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Abstract

In hybrid hidden Markov model/artificial neural networks

(HMM/ANN) automatic speech recognition (ASR) system, the

phoneme class conditional probabilities are estimated by first

extracting acoustic features from the speech signal based on

prior knowledge such as, speech perception or/and speech pro-

duction knowledge, and, then modeling the acoustic features

with an ANN. Recent advances in machine learning techniques,

more specifically in the field of image processing and text pro-

cessing, have shown that such divide and conquer strategy (i.e.,

separating feature extraction and modeling steps) may not be

necessary. Motivated from these studies, in the framework of

convolutional neural networks (CNNs), this paper investigates

a novel approach, where the input to the ANN is raw speech

signal and the output is phoneme class conditional probabil-

ity estimates. On TIMIT phoneme recognition task, we study

different ANN architectures to show the benefit of CNNs and

compare the proposed approach against conventional approach

where, spectral-based feature MFCC is extracted and modeled

by a multilayer perceptron. Our studies show that the proposed

approach can yield comparable or better phoneme recognition

performance when compared to the conventional approach. It

indicates that CNNs can learn features relevant for phoneme

classification automatically from the raw speech signal.

Index Terms: Automatic speech recognition, Artificial neu-

ral networks, Convolutional neural networks, Phonemes, Data-

driven feature extraction

1. Introduction

Hidden Markov model (HMM) based automatic speech recog-

nition (ASR) system, similar to conventional pattern recogni-

tion system, breaks the problem into several sub-tasks: fea-

ture extraction, modeling and decision making, and optimizes

them in independent manner. For instance, acoustic features

such as, mel frequency cepstral coefficients (MFCC), percep-

tual linear prediction (PLP) cepstral coefficients, linear predic-

tion cepstral coefficients are extracted based on prior knowl-

edge about speech perception and/or speech production. These

features are then usually modeled by either Gaussian mixture

models (GMM) or artificial neural networks (ANNs) to esti-

mate state emission distribution. This step is often referred to

as acoustic modeling. The decision making, i.e. recognition,
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step integrates the acoustic model, lexical knowledge and lan-

guage model/syntactical constraints (again estimated indepen-

dently on text data) to decode the test utterance.

In recent years, in the field of computer vision [1] and text

processing [2] studies on sequence recognition problems similar

to ASR have shown that such divide and conquer strategy may

not be necessary. More precisely, these studies have shown that

it is possible to build end-to-end systems (fed with raw input

data) by using architectures composed of many layers, where

each layer learns features (i.e. abstract representations), that

are relevant to the problem of interest.

Inspired from these studies, the present paper, as a first

modest step, investigates estimation of phoneme class condi-

tional probabilities from raw speech signal using convolutional

neural networks1 (CNN) [4] for phoneme sequence recogni-

tion. In the framework of hybrid HMM/ANN system, we com-

pare the proposed approach with the conventional approach

of extracting spectral-based acoustic feature extraction and

then modeling them by ANN. In addition, we also propose

a discriminative decoding algorithm based on a simple condi-

tional random field (CRF). Experimental studies conducted on

TIMIT corpus show that (a) the proposed approach can yield

a phoneme recognition system that is similar to or better than

the system based on conventional approach and (b) CRF-based

decoding yields better performance than conventional joint like-

lihood based decoding.

The remainder of the paper is organized as follows. Sec-

tion 2 presents a brief survey of related literature. Section 3

presents the architecture of the proposed system. Section 4

presents the experimental setup and Section 5 presents the re-

sults. Section 6 presents an analysis, Section 7 provides a dis-

cussion and Section 8 concludes the paper.

2. Related Work

Despite the success of spectral-based acoustic features, there

has been interest in modeling raw speech signal for speech

recognition. In one of the earliest work, Poritz proposed an

approach where the speech signal is modeled by a linear pre-

diction HMM [5]. This work was later revisited as switch-

ing autoregressive HMM [6], and more recently in the frame-

work of switching linear dynamical systems [7]. Experi-

ments on isolated word/digit recognition task have shown that

these approaches can yield performance comparable to stan-

dard cepstral-based HMM system in clean conditions, and bet-

ter performance under noisy conditions [7]. In [8], an ap-

proach to model raw speech signal was proposed. In this

1In speech literature, CNN is referred to as time-delay neural net-
work [3].
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approach, the signal statistical characteristics are modeled as

the output of a filter excited by a Gaussian source. The po-

tential of the approach was demonstrated on classification of

speaker-dependent discrete utterances consisting of 18 highly

confusable stop consonant-vowel syllables. More recently,

combination of raw speech and cepstral features in the frame-

work of support vector machine has been investigated for noisy

phoneme classification [9].

In recent years, there has been growing interests in using

short-term spectrum as features, mainly in the framework of ar-

tificial neural networks. These “intermediate” representations

(standing between raw signal and “classical” features such as

cepstral-based features) have been successfully used in speech

recognition applications [10, 11, 12, 13].

3. Proposed system

CNNs are a particular kind of artificial neural network which

performs a series of convolutions over the input signal. They

learn convolution filters in a end-to-end manner from raw data,

alleviating the problem of designing/choosing the right features

for a particular task of interest. CNN-based systems have been

shown to lead to state-of-the-art performance on image [14, 15]

or text [2] problems. In this paper, we show that the convolu-

tional aspect of CNNs make them particularly suitable for han-

dling temporal signals such as raw speech.

The proposed system is composed of two parts: the estima-

tion of the phoneme class conditional probabilities and the de-

coding of the sequence. The first part is performed by a CNN,

which takes raw speech signal as input. For second part, a sim-

ple CRF will be used to decode the sequence.

3.1. Convolutional Neural Network

The network is given a window of raw input signal and com-

putes the conditional probability p(i|x) for each phoneme class

i. One class is then attributed to an example by computing

argmax(p(i|x)). These type of network architectures are com-

posed of several filter extraction stages, followed by a classifi-

cation stage. A filter extraction stage involves a convolutional

layer, followed by a temporal pooling layer and an non-linearity

(tanh()). Our optimal architecture included 3 stages of filter ex-

traction (see Figure 1). Signal coming out of these filter stages

are fed to a classification stage, which in our case was a one-

hidden layer MLP. The last layer is a softmax layer, which com-

putes the conditional probability.

3.1.1. Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-

size input vector, a convolution layer is assumed to be fed with

a sequence of T vectors/frames: X = {x1 x2 . . . xT }. A

convolutional layer applies the same linear transformation over

each successive (or interspaced by dW frames) windows of kW

frames. E.g, the transformation at frame t is formally written as:

M







xt−(kW−1)/2

...

xt+(kW−1)/2






, (1)

where M is a dout × din matrix of parameters. In other words,

dout filters (rows of the matrix M) are applied to the input se-

quence. An illustration is provided in Figure 2.
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M × ·

din

dout

kWdW

Figure 2: Illustration of a convolutional layer. din and dout are

the dimension of the input and output frames. kW is the kernel

width (here kW = 3) and dW is the shift between two linear

applications (here, dW = 2).

Max-Pooling

max(·)

d

d

kW

Figure 3: Illustration of max-pooling layer. kW is the number

of frame taken for each max operation and d represents the

dimension of input/output frames (which are equal).

3.1.2. Max-pooling layer

These kind of layers perform local temporal max operations

over an input sequence, as shown in Figure 3. More formally,

the transformation at frame t is written as:

max
t−(kW−1)/2≤s≤t+(kW−1)/2

f
s
i ∀i (2)

These layers increase the robustness of the network to slight

temporal distortions in the input.

3.1.3. SoftMax layer

The Softmax [16] layer interprets network output scores fi(x)
as conditional probabilities, for each class label i:

p(i|x) =
efi(x)

∑

j

e
fj(x)

(3)

3.1.4. Network training

The network parameters θ are learned by maximizing the log-

likelihood L, given by:

L(M1, ...,ML, θ) =

N
∑

n=1

log(p(in|xn, θ)) (4)

for each input x and label i, over the whole training set, with re-

spect to the parameters of each layer Ml. Defining the logadd
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Figure 1: Convolutional Neural Network. Several stages of convolution/pooling/tanh might be considered. Our network included 3

stages.

operation as: logaddi(zi) = log(
∑

i e
zi), the likelihood L can

be expressed as:

L = log(p(i|x)) = fi(x)− logadd
j

(fj(x)) (5)

where fi(x) described the network score of input x and class

i. Maximizing this likelihood is performed using the stochastic

gradient ascent algorithm [17].

3.2. Decoder

We consider a very simple version of CRFs, where we define a

graph with nodes for each frame in the input sequence, and each

label. This CRF allows to discriminatively train a simple dura-

tion model over our network output scores. Transition scores

are assigned to edges between phonemes, and network output

scores are assigned to nodes. Given an input data sequence x

and a label path on the graph y, a score for the path can be

defined:

s(x, y) =

T
∑

t=1

(

fyt(xt) +Ayt,yt−1

)

(6)

where A is a matrix describing transitions between labels and

fyt(xt) the network score of input x for class y at time t. Path

scores are interpreted as conditional probabilities, by applying

a softmax (see Section 3.1.3) over all possible paths. The CRF

transitions scores are then trained by maximizing the likelihood

over the training data, with a gradient ascent.

4. Experimental Setup

In this section we present the setup used for the experiments, as

well as the different features and the decoding algorithms.

4.1. TIMIT Corpus

The TIMIT acoustic-phonetic corpus consists of 3,696 training

utterances (sampled at 16kHz) from 462 speakers, excluding

the SA sentences. The cross-validation set consists of 400 ut-

terances from 50 speakers. The core test set was used to report

the results. It contains 192 utterances from 24 speakers, exclud-

ing the validation set. The 61 hand labeled phonetic symbols

are mapped to 39 phonemes with an additional garbage class,

as presented in [18].

4.2. Features

Raw features are simply composed of a window of the speech

signal (hence din = 1, for the first convolutional layer as shown

in Figure 1). The window is normalized such that it has zero

mean and unit variance.

We also performed several experiments, with MFCC as in-

put features. They were computed (with HTK [19]) using a

25 ms Hamming window on the speech signal, with a shift of

10 ms. The signal is represented using 13th-order coefficients

along with their first and second derivatives, computed on a 9

frames context (din = 39 for the first convolutional layer).

4.3. Network hyper-parameters

The hyper-parameters of the network are: the input window

size, corresponding to the context taken along with each ex-

ample, the kernel width kW and shift dW of the convolutions,

the number of filters dout, the width of the hidden layer and

the pooling width. They were tuned by early-stopping on the

cross-validation set. Ranges which were considered for the grid

search are reported in Table 1. It is worth mentioning that for

a given input window size over the raw signal, the size of the

output of the filter extraction stage will strongly depend on the

number of max-pooling layers, each of them dividing the out-

put size of the filter stage by the chosen pooling kernel width.

As a result, adding pooling layers reduces the input size of the

classification stage, which in returns reduces the number of pa-

rameters of the network (as most parameters do lie in the clas-

sification stage).

The best performance for the raw experiment on the cross-

validation set was found with: 270 ms of context, 10, 5 and 9
frames kernel width, 10, 1 and 1 frames shift, 90 filters, 500 hid-

den units and 3 pooling width. For the MFCC experiment, 30
frames (290 ms) context, 39, 5 and 7 kernel width, 80 filters and

500 hidden units were found the same way. The MFCC-based

networks had no pooling layer. We found pooling operations

were decreasing the performance with these features, while they

are crucial for raw signal input experiments (see Section 6.1).

This is not surprising, as MFCCs are sufficiently engineered to

work well with simple network classifiers.

As a comparison, we also investigate traditional single hid-

den layer MLP-based approach [20]. Again, early stopping on

the cross-validation set was used to determine the optimal num-

ber of nodes (500 nodes were found). The experiments were

implemented using the torch7 toolbox [21].

Table 1: Network hyper-parameters

Parameter Range

Input window size (ms) 100-700

Kernel width (kW ) 1-9

Number of filters per kernel (dout) 10-90

Number of hidden units in the class. stage 100-1500

4.4. Decoding

We used the simple CRF approach described in Section 3.2 as

decoding algorithm, with no duration constraints. We also re-

port experimental results with a standard HMM decoder, with

constrained duration of 3 states, and considering all phoneme

equally probable.
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Figure 4: Frequency responses of filters learned in the first convolutional layer.

5. Results

We propose to evaluate the network capacity to estimate condi-

tional probabilities by a phoneme sequence recognition experi-

ment on the TIMIT database. The results are presented in Table

2, in term of phoneme accuracy for the different features and

decoding scheme, along with the number of parameters. Using

raw speech, the CNN architecture slightly outperforms the base-

line, and the CRF approach increases the accuracy compared to

the HMM approach. Using MFCC features with the CNN ar-

chitecture yields similar performance as the raw features. The

baseline accuracy is consistent with other works, although a bit

lower, certainly due to the absence of supplementary process-

ing, like speaker-level mean variance normalization in [22].

Table 2: Phoneme recognition accuracy on the core test set of

TIMIT corpus.

Features Arch. Decoding Num. param. Test acc.

MFCC MLP HMM 196’040 66.65

Raw MLP HMM 740’540 38.91

Raw CNN HMM 720’110 67.88

Raw CNN CRF 69.47

MFCC CNN HMM 860’700 70.52

MFCC CNN CRF 71.80

6. Analysis

6.1. Advantage of max-pooling layers

We varied the number of pooling layers, to evaluate their contri-

bution in the overall performance of the architecture. The other

hyper-parameters were tuned such that the same input window

size was kept for each architecture. The output dimension of

each convolution were also tuned for each case (to reduce over-

fitting due to a too large number of parameters). The phoneme

accuracy of each architecture is reported in Table 3, using raw

features and HMM decoding, along with the number of param-

eters of the network. Clearly, adding max-pooling layer im-

proves the system performance while providing an easy way to

reduce the number of parameters (see Section 4.3).

6.2. Filters trained in the first layer

Figure 4 presents the frequency response of five randomly cho-

sen filters2. Clearly, each filter learned by the network responds

2Responses from all filters can be found at
http://ronan.collobert.com/pub/extra/2013-is-cnn/

filter-responses.pdf

Table 3: Max-pooling (MP) layers contribution

Number of Network Test

MP layers parameters Accuracy

3 303’460 67.60

2 380’660 67.18

1 507’860 67.14

0 593’460 64.96

to different frequency bands of the input raw signal. These fil-

ters could be seen as matching filters. In a future work, we will

investigate the relationship between the filters learned and the

task at hand.

7. Discussion

Over raw speech, the CNN architecture shows a great improve-

ment compared to the single layer MLP architecture, confirming

that convolution-based architectures are better suited for tempo-

ral signals. Moreover, it slightly outperforms the baseline, with

almost no pre-processing on the data. These results suggest that

deep architecture can learn efficient features and more impor-

tantly, that it is possible to achieve similar performances than

complex hand-crafted features.

When comparing MFCC and raw signal as input for the

CNN, MFCC seems to work slightly better. This aspect needs

to be further investigated in the context of large database and

using deeper architectures [11], where the slight advantage of

MFCC might collapse.

When adding a decoder, the CRF approach seems to work

better than the generative HMM approach. A plausible expla-

nation is that the CRF learns a bigram language model over the

phonemes. Also, in this work the CRF is optimized indepen-

dently from the CNN, but joint training of the two models is in

fact possible [23], and might lead to better performances.

8. Conclusions

In this paper, we proposed to use convolutional neural networks

to estimate phoneme class probabilities. Our system is able to

learn features by taking raw speech data as input and outper-

forms baseline systems. Moreover, using MFCC feature as in-

put yields comparable performances. For future work, we plan

to evaluate the robustness of our architecture with studies in

noisy conditions. Secondly, as this work was intended as a first

step for an end-to-end trained system, we plan to develop such

a system applying the Graph Transformer Networks [23] ap-

proach. From there, we aim to develop more specific applica-

tions, such as Spoken Term Detection.
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