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Abstract
This paper investigates the usage of prosody for the improve-
ment of keyword spotting, focusing on the highly agglutinating
Hungarian language, where keyword spotting cannot be effec-
tively performed using LVCSR, as such systems are either un-
available or hard to operate due to high OOV rates and poor N-
gram language modelling capabilities. Therefore, the applied
keyword spotting system is based on confidence scores com-
puted as a ratio of acoustic scores obtained in two ways: firstly,
by decoding with an universal background model; and secondly,
by decoding with a keyword model embedded into filler models.
Prosody is used to perform an automatic phonological phrase
alignment for speech, proven to be useful for automatic partial
word boundary detection in fixed stress languages. Several fea-
tures deduced from the phonological phrase alignment are in-
vestigated to rescore baseline confidence scores both in a rule-
based and in a data-driven manner. Results show that in relevant
operating points of the system, a false alarm reduction of 10% -
40% can be reached by the same miss probability rates.
Index Terms: spoken term detection, keyword spotting,
prosody, agglutinating languages

1. Introduction
Keyword Spotting (KWS) or as recently referred to, Spoken
Term Detection (STD) has become a basic task in audio in-
dexing and information retrieval. Keyword spotting can be im-
plemented using various approaches. A basic form of keyword
spotting system can be obtained by using pure phoneme (mono-
phone or triphone) models to build models for keyword terms,
and the same phoneme models can then be used in a hooked-
like architecture to implement both filler and background mod-
els. This kind of KWS is sometimes referred to as acoustic
keyword spotting [1]. The authors will also use this notation for
this kind of KWS system in this paper. The greatest advantages
of such an acoustic KWS system are its simplicity, flexibility
(regarding vocabulary for spoken terms) and fast operation (on-
line, real-time operation is without problems).

Another, very effective way of keyword spotting is to use
Large Vocabulary Continuous Speech Recognizers (LVCSR) to
generate a word lattice, and run keyword detection algorithm on
the lattice. This type of keyword spotting is often referred to as
STD [1]. As a lattice features several concurring hypotheses,
keywords have more chance to pass detected. The keyword de-
tection algorithms used on the lattice range from a simple text
grep to more flexible methods, especially if not a word, but a
sub-word (for example syllable) or phoneme lattice is gener-
ated, and spoken term detection is carried out on these, usually
using the forward-backward algorithm. The advantage of an

LVCSR based KWS is its better performance (in overall mea-
sured performance usually outperforms the acoustic systems),
its drawback is its complexity and slow operation: as real-time
spoken term detection is most often problematic with LVCSR,
only off-line operation is possible. In case of LVCSR based
KWS, out-of-vocabulary (OOV) and rare (low probability in
language models) words are disfavoured or impossible to de-
tect. Although LVCSR systems usually perform better, this is
not true for all operating points and conditions: acoustic KWS
is still a better choice in tasks where OOV rates are high or in
applications requiring flexible or real-time operation, or for ap-
plications requiring low miss probability rates [2].

Some hybrid systems were also proposed to try to combine
the advantages of acoustic and LVCSR-based keyword spotting
[2], yielding sometimes considerable improvement over base-
lines.

For highly agglutinating languages (like Hungarian,
Finnish, Turkish or Arabic languages), LVCSR task is problem-
atic and less effective due to vocabulary and language model
size / coverage problems [3], [4]. For such languages, LVCSR
is characterized by high OOV rates, language modelling is
also impaired by the size of vocabulary. This also means that
LVCSR based spoken term detection is hard to implement for
such languages.

As in current experiments, false alarm rates constitute less
problem than missed keyword occurrences, and as for the very
highly agglutinating Hungarian, LVCSR system is not yet avail-
able, the authors decided to use an acoustic KWS system and
analyse to what extent prosodic information can improve per-
formance of the KWS system.

Previous research on speech prosody revealed that prosody
can be usefully exploited to perform automatic phrasing (a seg-
mentation for phrases) of input speech, where phrases can be
prosodic phrases [5], phonological phrases [6], or even further
down in the prosodic hierarchy, prosodic words [7]. The depth
of this phrasing in terms of the prosodic hierarchy is to some
extent language specific [6]. In several studies, such prosodic
phrasing (or boundary information based on prosody) was suc-
cessfully used to improve speech recognition [8] or understand-
ing [9].

Using prosody in KWS was mainly proposed so far for
the tonal languages, like Mandarin [10], or the non-tonal, but
prosodically very rich Japanese [11]. Yamashita and Mizoguchi
[12] modelled F0 contours of Japanese keywords and used these
patterns to calculate a prosodic penalty for each keyword can-
didate. If prosodic similarity was poor, it resulted in a high
penalty and the keyword was rejected. Their approach reduced
the number of false alarms considerably, however, it strongly
relied on the rich prosody of Japanese, often reflecting even



the word structure of an utterance. Since in the majority of
languages, prosody does not yield so rich information about
word boundaries, and as keywords, even if reflected somewhat
by prosody, may occur in different grammatical role and hence
with quite different prosodic realization, this approach does not
seem applicable in our case. The proposed approach in this pa-
per consists in exploiting phonological phrasing information,
especially as previous research has shown that - at least for
fixed-stress languages, like Hungarian - (phonological) phrase
boundary information can be powerfully used to perform partial
word-boundary detection [6], [8].

This paper is organized as follows: Section 2 presents the
setup of the baseline acoustic KWS system, Section 3 describes
the automatic prosodic phrasing approach. Section 4 presents
two approaches, a rule-based and a data-driven one to improve
KWS performance using prosodic phrase boundary informa-
tion. In Section 5, results are presented and evaluated. Finally,
conclusions are drawn.

2. KWS setup
The chosen baseline KWS system is an acoustic one, that is,
filler and background models are monophone phoneme loops,
and keyword models are constructed from the monophone mod-
els according to keyword pronunciation(s). The operation of
such a system is explained in details in [1]. The reason for us-
ing an acoustic KWS - as already mentioned in the Introduction
- is twofold: first, as the minimization of the ratio of missed
keyword occurrences is more important than reducing radically
false alarm rates, an acoustic KWS can be a better choice [2];
secondly, Hungarian is a highly agglutinating language, which
makes LVCSR based KWS problematic and less efficient (high
OOV rates, poor word probability predictions based on lan-
guage model due to the extreme high number of different word
forms). The more flexibility and faster operation of the acoustic
KWS are additional advantages.

The agglutinating nature of the Hungarian language poses
problems in acoustic KWS, too. For example, in Hungarian,
a single noun might have several hundreds of inflected forms,
most of them being acoustically very similar. The detection of
another form of the same keyword is a false alarm in the strict
sense, but from the user’s point of view, it could be even pre-
ferred that words reflecting other inflected forms of the same
keyword become detected. Therefore, such a keyword spot-
ting system could have two operation modes: in one of them,
keyword spotting is performed in the strict sense, in the other,
keywords are stemmed before keyword spotting. This latter
approach has the drawback that the detection of shorter key-
words can be less accurate (causing more false alarms), but
solves the problems emerging from the variability of inflected
forms. In the present setup evaluated in this paper, keywords
were stemmed. This was done manually, but some tools are
also available to perform stemming in automatic way [20].

Phoneme models used in the KWS system are 3-state
left-to-right monophone Hidden Markov Models (HMM), state
emissions are modelled with 32 component Gaussian Mixture
Models (GMM). Acoustic features are 13 MFCC with first and
second order deltas appended. Models are trained on the Hun-
garian Reference Speech Database [13] (phonetically rich cor-
pus, 332 Hungarian speakers, mostly read speech).

Keyword spotting is performed using two parallel threads:
on one thread, a simple phoneme recognition is executed with
the phoneme loop background model, on the other, the cho-
sen keyword is forced to occur in the utterance embedded be-

tween filler models. The confidence score is computed as the
difference of the log-scores obtained from the two threads, nor-
malised for the length of the keyword.

The KWS test corpus consisted of an extract of a medi-
cal audio archive, containing reports of gastro-esophageal en-
doscopy for 105 patients. The length of the corpus was ap-
prox. 1.3 hours. The selected 50 keywords covered mostly ex-
pressions linked to certain gastro-esophageal diseases or con-
ditions. The investigated keywords occurred in the test corpus
728 times.

3. Automatic phonological phrasing
Automatic Phonological Phrasing (APP) is a segmentation pro-
cess, which identifies phonological phrases (PP) from speech
based on prosodic-acoustic features. The approach for Hun-
garian was presented in details in [6]. Here, a short and basic
overview is provided about the operation of the system, but the
reader is referred to the above reference for more detailed infor-
mation.

3.1. Predicting syntax from prosody

APP is based on features derived from F0 and energy, and yields
a phonological phrase alignment for speech utterances. Accord-
ing to the prosodic structure hypothesis of Selkirk [14], speech
utterances are composed of intonational phrases (IP), which
can be divided into phonological phrases. Phonological phrases
are built up from prosodic words (PW). This means that PPs are
placed between IPs and PWs in the prosodic hierarchy.

The correspondence between prosodic and syntactic struc-
ture - that is, between words in written text and PPs or PWs
in spoken utterances - is close, even if not univocal: mapping
prosody to syntax or vice versa is sometimes ambiguous, but
generally feasible and usable in speech technology applications.
For example, in unit selection TTS, generation (prediction) of
prosody based on syntax works well and gives good quality
synthesized speech in terms of prosody [15], [16]. Mapping
prosody to syntax is less often used, but has also been shown to
improve performance or add extra information in speech recog-
nition and understanding applications, [5], [6], [7]. Neuro-
science research has also confirmed this close relation between
prosody and syntax, as regions of human brain responsible for
the perception or production of syntax and prosody collaborate
closely and overlap with each other [17], [18].

All these results mean that prediction of syntax can be pos-
sible based on prosody, indeed, the used APP in this study has
already been proven to be able to detect a high ratio of syntactic
word boundaries in speech [6] and also to improve automatic
speech recognition [8]. The goal of the present experiments is
to use APP output to improve KWS.

3.2. Setup for the prosodic phrasing

The APP system used in this study is based on the one presented
in [6]. PPs modelled are given in Table 1.

The theoretic prototype of a PP (ms) in Hungarian shows a
smart rise of F0 at the stressed syllable, then a slightly descend-
ing contour follows. As Hungarian is a fixed-stress language
(stress if present can almost always be found on the first syl-
lable), location of the stress within the phonological phrase is
not a distinctive feature for this language. Differences between
the modelled PPs reflect the strength of stress and higher - IP or
utterance - level impact, such as for example continuation rise
(cr), resulting in a high ending. Higher prosodic level impacts



Table 1: Phonological phrases modelled for APP.

Prosodic label Description
co Clause onset PP
ss Strongly stressed PP
ms Medium stressed PP
ce Low clause ending PP
cr High ending (continuation rise) PP
ls Low-stress PP

influence the prosodic properties of PPs, hence, PP modelling
should handle these, and train separate models for such PPs if
needed.

Feature extraction, acoustic-prosodic pre-processing and
the training of PP models is described in details in [6].

3.3. Automatic alignment of phonological phrases

APP operates theoretically like a Hidden Markov Model based
automatic speech recognizer used in unforced segmentation
mode (but features are prosodic ones and the models are those
of the phonological phrases). All these mean that this tool per-
forms automatic segmentation for PPs: detects hypothesized PP
boundaries and classifies the PPs.

During APP, a sophisticated PP sequential model can be
used, which has an identical role to a language model in speech
recognition. For the present study, the rule-based model pre-
sented in [6] was used.

4. Improving KWS using prosody
The basic idea in using PP alignment in KWS is to try to extract
some information which can be used to recompute/improve
baseline keyword confidence scores. A similar approach is pre-
sented in [12], where a prosodic score is computed and then
combined to the baseline acoustic score. Indeed, this approach
is closely related to lattice rescoring used in speech recognition
[21], for example to include prosodic information [8], [9], and
theoretically could be used in LVCSR based KWS too.

Yamashita and Mizoguchi argued against a prosodic phras-
ing based approach in favour of a direct contour modelling for
each keyword, as (i) in Japanese, it cannot differentiate between
acoustically similar, but prosodically strictly different words,
(ii) long compound words might be split into different phrases
and (iii) it does not need global processing [12]. For the present
paper, a phrasing based approach is still considered more advan-
tageous, as ad (i), the majority of languages (including Hun-
garian) is neither tonal nor preserves rich word level prosody
like the Japanese; ad (ii), prosodic phrasing for phonological
phrases is unlikely to split long compounds (whereas phras-
ing for prosodic words usually splits them) [6]; ad (iii) global
prosodic processing is very fast (RTF ∼ 0.01 on standard pro-
cessors), and allows for flexible modelling, i.e. there is no need
for previously prepared prosodic models for the keywords. Fur-
ther on, keywords may occur in different places within the sen-
tence, especially in Hungarian, characterized by free word or-
der, which influences the prosodic properties of keywords too.

Based on the PP alignment, a set of new features was se-
lected and analysed whether it helps KWS. Features are based
mostly on phonological phrase boundaries (PPB) and phono-
logical phrase labels (PPL), presented in Table 2.

Table 2: Features derived for confidence rescoring.

Feature Description
KWCS KW confidence score (from acoustic KWS)
∆Ts Frame shift betw. PPB and supposed KW onset
∆Te Frame shift betw. PPB and supposed KW end
BPPL Label (type) of the best overlapping PP
OLR Part of KW covered by BPPL (%)
IOLR Part of BPPL covered by KW (%)
SILR Part of KW covered by prosodic silence (%)
PPCS Prosodic confidence score of BPPL

4.1. Feature selection

Feature selection is used to identify features with large dis-
crimination power and also those which can be ignored as they
can be regarded irrelevant in the given decision or classification
task. For this research, selection of features was based on Re-
ceiver Operation Characteristic (ROC) curves and the Area Un-
der Curve (AUC) measure, calculated for the ROC. AUC is a
strong predictor of performance, especially in imbalanced data
classification problems, where it can be used for feature rank-
ing. The measurement of the ROC AUC is very simple and
fast compared to other feature selection algorithms [23]. Each
proposed feature was hence analyzed in terms of its keyword
discrimination power in order to discover features that can con-
tribute to statistically significant improvement in KWS perfor-
mance.

Discrimination power measured by ROC AUC is given
in Table 3 for features computed from APP, and also for the
original baseline confidence score used in the acoustic KWS
(KWCS). Features ∆Te, OLR, PPCS were not found to discrim-
inate between keywords and non keywords significantly better
than chance, and hence are not listed in Table 3.

Table 3: Discrimination power of APP derived features (AUC).

Feature ROC AUC Remark
KWCS 0.931 baseline
∆Ts 0.630
BPPL 0.588 labels mapped to scores
IOLR 0.652
SILR 0.808

Not surprisingly, the highest AUC was found for KWCS,
that is, the keyword confidence score of the baseline acoustic
KWS system. Out of the features reflecting phonological phras-
ing information, SILR was found to be of good discrimination
power. This feature reflects what percent of a keyword can-
didate is covered by silence detected on prosodic features as
part of the phonological phrasing. Performing a deeper analy-
sis revealed that a considerable part of false keyword candidates
were supposed to occur around pauses, PP or rather IP endings
or parts of speech corrupted by speaker or background noises,
as these are the parts of the audio signal where keywords can
be aligned at the lowest cost by the acoustic KWS. APP is a
robust silence detector, moreover, often truncates glottalized,
low-energy phrase endings and detects silence instead [6]. This
means that this property, disadvantageous in other applications,
might contribute to unveil a part of false alarms in KWS.

Regarding the coincidence between PP boundaries and key-
word endings, assessed by feature ∆Te, it is possible that the



applied keyword stemming is responsible for the weak discrim-
ination power, as in case of stemming, only the initial part of a
word is regarded to be the keyword, while phonological phras-
ing, if it is really a good predictor for word-boundaries as found
in [6], still refers to the end of the original, inflected form of
the word. In contrast, ∆Ts showed some, although not re-
ally high discrimination power. This can also be linked to the
word-boundary prediction capabilities of PP boundaries, how-
ever, the uncertainty of the word-boundary prediction in terms
of exact localization in time, equivalent typically to 1-3x aver-
age phoneme length seems to be more disturbing in KWS than
in standard speech recognition (cf. [8]). The similar discrimi-
nation power of feature IOLR can be explained also with coin-
cidence between phonological phrasing and word boundaries.

Although any of the features computed from APP is a
weaker standalone classifier than KWCS alone, combining them
can lead to KWS performance improvement if keywords, or a
part of keywords, missed by one feature can be detected by an-
other; or if a false keyword detected based on KWCS can be
rejected based on them. This is investigated in next sections.

4.2. Rule based approach

As the number of features is low, a rule-based approach was
also considered, even if it has some risk of overspecialisation.
Features found discriminative were linearly combined to KWCS
with tunable weight parameters. Weights were tuned on a devel-
opment set, separated from test data, representing approx. 25%
of all utterances.

4.3. Logistic regression based approach

Logistic regression is a type of regression suitable for predict-
ing the actual value for a binary dependent variable, based on
one or more independent variable(s) [24]. In contrast to linear
regression, logistic regression uses the logit function, charac-
terized by an ‘S’ shape (similar to sigmoid function), which
makes it a better predictor if the dependent variable is binary
and hence not normally distributed. In KWS, this can be used
to predict whether a keyword is present in the speech or not,
that is, to generate a confidence score based on features derived
from prosodic phrasing. Adding the baseline keyword confi-
dence score from the acoustic KWS to the set of independent
variables X will result in a combination of the baseline score
and prosodic measures. The estimated new confidence score,
Π(X) is then computed from the following equation:

Π(X) =
1

1 + e−
∑K

k=0
xkβk

. (1)

Logit parameters (β0 . . . βK ) are usually estimated by ML ap-
proach, however, in case of multicollinearity or few data, this
estimation is not convenient. As an alternative, ridge regression
estimation method can be used [25]. This latter was used in the
presented experiments too. Logit parameters were estimated on
approx. 25% of the data.

5. Results
Results are evaluated using DEtection Trade-off (DET) curves
[22], commonly used for the evaluation of KWS systems. Equal
Error Rates (EER) were also determined. DET plots are shown
in Fig. 1, whereas EER for the investigated setups were as fol-
lows: 13.19% for the baseline system, 12.15% and 12.04% for
the improved systems for the rule based and the logit approach,

Figure 1: Detection Trade-off curves for baseline and improved
KWS.

respectively. Analyzing the DET curves show that phonolog-
ical phrasing based features significantly improved KWS per-
formance, both in the rule based and the logit approach. The
logit approach performed better although the difference com-
pared to the rule based one was not significant. DET curves
show significant improvements for operating points defined by
miss probability Pmiss > 0.05, where a false alarm reduction
ranging 10-40% was reached.

6. Conclusions
This paper addressed the use of phonological phrasing to im-
prove keyword spotting. As the target language was the highly
agglutinating Hungarian, where LVCSR based spoken term de-
tection is problematic, an acoustic KWS system was used. Sev-
eral features computed based on the phonological phrasing were
analyzed in terms of their discrimination power for KWS. Fea-
tures related to phonological phrase start points compared to
keyword candidate start points, keyword candidate coverage by
the phonological phrasing and partial coverage of candidates
by prosodically detected silence were found to be discrimina-
tive features. Using these to recompute confidence scores gave
significant performance improvement in KWS. There was no
significant difference between the rule based and the logistic re-
gression based rescoring approach for the selected task. Results
showed up to 40% reduction in false alarm probability in oper-
ation points defined by the same miss probability. As results of
previous studies proved that phonological phrasing based lattice
rescoring yields improvement in speech recognition and as cur-
rent findings prove that phonological phrasing can contribute
to improve KWS, a similar approach used for LVCSR lattice
rescoring in KWS may also improve performance, however, this
issue could not be investigated for Hungarian given the lack of
a real LVCSR system.
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[9] Nöth, E., Batliner, A., Kiessling, A., Kompe, R. and Niemann,
H., “Verbmobil: the use of prosody in the linguistic components
of a speech understanding system”, IEEE Trans, ASSP, Vol. 8, pp.
519-532. 2000.

[10] Chen, Yeou-Jiunn J., Wu, Chung-Hsien H. and Yan, Gwo-Lang
L., “Utterance verification using prosodic information for Man-
darin telephone speech keyword spotting” IEEE International
Conference on Acoustics, Speech, and Signal Processing, 1999.
vol 2. pp- 697-700, 1999.

[11] Ida, M. and Yamasaki, R., “An evaluation of keyword spotting
performance utilizing false alarm rejection based on prosodic in-
formation”, Proceedings of the 5th International Conference on
Spoken Language Processing, Sydney, Australia, 1998.

[12] Yamashita, Y. and Mizoguchi, R., “Keyword spotting using f0
contour matching”, Proceedings of 5th Conference on Speech
Communication and Technology (Eurospeech ’97), volume 1, pp.
271-274, 1997.

[13] Vicsi, K., Kocsor, A., Teleki Cs. and Tóth, L., Beszédadatbázis
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