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Abstract

This paper demonstrates the robustness of group delay based features to additive
noise. First, we analytically show the robustness of group delay based represen-
tations. The analysis makes use of the fact that, for minimum-phase signals, the
group delay function can be represented in terms of the cepstral coefficients of
the log-magnitude spectrum. Such a representation results in the speech spectrum
dominating over the noise spectrum, both at low and high SNRs. Further, we ex-
perimentally demonstrate the robustness of the representation on a voice activity
detection (VAD) task, comparing a group delay based VAD algorithm with standard
VAD methods as well as a magnitude-spectrum based method.
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1 Introduction

All practical speech processing systems must have robustness as an impor-
tant characteristic. The system must be able to perform satisfactorily under
conditions where the input speech signal is distorted by effects that may be
acoustic, articulatory or phonetic. Distortions caused by acoustic variations
include those by additive or convolutive noise, channel and environmental ef-
fects. Development of robust feature extraction methods form a crucial part
of building reliable speech processing systems.

Most short-term feature representations for speech are derived from the magni-
tude spectrum [eg. Davis and Mermelstein (1980); Hermansky (1990)]. There
has been a growing series of studies which show that the short-term phase
spectrum contains important information [Alsteris and Paliwal (2006); Pali-
wal et al. (2011)]. However, extracting information from the phase spectrum
is not as straightforward as extracting information from the magnitude spec-
trum. Unlike the magnitude spectrum, the phase spectrum does not explicitly
exhibit the system resonances. Further, signal processing difficulties (such as
wrapping of the phase spectrum) are encountered while working directly with
the phase spectrum [Alsteris and Paliwal (2006)]. The information in the phase
spectrum has been utilised mostly by processing its derivative, the group delay
function. The group delay function has been used in applications like signal
reconstruction [Yegnanarayana et al. (1984)], formant extraction [Murthy and
Yegnanarayana (1991)] and spectrum estimation [Yegnanarayana and Murthy
(1992)]. Researchers have also come up with conventional short time feature
representations derived from the group delay function [Zhu and Paliwal (2004);
Hegde et al. (2007b)]. Moreover, it is shown that for applications like speech
and speaker recognition, magnitude-based and phase-based features achieve
comparable performance, and combining them results in improvement [Zhu
and Paliwal (2004); Hegde et al. (2007a)].

This paper demonstrates that a group delay based representation is robust
against additive noise. Although this property has been observed before (see
[Parthasarathi et al. (2007)]), no attempt has yet been made to provide a
mathematical analysis of the robustness property. In this article, we first show
analytically how the group delay spectrum tends to follow the speech spec-
trum (as opposed to the noise spectrum) when speech is corrupted by additive
noise. For minimum phase systems, log-magnitude and phase spectra are re-
lated through cepstral coefficients (see Section 2.) Using this property, we can
represent the group delay spectrum in terms of speech and noise components
at different signal to noise ratios.

The result of the analysis is validated by an experimental voice activity de-
tection (VAD) task. A simple group delay based VAD algorithm is compared
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to different VAD methods in various environments with additive noise. The
experiments further corroborate the noise robustness properties of group delay
functions.

The rest of this paper is organised as follows. In section 2, we briefly describe
group delay functions. We then show analytically in section 3 that group delay
functions are robust to additive noise. In section 4 we briefly describe the
various representations of group delay functions and how features are derived
from them. In section 5, we describe the experimental evidence supporting the
analysis. Finally, we conclude in Section 6.

2 A brief overview of group delay functions

The Fourier transform of a signal x(n) can be represented as

X(ω) = |X(ω)|ejθ(ω) (1)

The group delay function τ(ω) of a signal is defined as the negative derivative
of the continuous phase spectrum θ(ω):

τ(ω) = −
d(θ(ω))

dω
(2)

Starting from Equation 1, the group delay function can be computed directly
from the signal as:

τ(ω) =
XR(ω)X̂R(ω) +XI(ω)X̂I(ω)

|X(ω)|2
(3)

where subscripts R and I respectively denote the real part and imaginary
part, x(n) ↔ X(ω) and x̂(n) ↔ X̂(ω) are Fourier transform pairs, and
x̂(n) = nx(n).

For a minimum-phase signal, it can be shown that the log magnitude and con-
tinuous phase spectra are related as follows [Oppenheim and Schafer (2000)]:

ln |X(ω)| =
1

2
c(0) +

∞
∑

n=1

c(n) cos(nω) (4)

θ(ω) = −
∞
∑

n=1

c(n) sin(nω) (5)
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where c(n) are the cepstral coefficients. Taking the negative derivative of Equa-
tion 5, we get the group delay function for minimum phase signals:

τ(ω) =
∞
∑

n=1

nc(n) cos(nω) (6)

Equations 4 and 5 show that for minimum-phase signals, the log magnitude
and phase are related through cepstral coefficients. Also, from Equation 6, we
find that the group delay function is the Fourier transform of the weighted
cepstrum.

3 Robustness of group delay functions to additive noise

In this section, we analytically show that group delay functions for minimum-
phase signals are robust to additive, uncorrelated noise.

Let x[n] denote a clean, minimum-phase speech signal, which is degraded by
uncorrelated, zero-mean, additive noise v[n] with variance σ2(ω). Then, the
noisy speech, y[n], can be expressed as,

y[n] = x[n] + v[n] (7)

Taking the Fourier transform, we have

Y (ω)=X(ω) + V (ω) (8)

Multiplying by corresponding complex conjugates and taking the expectation,
we have the power spectrum

PY (ω) = PX(ω) + σ2(ω) (9)

where PY (ω) = |Y (ω)|2, PX(ω) = |X(ω)|2 and we have used the fact that the
expectation of noise is zero. The power spectra of the resulting noisy speech
signal can be related to noise power and (clean) speech power in one of three
mutually exclusive frequency regions:

(1) High noise power regions where PX(ω)≪ σ2(ω)
(2) High signal power regions where PX(ω)≫ σ2(ω) and
(3) Equal power case where PX(ω) ≈ σ2(ω).

The power spectrum of the noisy speech signal in each case is represented by
P n
Y (ω), P

s
Y (ω) and P e

Y (ω) respectively. We analyse the group delay represen-
tation of noisy speech in the three cases mentioned above.
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3.1 High noise power spectral regions (P n
Y (ω))

In this subsection, we consider frequencies ω such that PX(ω) ≪ σ2(ω), i.e.,
regions where the noise power is higher than signal power. From Equation 9
we have

P n
Y (ω)=PY (ω) ∀ω s.t. PX(ω)≪ σ2(ω)

=PX(ω) + σ2(ω)

= σ2(ω)

(

1 +
PX(ω)

σ2(ω)

)

Taking logarithms on both sides, using the Taylor series expansion of ln(1 +
PX(ω)
σ2(ω)

), and ignoring the higher order terms,

ln (P n
Y (ω)) = ln

[

σ2(ω)

(

1 +
PX(ω)

σ2(ω)

)]

≈ ln
(

σ2(ω)
)

+
PX(ω)

σ2(ω)
(10)

Expanding PX(ω) as a Fourier series (PX(ω) is a periodic, continuous, function
of ω with a period ω0 = 2π),

ln (P n
Y (ω)) ≈ ln

(

σ2(ω)
)

+
1

σ2(ω)

[

d0
2

+
∞
∑

k=1

dk cos
(

2π

ω0

ω k
)

]

(11)

where, dk are the Fourier series coefficients in the expansion of PX(ω). Since
PX(ω) is an even function, coefficients of the sine terms are zero.

For a minimum-phase signal, the group delay function can be computed in
terms of the cepstral coefficients of the log-magnitude spectrum, as given in
[Yegnanarayana et al. (1984)],

log |X(ω)|=
c0
2
+

∞
∑

k=1

ck cos(ω k)

τ(ω)=
∞
∑

k=1

k ck cos(ω k) (12)

where, τ(ω) is the minimum-phase group delay function and ak are the cep-
stral coefficients. From Equation 12, it can be observed that the group delay
function can be obtained from the log-magnitude response by ignoring the dc
term, and by multiplying each coefficient with k. Applying this observation to
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Equation 11, we get the group delay function as:

τY n(ω) ≈
1

σ2(ω)

∞
∑

k=1

k dk cos(ω k) (13)

This expression shows that the group delay function is inversely proportional
to the noise power (σ2(ω)) in regions where noise power is greater than the
signal power.

3.2 High signal power spectral regions (P s
Y (ω))

Now consider frequencies ω such that PX(ω)≫ σ2(ω). Starting with Equation
9, and following the steps similar to those in the previous subsection:

ln (P s
Y (ω))≈ ln (PX(ω)) +

σ2(ω)

PX(ω)
(14)

Since PX(ω) is non-zero, continuous, and periodic in ω, 1
PX(ω)

is also periodic

and continuous. Consequently, ln(PX(ω)) and 1
PX(ω)

can be expanded using
Fourier series, giving

ln (P s
Y (ω))≈

d0 + σ2(ω) e0
2

+
∞
∑

k=1

(

dk + σ2(ω) ek
)

cos(ω k)

Using Equation 12, and following the steps in the previous case, we obtain the
expression for the group delay function as,

τY s(ω) ≈
∞
∑

k=1

k (dk + σ2(ω) ek) cos(ω k) (15)

where dk and ek are the Fourier series coefficients of ln(PX(ω)) and 1
PX(ω)

respectively. It is satisfying to observe that if σ2(ω) is negligible, the group
delay function can be expressed solely in terms of the log-magnitude spectrum.

3.3 Signal power ≈ noise power regions (P e
Y (ω))

For frequencies ω such that PX(ω) ≈ σ2(ω), we again start with Equation 9,
and follow steps similar to those in the previous subsections, except in this
case we do not need the Taylor series expansion:
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P e
Y (ω)≈ 2PX(ω)

ln (P e
Y (ω))≈ ln 2 + ln (PX(ω)) (16)

Expanding ln (PX(ω)) as a Fourier series, since it is a periodic, continuous,
function of ω with a period 2π, the group delay function can be computed as,

τY e(ω) ≈
∞
∑

k=1

k dk cos(ω k) (17)

where dk are the Fourier series coefficients of ln(PX(ω)).

3.4 Behaviour of minimum-phase group delay functions in noise

From Equations 13, 15, and 17, the estimated group delay functions are sum-
marised respectively for the three cases:

τ(ω) ≈



















1
σ2(ω)

∑∞
k=1 k dk cos(ω k) forω : PX(ω)≪ σ2(ω),

∑∞
k=1 k (dk + σ2(ω) ek) cos(ω k) forω : PX(ω)≫ σ2(ω),

∑∞
k=1 k dk cos(ω k) forω : PX(ω) ≈ σ2(ω)

(18)

From Equation 18, we note that the group delay function of a minimum-phase
signal (which is corrupted with additive noise), is inversely proportional to
the noise power at frequencies corresponding to high noise regions. On the
other hand, for low noise regions, the group delay function becomes directly
proportional to the signal power. In other words, the group delay function
tends to follow the magnitude spectrum of the signal, rather than that of
the noise. This indicates that the group delay function of a minimum-phase
signal preserves the peaks and valleys of the magnitude spectrum well in the
presence of additive noise. The group delay representation is thus robust and
information like formant peaks are well retained.

4 Representations of group delay functions

Although the previous section showed the robustness of group delay func-
tions in additive noise, it was done under the assumption of the signal being
minimum-phase. Furthermore, to gainfully employ group delay functions for a
speech processing task, features need to be extracted. This section endeavours
to summarise literature relevant in handling both issues.

In general, the group delay function can be effectively utilised only if the
signal under consideration is a minimum-phase signal [Hegde et al. (2007b)].
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A signal is defined as a minimum phase signal only if both itself and its inverse
are causal and stable. The group delay function becomes unstable if the roots
of the transfer function are on the unit circle. Since speech is produced by
a stable system, the poles of the system are well within the unit circle. The
possible presence of zeros near the unit circle lead to an unstable group delay
function. For speech signals, the zeros are introduced by pitch, nasals and the
short-time analysis window function. Further, zeros are also introduced by
the glottal return phase (the time interval between the most negative value of
the glottal flow derivative and glottal closure [Plumpe et al. (1999)] when the
glottal flow is modelled as a linear filter [Doval et al. (2003)]. The presence
of zeros makes the denominator term in Equation 3 vanish, leading to an ill-
behaved group delay function. Thus, the analysis presented in the previous
section applies to minimum-phase signals.

To compute the group delay function for non-minimum phase signals, two
approaches can be used:

4.1 Minimum phase group delay function (MINGD)

In this method, a minimum-phase equivalent is derived from the non minimum-
phase signal using the root cepstrum [Murthy and Yegnanarayana (1991)]. In
[Nagarajan et al. (2003)], it was shown that for an all-pole, non minimum-
phase signal, the causal portion of the inverse Fourier transform of the magni-
tude spectrum is a minimum-phase signal. The group delay function of this sig-
nal is then utilised. The MINGD of a signal is thus derived from its minimum-
phase component.

4.2 Modified group delay function (MODGD)

In this method, the zeros near the unit circle in Equation 3 are suppressed
by smoothing the magnitude spectrum X(w) [Murthy and Gadde (2003);
Hegde et al. (2007b)]. The resulting group delay function is well behaved.
The MODGD τm(ω) is defined as

τm(ω) = (
τs(ω)

|τs(ω)|
)(|τs(ω)|)

α (19)

where

τs(ω) =
XR(ω)X̂R(ω) +XI(ω)X̂I(ω)

|S(ω)|2γ
(20)

and |S(ω)| is a smoothed version of |X(ω)|, while the parameters α and γ are
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introduced to control the dynamic range. The length of the cepstral smoothing
window is controlled by the parameter lifterω.

The MINGD of a signal is extracted from the magnitude spectrum of the
signal, whereas, the MODGD can extracted directly from the signal. Studies
such as [Hegde et al. (2007b)] have shown the have shown the equivalence
between MINGD and MODGD in a least squares sense, when the signal is not
minimum phase. Furthermore, it is also demonstrated in [Hegde et al. (2007b)]
the application of the MODGD for tasks such as syllable recognition, language
identification and speaker recognition. Given these reasons, we validate the
robustness property of group delay functions on the MODGD by experimental
evaluation.

4.3 Converting the MODGD into features

To convert the MODGD into meaningful features, a decorrelation operation
is performed using homomorphic processing. This is achieved by applying a
discrete cosine transform (DCT) on the MODGD. Thus, the MODGD is con-
verted into cepstral features and the resulting feature representation is called
the modified group delay feature (MODGDF.) The decorrelation implied in
the MODGDF features allow the use of diagonal covariances for modelling the
feature distribution.

The extraction of MODGDF features from the signal are now described as
follows [Hegde et al. (2007b)]:

(1) Compute the DFT of the speech signal x[n] as X[k].
(2) Next, the DFT of the signal nx[n] is computed as X̂[k].
(3) Compute the cepstrally smoothed spectra of X[k] and denote it as S[k].

The parameter lifterω is used to control the length of the window in the
cepstral domain.

(4) Compute the MODGD as:

τm[k] = (
τ [k]

|τ [k]|
)(|τ [k]|)α (21)

where τ [k] = XR[k]X̂R[k]+XI [k]X̂I [k]
|S[k]|2γ

where the parameters α and γ are used
to control the dynamic range of the MODGD.

(5) Compute the MODGDF features by taking the DCT:

c[n] =
k=Nf
∑

k=0

τm[k] cos(n(2k + 1)π/Nf ) 0 ≤ n < Nc (22)

where Nf is the DFT size and Nc are the number of cepstral coefficients.
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5 Experimental evaluation

In earlier sections, we analysed the effect of additive noise on the MINGD and
how the MODGD is an approximation of the MINGD. The previous section
described the process of converting the MODGD into cepstral features. In this
section, we corroborate the analysis presented in section 3 with experimental
results using the MODGDF.

5.1 Voice activity detection

A voice activity detection (VAD) algorithm distinguishes speech and non-
speech regions in a signal. VAD is used as a preprocessing stage in many
speech applications, including automatic speech recognition (ASR) and speech
coding. An effective VAD subsystem improves performance significantly, and
achieves better resource utilisation. When viewed as a pattern recognition
problem, VAD has to discriminate two classes, (noisy) speech and non-speech.
Non-speech may be silence, or acoustic background noise. In high SNR con-
ditions, most VAD algorithms work well. But in low SNR conditions, VAD
performance deteriorates considerably, with many detection errors.

Many VAD algorithms use short term energy [Evangelopoulos and Maragos
(2005); Parthasarathi et al. (2007)]. Energy-based algorithms usually do not
work well in low SNR conditions. Other approaches to VAD use statistical
methods [Sohn et al. (1999); Nemer et al. (2001); Li et al. (2005)], which
make use of the assumption that the statistics of noise and speech are different.
Recently, to perform VAD non-stationary noise, long-term analysis windows
have been utilised [Ghosh et al. (2011)].

Standard VAD algorithms include the G.729-Annex B algorithm [Benyassine
et al. (1997)] (recommended by the International Telecommunication Union)
and the adaptive multi rate (AMR) VAD 1 and 2 [GSM 06.94 (1999)] (recom-
mended by the European Telecommunications Standards Institute).

5.2 Utilising MODGDF for VAD

In this section, we develop a VAD algorithm which utilises MODGDF fea-
tures for representing the speech signal. The proposed MODGDF-based VAD
algorithm is compared to a baseline algorithm as well as standard VAD algo-
rithms.

The use of Gaussian mixture models (GMMs) is popular for modelling generic
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probability distributions. In its application to VAD, the underlying principle
is that the distributions of speech and non-speech are sufficiently separate in
the MODGDF space. In the training phase, MODGDF features extracted from
speech and non-speech are used to build GMMs for each class, using framewise
labelled data. In the testing phase, each frame of the test utterance is classified
as either speech or non-speech. This method is called MODGD-VAD.

The MODGDF features were extracted as given in section 4.3. The speech
signal was pre-emphasised, after using a frame size of 25 ms and a frame shift of
10 ms and applying a Hamming window. As specified in [Hegde et al. (2007b)]
the MODGDF parameters α and γ were set to 0.4 and 0.9 respectively, and
the parameter lifterω was set to 8. 13-dimensional MODGDF features were
extracted. Cepstral mean subtraction is performed to remove channel effects.
Two 64-mixture GMMs were built for speech and non-speech respectively,
each initialised using k-means clustering, followed by five iterations of the
expectation maximisation (EM) algorithm. Diagonal covariance matrices were
utilised.

The performance of MODGD-VAD is compared to a baseline GMM-based
algorithm using the Mel frequency cepstra (MFCC). This method is called
MFCC-VAD. MFCC features were computed as described in [Murthy et al.
(1999)]. A bank of 40 filters, which were spaced between 0 Hz to 4000 Hz are
used to compute filterbank energies by integration. The shape of the filters was
set by setting the shape constant Tr to 0.0 and the filter warping constant Fω

was set to 0.4. 13-dimensional MFCC coefficients were extracted, and cepstral
mean subtraction is performed. 64-mixture GMMs were built for speech and
non-speech, initialised by k-means clustering, followed by five EM iterations.
As in the case for MODGDF, diagonal covariances were used.

5.3 Reference VAD systems

In addition to the baseline MFCC-VAD, the performance of the MODGD-
VAD algorithm is compared to two standard VAD algorithms. We provide a
brief description of them below.

G.729B VAD: ITU’s G.729B VAD [Benyassine et al. (1997)] makes use of
spectral distortion, full band and low band energy and zero crossings to make
a VAD decision every 10 ms. These parameters are estimated as the difference
from the respective running averages. Piecewise linear hyperplanes are used to
separate speech and non-speech in the 4-dimensional parameter space, followed
by a four stage hangover scheme.

AMR VAD options 1 and 2: ETSI’s AMR option 1 and 2 [GSM 06.94
(1999)]are sub-band based methods. AMR 1 uses nine non-uniform sub-bands
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and AMR 2 uses sixteen. Both methods estimate sub-band SNRs using a first-
order auto-regressive model. VAD decisions are made every 20 ms using an
adaptive threshold, followed by a hangover scheme.

5.4 Dataset used for the evaluation

The dataset used for the study consisted of 426 speech utterances (213 female,
213 male), selected from the TIMIT training set (phonetically balanced, read
speech [Garofolo (1993)]). The utterances were downsampled to 8kHz, because
the software implementations of the G.729B VAD and AMR VAD we used
required so. Framewise VAD decisions manually labelled on these utterances
formed the reference labels. These utterances were then concatenated in sets
of three and silence was inserted between them so that the ratio of speech
to non-speech frames was 40% to 60%. This models the average activity in a
typical telephone conversation [Beritelli et al. (2001)]. Three different types
of noise (babble, pink and white) from the NOISEX-92 database [Varga et al.
(1992)] were added to these files, resulting in four datasets, each having an
SNR of 0, 5, 10 and 15 dB. It is to be noted that SNR computation is over
the whole utterance, including silences.

Six such utterances at 10 dB SNR (comprising of about two minutes each of
speech and non-speech) were used as training data. Using framewise speech
and non-speech reference labels, the training data was used to estimate param-
eters the respective GMMs. On the other hand, the total test dataset consists
of about thirty hours of noisy data.

5.5 Evaluation

The evaluation data for each noise type consists of four SNR levels. Framewise
speech/non-speech outputs of the five VAD methods considered (G.729 B,
AMR 1, AMR 2, MFCC-VAD and MODGD-VAD) are compared with the
reference labels. The performance evaluation is based on the metrics defined
in [Li et al. (2005)], namely:

• Pcs: Percentage of correct speech identification,
• Pcn: Percentage of correct non-speech identification and
• Pf : Percentage of error (misses and false alarms.)
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5.6 Results and discussion

The experimental performance of the proposed MODGD-VAD and other meth-
ods are given in Table 1.

The proposed MODGD-VAD achieves the least average VAD error (8.2%)
across all noise types. Also, in babble noise, MODGD-VAD also achieves the
least VAD error (7.1%) compared to the other methods. Among the three
noise types, it achieves the best non-speech detection (92.0%) in white noise,
whereas the best speech detection is achieved in babble noise (95.0%).

The performance of MFCC-VAD is similar, although the algorithm attains a
higher average VAD error. At high noise levels (0 dB SNR), MFCC-VAD has a
6% performance reduction in compared MODGD-VAD. Similar to MODGD-
VAD, MFCC-VAD achieves the least VAD error and the best speech detection
in babble noise (9.2% and 94.5% respectively), whereas the best non-speech
detection is achieved in pink noise (88.4.%) In particular, both these supervised
methods perform better than the standard methods in babble noise.

G.729B has the highest average VAD error across all environments. The av-
erage speech detection rate is similar across various noise types, although the
non-speech detection is poor in babble noise. Among the three noise types
considered, G.729 obtains the least VAD error and best non-speech detection
in pink noise (16.3% and 75.5%), whereas the best speech detection is achieved
in white noise (90.3%)

The AMR VAD 2 algorithm achieves the best speech detection performance
in pink and white noise (93.6%). In babble noise, it has good speech detection
performance, although at the cost of noise detection. The AMR VAD 1 algo-
rithm on the other hand, fares better in babble noise (average VAD error of
22.0% when compared to 32.1% obtained by AMR VAD 2.) Both the AMR
algorithms achieve the least VAD error in pink noise (9.5% for AMR 1 and
5.2% for AMR 2), and the best non-speech detection in babble noise (96.9%
for AMR 1 and 98.5% for AMR 2.)

As expected, all VAD methods considered show improvement in average error
as the SNR increases. In babble noise, MODGD-VAD outperforms all other
VAD methods considered. In pink noise and white noise, it performs better
than AMR option 1 and is comparable to AMR option 2. Although G.729B
achieves the highest average VAD error, it fares better than AMR VAD option
2 in babble noise. In babble noise, MODGD-VAD gives the least VAD error
(7.1%), whereas in both white and pink noise AMR VAD option 2 gives the
least error (5.5% and 5.2% respectively.)

The supervised VAD methods (MFCC-VAD) and (MODGD-VAD) fare bet-
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ter than the unsupervised methods in all conditions. Being non-stationary in
nature, babble noise degrades performance of the standard VAD methods con-
siderably. The GMM is able to capture the non-stationarity and separate the
speech and non-speech in a better manner.

The standard VAD algorithms implement a hang-over scheme in which the
VAD decision of the current frame is based on that of the earlier frames. To
reduce the misdetection of speech, the hang-over scheme usually delays the
transition from speech to non-speech, at the cost of increased false alarm rate
[Sohn et al. (1999)]. It is to be noted that a hang-over scheme was not used
in the GMM-based methods.

6 Conclusions

In this paper, we demonstrated the robustness of group delay based repre-
sentations to additive noise. Analysis of group delay representations in noise
showed that the group delay spectrum tends to follow the signal spectrum,
rather than the noise spectrum. To support the analysis, a GMM-based voice
activity detector was developed using modified group delay based features. The
modified group delay features achieved performance comparable to or better
than standard VAD methods in various environments. The performance was
also compared to an MFCC feature based GMM voice activity detector, which
achieved an average error rate slightly more than the MODGD-based system.

We provided a mathematical explanation to the noise robustness of group de-
lay functions. The experiments also demonstrated that features derived from
group delay functions separate noisy-speech and non-speech in a reliable man-
ner. Thus, the use of the phase-based features is as appealing as magnitude-
based features for this important task.
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