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Abstract

This document summarizes adaptation experiments done on French MediaParl corpus and other French cor-
pora. Baseline adaptation techniques are briefly presented and evaluated in the MediaParl task for speaker
adaptation, speaker adaptive training, database combination and environmental adaptation. Results show that
by applying baseline adaptation techniques, a relative WER reduction of up to 22.8% can be reached in French
transcription accuracy. For the MediaParl task, performance of systems trained on directly merged databases
and of systems trained on databases combined via MAP adaptation did not differ significantly when large
amount of data was available. During the experiments, French data recorded in Switzerland behaved in a
similar way compared to French data recorded in France, which suggests that French spoken in Valais is close
to the standard French spoken in France, and differencies in ASR accuracies between models trained on Swiss
MediaParl and on French BREF are more likely caused by environmental factors or more spontaneity in speech.

1 Introduction

MediaParl is an Idiap project financed by the Parliament of the canton of Valais in Switzerland. The goal of the
MediaParl project is to provide speech recognition for Swiss languages initially for parliament data available
from recordings at the Valaisian Parliament. These recordings are structured into the MediaParl database, a
bilingual speech database, containing recordings in both French and German. As the deputies are elected for 4
years, parliament staff are relatively permanent, allowing for using and testing of different speaker adaptation
approaches. On the other hand, the available data in the whole MediaParl database is not so ample, this means
that it is worth investigating combinations of other native speech databases in French or German in order to
ensure sufficient data set for model training.

The goal of this report is to present and evaluate state-of-the-art adaptation techniques in the French Media-
Parl task, including different baseline speaker adaptation methods like Maximum Likelihood Linear Regression
(MLLR) and its forms, Speaker Adaptive Training (SAT), Maximum a Posteriori adaptation (MAP) and the com-
bined MLLR-MAP adaptation method Structural Maximum a Posteriori Linear Regression (SMAPLR), this latter
used so far initially for TTS adaptation. Both speaker and environment adaptation is addressed. The baseline
techniques were also investigated for database combination, where adaptation is primarily used for shifting the
acoustic environment and to a lesser extent, adapting the models to Swiss accented speech, but does not aim at
speaker dependent model transform.

This report does not focus specially on the bilingual aspect or non-native speaker adaptation, as this task - at
least partly - has already been assessed (Imseng et al., 2012) and constitues a future challenge.

2 Speaker adaptation

The main purpose of the present report is to assess speaker adaptation. First, a brief basic overview of underlying
theory is provided. More details on each algorithm can be found following the respective citation provided in
the text.

2.1 MLLR Adaptation of means

Maximum Likelihood Linear Regression (MLLR) is an often used linear transformation specified by (Gales and
Woodland, 1996):

µ̂ = Aµ+ b = Wξ. (1)
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This means that the transformed mean vector (µ̂) is obtained by applying the W transform to the extended
original mean vector (ξ), obtained by extending the original n-dimensional mean vector µ = [µ1,µ2, ...,µn] as:

ξ = [1,µ1,µ2, ...,µn]
T . (2)

This transform is linear and it can be easily decomposed as:

W = [b,A]. (3)

The transform can be computed by ML estimation for the adaptation data from the speaker.

2.1.1 Global vs. model specific adaptation

In the easiest approach, only one adaptation transform is computed on all adaptation data. This is called global
transform. However, different models or even different mixtures of different states in a HMM/GMM system
might benefit from different transformations to better fit to a given speaker. This means that multiple transforms
should be created and a clustering of states or mixtures is needed to be specified in order to group parameters
that share a transform. The number of the clusters depend on available adaptation data: if more data is available
for a given cluster, it can be split into further sub-clusters to allow for more specialized adaptation. In practice,
this is usually done using a regression class tree (Gales, 1996), which allows for a flexible data-driven clustering.
The regression class tree is constructed so as to group similar components (that are close in acoustic space),
this means that similar components will share a common transform. The tree can be grown until each leaf has
sufficient adaptation data to estimate a transform. These transforms can be referred to as tree-based ones, which
are expected to outperform global transforms.

2.2 Variance adaptation

Variances of the speaker independent models can also be adapted, this is usually done in a two stage approach.
In the first stage, mean adaptation is carried out, secondly, in a separate step, variances are also updated using
already the adapted means (as a so-called parent transform) for the computation. The covariance matrices (Σ)
can be updated based on the following formula (Gales and Woodland, 1996):

Σ̂ = BTHB, (4)

where H is the transform to be estimated, and B is the inverse of the Choleski factor of Σ−1 , this means that

Σ−1 = CCT (5)

and
B = C−1. (6)

2.3 Constrained MLLR (CMLLR)

The idea in CMLLR is that the means and variances can be adapted using the same transform (Digalakis et al.,
1995), (Gales, 1998). This means that this transform has fewer parameters and hence less adaptation data
can be sufficient for effective estimation of the transform. The mean µ and the variance Σ are transformed as
follows:

µ̂ = Aµ+ b, (7)

Σ̂ = AΣAT . (8)

Transform parameters to be computed involve A and b.

2.4 Maximum a posteriori adaptation (MAP)

The basic idea of MAP adaptation is to try to establish speaker dependent models based on prior speaker
independent knowledge. In this way, adapted system performance is expected to be close to that of a speaker
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dependent system, but the amount of necessary training data is much lower than in case of training a pure
speaker dependent system. The adaptation formula, used also in HTK, is as follows:

µ̂jm =
τµ0

jm +Njmµjm

Njm + τ
(9)

that is, to update the mean vector of mixture component m associated with state j, original mean µjm and the
mean calculated on the adaptation data µ0

jm are recombined where τ is a weighting parameter for the a-priori
knowledge.

Comparing MLLR-like and MAP transforms, MLLR transforms usually work better than MAP with little adap-
tation data, however, MLLR performance often saturates when more training data is available. On the other
hand, MAP has better asymptotic properties, that is, MAP exhibits convergence to real speaker dependent sys-
tems’ performance, but this convergence is slow. MLLR-like and MAP transforms can be used simultaneously
(Goronzy and Kompe, 1999) to benefit from the advantages of both approaches.

2.5 Structured Maximum a Posteriori Linear Regression (SMAPLR)

Structured Maximum a Posteriori Linear Regression can be regarded as a sort combination of MLLR and MAP
transforms in order to exploit the advantages of both approaches: the less extensive data requirement of MLLR
and the more accurate (and asymptotically better converging) estimation capabilities of MAP (Siohan et al.,
2002). The idea behind Structural MAP (SMAP) is the same used for regression tree-based MLLR: model
parameters (GMMs) are clustered which allows for specific transforms for each cluster. The difference is the use
of a maximum a posteriori (MAP) criterion instead of the maximum likelihood (ML) one. This involves the use
of some prior distributions. These prior distributions can be estimated form the speaker independent models,
but also obtained along the regression tree: once a prior is known for the root of the tree, it can be used as
a constraint to calculate the priors of its child nodes. A possible algorithm for this is given by Siohan et al.
(2002). The constrained form of SMAPLR (CSMAPLR) is a combination of SMAPLR and CMLLR, and performs
adaptation of variances too (whilst SMAPLR is usually used for the means). CSMAPLR is described in detail by
Nakano et al. (2006).

3 Speaker Adaptive Training (SAT)

In Speaker Adaptive Training, speaker specific transformations are used during the training process itself in
order to create models of individual speaker characteristics. The transformations typically used are MLLR (or
rather CMLLR). These speaker specific transforms are used for “de-individualizing” the utterances during the
model (re-)training. In this sense, SAT can be interpreted as a special form of normalization. The underlying
assumption is that human speech is a product of two components (Anastasakos et al., 1997): the first component
is the raw speech representing purely phonetic variations, while the second one is speaker specific and represents
speaker variation (caused by physiological differences, age, gender or even the different acoustic environments
and so on). Interpreting the second component as a filter, the final speech product is the convolution of the two.
Thus, by modelling speaker variations, it is possible to normalize them and to create a model set independent of
speaker characteristics ( which is then also further adaptable to each speaker separately). In this sense, speaker
independent models are independent not in the sense of being all-speakers models trained on a large number
of speakers, but are ideally free of any speaker specific influence.

This also means that in SAT, speaker transforms can operate on the feature level, so instead of creating an
adapted (specialized) model for each speaker, features can be transformed so that they become speaker inde-
pendent (as much as possible):

ô = Ao− b. (10)

If sufficient training data is available from the speakers, SAT can be done using speaker transforms obtained by
regression tree-based clustering. Otherwise, global adaptation data is used.

4 Adaptation experiments for French MediaParl

For adaptation experiments, we use the French version of the MediaParl ASR, trained on French utterances of the
MediaParl database. The MediaParl database is presented in detail by Imseng et al. (2012). The baseline setup

3



of the ASR used for the present experiments is based on PLP features and cepstral mean normalization (CMN),
acoustic models are tied-state HMM triphone models with 8 Gaussian mixtures. Training was performed with
the HTS variant (version 2.2) of the HTK toolkit on training data labelled as ‘Grandconseil French train sentences
without noise’ at the Idiap repository, containing a total of 6256 utterances from 106 speakers. Note that this
setup is slightly different from the one used by Imseng et al. (2012): the split of the database for training,
development and testing sets is different, the phoneme set and dictionaries are identical, whilst language models
are the same too with the exception that no EuroParl data is used in present report to train language models.
(Differences in the training settings are explained by the fact that for present experiments not all bilingual
speakers were reserved for testing, but many of them are rather involved here in the training set.)

The original test set is further split up into two subsets, one of them holds 10 utterances from each speaker
for final testing (referred to further as adaptation-test set), while the other subset holds the remaining files for
computing MLLR transforms (referred to as adaptation set). If a speaker within the test set has fewer then 20
utterances, each of them is entirely removed from the test set. The adaptation set contained 421 utterances,
while the adaptation-test set contained 90 utterances (2661 words) from 9 speakers (speakers 004, 013, 062,
075, 096, 102, 126, 135, 162).

4.1 MLLR in French MediaParl

MLLR adaptation is performed in a supervised, static manner in two steps: first a global transform is computed
(base transform), then a regression tree is generated, based on which tree-based transforms are also computed
(tree based transform). The regression tree used in the experiment had maximum 32 leaves (for speakers with
insufficient adaptation data this can be less as trees are pooled to ensure enough adaptation data for each
terminal node).

Results are presented in Table 1. Results (word accuracy and WER improvement compared to baseline) for
global (base) and tree-based transforms are presented separately. As SMAPLR and CSMAPLR are structured
MAP transforms, they can be regarded as tree-based ones for comparison.

Adaptation type Adaptation kind Adapted parameters Acc [%] WER reduction [%]
Baseline - - 72.83 0.00
MLLR base MEAN 74.78 8.86
MLLR base MEAN+VAR 74.26 8.33

CMLLR base MEAN&VAR 74.78 11.36
MLLR tree MEAN 75.08 13.10
MLLR tree MEAN+VAR 75.42 15.08

CMLLR tree MEAN&VAR 75.57 15.96
SMAPLR tree MEAN 75.05 12.93

CSMAPLR tree MEAN&VAR 75.01 12.70

Table 1: MLLR based adaptation results for French MediaParl

Results show that any type of the examined adaptation modes yielded improvement in recognition performance.
The highest improvement is seen with tree-based constrained MLLR (CMLLR). CSMAPLR did not perform better
than CMLLR.

4.2 Speaker adaptive training for MediaParl

In speaker adaptive training, models are retrained using speaker specific transforms. The transforms used were
CMLLR transforms, generated on tied-state, 8 Gaussians triphone models. The same models were then retrained
by using the obtained transforms in 5 subsequent re-estimation cycles. For evaluating SAT performance, CMLLR
transforms have to be generated also for the test speakers.

SAT results are shown in Table 2. for French MediaParl task.

SAT based on SAT transform type Adapted parameters Acc [%] WER reduction [%]
Baseline - - 72.83 0.00
CMLLR base MEAN&VAR 75.76 17.06
CMLLR tree MEAN&VAR 76.74 22.77

Table 2: SAT results for French MediaParl

As expected, tree-based speaker adaptive training outperforms the global one, and SAT even outperformed
single CMLLR transforms applied during the decoding for non retrained models.
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4.3 Combining SAT and MLLR

Combining SAT and MLLR involves MLLR adaptation for models obtained during SAT. Results are presented
in Table 3. for French MediaParl. Single tree based SAT without additional MLLR outperforms the combined
test results. When using variance adaptation beside SAT+MLLR, performance was significantly worse (65.28%)
than the baseline one. This means that a pure tree based SAT was found more efficient. Using CMLLR for SAT
models did not improve results, indeed, the SAT itself is already CMLLR-based.

SAT based on SAT transform type Adaptation type Transform type Acc [%] WER reduction [%]
Baseline - - - 72.83 0.00
CMLLR base MEAN MLLR base 75.61 16.19
CMLLR base MEAN MLLR tree 76.51 21.43
CMLLR tree MEAN MLLR base 76.44 21.03
CMLLR tree MEAN MLLR tree 74.45 9.44

Table 3: SAT+MLLR results for French MediaParl

In order to further analyze SAT and SAT+MLLR capabilities, experiments were extended for French ASR models
trained on the BREF database, a considerably larger corpus which contains more utterances from each speaker
(Lamel et al., 1991), allowing for an exhaustive analysis of the performance when data sparsity is unlikely to
cause problems. The baseline setup of French BREF acoustic models was as follows: PLP features were used
with cepstral mean normalization, models were tied-state GMMs of up to 16 mixture components. Testing set
involved all utterances from speakers (JDM, JZF, K2F, K3F, K4F, K5M, K6M, K7M), split again into adapta-
tion set (4564 utterances) and adaptation-test set (480 utterances, 60 from each speaker). All other speakers
were assigned to training test. Tri-gram language model and dictionary were generated over the training set
transcripts. Results are presented in Table 4.

SAT based on SAT transform type Adaptation type Transform type Acc [%] WER reduction [%]
Baseline - - - 95.85 0.00
No SAT - MEAN MLLR tree 95.90 1.20
CMLLR tree No MLLR - 96.28 10.36

CSMAPLR tree No MLLR - 96.12 6.51
CMLLR tree MEAN MLLR tree 96.30 10.84

Table 4: SAT, MLLR and SAT+MLLR results for French BREF

Although baseline performance was already very high in the implemented BREF recognition task, MLLR, SAT,
and combined SAT+MLLR all yielded some additional improvements. Comparing results to MediaParl ones in
Table 3., where combined SAT+MLLR were less effective than SAT alone, a possible explanation of the difference
can be raised. Namely, it is possible that if more adaptation data is available for the MediaParl experiment,
combined SAT+MLLR could bring some modest performance improvement compared to SAT alone. For BREF,
the adaptation set contained 4564 utterances (sentences) from 8 speakers, while in MediaParl only 421 sentence
utterances of comparable length were available. This also explains why regression trees for several speakers
could not use final leaves to compute the transformations but had to be pooled in MediaParl, whereas in BREF,
all 32 final leaves had sufficient adaptation data associated for all of the speakers.

4.4 Using MAP for speaker adaptation

As in MediaParl the data available from each speaker is usually insufficient to perform MAP adaptation, ex-
periments were conducted on French BREF with settings described in the previous subsection (adaptation set
contained 4564 utterances from 8 speakers, testing set 480 utterances from the same 8 speakers (60 utter-
ances from each of them). 16 GMM triphone models were adapted separately for each speaker in the following
way: first, missing triphone were synthesized from tied 16 GMM model set, then MAP adaptation was run in 3
subsequent iterations with τ = 10 using the speakers’ adaptation data. Then a full coverage triphone set was
synthesized. The baseline performance of 95.85% dropped to 93.74% after MAP adaptation.

4.5 Using MAP to combine training data from different sources

Adaptation can be used to perform environment adaptation too. MAP adaptation was tested for this purpose in
adapting French BREF and GlobalPhone acoustic models with French MediaParl data (MediaParl train set) and
testing on MediaParl data (MediaParl test set). French BREF was also adapted with GlobalPhone to see whether
there is difference between French-French and Swiss-French adaptation performance.
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Additionally, models trained on mixed BREF+MediaParl data were also evaluated to compare them to baselines
and to results obtained with MAP adaptation based database combination.

Experimental setups were as follows:

• for BREF: the ASR setup presented in subsection 4.3.

• for GlobalPhone: Training set (speakers 001-079) was used as training set to train 16 GMM tied-state
triphone models with standard PLP features + CMN when creating baseline to be adapted with MediaParl.
This same set was used as adaptation set when BREF models were adapted with GlobalPhone data. Testing
set (speakers 080-089) was used for testing in all scenarios without further split up.

• for MediaParl: Training set (‘Grandconseil French train sentences without noise’) was used as adaptation
set, testing set (speakers 004, 013, 062, 075, 096, 102, 126, 135, 162) was used for testing.

• for BREF+MediaParl: the ASR setup presented in subsection 4.3, but with merged training and testing
sets for BREF and MediaParl.

Acoustic Models MAP on tested on Acc [%]
MediaParl - MediaParl 73.84

BREF - MediaParl 57.29
BREF MediaParl MediaParl 72.92

BREF+MediaParl - MediaParl 70.54
BREF+MediaParl MediaParl MediaParl 70.92

GlobalPhone - MediaParl 55.63
GlobalPhone MediaParl MediaParl 73.47
GlobalPhone - GlobalPhone 71.13

BREF GlobalPhone GlobalPhone 71.82

Table 5: MAP results for French ASR (τ=10)

MAP results (Table 5.) show that by using MAP, approximately the same accuracy can be reached as by training
directly on the database representing the target domain. No significant difference is seen in this regard between
French-French and Swiss-French adaptation data. The adapted models are expected to be more robust on the
target domain than models trained directly to the target domain. So to conclude, if sufficient training data is
available, MAP adapted models cannot be expected to yield superior performance compared to models trained
directly on the target domain, but MAP adapted models can be more robust (this hypothesis needs further
experimental confirmation). MAP based database combination performed slightly better then directly merging
the databases.

The effect of changing the τ constant was also evaluated using BREF models and GlobalPhone adaptation data.
No significant difference was noted depending on the value of τ (see Table 6.) .

τ Acc [%]
5 71.81

10 71.82
15 71.78
20 71.78

Table 6: MAP results with GlobalPhone adaptation data for BREF models depending on τ

4.6 Combining MAP and MLLR

Combining MLLR and MAP adaptation is reported to further improve performance in speech and speaker recog-
nition by several studies (Goronzy and Kompe, 1999), (Wang et al., 2009). However, as MAP did not yield
and improvement in speaker adaptation and as in environment adaptation MLLR-like approaches are not the
ideal choice, combining MAP and MLLR fell out of scope for this report. Indeed, combining MAP and MLLR in
environment adaptation considerably degraded the performance.

5 Conclusions

In this report speaker and domain adaptation was analyzed for French ASR tasks with a special attention paid to
the MediaParl task. Several baseline adaptation techniques were evaluated. The most improvement in speech
recognition accuracy was linked to speaker adaptive training (SAT) using tree-based CMLLR speaker transforms.
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To a lesser extent, mean and variance MLLR, CMLLR, SMAPLR and CSMAPLR methods also contributed to some
performance improvement. MAP adaptation did not improve accuracy when using for speaker adaptation,
but proved to be useful for database combination or environment adaptation. Although in the latter case
performance did not differ significantly from the baseline system trained directly on target domain data, models
can be expected to be more robust.

The results showing that French data recorded in Switzerland (MediaParl) and French data recorded in France
(GlobalPhone) behave very similarly when using it for environment adaptation with MAP on a model set trained
on French data recorded in France (BREF) strengthen the suspicion that standard French spoken in France and
French spoken in Switzerland do not differ significantly from ASR modelling point of view (i.e. the French
spoken in Switzerland does not seem to be an individual dialect of French worth special ASR modelling or
dialect adaptation). The high differences between BREF vs. MediaParl and GlobalPhone based ASR baseline
performances are therefore more likely caused by environmental conditions and more spontaneity in speech,
both factors recognized as important cues determining ASR performance.
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