme subword units and grapheme subword units perform equally well, and c) a ”reasonable” ASR
performance could be achieved with training data as low as two minutes speech.

The remainder of the paper is organized as follows. Section 2 describes the KL-HMM system. Section 3
then motivates the use of KL-HMM for non-native speech recognition. Section 4 describes the different
systems that are investigated and experimental results are presented in Section 5. Finally, Section 6
summarizes and concludes the paper.

2 Kullback-Leibler divergence based acoustic modeling

As mentioned briefly earlier in Section 1, KL-HMM directly use the acoustic class conditional probabilities
as features, i.e. posterior features Aradilla et al. (2008); Aradilla (2008). Posterior features can be seen as
a data driven feature. More precisely, posterior feature extraction involves the transformation of standard
acoustic feature vector xt of dimension F,

xt =

xt(1)...
xt(F)


at time frame t into a class conditional probability vector zt of dimension K,

zt =

zt(1)...
zt(K)

 =

P(c
1|xt, θ)

...
P(cK|xt, θ)


where, {c1, · · · , cK} denotes the acoustic classes and θ the parameters of the model/classifier that is used
to estimate the probabilities. The model/classifier can be a well trained discriminative classifier such as,
an MLP or a generative classifier such as, GMM1.

HMM: 

Associated 
multinomial 
distributions: 

q2 q1 q3 end start 

yq1(1) 
. 

yq1(K) 

yq2(1) 
. 

yq2(K) 

yq3(1) 
. 

yq3(K) 

a11 a22 a33 

a01 a12 a23 a34 

Figure 1: Each state is parametrized by a multinomial distribution of dimensionality K. The transition
probabilities are also parameters of the HMM.

Formally, in the KL-HMM system, zt is the feature observation and each state is parametrized by a
multinomial distribution. Figure 1 illustrates a KL-HMM consisting of three emitting states q1, q2, q3

and two non-emitting start and end states. Each emitting state qd : d ∈ {1, . . . ,D}, where D is the total
number of states, is parametrized by a multinomial distributiony

qd

(1)
...

yq
d

(K)


1Note that GMM can be trained discriminatively, but then they may not be truly generative models
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with K being the dimensionality of the posterior feature. The KL-HMM acoustic model is completely
parameterized by ΘKL = {Y,A} , where Y = {yq

1
, · · · ,yq

D

} is the set containing state multinomial
distributions and A is the state transition probability matrix.

2.0.1 Training

Let us assume that we have access to a set of T training frames along with labels, i.e:

• a sequence of posterior probability feature vectors Z = {z1, · · · , zT }.

• transcription in terms of subword units, e.g. phonemes.

Then, the training phase involves the estimation of ΘKL by optimizing a cost function based on the
Kullback-Leibler (KL) divergence. More precisely, this is done by Viterbi expectation maximization train-
ing algorithm which minimizes

arg min
Q

T∑
t=1

[f(yqt , zt) − log(aqt−1,qt
)] (1)

where, qt ∈ {q1, · · · ,qD} and Q is the set of all possible state sequences {q1, · · · ,qT } allowed by the
HMM corresponding to the training frames. The local score f(yqt , zt) is the KL-divergence between the
multinomial state distribution yqt and the observation posterior feature vector zt.

2.0.2 Decoding

Given a sequence of posterior feature vectors Zb = {z1, · · · zTb } corresponding to a test utterance b and
the set of trained parameters ΘKL = {Y,A}, the decoding phase involves recognition of hypothesis m̂b as
follows:

m̂b = arg min
Qm

Tb∑
t=1

[f(yqt , zt) − log(aqt−1,qt
)]

where, Qm represents the set of all possible state sequences allowed by hypothesis m.
KL-divergence being an asymmetric measure, the local score f(yq

d

, zt) can be estimated as:

fKL(y
qd

, zt) =
K∑

k=1

yq
d

(k) log
yq

d

(k)

zt(k)
(2)

fRKL(y
qd

, zt) =
K∑

k=1

zt(k) log
zt(k)

yq
d(k)

(3)

fSKL(y
qd

, zt) =
1
2
fKL(y

qd

, zt) +
1
2
fRKL(y

qd

, zt) (4)

Through the use of different local scores, KL-HMM establishes a framework that unifies different types of
acoustic models, such as discrete HMM and HMM/MLP (Aradilla, 2008, Chapter 6). For instance, when
using MLP for posterior feature extraction the system using the local score fKL(y

qd

, zt) can be linked
to HMM/MLP systems. While, the system using the local score fRKL(y

qd

, zt) can be linked to discrete
HMM systems, where the MLP acts as a vector quantizer Aradilla (2008). ASR studies until now have
shown that fSKL(y

qd

, zt) yields the best system Aradilla et al. (2008); Aradilla (2008); Magimai.-Doss
et al. (2011).

In this work, as done in the original work Aradilla (2008), an MLP that is trained to classify context-
independent phonemes is used. The choice of MLP for posterior feature extraction can be motivated
by reasons such as, a) a well trained MLP can directly estimate a posteriori probabilities of output
classes Bourlard and Morgan (1994), b) discriminative training can provide invariance towards undesir-
able variabilities such as, speaker and environment, c) posterior feature estimation could be improved by
combining multiple feature streams at MLP output level Valente (2009) or using hierarchical approaches,
and d) MLPs can be effectively employed for transfer learning Toth et al. (2008), i.e. they can be trained
on auxiliary data and used for different tasks.
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3 Motivation to use KL-HMM for Non-native Speech Recognition

KL-HMM provide certain advantages which can be effectively exploited for non-native speech recognition
such as,

1. Transfer learning: the posterior feature estimator could be trained on auxiliary data. In the con-
text of non-native speech recognition, this can be effectively used to pool resources from multiple
databases and languages.

2. Choice of posterior feature space: the posterior feature space can be phonemes that are specific to
a language, universal phonemes, or articulatory features. Thus, KL-HMM systems provide a frame-
work to introduce multilingual knowledge. This may be essential for improving the performance of
ASR system on multi-accented non-native speech. Along this direction, in this work we propose to
use universal phonemes as acoustic classes.

3. Choice of subword units: as the phonetic information is captured via posterior feature space, KL-
HMM allow the possibility to use alternate subword units, such as graphemes. One of the main
advantage of using graphemes as subword units is that it avoids the need to build a lexicon. In
KL-HMM systems, when graphemes are used as subword units, the parameters of the system, i.e.
K dimensional multinomial distribution per state, can capture the relation between written and
spoken form of the language Magimai.-Doss et al. (2011). This could be useful in the context
of non-native speech recognition. For instance, in Bouselmi et al. (2006) graphemic constraints
were introduced in the phonetic confusion because the writing of uttered words may influence the
pronunciations produced by non-native speakers. Thus, in addition to phonemes, in this paper we
also investigate the use of graphemes as subword units for non-native speech recognition.

4. Fewer number of parameters: As described earlier in Section II, each emitting state is modeled
by a K dimensional multinomial distribution. Thus, the KL-HMM system has fewer number of
parameters that needs to be estimated during training. This suggests that KL-HMM systems may
require less training data to adapt to multiple accents. We also explore this direction in this paper.

4 Experimental setup

In this section, we first describe the datasets we used followed by the details about posterior feature
extraction and the investigated systems.

4.1 Dataset

We use HIWIRE Segura et al. (2007) for our experimental studies. HIWIRE is a non-native English speech
corpus that contains English utterances pronounced by natives of France (31 speakers), Greece (20 speak-
ers), Italy (20 speakers) and Spain (10 speakers). The utterances contain spoken pilot orders made up of
133 words and the database also provides a grammar with a perplexity of 14.9. The phoneme dictionary
is in CMU format and makes use of 38 ARPABET2 phonemes. The grapheme dictionary was transcribed
using 29 context-independent graphemes including silence. The abbreviation words present in the dic-
tionary were transcribed using a look up table specifying the way individual letters are pronounced as
shown in Table 1.

Table 1: Example of lookup table entries used for transcribing letters in the abbreviations, for grapheme
dictionary

Letter Grapheme pronunciation
D [D] [E] [E]
F [E] [F]
I [E] [Y] [E]
S [E] [S]
T [T] [E] [E]

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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The phoneme dictionary consists of pronunciation variants, i.e. multiple pronunciations for some
words, whereas grapheme dictionary consists of single pronunciation for each word. HIWIRE consists of
100 recordings per speaker, of which the first 50 utterances are commonly defined to serve as adaptation
data and the rest of the 50 utterances as testing data.

For training posterior feature extractors i.e. MLPs, we used SpeechDat(II) 3 data. More specifically,
we used data from the British English, Italian, Spanish, Swiss French and Swiss German SpeechDat(II)
databases. All SpeechDat(II) databases contain native speech. Furthermore, the data is also gender-
balanced, dialect-balanced according to the dialect distribution in a language region, and age-balanced.
The databases have been recorded over the telephone at 8 kHz and are subdivided into different corpora.
We only used Corpus S, that contains ten read sentences from each of the 2000 speakers per language. To
split the databases into training (1500 speakers), development (150 speakers) and testing (350 speakers)
sets, we used the standard procedure that maintains the gender-, dialect- and age-distributions of the
database, as described in Imseng et al. (2010). Only the training portion was used for this study.

4.2 Posterior features

As discussed in Section 2, KL-HMM use posterior probabilities of acoustic classes, i.e. posterior features as
feature observation. To estimate these features, we train MLPs to classify context-independent phonemes
using Quicknet4 software. The feature input to the MLPs is 39 Mel-Frequency Perceptual Linear Prediction
(MF-PLP) cepstral features (C0−C12+∆+∆∆) with a temporal context of four preceding frames and four
following frames. In this paper, we investigate posterior features estimated using two different source
phoneme sets in SAMPA5 format.

• English phoneme set: we use only the British English data to train a MLP to estimate English SAMPA
phoneme posteriors. We denote this MLP as MLP-EN.

• Universal phoneme set: since all the SpeechDat(II) dictionaries use SAMPA symbols, we merged
phonemes that share the same symbol across languages to build a universal phoneme set. We then
train an MLP to estimate universal phoneme posteriors using the data from five different European
languages (British English, Italian, Spanish, Swiss French and Swiss German). We denote this MLP
as MLP-UNI.

The number of parameters in each MLP was set to 10% of the number of available training frames and
the MLPs were trained with cross entropy error criteria. For more details about the MLP training the
reader is referred to Imseng et al. (2011). Table 2 summarizes the posterior feature extraction systems.

Table 2: Overview over all the phoneme posterior estimators. The total amount of training data as well
as the phoneme set including the number of phonemes K are given.

Phoneme set K Data (in hours)
MLP-EN SAMPA English 45 12.4
MLP-UNI SAMPA universal 117 63.0

After training, MLP-EN and MLP-UNI were used to extract English posterior features and universal
posterior features, respectively on the HIWIRE corpus, and used as feature observations for the KL-HMM
system. It is to be noted that since HIWIRE was recorded at 16 kHz and SpeechDat(II) was recorded at 8
kHz, the HIWIRE recordings were down-sampled to 8 kHz before extracting the MF-PLP features.

4.3 Systems

We study non-native speech recognition in the framework of KL-HMM using two types of subword units,
namely, phonemes and graphemes. The KL-HMM are trained with either English phoneme posterior
features estimated by MLP-EN or universal phoneme posterior features estimated by MLP-UNI. Each sub-
word unit is represented by a three state left-to-right HMM. The multinomial state distributions are
estimated by optimizing an objective function based on a symmetric variant of the Kullback-Leibler di-
vergence (as discussed in Section 2) over the adaptation set of the HIWIRE corpus. The insertion penalty

3http://www.speechdat.org/SpeechDat.html
4http://www.icsi.berkeley.edu/Speech/qn.html
5http://www.phon.ucl.ac.uk/home/sampa/
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and the language scaling factor were tuned on the adaptation set of the HIWIRE corpus. We study
both context-independent subword unit (mono-phoneme/mono-grapheme) and word internal context-
dependent subword unit (tri-phoneme/tri-grapheme) based systems. In the case of context-dependent
subword unit based system, for the unseen contexts the corresponding context-independent subword unit
models were used. Table 3 gives an overview of the investigated systems.

Table 3: Overview of the different systems investigated. We combine each feature type with each word
unit type.

System Subword unit Features
PHONE-EN Phonemes English posteriors
GRAPH-EN Graphemes English posteriors
PHONE-UNI Phonemes Universal posteriors
GRAPH-UNI Graphemes Universal posteriors

5 Results

We first present results for different features and subword units and then for low amounts of adaptation
data.

5.1 Varying posterior features and subword units

Table 4 shows the word error rates (WERs) on the test set of the HIWIRE database for context-
independent subword unit systems. Results reveal that phoneme subword units yield better performance
than grapheme subword units. This is not surprising as the correspondence between phoneme and
grapheme is weak in English language. As a result, the HMM of context-independent grapheme sub-
word unit captures only gross phonetic information in their multinomial state distributions, and are thus
ambiguous Magimai.-Doss et al. (2011). Universal phoneme posterior features yield significantly better
performance than English phoneme posterior features for both phoneme and grapheme subword units.

Table 4: Word error rates on various languages of HIWIRE database using context independent subword
units (mono-phonemes and mono-graphemes). FR denotes French accent, GR denotes Greek accent, IT
denotes Italian accent, and SP denotes Spanish accent.

System FR GR IT SP Total
PHONE-EN 4.8 3.3 6.0 5.5 4.8
GRAPH-EN 13.0 10.7 14.0 13.9 12.8
PHONE-UNI 2.6 1.8 3.8 3.5 2.8
GRAPH-UNI 10.2 6.1 8.6 9.2 8.6

Table 5 shows the WERs on the test set of the HIWIRE database for context-dependent subword unit
systems. Interestingly, grapheme-based systems yield same performance as phoneme-based systems. For
the English language, it has been observed that grapheme-based systems may require longer subword
contexts to be modeled to effectively disambiguate between phonemes, and achieve performance as
good as phoneme based system Magimai.-Doss et al. (2011). However, in this case, single preceding and
single following context is sufficient. The main reasons for this trend could be that a) longer context
may be more important for native speech than non-native speech which could contain more variation
at phonetic level. In such a case, a smaller grapheme context could be sufficient. This point needs
further investigation and is part of our future work. b) HIWIRE task is relatively constrained task when
compared to large vocabulary tasks. As already observed with context-independent subword unit systems,
universal phoneme posterior features outperform English phoneme posterior features. Thus, signifying
the importance of multilingual features for non-native speech recognition.

5.2 Fast training/adaptation

To investigate the behavior of the KL-HMM system when there is only little amount of training data,
we decreased the amount of adaptation data progressively. The standard adaptation set of HIWIRE
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Table 5: Word error rates on non-native accents of HIWIRE database using single preceding and single
following context-dependent subword unit models. FR denotes French accent, GR denotes Greek accent,
IT denotes Italian accent, and SP denotes Spanish accent.

System FR GR IT SP Total
PHONE-EN 2.2 1.8 4.2 3.0 2.7
GRAPH-EN 2.3 2.2 3.6 2.9 2.7
PHONE-UNI 1.8 1.2 2.5 2.1 1.9
GRAPH-UNI 1.7 1.4 2.5 2.0 1.9

consists of 50 sentences per speaker. We decreased the amount of adaptation data by only taking 40,
30, 20, ten, five and three sentences per speaker. Three sentences per speaker is about ten minutes of
adaptation data. To ensure full coverage in terms of context-independent phonemes and graphemes, we
picked different sentences for the three, five and ten sentences scenario for the phoneme- and grapheme-
based systems, respectively. We went further down and randomly picked utterances until full coverage
of context-independent phonemes and graphemes was achieved. This resulted in three minutes of data.
Instead of randomly picking sentences, we also explored manual utterance selection. This allowed us to
decrease the amount of data to two minutes.

For this study, we trained context-dependent phoneme- and grapheme-based systems using universal
phoneme posterior features. As mentioned earlier in Section 4.3, unseen context-dependent subword
unit models were backed-off to context-independent subword unit models.

Table 6 compares the phoneme- and grapheme-based KL-HMM systems. It can be observed that with
60 minutes or more, the two systems yield same performance. The phoneme-based system is clearly
superior to the grapheme-based system when very little adaptation data is used. As discussed earlier, in
the case of graphemes, contextual modeling is important, especially for languages like English. Therefore,
the grapheme-based system requires more adaptation data than the phoneme-based system.

Table 6: Universal posteriors tri-grapheme and tri-phoneme subwords system performance for different
amounts of data.

Minutes Sentences per speaker Graphemes Phonemes
2 - 21.6 5.5
3 - 13.8 4.4
10 3 5.2 3.9
16 5 5.1 3.2
32 10 3.1 2.5
64 20 2.1 2.0
90 30 1.9 2.0

122 40 1.9 1.9
149 50 1.9 1.9

Figure 2 compares the performances of phoneme- and grapheme-based systems to the results reported
in the literature on the same setup. It can be observed that KL-HMM systems outperforms the MLLR-based
speaker adaptation for all amounts of adaptation data that have been investigated. In Gemello et al.
(2007), two different linear hidden network (LHN) based adaptation approaches have been investigated,
namely, LHN based speaker adaptation and LHN based data adaptation. For the LHN based speaker
adaptation, an extra hidden layer was trained for each speaker separately. While, in the case of LHN
based data adaptation an extra hidden layer was added and trained on the whole adaptation data. It
can be seen that the KL-HMM system clearly outperforms the system based on speaker adaptation and
achieves performance similar to the system based on data adaptation.

Finally, in the literature the best result reported on HIWIRE task is 1.4% WER Bouselmi et al. (2008).
However, this performance has been obtained by a modified setup where, after excluding the data of
the test speaker, the rest of the corpus is used for training/adaptation. In that sense, the performances
achieved with the KL-HMM system can be considered as one of the best.
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Figure 2: We compare the KL-HMM systems with different amounts of adaptation data to previous stud-
ies reported in the literature. The MLLR studies are published in Segura et al. (2007) and the LHN
approaches in Gemello et al. (2007).

6 Summary and Conclusion

In this paper, we investigated how the flexibilities provided by KL-HMM can be exploited for non-native
speech recognition. The main findings from our investigations are summarized as follows,

• KL-HMM framework is able to exploit multilingual information in the form of universal phoneme
posterior probabilities to improve performance on non-native speech.

• Graphemes can be used as an alternative subword unit to phonemes. This could possibly help in
reducing dictionary building efforts.

• KL-HMM could be trained rapidly with small amount of non-native speech data.

• KL-HMM outperform previously reported MLLR-based and LHN-based speaker adaptation tech-
niques on the HIWIRE dataset and yields the same performance as LHN-based data adaptation
technique.

In our future work, we intend to investigate a) the use of articulatory features for non-native speech
recognition, b) the effect of unseen non-native accents, c) longer subword unit context modeling, and d)
approaches to tie context-dependent subword unit models to handle unseen contexts.
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