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Abstract—In this paper, use of intra- and crosslingual adap-
tation is addressed in cognitive infocommunication, for an ASR
application in a bilingual environment. State-of-the-art linear
regression based adaptation approaches are evaluated after a
brief theoretical overview of the applied techniques. As ex-
pected, these contribute to significant improvement when used
for intralingual adaptation. A simple phoneme mapping based
approach is investigated for crosslingual adaptation between
French and German in order to evaluate whether non-native
data can help speech recognition. It is found that using native
data for adapting a speech recognizer operating in the non-native
language of the speaker, a modest improvement can be reached.
However, when adaptation data is available from the speaker in
its non-native language, it remains a better source of adaptation.

I. INTRODUCTION

The MediaParl project aims the development of a bilingual
speech database [1] and of an infocommunication application
(an information retrieval system), available online [2], where
video indexing of Parliament debates and interventions is
provided. The indexing is based on audio transcription of the
recorded material, coming from the Cantonal Parliament of
the Canton of Valais in Switzerland. Audio transcripts are
generated by using monolingual and/or bilingual Automatic
Speech Recognition (ASR) systems and optionally a language
identification module. A detailed description of the system is
available in [2]. Since the MediaParl database was released by
Idiap in 2012, the publicly available MediaParl infocummuni-
cation system! has been built.

Valais is a bilingual canton of Switzerland, with two official
languages: French and German (approx. 1/3 of the population
speaks German, and 2/3 speaks French as first language [1]).
Whilst the French is relatively close to the standard French
spoken in France, the German has a local dialect, which is
often hard to understand even for German speaking people
coming from another canton or state. In formal interactions,
usually standard German (Hochdeutsch) is spoken, but even
this is highly influenced by local accent. The automatic speech
indexing system is developed for the Cantonal Parliament of
Valais, where both languages are in active use. Some of the
speakers are either bilingual or non-native. A bilingual speaker
is regarded as speaking in both first and second languages at
mother tongue level, whereas non-native speakers speak their
second language with less or more characteristic accent.
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This paper focuses on the ASR module used in the Me-
diaparl infocommunicaton system, with special attention paid
to the language environment. When working in a bi- or mul-
tilingual environment, especially if the language environment
is rich in dialects and accents like in Valais, speaker normal-
ization and or/speaker adaptation are essential, as speech data
shows very high variability. Several well-known baseline meth-
ods exist to perform speaker normalization or adaptation, many
of them have already been successfully used in speech index-
ing or speech transcription systems, like Vocal Tract Length
Normalization (VTLN) [3] or Cepstral Mean and/or Variance
Normalization [4], [S]; for adaptation, Maximum Likelihood
Linear Regression (MLLR) [6] and Constrained MLLR (CM-
LLR) [7], Maximum a Posteriori Adaptation (MAP) [8], and
some other approaches modifying or combining these basic
algorithms have been proposed. Structured MAP or Structured
MAP Linear Regression (SMAPLR) [9], or its constrained
form, CSMAPLR combine linear regression and the MAP
expectation maximalization criterion, by exploiting some prior
knowledge. These latter methods have benn investigated so far
mostly for adaptation in speech synthesis [10], but they will
be evaluated in ASR in this paper.

This paper does not focus on enhancing existing normaliza-
tion and adaptation methods, but rather evaluating them within
the current environment in order to find the best performing
ones, with a special focus on speaker adaptive training [11].
The working hypothesis is that these standard adaptation
approaches and their combination can lead to significant im-
provement in speech recognition performance, as available and
above cited literature also implies this.

In the focus of the present study, crosslingual adaptation is
also evaluated for non-native speech. Crosslingual adaptation
is an important technique in text-to-speech (TTS) systems, es-
pecially in speech-to-speech translation, whereby TTS speech
can be adapted to sound like the original speaker speaking
in the target language [12], [13], even if the speaker does
not speak the target language at all. Crosslingual adaptation
involves the mapping of the phoneme sets, initially different
for the source and target languages. This mapping can be
rule-based or data-driven, like in [14], where regression trees
were mapped from source to target language, allowing that
each model (GMM) in the source language become mapped
to the most similar target model or cluster of target models.
Using crosslingual adaptation in ASR is less frequent, indeed,
exploitability of such techniques is more restricted than in TTS.
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In [15], adaptation transforms for ASR models generated in
the first language (L1) are used in the second language (L2)
of bilingual speakers, yielding some improvement when L1 is
Finnish and L2 is English, but not vice-versa.

The present work focuses on a special aspect of crosslin-
gual adaptation, aiming to improve non-native speech recogni-
tion. The working hypothesis is that for non-native speakers,
speech recognition performance can be improved by using
mother tongue data adequately mapped to second language,
supposing that accent perceived in the second language of a
non-native speaker is governed mainly or in part by articulatory
cues and patterns characteristic of the mother tongue, captured
by the adaptation transform.

This paper is organized as follows: first, databases are
briefly described and a short theoretical overview of adaptation
methods is provided. Thereafter, linear regression based adap-
tations and speaker adaptive training are exhaustively evaluated
in a French ASR task. Crosslingual adaptation experiments are
presented next, and, finally, conclusions are drawn.

II. DATA AND BASELINES
A. The MediaParl Database

The MediaParl database is used to train ASR acoustic
models. It consists of political debates recorded at the cantonal
parliament of Valais. Debates take place always in the same
room, they are recorded with distant talker microphones.
The recordings mostly contain prepared speeches in both
languages. Compared to similar multi- or bilingual databases,
MediaParl stands out because of its size as it contains 20 hours
of speech in both German and French.

A detailed description about the MediaParl database is
given in [1], here only some basic characteristics of data are
presented: audio recordings were formatted as MPEG ADTS,
layer III, v1, 128 kbps, 44.1 kHz, mono, 16 bits, but then
converted to WAVE audio, PCM, 16 bit, mono, 16 kHz. The
database is split into train, development and test sets. The
test set contains all bilingual speakers who actively used both
languages (7 speakers, 2,446 utterances) to allow for bilingual
evaluation. The remaining speakers are split into training set
(180 speakers, 11,425 utts) and development set (17 speakers,
1,525 utts). In case of adaptation experiments, test set was
further split into adaptation set (148 French, 156 German utts)
and final test set (925 French, 1,521 German utts, approx. 31k
ans 33k words respectively).

B. ASR Baselines

For the evaluation of speaker adaptation methods, a mono-
lingual French ASR is trained. Feature extraction yields 39
Mel-Frequency Perceptual Linear Prediction (PLP) features
(CO-C12+A+AA). Cepstral Mean and Variance Normalization
(CMVN) is applied. Models are HMM tied-state triphones,
with up to 3000 tied states, trained on the MediaParl database.
State tying is based on the MDL criterion [16]. State emissions
are modelled by 16 component GMMs. The phoneme set for
French is composed of 37 phonemes.

For crosslingual adaptation experiments, a German ASR
is also trained following the same setup and configuration
described for the French ASR. The German phoneme set is
composed of 56 phonemes.
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C. Language Models

Language models are tri-gram models, trained on Parlia-
ment data transcriptions obtained from cantonal Parliaments
throughout Switzerland, for French and German, respectively.

III. THEORETICAL OVERVIEW

This section provides a brief theoretical overview on state-
of-the art adaptation methods. Readers familiar with the topic
should directly jump to the next section.

In the easiest approach, only one adaptation transform is
computed on all adaptation data. This is called a global trans-
form. However, different models or even different mixtures
of different states in a HMM/GMM system might benefit
from different transformations to better fit to a given speaker.
This means that multiple transforms should be created and a
clustering of states or mixtures is needed to be specified in
order to group parameters that share a transform. The number
of clusters depends on available adaptation data: if more data
is available for a given cluster, it can be split into further sub-
clusters to allow for more specialized adaptation. In practice,
this is usually done using a regression class tree [17], which
allows for a flexible data-driven clustering. The regression
class tree is constructed so as to group similar GMMs (that are
close in acoustic space), this means that similar components
will share a common transform. The tree can be grown until
each leaf has sufficient adaptation data to estimate a transform.
These transforms can be referred to as tree-based ones, which
are expected to outperform global transforms.

A. MLLR Adaptation of means

Maximum Likelihood Linear Regression (MLLR) is an
often used and easy linear transformation for HMM/GMM
ASR models. The means (;) of GMMs are transformed to
fit better the speaker [6]:

fi=Ap+b=WE. (1)

This means that the transformed mean vector (/i) is obtained
by applying the W transform to the extended original mean
vector (£), obtained by extending the original n-dimensional
mean vector i = {1, 2, ..., fin] as:

f: [17M17M27"'7Mn]T- ()
This transform is linear and it can be easily decomposed as:
W =1b, A]. 3)

The transform can be computed by maximum likelihood (ML)
estimation for the adaptation data from the speaker.

B. Variance adaptation

Variances of the speaker independent models can also
be adapted, this is usually done in a two stage approach.
In the first stage, mean adaptation is carried out, secondly,
in a separate step, variances are also updated using already
the adapted means (as a so-called parent transform) for the
computation. The covariance matrices (X) can be updated
based on the following formula [6]:

3 = BTHB, 4)

where H is the transform to be estimated, and B is the inverse
of the Choleski factor of ¥ 1.
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C. Constrained MLLR (CMLLR)

Constrained MLLR is a special transform for adapting
means and variances together, with a shared transform [7].
This means that this transform has fewer parameters than the
two stage variance adaptation described so far and hence, less
adaptation data can be sufficient for effective estimation of
the transform. The main advantage of CMLLR is that it can
be performed in the feature space, which allows for using it
as a parent transform. The mean p and the variance X are
transformed with CMLLR as follows:

a=Ap+b, )

3= AnAT, (6)

Transform parameters to be computed involve A and b.

D. Maximum a posteriori adaptation (MAP)

The basic idea of MAP adaptation is to try to establish
speaker dependent models based on prior speaker indepen-
dent knowledge. In this way, adapted system performance is
expected to be close to that of a speaker dependent system,
but the amount of necessary training data is much lower than
in case of training a pure speaker dependent system. The
adaptation formula for a mean vector is as follows:

Tl + Njmjm

ij + 7 (7)

ﬂjm =

that is, to update the mean vector of mixture component m
associated with state j, original mean p;,, and the mean
calculated on the adaptation data /’(‘?m are recombined where
T is a weighting parameter for the a-priori knowledge, usually
set in empirical way.

Comparing MLLR-like and MAP transforms, MLLR trans-
forms usually work better than MAP with little adaptation
data, however, MLLR performance often saturates when more
training data is available. On the other hand, MAP has better
asymptotic properties, that is, MAP exhibits convergence to
real speaker dependent systems’ performance, but this conver-
gence is slow. MLLR-like and MAP transforms can be used
simultaneously [18] to benefit from the advantages of both
approaches.

E. Structured Maximum a Posteriori Linear Regression

(SMAPLR)

Structured Maximum a Posteriori Linear Regression can
be regarded as a combination of global and tree based linear
transforms, enabled using a similar principle to pure MAP
adaptation. It allows a smooth transition between a high order
transform and a single global transform. The constrained form
of SMAPLR (CSMAPLR) is a combination of SMAPLR and
CMLLR, and performs adaptation of variances too (whilst
SMAPLR is usually used for the means). CSMAPLR is
described in detail by [10].
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IV. EVALUATING ADAPTATION TECHNIQUES
A. Linear Regression Based Approaches

In this section, we briefly evaluate linear regression based
transfoms on monolingual French ASR. MAP adaptation is not
investigated as data available from speakers is sparse.

Adaptation is performed in a supervised, static manner in
two steps: first a global transform is computed (base trans-
form), then a regression tree is generated, based on which tree-
based transforms are also computed (tree based transform). The
regression tree used in the experiment had maximum 32 leaves
(for speakers with insufficient adaptation data this can be less
as trees are pooled to ensure enough adaptation data for each
terminal node).

Results are presented in Table I. Results (word accuracy
and WER improvement compared to baseline) for global
and tree-based transforms are presented separately. In Ta-
ble I, MEAN adaptation refers to the adaptation of means,
MEAN+VAR refers to a two-step adaptation of means first and
variances next, while MEAN& VAR refers to a joint adaptation
of means and variances (as done in CMLLR). As SMAPLR
and CSMAPLR are structured MAP transforms, they can be
regarded as tree-based ones for comparison.

TABLE 1. LINEAR REGRESSION BASED ADAPTATION RESULTS FOR
FRENCH MEDIAPARL

Adapt Global/ Adapted Acc | Rel. WER
method tree parameters [%] red. [%]
Baseline - - 75.0 0.0
MLLR global MEAN 75.8 32
MLLR global MEAN+VAR | 76.1 4.4
CMLLR global MEAN&VAR | 76.3 52
MLLR tree MEAN 77.6 10.4
MLLR tree MEAN+VAR | 77.8 11.2
CMLLR tree MEAN&VAR | 78.0 12.0

SMAPLR tree MEAN 78.0 12.0

CSMAPLR tree MEAN&VAR | 78.1 12.4

Results show that any type of the examined adaptation
methods yielded improvement in recognition performance. The
highest improvement (12.4% relative WER reduction) is seen
with CSMAPLR, although the difference between CMLLR,
SMAPLR and CSMAPLR is minor. As expected, regression
tree based (or structural) adaptation approaches perform sig-
nificantly better.

B. Speaker Adaptive Training

In Speaker Adaptive Training (SAT), speaker specific
transformations are used during the training process. These
speaker specific transforms are used for “de-individualizing”
the utterances during the model (re-)training. In this sense,
SAT can be interpreted as a special form of normalization.
The underlying assumption is that human speech is a product
of two components [11]: the first component is the raw speech
representing purely phonetic variations, while the second one
is speaker specific and represents speaker variation (caused
by physiological differences, age, gender or even the different
acoustic environments and so on). Interpreting the second com-
ponent as a filter, the final speech product is the convolution of
the two. Thus, by modelling speaker variations, it is possible
to normalize them and to create a model set independent of
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speaker characteristics (which is then also further adaptable to
each speaker separately). In this sense, speaker independent
models are independent not in the sense of being all-speakers
models trained on a large number of speakers, but are ideally
free of any speaker specific influence.

If sufficient training data is available from the speakers,
which is the case for current experiments, SAT can be done
using speaker transforms obtained by regression tree-based
clustering. Otherwise, global adaptation data could be used.

The contribution of SAT to relative WER reduction is
shown in Table II in parallel with baseline ASR performance
(word accuracy) for French ASR. Applying further adaptation
after SAT (using SAT transforms as parent transform for
test speakers and do another adaptation) leads to some more
modest improvement.

TABLE II. Baseline, SAT-normalized and SAT+MLLR adapted word
accuracies and relative WER reduction in French ASR.

System Language | Acc [%] | Rel. WER red. [%]
Baseline French 75.0 -

+ SAT French 78.8 15.2
+ MLLR French 79.1 16.4

V. CROSSLINGUAL ADAPTATION

As briefly explained in the introduction, the idea behind
crosslingual adaptation is to use it for recognition of non-native
speech, supposing that a speaker specific adaptation computed
on L1 data can improve recognition in L2 for the same speaker.
This involves a mapping of phonemes (or even the individual
GMMs of the tied-state model set) from L1 to L2. The
easiest way of mapping is a rule-based direct mapping between
phonemes of L1 to phonemes of L2, this approach is used in
present paper: each i*" state and ;" mixture component of
source phoneme in L1 is mapped to the same i*" state and
4" mixture component of the target phoneme in L2. Target
phonemes for given source phonemes are determined based on
phonetic similarity as follows: phonemes sharing their SAMPA
symbol and used in both languages are mapped to each other.
Phonemes specific to one language are mapped to the acoustic-
phonetically closest phoneme in the target language. For the
French and German phoneme sets used, 31 phonemes are
common and 31 are specific to only one of the languages.
When mapping French to German, 6 phonemes have to be
mapped, whereas a mapping of German to French involves 25
mappings to be defined.

A more sophisticated approach is a data-driven mapping
similar to the one used in [14], where a similarity measure is
used to map GMMs in L1 to GMM clusters in L2, assuring
also that each cluster has enough GMMs associated to compute
adaptation transforms. This approach is in implementation
phase, hence results are not yet available for the present paper.

In the crosslingual adaptation experiments, CMLLR trans-
forms are used, which were found to operate close to the best
performance but with low complexity. Adaptation transforms
are generated in the source language (L1) against the target
language (L2) ASR model set and used for recognition in the
target language. We expect improvement for non-native speak-
ers and some decrease in performance for native speakers.
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As described in Section II, the test set consists of speakers
speaking both the source and target languages. For adapting the
ASR models, utterances in L1 are used, whereas recognition
is done in L2. The decision whether a speaker is native or
non-native in a given language is based on monolingual ASR
performance for the given speaker as explained in [1]. If there
is significant difference between monolingual ASR accuracy
for a given speaker between German and French monolingual
ASR performance, the speaker is regarded to be native in
the better performing language and non-native in the other.
If difference is slight (not significant), the speaker is regarded
to be a real bilingual speaker, hence native in both languages.
Based on these criteria, 3 speakers out of 7 in the test set were
found to be native German and non-native French speakers,
3 speakers native in French and non-native in German and
1 real bilingual (native in both languages, with slight German
preference). Results are presented in Table III, individually for
each speaker, for the case where French speech recognition is
evaluated with and without adaptation on German data. WER
for non-native speakers improves by overall 3.8% relative (two
speakers significantly, one not significantly). Scores of the
bilingual speaker also improve. All native speakers suffered
a performance decrease - as expected.

TABLE III. Effect of German crosslingual adaptation on French ASR
Word Error Rates (WER).
Spkr ID Native? Baseline WER | Adapted WER
059 non-native 45.4 42.5
079 non-native 38.6 37.8
109 non-native 27.0 26.9
094 native 18.7 19.6
096 native 15.9 16.8
102 native 17.7 17.6
191 bilingual 40.9 37.2

Results for speech recognition with L1 French and L2
German are presented in Table IV. Non-native speakers benefit
again from native adaptation data (one speaker had unfortu-
nately insufficient data in German for reliable evaluation). The
overall relative WER reduction seen for non-native speakers
was over 4%. Scores of the bilingual speaker also improve
slightly. There is no general improvement for native speakers
(although one of them slightly improves).

The results confirm the initial working hypothesis, that
recognition in non-native speech can be improved by adap-
tation in the native language, by using data from the same
speaker. However, this improvement is inferior to the im-
provement seen when adaptation data is available in the same
language the ASR is running (see Table I). Crosslingual
adaptation improved scores of the bilingual speaker for both
languages, however, with only one real bilingual speaker no
further conclusions can be drawn.

VI. CONCLUSIONS

In this paper, intra- and crosslingual adaptation was inves-
tigated in a bilingual environment. Evaluation of state-of-the-
art, linear regression based adaptation techniques and speaker
adaptive training, or their combination improved recognition
accuracy in a French ASR task, in accordance with available
literature on using similar adaptation methods. Crosslingual
adaptation was also investigated. Results show that there is
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TABLE IV. Effect of French crosslingual adaptation on German ASR
Word Error Rates (WER).
Spkr ID Native? Baseline WER | Adapted WER
094 non-native 32.1 30.7
096 non-native 24.1 22.7
102 non-native 41.4 40.0
059 native 19.1 20.1
079 native 26.0 26.3
109 native 21.5 22.4
191 biligual 31.3 30.9

an improvement after crosslingual adaptation for non-native
speakers using their native language data for recognition in
their non-native language, however, if speech is available in the
non-native language from the same speaker, it is a better source
for adaptation. Regarding future directions, modelling using
MLP features could be better placed to analyse crosslingual
adaptation capabilities because of MLP’s higher flexibility. An
interesting issue is us of bilingual acoustic models and use of
native data to help non-native speech recognition.
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