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Abstract

Scene labeling is a technique that consist on giving a label to every pixel in an im-
age according to the class they belong to. To ensure a good visual coherence and
a high class accuracy, it is essential for a scene parser to capture long range de-
pendencies on images. In a feed-forward architecture, this can be simply achieved
by considering a sufficiently large input context patch, around each pixel to be
labeled. We propose an approach consisting of a recurrent convolutional neural
network which allows us to consider a large input context, while limiting the ca-
pacity of the model. Contrary to most standard approaches, our method does not
rely on any segmentation methods, nor any task-specific features. The system is
trained in an end-to-end manner over raw pixels, and models complex spatial de-
pendencies with low inference cost. As the context size increases with the built-in
recurrence, the system identifies and corrects its own errors. Our approach yields
state-of-the-art performance on both the Stanford Background Dataset and the
SIFT Flow Dataset, while remaining very fast at test time.

1 Introduction

In the computer vision field, scene labeling is the task of fully labeling an image pixel-by-pixel with
the class of the object each pixel belongs to. This task is very challenging, as it implies solving a
detection, a segmentation and a multi-label recognition problem all in one.

The scene labeling problem is most commonly addressed with some kind of local classifier con-
strained in its predictions with a graphical model (e.g. Conditional Random Fields, Markov Random
Fields), in which global decisions are made. These approaches usually consist of segmenting the
image into superpixels or segment regions to assure a visible consistency of the labeling and also to
take into account similarities between neighbor segments, giving a high level understanding of the
overall structure of the image. Each segment contains a series of input features describing it and con-
textual features describing spatial relation between the label of neighbor segments. These models are
then trained to maximize the likelihood of correct classification given the features [1, 2, 3, 4, 5, 6, 7].
The main limitation of scene labeling approaches based on graphical models is the computational
cost at test time, limiting the model to simple contextual features.

In this work, we consider a neural network-based feed-forward approach which can take into ac-
count long range dependencies on the image while controlling the capacity of the network, achieving
state-of-the-art accuracy while keeping the computational cost low at test time, thanks to the com-
plete feed-forward design. Our method relies on a recurrent architecture for convolutional neural
networks: a sequential series of networks sharing the same set of parameters. Each instance consider
as input both an RGB image and the classification attempt of the previous instance of the network.
The network learns itself how to smooth its own predicted labels, improving the estimation as the
number of instances increases.
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Table 1: Comparison between different methods for scene labeling. The advantage of our proposed
method consists on the simplicity of inference, not relying on any task-specific feature extraction
nor segmentation method.

METHOD TASK-SPECIFIC FEATURES
GOULD ET AL., 2009 [1] 17-DIMENSIONAL COLOR AND TEXTURE FEATURES, 9 GRID LOCA-

TIONS AROUND THE PIXEL AND THE IMAGE ROW, REGION SEGMEN-
TATION.

MUNOZ ET AL., 2010 [8] GIST, PYRAMID HISTOGRAM OF ORIENTED GRADIENTS, COLOR
HISTOGRAM CIELAB, RELATIVE RELOCATION, HIERARCHICAL RE-
GION REPRESENTATION.

KUMAR & KOLLER, 2010 [2] COLOR, TEXTURE, SHAPE, PERCENTAGE PIXELS ABOVE HORIZON-
TAL, REGION-BASED SEGMENTATION.

SOCHER ET AL., 2012 [6] SAME AS [1].
LEMPITSKY ET AL., 2011 [7] HISTOGRAM OF VISUAL SIFT, HISTOGRAM OF RGB, HISTOGRAM

OF LOCATIONS, “CONTOUR SHAPE” DESCRIPTOR.
TIGHE & LAZEBNIK, 2010 [3] GLOBAL, SHAPE, LOCATION, TEXTURE/SIFT, COLOR, APPEAR-

ANCE, MRF.
FARABET ET AL., 2013 [9] LAPLACIAN PYRAMID, SUPERPIXELS/CRF/TREE SEGMENTATION.

OUR RECURRENT CNN RAW PIXELS

Compared to graphical models approaches relying on image segmentation, our system has several
advantages: (i) it does not require any engineered features, since deep learning architectures train
(hopefully) adequate discriminative filters in an end-to-end manner, (ii) the prediction phase does
not rely in any label space searching, since it requires only the forward evaluation of a function.

2 Related Work

In a preliminary work, [10] proposed an innovative approach to scene labeling without the use of
any graphical model. The authors propose a solution based on deep convolutional networks relying
on a supervised greedy learning strategy. These network architectures can be fed with raw pixels
and are able to capture texture, shape and contextual information.

[6] also considered the use of deep learning techniques to deal with scene labeling. Unlike us,
the authors consider off-the-shelf features of segments obtained from the scenes. They then use a
network for recursively merging different segments and give them a semantic category label. Our
recurrent architecture differs from theirs in the sense that we use it to parse the scene with a smoother
class annotation.

More recently, [9] also consider the use of convolutional networks, extracting features densely from
a multiscale pyramid of images. This solution yields satisfactory results for the categorization of the
pixels, but poor visual coherence.

The authors propose three different over-segmentation approaches to produce the final labeling with
improved accuracy and better visual coherence: (i) the scene is segmented in superpixels and a
single class is assigned to each of the superpixels, (ii) a conditional random field is defined over a
set of superpixels to model joint probabilities between them and correct aberrant pixel classification
(such as “road” pixel surrounded by “sky”) and (iii) the selection of a subset of tree nodes that
maximize the average “purity” of the class distribution, hence maximizing the overall likelihood
that each segment will contain a single object. The superpixel-based approach was however order
of magnitude faster than the two other approaches, with slightly lower performance in accuracy.
In contrast, our approach is simpler and completely feed-forward, as it does not require any image
segmentation technique, nor the handling of a multiscale pyramid of input images.

As in [9], [11] proposed a similar multiscale convolutional architecture. In their approach, the
authors smooth out the predicted labels with pairwise class filters.

Compared to existing approaches, our method does not rely on any task-specific feature (see Ta-
ble 1). Our scene labeling system is able to extract relevant contextual information from raw pixels.
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3 Systems Description

We formally introduce convolutional neural networks (CNNs) in Section 3.1. In Section 3.2 we
discuss how to capture long range dependencies with these type of models, while keeping a tight
control on the capacity. Section 3.3 introduces our recurrent network approach for scene labeling.

3.1 Convolutional Neural Networks for Scene Labeling
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Figure 1: A simple convolutional network. Given an image patch providing a context around a
pixel to classify (here blue), a series of convolutions and pooling operations (filters slid through
input planes) are applied (here 5 4 × 4 convolutions, followed by a 2 × 2 pooling, followed by 2
2× 2 convolutions. Each 1× 1 output plane is interpreted as a score for a given class.

Convolutional neural networks [12] are a natural extension of neural networks for treating images.
Their architecture, vaguely inspired by the biological visual system, possesses two key properties
that make them extremely useful for image applications: spatially shared weights and spatial pool-
ing. These kind of networks learn features that are shift-invariant, i.e., filters that are useful across
the entire image (due to the fact that image statistics are stationary). The pooling layers are responsi-
ble for reducing the sensitivity of the output to slight input shift and distortions. This type of neural
network has proven to be very efficient in many vision applications, such as object recognition and
segmentation ([13, 14]).

A typical convolutional network is composed of multiple stages, as shown on Figure 1. The output
of each stage is made of a set of two dimensional arrays called feature maps. Each feature map is the
outcome of one convolutional (or pooling) filter applied over the full image. A non-linear squashing
function (such as a hyperbolic tangent) always follows a pooling layer.

In the context of scene labeling we consider a set of images indexed by Ik, and we are interested in
finding the label of each pixel at location (i, j), for every image k. To that matter, the network is fed
with a squared context patch Ii,j,k surrounding the pixel at location (i, j) in the k-th image. It can
be shown (see Figure 1) that the output plane size szm of the mth layer is computed as:

szm =
szm−1 − kWm

dWm
+ 1 , (1)

where sz0 is the input patch size, kWm is the size of the convolution (or pooling) kernels in the mth

layer, and dWm is the pixel step size used to slide the convolution (or pooling) kernels over the input
planes.1 Given a network architecture and an input image, one can compute the output image size
by successively applying Equation 1 on each layer of the network. During the training phase, the
size of the input patch Ii,j,k is chosen carefully such that the output layers produces 1 × 1 planes,
which are then interpreted as scores for each class of interest.

Adopting the same notation as [9], the output of a network f withM stages and trainable parameters
(W,b), given an input patch Ii,j,k, can be formally written as:

f(Ii,j,k; (W,b)) = WMHM−1 , (2)

1Most people use dW = 1 for convolutional layers, and dW = kW for pooling layers.
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with the output of the mth hidden layer computed as:

Hm = tanh(pool(WmHm−1 + bm)) , (3)

for m = {1, ...,M} and denoting H0 = Ii,j,k. bm is the bias vector of layer m and Wm is the
Toeplitz matrix of connection between layer m − 1 and layer m. The pool(·) function is the max-
pooling operator and tanh(·) is the point-wise hyperbolic tangent function applied at each point of
the feature map.

In order to train the network by maximizing a likelihood, the network scores fc(Ii,j,k; (W,b)) (for
each class of interest c ∈ {1, ..., N}) are transformed into conditional probabilities, by applying a
softmax function:

p(c|Ii,j,k; (W,b)) =
efc(Ii,j,k;(W,b))∑

d∈{1,...,N}
efd(Ii,j,k;(W,b))

(4)

The parameters (W,b) are learned in an end-to-end supervised way, by minimizing the negative
log-likelihood over the training set:

L(W,b) = −
∑

I(i,j,k)

ln p(li,j,k|Ii,j,k; (W,b)) , (5)

where li,j,k is the correct pixel label class, at position (i, j) in image Ik. The minimization was
achieved with the Stochastic Gradient Descent (SGD) algorithm, with a fixed learning rate λ:

W←−W − λ ∂L
∂W

; b←− b− λ∂L
∂b

. (6)

Finally, in test time, for every test image I , the pixel at location (i, j) of image k is labeled with the
argmax of the network predictions:

l̂i,j,k = argmax
c∈classes

p(c|Ii,j,k; (W,b)) , (7)

considering the context patch Ii,j,k. Note that this might imply adding padding when inferring label
of pixels close to the image border.

3.2 Long Range Dependencies with Convolutional Networks

Existing successful scene labeling systems leverage long range image dependencies in some way.
The most common approach is to add some kind of graphical model (e.g. a conditional random field)
over local decisions, such that a certain global coherence is maintained. In the case of convolutional
networks, an obvious way to capture long range dependencies efficiently would be to consider large
input patches when labeling a pixel. Unfortunately, this approach might face generalization issues,
as considering larger context often implies considering larger models (i.e. higher capacity).

In Table 2, we review possible ways to control the capacity of a convolutional neural network,
assuming a large input context. In a “plain” architecture (as described in Section 3.1), one can easily
control the capacity by increasing the filter sizes in pooling layers, reducing the overall number of
parameters in the network. Unfortunately, performing large poolings decreases the network label
output resolution (e.g., if one performs a 1/8 pooling, the label output plane size will be about 1/8th
of the input image size). One can overcome this problem, but at the cost of a slow inference process.

Instead, [9] considered the use of a multiscale convolutional network. Large contexts are integrated
into local decisions while making the model still manageable in terms of parameters/dimensionality.
Label coherence is then increased by leveraging superpixels.

Another way to consider a large input context size while controlling the capacity of the model is to
make the network recurrent: the output of the model is fed back to the input of another instance of
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(a)

1 instance

2 instance
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(b)

Figure 2: Context input patch of “plain” (a) and recurrent (b) architecture. The size of the contextual
input patch (b) increases as the number of instances in the recurrent convolutional network increases.
The capacity of the model remains the same, since the parameters over all instances are shared.

Table 2: Long range dependencies integration in CNN-based scene labeling systems. Ways to con-
trol capacity and speed of each architecture is reported.

MEANS CAPACITY CONTROL SPEED
LOCAL CLASSIFIER +
GRAPHICAL MODEL – SLOW

MULTISCALE SCALE DOWN INPUT IMAGE FAST
LARGE INPUT

PATCHES
INCREASE POOLING

RECURRENT ARCHITECTURE

SLOW

FAST

the same network, which shares the same parameters (see Figure 3). Given Equation 1, we have

szm−1 = dWm × szm + (kWm − dWm) .

Thus, the required context to label one pixel (i.e. if the network output size is 1× 1), increases with
the number of network instances (see an example in Figure 2). However, the capacity of the system
remains constant, since the parameters of each network instance are simply shared. We will now
detail our recurrent network approach.

3.3 Recurrent Network Approach

The recurrent architecture (see Figure 3) consists of P instances of the “plain” convolutional network
f(·), each of them with identical (shared) trainable parameters (W,b). Each instance fp (1 ≤ p ≤
P ) is fed with an input “image” Fp of N + 3 features maps

Fp = [fp−1(Ip−1i,j,k; (W,b)), Ipi,j,k], F1 = [0, Ii,j,k].

which are the output label planes of the previous instance, and the scaled2 version of the raw RGB
squared patch surrounding the pixel at location (i, j) of the training image k. To make the number
of inputs equal in all instances of the network, the input “image” of the first instance is simply the
patch of raw pixel coupled with N 0 feature maps. This guarantees the end-to-end characteristics of
the system as well as its fast inference during test.

As in the “plain” network, the size of the patch during training is chosen such that the output layers
produces 1× 1 planes, which are then interpreted as scores for each class of interest.

Besides the obvious advantage of capturing long range dependencies while controlling the capacity,
the recurrent architecture also the quality of achieving visually coherent results. Due to its recursiv-
ity, the system is able to learn to correct its mistakes done in previous instances.

2Ip−1
i,j,k is scaled so that it has the width/height as fp−1.
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Figure 3: Recurrent network architecture with two instance of f . The first instance f (1) of the
recurrent architecture is fed with a RGB patch and an empty feature map. The output of the first
network is coupled with the scaled RGB patch and fed to the same network (shared parameters (W
and b)).

Table 3: Pixel and averaged per class accuracy and the computing time of other methods and our
proposed approaches on the Stanford Background Dataset.

METHOD
PER PIXEL
ACCURACY

AVG PER CLASS
ACCURACY

COMPUTE
TIME (S)

GOULD ET AL., 2009 [1] 76.4% - 10 TO 600
TIGHE & LAZEBNIK, 2010 [3] 77.5% - 10 TO 300
MUNOZ ET AL., 2010 [8]3 76.9% 66.2% 12
KUMAR & KOLLER, 2010 [2] 79.4% - < 600
SOCHER ET AL., 2012 [6] 78.1% - ?
LEMPITSKY ET AL., 2011 [7] 81.9% 72.4% > 60
FARABET ET AL., 2013 [9]4 78.8% 72.4% 0.6
FARABET ET AL., 2013 [9]5 81.4% 76.0% 60.5
PLAIN CNN 79.4% 69.5% 15
CNN1 67.9% 58.0% 0.2
RCNN1 (2 INSTANCES) 79.5% 69.5% 2.6
CNN2 15.3% 14.7% 0.06
RCNN2 (2 INSTANCES) 76.2% 67.2% 1.1
RCNN2 (3 INSTANCES) 79.8% 69.3% 2.15

4 Experiments

We tested our proposed method on two different datasets for scene labeling: the Stanford Back-
ground [1] and the SIFT Flow Dataset [5]. The Stanford dataset has 715 images from rural and
urban scenes composed of 8 classes. The scenes have approximately 320×240 pixels. As in [1], we
performed a 5-fold cross-validation with the dataset randomly split into 572 training images and 143
test images in each fold. The SIFT Flow is a larger dataset composed of 2688 images of 256× 256
pixels and 33 semantic labels. All the algorithms and experiments were implemented using Torch7
[15].

Each image on the training set was properly padded and normalized such that they have zero mean
and unit variance. All networks were trained by sampling patches surrounding randomly chosen
pixel from randomly chosen images from the training set of images. Contrary to [9] (i) we did not

3Unpublished improved results have been recently reported by the authors.
4Multiscale CNN + superpixels.
5Multiscale CNN + CRF.
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Table 4: Pixel and averaged per class accuracy of other methods and our proposed approaches on
the SIFT Flow Dataset.

METHOD
PER PIXEL
ACCURACY

AVG PER CLASS
ACCURACY

LIU ET AL., 2009 [5] 74.75% -
TIGHE & LAZEBNIK, 2010 [3] 77.0% 30.1%
FARABET ET AL., 2013 [9] 78.5% 29.6%
PLAIN 76.5% 30.0%
CNN1 51.8% 17.4%
RCNN1 76.2% 29.2%
RCNN2 (2 INSTANCES) 65.5% 20.8%
RCNN2 (3 INSTANCES) 77.7% 29.8%

consider any extra distortion on the images6, and (ii) we did not sample training patches according
to balanced class frequencies.

We considered two different accuracy measures to compare the performance of our proposed meth-
ods with other approaches. The first one is the accuracy per pixel of test images. This measure is
simply the ratio of correct classified pixels of all images in the test set. However, in scene labeling
(especially in datasets with large number of classes), classes which are much more frequent than
others (e.g. the “sky” class is much more frequent than “moon”) have more impact on this mea-
sure. Recent papers also consider the averaged per class accuracy on the test set (all classes have the
same weight in the measure). Note that as mentioned above, we did not train with balanced class
frequencies, which would have optimized this second measure.

We consider a “plain” architecture (“plain CNN”) with a large patch and strong number of pooling
and two recurrent architectures with two (“rCNN1”) and three (“rCNN2”) instances. In this section,
rCNNi represents a recurrent version of the regular convolutional network CNNi.

Table 3 compares the performance of our architecture with related works on the Stanford Back-
ground Dataset and Table 4 compares the performance on the SIFT Flow Dataset. Note that the
inference time in the second dataset does not change, since we exclude the need of any segmenta-
tion method.

In the following, we provide additional technical details for each architecture used.

4.1 Plain Network

The first “plain” network was trained with 133 × 133 input patches. The network was composed
of a 6 × 6 convolution with nhu1 output planes, followed by a 8 × 8 pooling layer, a tanh(·) non-
linearity, another 3×3 convolutional layer with nhu2 output planes, a 2×2 pooling layer, a tanh(·)
non-linearity, and a final 7 × 7 convolution to produce label scores. The hidden units were chosen
to be nhu1 = 25 and nhu2 = 50 for the Stanford dataset, and nhu1 = 50 and nhu2 = 50 for the
SIFT Flow dataset.

4.2 Recurrent Architectures

We consider two different recurrent convolutional network architectures.

The first architecture, rCNN1, is composed of two consecutive instances of the convolutional net-
work CNN1 with shared parameters (as in Figure 3). CNN1 is composed of a 8 × 8 convolution
with 25 output planes, followed by a 2 × 2 pooling layer, a tanh(·) non-linearity, another 8 × 8
convolutional layer with 50 output planes, a 2× 2 pooling layer, a tanh(·) non-linearity, and a final
1× 1 convolution to produce N label scores.

rCNN1 is trained by considering the two network instances simultaneously. For each training exam-
ple we randomly choose to perform a “forward” and “backward” pass through one or two instances
of the network. This training approach allows the network to learn to correct its own mistakes (made
by the first network instance). As mentioned in Section 3.2, the input context patch size depends

6Which is known to improve the generalization accuracy by few extra percents.
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Figure 4: Inference results of the recurrent system. The first line shows two examples from the
Stanford Background Dataset and the second examples from the SIFT Flow dataset. For each ex-
ample, the first column represents the original RGB image, middle one illustrates results of rCNN2

assuming two instances and the last one the result assuming three instances: most mistakes of second
instance are corrected on the third one.

directly on the number of network instances in the recurrent architecture. In the case of rCNN1, the
patch size is of 25×25 when considering one instance and 121×121 when considering two network
instances.

The second recurrent convolutional neural network, rCNN2, is composed of three instances of the
convolutional network CNN2, with shared parameters. Each instance of CNN2 is composed of a
8× 8 convolution with 25 output planes, followed by a 2× 2 pooling layer, a tanh(·) non-linearity,
another 8 × 8 convolution with 50 planes and a final 1 × 1 convolution which outputs the N label
planes.

In rCNN2, the first two instances are trained simultaneously7 (as in Figure 3) through SGD, with
input patch of size 67. Then, after the system with two instances are trained, a third instance of the
network is considered (still with the parameters shared with the others instances) so that it is able to
correct itself from the previous labeling. The input patch is of size 155 in this latter case.

Figure 4 illustrates inference of the recurrent network with two and three instances. The network
learns itself how to correct its own label prediction.

In all cases, the learning rate in Equation 6 was equal to 10−4. All hyper-parameters were tuned
with a 10% hold-out for validation.

5 Conclusion

This paper presents a feed-forward approach for scene labeling, based on supervised “deep” learning
strategies which models in a rather simple way non-local class dependencies in a scene from raw
pixels. We demonstrate that the problem of scene labeling can be faced without the need of any
expensive graphical model or segmentation tree technique to ensure labeling. The scene labeling is
inferred simply by forward evaluation of a function applied to a RGB image.

In terms of accuracy, our system achieved state-of-the-art results on both Stanford Background and
SIFT Flow dataset, while keeping a fast inference time. Future work includes investigation of unsu-
pervised or semi-supervised pre-training of the models, as well as application to larger datasets such
as the Barcelona dataset.
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