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Continuous Speech Recognition using
Boosted Binary Features

Anindya Roy*, Student Member, IEEE, Mathew Magimai.-Doss,Member, IEEE,
and Sébastien Marcel,Member, IEEE

Abstract—A novel parts-based binary-valued feature termed
Boosted Binary Feature (BBF) was recently proposed for ASR.
Such features look at specific pairs of time-frequency bins in the
spectro-temporal plane. The most discriminative of these features
are selected by boosting and integrated into a standard HMM-
based system using multilayer perceptron (MLP) and single
layer perceptron (SLP). Previous studies on TIMIT phoneme
recognition task showed that BBF yields similar or better
performance compared to cepstral features. In this work, this
study is extended to continuous speech recognition task on the
DARPA Resource Management database. Results show that BBF
achieves comparable word error rate (5.5%) on this task with
respect to standard cepstral features (5.1%) using MLP. Using
SLP, the error rate for BBF shows much lower degradation (from
5.5% to 7.1%) compared to cepstral features (from 5.1% to
14.7%). In addition, it is found that BBF features can be selected
well using auxiliary data.

Index Terms—EDICS: SPE-RECO, SAS-MALN, SAS-STAT

I. I NTRODUCTION

STANDARD automatic speech recognition (ASR) systems
use different types of features such as cepstral features

and their approximate temporal derivatives, TRAPS/HATS [1],
multiresolution RASTA features [2] and 2D-DCT localized
features [3]. These features capture in various ways phoneme-
specific information embedded across time and frequency.

In this context, a set of parts-based binary(±1) features
was recently proposed for ASR [4] which present a general
framework to capture phoneme-specific information embedded
1) across frequency, 2) across time, and 3) across both time
and frequency. These features are related to but distinct from
local features used for isolated digit recognition in [5] and are
inspired by similar binary features which have been success-
fully applied for face and object detection in the computer
vision domain [6][7].

These parts-based features are extracted by computing the
difference in magnitude at two time-frequency bins (i.e. the
parts) in a spectro-temporal matrix formed by stackinglog
mel filter bank energies over a temporal context of 170ms, and
comparing this difference with a threshold. The binary(±1)
result of this comparison is taken as the feature. Considering
all possible pairs of time-frequency bins andall possible
thresholds, a very large set of binary features is created. Out
of this set, the Adaboost algorithm [8] is used to select a
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small number of features which best discriminate a particular
phoneme against all others. These selected features, termed as
BoostedBinary Features (BBF), are modelled by multilayer
perceptron (MLP) or single layer perceptron (SLP)[4]. The
phoneme posterior probabilities estimated by MLP or SLP are
then used as feature observation for Kullback Leibler diver-
gence based Hidden Markov Model (KL-HMM) system [9].

Previous studies on TIMIT phoneme recognition task
showed thatBBF yields performance similar or better than
standard cepstral features [4]. This paper investigates: a) the
scalability of these features to continuous speech recognition
task, and b) use of auxiliary data to select the features. On
DARPA Resource Management (RM) database, our studies
show that: a)BBF can yield performance comparable to
standard cepstral features using MLP, b) using SLP,BBF
performance degrades significantlyless compared to cepstral
features, supporting the observation made in previous stud-
ies [4], and c)BBF features selected using an auxiliary corpus
can yield same performance as those selected using the task
specific data.

The rest of the paper is organized as follows. In Sec.II,
we describe theBBF based framework. We describe the
experimental setup in Sec.III. The results from our speech
recognition studies are detailed in Sec.IV. Finally, we discuss
and outline the main conclusions of the work in Sec.V.

II. B RIEF THEORY

The theory of boosted binary features for speech recognition
was proposed in a previous work [4]. Since it is relatively new,
it is described again for convenience.

A. Binary Features

In the first step, the input speech waveform is blocked into
frames and processed via a bank of 24 Mel filters to yield
a sequence oflog spectral vectors of dimensionNF = 24.
Sets ofNT = 17 consecutive such vectors are stacked to
form spectro-temporal matrices of sizeNF × NT .1 Let X

be such a spectro-temporal matrix. The(k, t)-th element,
X(k, t) of X denotes thelog magnitude of thek-th Mel
filter output att-th time frame. Consecutive spectro-temporal
matrices are formed using shifts of one time frame, implying
one spectro-temporal matrix per frame. The binary features
are extracted from the matrixX as follows. A binary feature
φi : ℜNF×NT → {−1, 1} is defined by 5 parameters: two
frequency indices,ki,1, ki,2 ∈ {1, · · · , NF }, two time indices,

1In Sec. III-C, the reason behind the choice ofNT = 17 is explained.
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Fig. 1. Each binary featureφi is associated with a pair of time-frequency
bins in the spectro-temporal matrix, defined by the parameters (ki,1, ti,1) and
(ki,2, ti,2). The difference of thelog magnitude values at these two bins is
compared with a thresholdθi and the sign is retained. An example feature
φi is shown in the figure.

ti,1, ti,2 ∈ {1, · · · , NT } and one threshold parameter,θi. The
pairs of indices(ki,1, ti,1) and (ki,2, ti,2) define two time-
frequency bins in the spectro-temporal matrix. To ensure two
separate bins, both frequency and time indices should not be
equal. The featureφi is defined as,

φi(X) =

{

1 if X(ki,1, ti,1)−X(ki,2, ti,2) ≥ θi,

−1 if X(ki,1, ti,1)−X(ki,2, ti,2) < θi.
(1)

In Fig. 1, we illustrate this process for an example24 × 17
spectro-temporal matrix. Given the ranges ofki,1, ki,2 and
ti,1, ti,2, the total number of such binary features isNΦ =
NTNF (NTNF − 1) = 17 · 24 · (17 · 24− 1) ≈ 1.7× 105. Let
Φ = {φi}

NΦ

i=1 denote the complete set of such features.

B. Binary Feature Selection

Out of the complete set of binary featuresΦ, a cer-
tain number of featuresNf (≈ 40) are selectedfor each
phoneme according to their discriminative ability with respect
to that phoneme, using Discrete Adaboost algorithm [8] with
weighted resampling, which is widely used for such feature se-
lection tasks [10] and is known for its robust performance [8].
The process is data-driven and requires training data.2 The
boosting algorithm, which is to be run once for each phoneme,
is described next.

Feature selection algorithm by Discrete Adaboost for a
phonemeω

Inputs: Ntr training samples, i.e. spectro-temporal matrices
{Xj}

Ntr

j=1 extracted from the training data; their corresponding
class labels,yj ∈ {−1, 1}, (−1 : Xj /∈ ω, 1 : Xj ∈ ω);
Nf , the number of features to be selected;N∗

tr, the number
of training samples to be randomly sampled at each iteration
(N∗

tr < Ntr).3

• Initialize the sample weights{w1,j} ←
1

Ntr
.

2In Sec. IV, it is shown that the choice of training data is not important
and the selected features can generalize well to unseen data.

3Values ofN∗

tr ≈ 5% of Ntr works sufficiently well. It was not tuned.

• Repeat forn = 1, 2, · · ·Nf :

– Normalize weights,wn,j ←
wn,j

∑Ntr
j′=1

wn,j′

– Randomly sampleN∗
tr training samples, according

to the distribution{wn,j}
– For eachφi in Φ, choose threshold parameterθi to

minimize misclassification error,
ǫi =

1
N∗

tr

∑N∗
tr

j=1 1{φi(Xj) 6=yj} over the sampled set.
– Select the next best feature,φ∗

n = φ∗
i

wherei∗ = argmini ǫi
– Setβn ←

ǫi∗

1−ǫi∗

– Update the weights,wn+1,j ← wn,jβ
1{φ∗

n(Xj )=yj}

n

Output: The sequence of selected best features{φ∗
n}

Nf

n=1.

After the selection process, the features selected for all
phonemes are aggregated and termed asBoosted Binary
Features (BBF). This forms a vector of binary values of
dimensionD = Nf × NΩ where NΩ is the number of
phonemes considered. The reader may refer to [4] for an
analysis of the features selected by Adaboost for different
phonemes.

III. E XPERIMENTAL SETUP

In this section, we describe the setup for our continuous
speech recognition experiments usingBBF and cepstral fea-
tures.

A. Database
The DARPA Resource Management (RM) corpus [11] is

used for the experiments. The RM corpus consists of read
queries on the status of naval resources. The database is
partitioned into training set (2,880 utterances), development set
(1,110 utterances) and evaluation set (1,200 utterances) [12].
Training and development utterances are spoken by 109 speak-
ers and correspond to approximately 3.8 hours of speech
data. Evaluation set amounts to 1.1 hours of speech data
and is covered by a word pair grammar included in the task
specification. RM corpus has 991 words. The phoneme-based
lexicon was obtained from the UNISYN dictionary. There are
45 context-independent phonemes including silence.

B. Features
We used a frame size of 25 ms and a frame shift of 10 ms

to extract features. The features that are used in this studyare:

1) MF-PLP: 39 dimensional feature vector consisting of
13 static Mel Frequency PLP Cepstral Coefficients
(MF-PLP) with cepstral mean substraction and their
approximate first and second order derivatives (i.e.,
c0 − c12 +∆+∆∆), extracted using HTK.

2) BBF: Boosted Binary Features are extracted from
spectro-temporal matrices of size24× 17 (ref. Sec. II).
Two sets ofBBF are considered:

a) BBF-TIMIT The first 80,000 samples (spectro-
temporal matrices) extracted from training parti-
tion of TIMIT database [13] is used as training
data to select the features (ref. Sec.II-B).4 The

4Using a subset rather thanall samples (≈ 1.4×106) led to faster boosting
with no loss in performance.
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purpose is to evaluate the generalization capability
of these features boosted using TIMIT [4] to a
speech recognition task using a different database,
RM. The TIMIT data is labeled usingNΩ = 40
phoneme classes.Nf = 40 binary features are
selected for each phoneme [4], leading to a feature
vector of dimensionD = Nf ×NΩ = 40× 40 =
1600 per frame.

b) BBF-RM In a similar way, the first 80,000 samples
extracted from the training partition of the RM
database is used to select these features. In this
case, the feature selection and speech recognition
studies use thesame database. The RM data is
labeled usingNΩ = 45 UNISYN phoneme classes,
leading to a feature vector of dimensionD =
40× 45 = 1800 per frame.

3) Rand: To ascertain the utility of the feature selection
algorithm, we also used features that involvedrandomly
selected time-frequency bin pairs from the spectro-
temporal plane. This was done in the following manner
[4]: a) Create the complete setΦ of binary features
considering all possible combinations of time-frequency
pairs (ki,1, ti,1) and (ki,2, ti,2) (ref. Sec.II-A). b) Uni-
formly randomly select required number of features out
of the setΦ. c) For each of these features, compute the
differencesX(ki,1, ti,1)−X(ki,2, ti,2) over all training
samples i.e. the same 80,000 samples used for selection
of BBF feature. Simply set the median of these differ-
ences as the thresholdθi for the feature.
As for BBF, two cases are considered: a)Rand-TIMIT
The training samples were extracted from the TIMIT
database. b)Rand-RM The training samples were ex-
tracted from the RM database.

We compare these features by first training a phoneme class
conditional probability estimator using these features asinput,
and using the estimates of phoneme a posteriori probabilities,
referred to asposterior features, as feature observations for
KL-HMM system.

C. Posterior Feature Estimation

Similar to our previous work [4], we studied two different
posterior feature estimators for each acoustic feature, 1)A
single layer perceptron (SLP) classifier with softmax function
for output units was trained to classify phonemes. 2) A
multilayer perceptron (MLP) classifier was trained to classify
phonemes in the conventional way.

In the case ofMF-PLP feature, a 9 frame temporal context
(4 frames of preceding and following context), i.e. a 9×39
= 351-dimensional feature vector was provided at the input
of SLP and MLP. This explains the choice of 17 frames for
BBF. It is to ensure a fair comparision, based on the total
number of frames needed to estimate 9 frames of cepstral
features with their first order and second order derivatives,
where the derivative is estimated using 2 preceding and 2
following frames.

In the case ofMF-PLP, an off-the-shelf MLP trained on
exactly the same setup was used [12]. ForBBF and Rand,

the 1600 or 1800-dimensionalBBF vector was provided at
the input of both SLP and MLP. The number of hidden units
for MLP was determined by cross-validation based on frame-
level phoneme accuracy obtained on RM development set. The
SLPs and MLPs were trained using quicknet software5. The
MF-PLP features were normalized in the usual manner by
global mean and standard deviation estimated on the training
data. In the case of binary features, no normalization is done.
The stopping criterion for training of SLP and MLP was
frame-level phoneme accuracy on the development set. TableI
shows the frame-level phoneme accuracy obtained for different
features on the development set.

Feature MLP SLP
MF-PLP 73.2 54.2
BBF-TIMIT 73.1 65.6
BBF-RM 72.8 65.9
Rand-TIMIT 70.9 59.3
Rand-RM 71.0 60.3

TABLE I
FRAME-LEVEL PHONEME ACCURACY(%) ON RM DEVELOPMENT SET.

D. KL-HMM System
The posterior features estimated by MLP or SLP are used as

feature observations in the framework of KL-HMM system [9].
Briefly, in KL-HMM each statei is modeled by a multinomial
distribution yi = [y1i , · · · , y

NΩ

i ]T , whereNΩ is the number
of phonemes (in this case 45). Given a phoneme posterior
feature observation (e.g., probabilities estimated by MLP),
zt = [z1t , · · · , z

NΩ
t ]T at time t, the local score for statei

is estimated as the symmetric Kullback-Leibler divergence
betweenyi andzt, i.e.,

KL(yi, zt) =

NΩ
∑

d=1

ydi log(
ydi
zdt

) + zdt log(
zdt
ydi

)

The parameters of KL-HMM (multinomial distributions) are
trained using Viterbi expectation maximization algorithmwith
a cost function based on KL-divergence. In our studies, the
KL-HMM is trained using the 2,880 training utterances of
the RM database. The decoding is performed using standard
Viterbi decoder. The reader may refer to [9] for more details
on KL-HMM.

We compare the different features on both context-
independent subword unit based system and word internal
context-dependent subword unit based system. Each unit is
modeled by a three state left-to-right HMM. The tuning
parameters such as insertion penalty and language scaling
factor were optimized on the development set.

IV. SPEECHRECOGNITION STUDIES

The performance obtained for different features in terms of
word error rate (WER) on the evaluation set of the RM corpus
is reported in Table II, for context-independent and context-
dependent systems. In general, context-dependent systems
show a reduction in WER over context-independent systems.

With MLP, BBF and MF-PLP perform comparably well,
with WERs ranging from 5.1 to 5.6% for context-dependent,

5http://www.icsi.berkeley.edu/Speech/qn.html
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Context Context
independent dependent

Feature MLP SLP MLP SLP

MF-PLP 7.1 28.3 5.1 14.7
BBF-TIMIT 7.6 11.1 5.5 7.1
BBF-RM 7.8 10.9 5.6 7.2
Rand-TIMIT 9.2 17.5 6.8 10.3
Rand-RM 9.2 16.8 6.4 10.8

TABLE II
WORD ERRORRATE (%) ON EVALUATION SET OF RM DATABASE USING

CONTEXT-INDEPENDENT AND CONTEXT-DEPENDENT SUBWORD UNIT

BASED SYSTEMS.

and 7.1 to 7.8% for context-independent. As reported in [12],
standard HMM/Gaussian Mixture Model system and Tandem
features based system (which are equivalent in terms of
context modeling to the context-dependent system reported
here) achieve 5.7% WER each. This is similar to the WER
achieved usingBBF.

BBF-TIMIT and BBF-RM show similar performance. This
suggests thatBBF is not sensitive to the training data used for
boosting, and can generalize well to unseen data.

Going from MLP to SLP,BBF shows significantly lower
degradation in performance compared to MF-PLP in all cases.
For example, WER forBBF-TIMIT increases from 5.5 to 7.1
%, i.e. a relative increase of 29 %, while WER forMF-PLP
increases from 5.1 to 14.7 %, a relative increase of 188 %,
for the context-dependent case.

Rand features also achieve reasonable performance. Inter-
estingly, in case of SLP they perform better thanMF-PLP.
However, they perform worse thanBBF in all cases, showing
the utility of the feature selection stage.

Overall, the performance of different features on RM corpus
in terms of WER (Table II) shows similar trends as the frame
accuracy results on RM corpus (Table I) and previous phoneme
recognition results on TIMIT corpus [4].

V. D ISCUSSION ANDCONCLUSIONS

This work investigated the use of Boosted Binary Features
(BBF) for continuous speech recognition. Using MLP,BBF
achieved comparable performance as standard cepstral fea-
tures. Using SLP, binary features performed significantly better
than cepstral features. It was found that the choice of data
used for boosting the features was not critical andBBF could
generalize well on unseen data.

The extraction of binary features could be interpreted as
adding another layer to the MLP or SLP to learn phone-
specific representations directly from the spectro-temporal
plane using auxiliary data. This could have the potential to
complement deep-learning frameworks geared towards similar
objectives [14].

Possible directions for future work are outlined below:
1) BBF features were partly motivated by similar features

proposed by the authors for speaker verification [15],
which showed better noise-robustness compared to cep-
stral features. It would be interesting to verify this noise-
robust characteristic for ASR also.

2) As BBF involves specific time-frequency points in the
spectro-temporal matrix, it has potential to be directly

coupled with suitable time-frequency masking frame-
works (e.g. [16]) for noise removal or signal separation.

3) BBF are discrete-valued and has performed well with
SLP. This indicates that they may be suitably incorpo-
rated into simpler modeling frameworks like Conditional
Random Fields [17] with binary feature functions, in-
stead of MLP followed by KL-HMM as in this work.

4) Since the extraction process of the parts-based binary
features is distinct from standard cepstral features,
they might have potential to capture complementary
phoneme-specific information. Hence, fusion of these
two features could improve performance.
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