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Abstract
This paper discusses the use of ferns (a set of binary features) for face detection. The binary feature
used here is the sign of pixel intensity di�erence. Ferns were �rst introduced for keypoint recognition and
showed good performance, and improving the recognition speed. Keypoint recognition deals with classi-
�cation of few hundred di�erent classes, while face detection is a two-class problem with an unbalanced
data. For keypoint recognition random pixel pairs proved to be good enough while we used conditional
mutual information criteria to select a small subset of informative binary feature to build class conditional
densities and a Naive Bayesian classi�er is used for face and non-face classi�cation. We compared our
approach with boosted haar-like features, modi�ed census transform (MCT), and local binary pattern
on a single stage classi�er. Results shows that ferns when compared to haar-like features are robust to
illumination changes and comparable to boosted MCT feature. Finally a cascade of classi�ers was built
and the performance on cropped face images and the localization results using Jesorsky measure are
reported on XM2VTS and BANCA database.
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1 Introduction
Computer vision applications are now ubiquitously found in mobile phones, digital camera, cars, toys,
hospitals, airports, and security areas, and this has been possible by the availability of fast processors and
robust algorithms. One of the problem in computer vision is face detection. The goal of face detection
is to detect all faces in an image. This is an easy task for humans, indeed babies are able to recognize
human faces very early. However, this task becomes challenging for a machine as the face image captured
with a vision sensor, gets altered by pose variations (rotation out-of-plane), camera angle, illumination,
facial expressions, occlusions (glasses, sunglasses, hat), age and gender.

There are many closely related problems of face detection. Facial feature detection aims at detecting
the presence and location of features, such as eyes, nose, nostrils, eyebrow, mouth, lips and ears, with
the assumption that there is only one face in an image. Face recognition or face identi�cation compares
an input image (probe) against a database (gallery) and reports a match, if any. Face authentication
veri�es the claim of the identity of an individual in an input image. Face tracking methods continuously
estimate the location and possibly the orientation of a face in an image sequence, while facial expression
recognition concerns identifying the a�ective states (happy, sad, surprised, etc.) of humans. Clearly, face
detection is the �rst step in any of the above automated system.

In this report we explore the use of fern features for frontal face detection task. Before going into the
technique, we give a brief review on di�erent techniques proposed for face detection task in next section,
and in Sec. 3, we describe the preliminary experiments conducted for frontal face detection, and �nally
conclusion is given in Sec. 4.

2 Brief Review
We split this review into two parts, one focusing on classi�cation techniques and the other describing
various feature extraction process.

2.1 Classi�cation Techniques
Face detection is a very well explored area and details of di�erent methods are available in two survey
papers by Yang et al. [9] and Hjelmas and Low [36]. Face detection methods can be categorized into
feature-based and appearance-based approach. Feature-based approaches uses explicit features such as
the eye, nose, mouth, elliptical shape of face, and distance between various features [37]. The limitation
with feature-based method is that it is not possible to translate all human knowledge into explicit rules.
Furthermore, the extraction of facial features can be di�cult as some of the features could be occluded, or
altered due to pose and illumination variations. Also, the face can be too small that extracting individual
features would not be feasible. Skin color models are also used for the detection of face [24]. Color
information helps to reduce the search space by focusing on regions with likely skin color. Unfortunately
skin color cannot be used in gray scale images or when the faces are arti�cially colored (e.g., spectators
having country �ag painted on face), and mainly in a lot of conditions color is not reliable.

The excellent results achieved by appearance-based approach have lead research in this direction.
The advantage of appearance-based methods is that the knowledge about face is learned implicitly by
the training algorithm. In this approach a subimage of a �xed size is given to a classi�er which takes a
decision if it is a face or a non-face. Many di�erent algorithms have been proposed for face detection;
Subspace methods [33], Neural Network [27], Support Vector Machines [20], Sparse Network of Winnows
[25], Naive Bayes Classi�er [28], and Information Theoretical approach [4]. Appearance based methods
require the input image to be scanned at every location and scale. As a consequence the number of
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windows that needs to be tested easily reaches millions depending on the size of the image and the
accuracy of the search. Therefore these methods need a classi�er with a high true positive rate (detection
rate), but also with an extremely low false positive rate (false alarm), typically of the order of 10−6.

In the early 1990's, Sirovich and Kirby [13] developed a technique using PCA to e�ciently represent
human faces. Turk and Pentland [33] later proposed to perform Principal Component Analysis (PCA) on
training face images and to use the eigenvectors, also called eigenfaces, as a face template. A candidate
subwindow region is classi�ed according to the distance computed in PCA subspace after projection.
The distance can be interpreted as a measure of faceness. PCA is an intuitive and appropriate way
of constructing a subspace for representing an object class in many cases. However, for modeling the
manifold of face images, PCA is not necessarily optimal. The face space might be better represented
by dividing it into subclasses, and this technique was �rst applied by Sung and Poggio [30] by modeling
the subclasses of face and non-face using mixture of multi-dimensional Gaussians. Each cluster was
decomposed in PCA subspace. A set of Mahalanobis-like and Euclidean distance were computed for a
new image with respect to 6 face and 6 non-face clusters and given to a trained Multi-Layer Perceptron
(MLP) for face/non-face classi�cation.

Rowley et al. [27] incorporated face knowledge in a retinally connected neural network and reported
results on a di�cult dataset. To improve the performance, multiple neural networks were trained and
the output were combined with an arbitration strategy. Feraud et al. [23] suggested a di�erent neu-
ral approach, based on a constrained generative model (CGM). Their CGM is an autoassociative fully
connected MLP with three layers of weight. The idea behind this model is to force nonlinear PCA
to be performed by modifying the projection of non-face examples to be close to the face examples.
Classi�cation is obtained by considering the reconstruction error of the CGM.

Osuna et al. [20] used Support Vector Machine (SVM) for face detection. A SVM with a polynomial
kernel function is trained for face/non-face classi�cation. One of the main advantage of SVM is that it
can work with few training samples. Colmenarez and Huang [4] proposed a system based on Kullback
relative information for face detection. A joint-histogram for each pair of pixels in the training set is
used to create probability functions for face and non-face classes. Since pixel values are highly correlated
with neighboring pixel values, it is treated as a �rst order Markov process and the pixel values in the
gray-level images are requantized to four levels. The training procedure results in a set of look-up
tables with likelihood ratios, which could be used during test by selecting patterns with high likelihood.
Schneiderman and Kanade [28] describe a Naive Bayes classi�er to estimate the joint probability of local
appearance and position of face patterns (subregions of face) at multiple resolutions. At each scale, a
face image is decomposed into four rectangular subregions. These subregions are then projected to a
lower dimensional space using PCA and quantized into a �nite set of patterns, and the statistics of each
projected subregions are estimated from the projected samples to encode local appearance. Their method
decides that a face is present when the likelihood ratio is greater than the ratio of prior probabilities.
They also extended this method with wavelet representation to detect pro�le faces and cars [29].

Roth et al. [25] used Sparse Network of Winnows (SNoW) learning architecture for face detection.
The SNoW learning architecture is a sparse network of linear functions that utilizes the Winnow update
rule [17]. Their face detector makes use of Boolean features that encode the positions and intensity
value of pixels. Their system shows better performance than other methods discussed above. Garcia
and Delakis [8] proposed a convolution neural network for detecting semi-frontal human face in complex
images. Their method automatically derives optimal convolution �lters that act as feature extractors.
This technique has also been used for other object detection tasks [31].

All the above classi�cation technique provide good results for face detection but are computationally
expensive as the input pattern has to go through all the calculations before making a decision for face
and non-face. In 2001, Viola and Jones [34] proposed Asymmetric Adaboost with cascade architecture
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(see Fig. 1) and haar-like features for face detection which achieves good performance in real-time. The
key idea for achieving fast detection is that the complexity of the classi�er (i.e number of features in
each classi�er) increases when moving forward in the cascade, and focus more on face like region. With
this breakthrough approach, many research papers focuses on boosting framework, cascade architecture,
and features which are fast to compute and robust to illumination changes. Many di�erent features and
boosting strategies have been developed over last few years.

Figure 1: Cascade architecture. A series of classi�ers C(k), k = 1, ...,K, are applied to every sub-window.
A sub-window is rejected if it is lesser than the stage threshold T (k), otherwise it is passed on to the
next stage. The thresholds are selected such that large number of background sub-windows are rejected
by �rst few classi�ers.

Lienhart et al. [16] introduced rotated haar-like feature and its implementation for fast computation.
In their paper they analyze the three boosting algorithms (Discrete, Real and Gentle Adaboost) and
empirically show that Gentleboost performs better than the rest with lower computational complexity.
They analyzed the e�ect of feature scaling, input pattern size, basic vs. extended haar-like feature, tree
vs. stump decision classi�er, and size of training set. They have shown that having large training sets only
improve performance slightly, but also that while scanning the image at di�erent scales, the performance
can degrade if the scaling is fractional. Stan Z. Li et al. [14] proposed Floatboost technique to backtrack
and delete those weak classi�ers that are non-e�ective or unfavorable in terms of error rate, which leads
to a strong classi�er consisting of fewer weak classi�ers.

Jianxin wu et al. [35] proposed a novel cascade learning algorithm based on forward feature selection
which is two order of magnitude faster than Viola-Jones approach and yields classi�er of equivalent
quality. Huang et al. [11] proposed a nested cascade detector in which the con�dence of the strong
classi�er from the previous layer is used as input along with other weak classi�ers to the next layer. This
reduces the number of layers and features used to reach the same detection and false positive rate.

Most of the above classi�cation methods can be extended to detect multi-view face and di�erent
techniques have been proposed: one is to have a separate detector for each pose and run the detector for
all the poses; the other option is to have a pose detector and then redirect the input to the estimated pose;
another option is to have a detector which jointly detects and estimates the pose of face. Rowley et al.
[26] proposed a neural network classi�er which estimates the rotation of face, and uses this information
to normalize the input pattern and feed it to the upright face detector. Stan Z. Li et al. [15] proposed
a detector-pyramid which is composed of several levels from the coarsest view partition at the top to
the �nest partition at the bottom. At each level of pyramid, the full range of out-of-plane rotation is
partitioned into a number of sub-ranges, and the same number of detectors are trained for face detection
in that partition, each specialized for a certain view sub-range.

Recently sharing features across di�erent classes of object has gained attention for object classi�cation.
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By sharing the feature across di�erent views (classes) it is possible to reduce the computation time. Huang
et al. [10] presented vector boosting for multi-view face detection where the features are shared in the
initial stage of the architecture for di�erent views, while at the end of the architecture the features
selected are more view speci�c. Torralbe et al. [32] proposed a multi-task learning procedure, based on
boosted decision stumps, that reduces the computations at run-time and complexity at training time, by
�nding common features that can be shared across classes (views). When the detectors for each class are
trained jointly, the selected features are generic edge-like features and have good generalization (classi�er
performs well on unseen test patterns).

2.2 Feature Extraction
Features are used to describe patterns in a more compact way, such that intra-class variability is de-
creased and inter-class variability is increased. Features extracted for object detection should be robust
to illumination changes, and ideally require as little computation as possible. In pioneering work, gray
scale pixel values were used directly by Rowley [27], Feraud [23], and Osuna [20] and complemented by
an image preprocessing (histogram equalization, smoothing). This feature extraction mechanism was
computationally very expensive. In this subsection we will discuss on di�erent features which are being
used for object detection and tracking. We will not be able to cover all types of features but we select
a subset which are simple and e�cient. We will discuss about haar-like features, Local Binary Patterns
(LBP) and its variants, and ferns.

2.2.1 Haar-like features
The �rst real-time frontal face detection introduced by Viola and Jones used haar-like feature for face
detection [34]. Haar-like features (Fig. 2 (a)) are derived from Haar wavelets and a feature is computed by
subtracting the sum of pixel values in white and black region. Those features can be e�ciently computed
by using integral image or summed area table, �rst introduced by Crow [5] for texture mapping. At a
given location (x,y), in an image, the value of the integral image ii(x,y) is the sum of the pixels above
and to the left of (x,y):

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′)

where i(x′, y′) is the pixel value of the original image at location (x′, y′). To compute the sum of the
black region shown in Fig. 3, only 4 table access and 3 simple operations are needed. Following Viola and
Jones, Lienhart et al. [16] introduced rotated haar-like features (Fig. 2 (b)) which signi�cantly enriched
the original haar-like feature and could be calculated also very e�ciently.

2.2.2 Local Binary Patterns
Another type of features that are becoming more and more popular in the computer vision community
are for instance Local Binary Pattern (LBP) [19], Census Transform [38], and Modi�ed Census Transform
(MCT) [7]. Those features are non-parametric operators which captures the local spatial structure of an
image. For example, the LBP operator is represented by

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2p

where gc corresponds to the gray value of the center pixel (xc, yc) of a local neighborhood, gp(p =
0, ..., P − 1) corresponds to the gray values of P equally spaced pixels on a circle of radius R (R > 0)
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Figure 2: (a) Haar-like features used by Viola and Jones, and (b) rotated haar-like features used by
Lienhart in addition to original haar.

Figure 3: Computation of haar-like feature with the integral image. The sum in the black region is given
by: F − C − E + B

that forms a circularly symmetric set of neighbors. The function s is de�ned as:

s(x) =
{

1 if x ≥ 0
0 if x < 0

Fig. 4 shows the computation of LBP8,1. A modi�cation of LBP8,1 was introduced by Ernst et al.
[7] called Modi�ed Census Transform (MCT), which can be written as

MCT (xc, yc) =
8∑

p=0

s(gp − g∗p)2p

where g∗p is the average value, and gp consists of center pixel and its 8 neighbors. MCT thus has an extra
bit to encode the local structure. The number of binary comparisons for LBP8,1, LBP4,1, and MCT
are 8, 4, and 9 respectively. Fig. 5 shows local primitives detected by LBP8,1 operator (spots, line end,
edges, and corner). In terms of texture, each LBP code can be regarded as micro-textons. These binary
features have shown robustness to monotonic gray scale transforms.
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Figure 4: Computation of LBP8,1. A LBP code for a neighborhood is produced by multiplying the
threshold values with weights given to corresponding pixels and summing up the result.

Figure 5: Di�erent texture primitives detected by LBP. In the �gure ones are represented by white square
and zeros by black circles.

2.2.3 Ferns
Mustafa et al. [21] have shown that simple binary features could be used for patch classi�cation. The
binary features they proposed are based simply on the sign of pixel intensity di�erence. Given an image
patch I a binary feature is de�ned as

fi =
{

1 if I(m) ≤ I(n)
0 otherwise

where I(m) and I(m) are the pixel intensity values at location m and n. A fern is de�ned as a set of
binary features (see Fig. 6), and can basically capture the intensity variations in an image patch (see
Fig. 8 for the actual pixel location overlapped on a face image). A set of location pairs (m,n) can be
structured vertically, horizontally, diagonally, or circularly in a similar manner to LBP or to any arbitrary
shape.

3 Preliminary Work: Frontal Face Detection using Ferns
In [21], a fast patch classi�cation algorithm based on Semi-Naive Bayesian classi�er and binary features
(ferns) has been proposed for estimating the pose of an object. The main idea was to classify large
number of keypoints quickly to estimate the pose of an object. In this section we explore this technique
for face detection task. Our main motivations to use this approach was that it does not require any
preprocessing of the image and the training time is greatly reduced when compared to boosting.

The binary feature used in our experiment is described in section 2.2.3. In [21], the pixel pair location
for computing the binary feature were selected randomly. However, random selection of binary features
does not help us to achieve consistent performance for face detection task and it will not be optimal for
building a cascade of classi�er. In next subsection, we �rst describe the binary feature selection process,
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Figure 6: Fern feature. The dark and light circles shown in a white boxes are arbitrary pixel location (m
and n). In this �gure the fern consists of 3 binary feature (f1, f2, and f3).

then describe Semi-Naive Bayesian classi�er using fern features, and �nally describe the experiments
conducted for face/non-face classi�cation.

3.1 Binary Feature Selection using Conditional Mutual Information
For a image of size q× q we have q(q−1)/2 possible binary features. The main goal of feature selection is
to select a small subset of features that carries as much information as possible. The ultimate goal would
be to choose f1, ..., fNf

which minimizes H(Y |f1, ...fNf
), where H is the entropy, Y the class label (0,1),

fi binary feature (0,1), and Nf number of binary features. But this expression can not be estimated with
a training set of realistic size as it requires 2Nf +1 probabilities (considering all Nf + 1 (total number of
features plus the class) binary combination).

Fleuret [6] showed that features selected based on conditional mutual information maximization
(CMIM) criteria and using a Naive Bayesian classi�er gives performance comparable to state-of-art tech-
niques such as boosting or SVM. The features selected using CMIM also show robustness to noisy training
data. Conditional mutual information is given by

I(Y ; f ′|f) = H(Y |f)−H(Y |f ′, f) (1)

where H(Y |f) is the conditional entropy which measures the residual uncertainty of Y when f is known,
H(Y |f ′, f) measures the residual uncertainty of Y when f and f ′ are known, and I(Y ; f ′|f) gives an
estimate on the amount of information shared between Y and f ′ when f is known. The conditional
mutual information is zero if f ′ and f have the same information about Y , while the value is large if
f ′ and f have di�erent information about Y . To select a feature that carries di�erent information from
features that are already selected, the following iterative scheme was proposed

f0 = arg max
n

I(Y ; fn)

∀k, 0 ≤ k ≤ K − 1, f(k + 1) = arg max
n
{minl≤kI(Y ; fn|fl)}︸ ︷︷ ︸

s(n,k)

The score s(n, k) is low if any feature already picked is similar to fn or if fn does not contain any
information about Y . By taking the feature fn with maximum score s(n, k), it is ensured that the new
feature is di�erent from those that are already selected and also carries information about Y .
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3.2 Semi-Naive Bayesian Classi�er
Naive Bayesian classi�er has been successfully used for various classi�cation tasks. We will be using
Semi-Naive Bayesian technique proposed in [21] to build a two class classi�er. The idea is to build the
class conditional probabilities of binary feature and at run-time use these probabilities to select test input
pattern with highest likelihood. We will �rst de�ne the following notations:
fi : Binary feature (sign of intensity di�erence of two pixels).
ci : Class label
Fj : A Fern de�ned to be a set of S binary features {fl, ..., fl+S}
M : Number of ferns
N = S ×M , where N is total number of features in the model.
Given a set of features f0, f1, ..., fN−1 the idea is to select class ci such that

ĉi = arg max
ci

P (C = ci|f0, f1, ..., fN−1) (2)

Bayes' Formula yields

P (C = ci|f1, f2, ..., fN ) =
P (f0, f1, ..., fN−1|Ck)P (Ck)

P (f0, f1, ..., fN−1)

Assuming a uniform prior P (C) and since the denominator is simply a scaling factor that is independent
from the class the problem reduces to �nding

ĉi = arg max
ci

P (f0, f1, ..., fN−1|C = ci) (3)

The joint probability of Equation(3) is not feasible since it would require estimating and storing 2N entries
for each class. One way to simplify the representation is to assume independence between features.

P (f0, f1, ..., fN−1|C = ci) = ΠN−1
j P (fj |C = ci).

However, this completely ignores the correlation between features. To make the problem tractable while
accounting for these dependencies, a compromise is to partition the features into M groups of size S = N

M .
These groups are de�ned as ferns and the joint probability for feature in each fern is computed. The
conditional probability becomes

P (f0, f1, ..., fN−1|C = ci) = ΠM−1
k P (Fk|C = ci).

where Fk = fk,0, fk,1, ..., fk,S−1, k = 0, ...M − 1. The parameters M and S could be used to tune the
performance and memory trade-o�.

3.3 Experiments
3.3.1 Database
The database consists of 8744 training and 9232 validation faces, taken from di�erent face database
(BANCA [2], Essex, Feret [22], ORL, Stirling and Yale [3]). The face samples are aligned with respect to
eye coordinates. For non-face patterns we randomly select around 50000 patterns from di�erent images
not containing any face. All the patterns are resized to q × q pixels, where q = 19. For testing the
performance of the classi�er we have three di�erent test sets. Test set 1 contains 2360 faces with frontal
illumination taken from XM2VTS database [18]. Test set 2 contains 1180 faces with side illumination
(XM2VTS darkened). Test set 3 contains 580 faces from various sources (web). For non-face test patterns
we took MITCBCL [1] dataset and combined both training and test non-face set to obtain 27000 patterns.
Samples from these dataset are shown in Fig. 7.
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Figure 7: Samples from face and non-face training, validation and test dataset.

3.3.2 Training and Testing
Face detection is a two class problem so we have C = {0, 1}. From the training face and non-face
patterns, we select N features, N << 64890 (for q = 19 we have 64890 possible binary features) using
CMIM criteria as described in section 3.1. There are many ways in which the N features can be grouped
in size of S. We decided to split N features into M equal sets, each of size S to form each fern Fj ,
Fj = fh+0, ..., fh+S−1, where h = j × S, j = 0, ..., M − 1. An example of pixel pair locations of �rst two
ferns (S = 9) obtained after selection using CMIM are shown in Fig. 8. Once the selection is done, it
becomes possible to build the class conditional probability P (Fj |C = ci) for all ferns using the training
patterns of face and non-face. To test if a pattern is a face or a non-face we check the following condition:

ΠM
k P (Fk|C = 1)

ΠM
k P (Fk|C = 0)

> τ (4)

The value τ is found using the validation set for a given detection rate. The detection rate or true positive
rate (TPR) is de�ned as the percentage of faces that are correctly accepted in a particular data set. False
positive rate (FPR) , also called false alarm rate is de�ned as percentage of non-face patterns accepted
as face. Classi�cation error rate is de�ned as the percentage of total number of miss classi�cation (face
classi�ed as non-face and non-face classi�ed as face).
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Figure 8: Fern features overlapped on face image. (a) shows the pixel pair location for �rst fern, and (b)
shows pixel pair location for second fern. Both the ferns shown here have S = 9.

3.3.3 Results for Single Stage Classi�er
To compare the performance of ferns and other features (MCT, haar-like feature, and LBP) we plot
the receiver operating characteristic (ROC) curves and look at the TPR and FPR on the test dataset
(ref. Sec. 3.3.1). MCT, LBP and haar-like features are trained using boosting techniques. To have a
fair comparison among di�erent techniques we selected equivalent number of features in each case. For
our approach, we tried di�erent values of S and M and selected S = 9 and M = 10, which performed
better (see Fig. 9). We have a total of 90 binary features for S = 9 and M = 10. Therefore we set
all other techniques to have equivalent to 90 binary features: the number of features for MCT is 10, 11
for LBP8,1, and 22 for LBP4,1. In the case of haar-like features it was di�cult to decide on the exact
number of features due to di�erent ways the features were computed. We decided to take approximately
50 haar-like features based on computation cost between the binary features, and 100 features to see
roughly the performance when more features are added.

Figure 9: Classi�cation error rate vs. number of fern features (3,5,10,15, and 20) for S = 9

The performance between MCT, ferns, LBP8,1, LBP4,1, and haar-like features are shown in Figs. 10,
11, and 12, and Tab. 1. To obtain TPR and FPR in Tab. 1, the decision threshold for each classi�er was
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obtained by setting the detection rate to 98% on the validation dataset. From the ROC curves and the
Tab. 1, we see that haar-like features when compared to binary features are not so robust to changes in
illumination. The performance of ferns and MCT features are comparable across di�erent test data set.

Table 1: True and False positive rate for Test sets in %. The �rst column shows the feature type, column
second, third and fourth show the corresponding TPR for test set 1, test set 2, and test set 3 respectively,
and �nally the last column shows FPR obtained on non-face test set.

Test set 1 Test set 2 Test set 3 FPR
MCT 98.22 96.78 95.69 12.25
ferns 99.53 99.15 96.9 16.9

LBP8,1 97.88 97.03 96.55 22.80
LBP4,1 99.32 95.76 95.34 20.12
haar 100 99.41 89.14 94.83 8.53
haar 50 99.58 86.65 93.28 21.01

Figure 10: ROC curve for Test set 1 (XM2VTS normal).
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Figure 11: ROC curve for Test set 2 (XM2VTS darkened).
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Figure 12: ROC curve for Test set 3 (various sources).

3.3.4 Cascade Model Architecture and Results
Finally, we built a cascade of classi�ers to reduce the false positive rate while maintaining high true
positive rate. The hyper-parameters of the cascade were selected empirically. A 40 stage cascade with a
total of 800 fern feature (S = 9) was necessary to obtain a reasonable false positive rate of 10−4 by keeping
the detection rate at each stage to 99.91% on training data set. The same face training and validation
dataset as described in section 3.3.1 were used, while non-face samples were obtained by bootstrapping
at each stage from a set of 1734 images containing no faces. We look at the performance of the cascade
model on cropped faces and also by scanning full images from the BANCA (English corpus) and the
XM2VTS databases. We used sliding window approach at di�erent scales (pyramid scan) to detect faces
from an image. The accuracy of localization on the detection result is given by measuring the di�erence
between the ground truth eye center location with the estimated one [12]. The localization accuracy
measure is given by

deye =
max(d(Cl, C

∗
l ), d(Cr, C

∗
r )

d(Cl, Cr)
(5)

where d(a, b) is the Euclidean distance between points a and b. Cl and Cr are the true left and right eye
centers, and C∗l and C∗r are the estimated left and right eye centers.
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Table 2: Detection rate for various test dataset in % (rejection rate = 98.4% on non-face test set). (Note
we had only cropped faces for Test set 3)

cropped faces localization result deye < 0.25 (full image scan)
Test set 1 99.06 94.9
Test set 2 98.13 85.0
Test set 3 92.07 NA

BANCA Controlled 91.1 77.9
BANCA Degraded 86.77 35.24
BANCA Adverse 95.3 86.97

The results of cascade detector are shown in Tab. 2. As it can be seen from the table, there is a
degradation in performance when the detector is applied on full images. We will take up this problem of
scanning in our future research. Some detection results are shown in Fig. 13.

Figure 13: Some examples for face detection results on XM2VTS and BANCA database. The last column
shows one false detection and one missed face.

4 Conclusion
From preliminary experiment results, we see that fern features have a potential for face detection. We
think that they can be further combined with MCT and LBP to form a richer set of binary features. In
our experiments we noticed that though the classi�er performs very well on the cropped face images, it
performed poorly when scanned on full image. The parameters of scanning such as scale, x and y step
size, and fusing of multiple detection can a�ect drastically the performance of face detection. We would
like to explore alternative ways of scanning an image which will minimize the number of misses and false
detections.
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