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Abstract
On the AURORA-2 task good results at low SNR levels have
been obtained with a system that uses state posterior estimates
provided by an exemplar-based sparse classification (SC) sys-
tem. At the same time, posterior estimates obtained with a mul-
tilayer perceptron (MLP) yield good results at high SNRs. In
this paper, we investigate the effect of combining the estimates
from the SC and MLP systems at the probability level. More
precisely, the probabilities are combined by a sum or a product
rule using static and inverse-entropy based dynamic weights.
In addition, we investigate a modified dynamic weighting ap-
proach which enhances the contribution of the SC stream based
on the information about static weights and average dynamic
weights obtained on cross-validation data. Our study on the
AURORA-2 task shows that in all conditions the modified dy-
namic weighting approach yields a dual-input system that per-
forms better than or equal to the best stand-alone system.
Index Terms: multiple-stream combination, noise robustness,
exemplar-based system, multilayer perceptron network

1. Introduction
Over the years, many acoustic features and modeling ap-
proaches have been developed for automatic speech recogni-
tion (ASR). However, there are no features or modeling ap-
proaches that yield a superior performance in all signal-to-noise
ratio (SNR) conditions. Some perform well in clean condi-
tions, while others perform best in noisy conditions. For ex-
ample, the results in [1] show that their Sparse Classification
(SC) system provides a higher degree of noise robustness than
traditional Gaussian Mixture Model-based (GMM) systems, but
under cleaner conditions the GMM systems perform better.

In our previous work [2], we investigated a combination of
the likelihoods estimated by a GMM system and the class con-
ditional probabilities estimated by an SC in the framework of
dynamic Bayesian networks. The motivation was that the SC
system and GMM system had different feature modeling capa-
bilities. More precisely, the SC system stores spectral exem-
plars and each sliding windom of the test utterances are approx-
imated as a linear combination of speech and noise exemplars
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from using sparse component analysis. Using the associated
state-id labels of the speech exemplars, the posterior state prob-
abilities of the frames of the test utterance are estimated using
the weights from the linear combination. At the same time, the
GMM system captures the distribution of cepstral features for
each state and matches the test feature vectors with a statistical
distribution. In addition, as noted above, the GMM and SC sys-
tems yield superior performance in different noise conditions.
This difference could possibly be exploited and contribute to a
dual-input system that performs well across all conditions. Our
studies showed that the SC system did indeed provide comple-
mentary information to the GMM, especially in noisy condi-
tions. However, under extremely noisy conditions the combined
systems could not outperform the stand-alone SC system.

An inherent drawback of the approach in our previous re-
search is that combining likelihoods (GMM) and probabilities
(SC) is not trivial. In ASR systems it is common practice to
use a language model scaling factor to combine language model
probabilities with acoustic model likelihoods, and we applied
a similar mechanism for combining the GMM likelihoods and
the SC probabilities. This scaling factor is usually estimated by
tuning the performance on cross-validation data and may not be
the best for the unseen test data. Therefore, we want to develop
a dynamic scaling method that is able to adapt to the unknown
conditions in a test.

As an alternative to GMM systems, multilayer perceptrons
(MLPs) have been proposed as a hybrid HMM/MLP system
to ASR [3]. Thanks to the discriminative training mechanism,
MLPs can directly estimate class conditional probabilities. In
a hybrid HMM/MLP system, the estimated class conditional
probabilities, usually after scaling them by the priors, are used
as HMM state emission probabilities.

In this paper, we replace the HMM/GMM system in [2] by
an HMM/MLP system and combine it with the SC system. By
doing so, we alleviate the problem of combining probabilities
and likelihoods, but we retain the advantage of the HMM/GMM
system, i.e. a better performance at high SNRs. MLP and SC
probability estimates are combined by the SUM or PRODUCT
rule. In this paper we use the AURORA-2 corpus to compare
the SUM and PRODUCT combination rules in the context of
static and dynamic scaling methods. It is shown that in all noise
conditions there is at least one combination method that is at
least as good as the best baseline system.

The rest of the paper is organized as follows, in Section 2
we review the basic properties of the SC approach. Then the
experimental setup and combining approaches are described in
Section 3 and 4 respectively. In Section 5 a detailed discussion
is given on the experimental results. Finally conclusions and
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suggestions for follow-up research can be found in Section 6.

2. The Sparse Classification system
As explained in [1], the SC system assumes that noisy speech
segments can be expressed as a sparse, linear, non-negative
combination of noise and clean speech exemplars from a fixed
dictionary. This exemplar-based system is especially robust in
very noisy conditions, thanks to the fact that it achieves an effec-
tive separation of speech and noise by taking advantage of long
temporal contexts. With each frame within each exemplar la-
beled with the HMM-states for the full-word models proposed
in [4], the likelihoods over all HMM-states can be estimated.
Finally, likelihoods are converted into posterior probabilities,
assuming a uniform prior distribution over all states.

3. Experimental Setup
We perform experiments on the multi-condition setup of
AURORA-2 database [4]. Briefly, the training set comprises
8440 utterances in both clean and noisy (SNR≥ 5 dB) condi-
tions. We use two sets of test data, namely test set A and test
set B, which have been created by adding noise to clean record-
ings. The test set A contains utterances corrupted by the same
four noise types as the multi-condition training set, while test
set B contains utterances corrupted by four different noise types.
Both test set A and test set B contain 4004 utterances, each of
which consists of a sequence of one to seven digits. All utter-
ances occur at seven noise levels, viz. clean, and SNR = 20, 15,
10, 5, 0, and -5dB. We will report performance on both test sets.

3.1. SC System

The SC dictionary is generated by randomly selecting 4000
noise exemplars from reconstructed noise recordings and 8000
clean speech exemplars from the clean training set. Exemplars
are represented as Mel-Frequency energy spectra with 23 bands.
Each exemplar spans 300ms. The noise exemplars are extended
by the same 23 artificial exemplars as in [5].

3.2. MLP

We trained a three layer MLP using the Quicknet software [6].
The input of the MLP are vectors of 39 dimensional perceptual
linear prediction cepstral coefficients (c0−c12+∆+∆∆) with a
context of four preceding and four following frames. The output
layer of the MLP consists of 179 classes corresponding to the
HMM states of the full-word models (including silence). For
training the MLP, an alignments in terms of the HMM states for
the 8440 utterances in the multi-condition training data was ob-
tained using the HTK based HMM recognizer proposed in [4].

We used 7685 utterances for training the MLP and the re-
maining 755 utterances for the cross-validation. The split was
speaker-independent, i.e., the speakers in the cross-validation
data are not present in the training set. During training, the
frame level classification accuracy performance on the cross-
validation data was used to guide the training process (i.e., con-
trol the learning rate). The optimal number of units in the hid-
den layer (850) was obtained with the validation data as well.

3.3. Analysis of estimates of SC and MLP Probabilities

We analyzed the properties of the class-conditional probabili-
ties estimated by SC and MLP by computing the average en-
tropy at different SNRs on the cross-validation data. As shown

in Table 1, the entropy of the probabilities estimated by the SC
system does not change much across different conditions, while
the entropy of the probabilities estimated by MLP steadily in-
creases when going from high to low SNRs. This brings to
light two aspects. First, the SC system tends to distribute the
probability mass over more classes/states than the MLP system.
Second, and most importantly, the average entropy of the MLP
output seems to be a good indicator of SNR of the signal.

Table 1: Averaged entropy per frame of the SC and MLP sys-
tems on the validation data of the AURORA-2 database

clean 20 15 10 5
MLP 1.07 1.45 1.64 1.85 2.28
SC 2.50 2.61 2.62 2.71 2.76

4. Combination of SC and MLP
Probabilities

In the literature, different rules for combining probabilities have
been proposed [7]. Among them, the SUM and PRODUCT rule
are the most commonly used. If P sc(k|xt) denotes the proba-
bility estimated by the SC system for class/state k given the
feature xt and Pmlp(k|x′t) denotes the probability estimated by
MLP classifier for class/state k given the feature x′t, then the lo-
cal score/emission probability for HMM state k at time frame t
is estimated by Eq. 1 or 2, where wsc

t and wmlp
t are the weights

at time frame t for the SC and the MLP stream, respectively.
Both wsc

t and wmlp
t are positive, and wsc

t + wmlp
t = 1.

sum rule (SUM)

ssumt (k|xt,x
′
t) = wsc

t ·P sc(k|xt) +wmlp
t ·Pmlp(k|x′t) (1)

product rule (PROD)

sprodt (k|xt,x
′
t) = P sc(k|xt)

wsc
t · Pmlp(k|x′t)w

mlp
t (2)

Decoding is performed after estimating ssumt (k|xt,x
′
t) or

sprodt (k|xt,x
′
t) for all states in a frame. Note that the combined

estimates could be normalized to yield probabilities. However,
the normalization factor at each time frame t is constant for all
states k thus does not affect the decoding. The weights wsc

t and
wmlp

t can be static or dynamic over time. We investigate both of
these weighting techniques and details about how these weights
are estimated are given in the following subsections.

4.1. Static Weighting

In the static weighting technique, a fixed weight is assigned
to each probability stream over all time frames. In our case,
the probability streams are the SC and the MLP probabilities.
Weights for the different streams are usually optimized on a
cross-validation data set. Since AURORA-2 does not have an
explicit cross-validation set, we take the cross-validation data
used in training the MLP to determine the static weights wsc

and wmlp for the SC and MLP probability streams.
For both the SUM and the PROD combination technique,

we performed a grid search of wsc in the range of [0, 1] in
steps of 0.05. The optimal weights, wsc = 0.65 for SUM
and wsc = 0.7 for PROD, were chosen such that they mini-
mize the average word error rate in all conditions. Because we
consider word error rate in all SNR conditions as equally im-
portant, higher weights for SC are to be expected: the largest
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Figure 1: Static weights and averaged inverse-entropy-based
dynamic weights of SC, estimated on the cross-validation data.
wsc (PROD) and wsc (SUM) refer to the static weights es-
timated for the PRODUCT or the SUM rule, respectively.
avg wsc

t denotes the averaged inverse-entropy-based dynamic
weights of SC.

performance differences between the MLP and SC systems are
found in the lowest SNR conditions, where SC is superior.

4.2. Dynamic Weighting

We use a weighting technique based on the inverse of entropy
to estimate weights dynamically [8]. In this technique, the clas-
sifier which has the highest entropy at its output gets the lowest
weight. If Hsc

t and Hmlp
t are the entropies of the output of the

SC and MLP systems respectively,

Hsc
t = −

K∑
k=1

P sc(k|xt) · log(P sc(k|xt))

Hmlp
t = −

K∑
k=1

Pmlp(k|x′t) · log(Pmlp(k|x′t))

where K is the number of output classes, then,

wsc
t =

1/Hsc
t

1/Hsc
t + 1/Hmlp

t

(3)

wmlp
t = 1− wsc

t (4)

4.3. Integrating Static Weight information in the Dynamic
Weighting

Our analysis in Section 3.3 showed that the entropy of the SC
system output does not change much over different SNRs, con-
trary to the entropy of the MLP output, which does change
across different SNRs. More precisely, the entropy of the MLP
increases and approaches the entropy of SC in the conditions
with the lowest SNRs.

Figure 1 shows the average ofwsc
t estimated by the inverse-

entropy based weighting technique across different SNRs as a
solid, red curve, together with the static weights wsc obtained
for the SUM and PROD combinations (shown as two horizontal
lines). It can be observed that on average the SC system gets
lower weights than the MLP system at all SNRs. This suggests
that the inverse-entropy weighting technique may not fully ex-
ploit the complementarity between SC and MLP, neither in high
nor in low SNRs. At high SNRs, the MLP on average gets very
high weights, so that the SC system will contribute little to the
combination. And at low SNRs, despite the fact that the SC sys-
tem performs very well under noisy conditions, the weighting
technique is not able to exploit this advantage, since SC does
not obtain high enough weights at low SNRs.

In order to enhance the contribution of SC in both high and
low SNRs, we tried a technique where the static weights infor-
mation can be integrated with the dynamic weights. In Figure 1
we observe that the static weighting technique is assigning a
higher weight to the SC. Based on the static weight, we es-
timated an enhancing factor γ for the dynamic weight of the
SC system. This factor was calculated as the ratio between the
static weights and the average inverse-entropy weight of 0.35
at SNR 15dB (the median SNR in the cross-validation data):
γ = 0.65/0.35 = 1.86 for SUM, and γ = 0.7/0.35 = 2.0 for
PROD.

The ratio can be seen as an indicator of how much the SC
stream must be enhanced on average. Given the enhancing fac-
tor γ and the estimate of dynamic weights wsc

t for the SC sys-
tem, the new dynamic weights for the SC and MLP systems are
estimated as

∗wsc
t = min(γ · wsc

t , 1) (5)

∗wmlp
t = 1− ∗wsc

t (6)

5. Results and Discussion
Table 2 shows the performance of different systems on both test
set A and test set B.

1. mlp(base): the stand alone HMM/MLP system

2. sc(base): the stand alone SC system

3. stc SUM: the sum rule combination using static weights
wsc and wmlp

4. stc PROD: the product rule combination using static
weights wsc and wmlp

5. dyn SUM: the sum rule combination using dynamic
weights wsc

t and wmlp
t

6. dyn PROD: the product rule combination using dynamic
weights wsc

t and wmlp
t

7. stc-dyn SUM: the sum rule combination using the mod-
ified dynamic weights ∗wsc

t and ∗wmlp
t

8. stc-dyn PROD: the product rule combination using the
modified dynamic weights ∗wsc

t and ∗wmlp
t

A comparison of the two stand-alone systems shows that
the hybrid HMM/MLP performs better in cleaner conditions
and the SC system performs better in noisy conditions. This
confirms the results for comparing SC with a traditional
HMM/GMM system [1, 2].

The static weighting strategy can yield better word accuracy
than either baseline system, except in the SNR -5dB condition
in test set A. However, it can also be seen that the best perfor-
mance is sometimes obtained with the SUM and at other times
with the PRODUCT rule. Also, a compromise has to be made
when using fixed weights for all conditions, while higher MLP
weights and higher SC weights are expected to yield better per-
formances at high and low SNRs respectively.

The dynamic weighting strategy allows for a frame-wise
adaptation and the inverse entropy was shown to be a good in-
dicator of SNRs. Still, it can be seen that dynamic weighting
is not consistently better than static weighting. This is because
the averaged dynamic weights of SC are always below the static
counterparts (cf. Fig. 1).

The modified dynamic weights, shown in Figure 2, move
closer to the optimized static weights, and keep the adaptation
to different SNR conditions. It can be observed that stc-dyn
PROD always performs at least the same as, or better than, the



Table 2: Word recognition accuracy (in %) on the AURORA-2 task. The best performing stand-alone system in each condition is
marked in Italics and the best performance for each SNR is in bold.

test set A test set B
clean 20dB 15dB 10dB 5dB 0dB -5dB 20dB 15dB 10dB 5dB 0dB -5dB

mlp(base) 99.08 98.89 98.45 96.89 91.80 72.80 35.67 98.58 98.02 96.39 91.04 71.48 33.41
sc(base) 96.16 95.68 95.22 94.38 92.14 84.82 63.60 95.65 95.18 93.47 88.46 74.85 44.69
stc SUM 98.90 98.62 98.23 97.19 94.47 85.27 58.74 98.56 98.04 96.86 92.92 79.27 45.49
stc PROD 99.29 98.83 98.31 97.26 94.47 84.39 54.65 98.83 98.23 97.11 92.66 78.73 45.75
dyn SUM 99.17 98.83 98.44 97.33 94.42 84.22 55.57 98.66 98.24 96.95 93.03 78.82 42.99
dyn PROD 99.30 98.95 98.64 97.44 94.06 82.49 50.07 98.84 98.41 97.02 92.68 78.06 42.96

stc-dyn SUM 99.05 98.63 98.21 97.13 94.16 85.98 63.92 98.57 97.98 96.38 91.86 77.93 46.85
stc-dyn PROD 99.32 98.85 98.41 97.17 94.38 86.11 65.78 98.80 98.06 96.50 91.41 77.68 46.14

best stand-alone system in all conditions, including SNR -5dB
in test set A. However, it can also be seen in Table 2 that stc-
dyn does not achieve a better performance than stc or dyn in the
20, 15, and 10 dB SNR conditions, in both test set A and B.
This indicates that the optimal weights for different SNRs are
not a linear function of the inverse entropy. Adaptations will be
needed for further improvement.

Finally, a comparison between the SUM and PROD rules
shows that PROD performs well at higher SNRs and SUM per-
forms well at lower SNRs. It is well known in the literature
that it is better to combine probabilities with the PROD rule if
the classification performance is high (implying similar scores
of the classifiers), which is the expected case in cleaner condi-
tions, while SUM is better if the classification performance is
low (implying low agreement between the classifiers) [9].
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(a) test set A
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Figure 2: Average dynamic weights for System dyn and stc-
dyn, shown as dashed red and solid blue curves, respectively.
avg wsc

t and avg wmlp
t denote the averaged inverse-entropy-

based dynamic weights and avg ∗wsc
t and avg ∗wmlp

t indicate
the syn-dyn weights for each stream.

6. Conclusions and Future Work
In this work, we investigated the combination of an SC system
and a hybrid HMM/MLP system at the probability level. Our
study shows that although the combinations can yield improve-
ments in all SNR condition, there is no single combination rule
or weighting method that consistently achieved the best per-
formance in all conditions. However, the modified dynamic
weighting method which which integrates static and dynamic
weights to enhance the contribution of the SC stream yields a
system that performs better than or equal to the best stand-alone
system in all SNR conditions.

In our future work, we will explore ways to estimate the
enhancing factor dynamically. In addition, we will investigate
and compare other dynamic combination approaches, such as
the Dempster-Shafer method [10].
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