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Sampling techniques for
audio-visual tracking and
head pose estimation

Jean-Marc Odobez (Idiap Research Institute)
Oswald Lanz (Fondazione Bruno Kessler)

6.1 Introduction

Analyzing people behaviors in smart environment using multimodal sensors
requires to answer a set of typical questions: who are the people, where are
they, what activities are they doing, when, with whom are they interacting,
and how. In this view, locating people or their faces and characterizing them
(e.g. extracting their body or head orientation) allows to address the first
two questions (who and where), and is usually one of the first steps before
applying higher level multimodal scene analysis algorithms that address the
other questions. In the last ten years, tracking algorithms have experienced
considerable progresses, particularly in indoor environment or for specific
applications, where they have reached a maturity allowing their deployment
in real systems and applications. Nevertheless, there are still several issues
that can make the tracking difficult: background clutter, potentially small
object size; complex shape, appearance, and motion, and their changes over
time or across camera views; inaccurate/rough scene calibration or inconsis-
tent camera calibration between views for 3D tracking; real-time processing
requirements. In what follows, we discuss some important aspects of tracking
algorithms, and ultimately introduce the remaining of the chapter content.

Scenarios and Set-ups. Scenarios and application needs strongly influ-
ence the considered physical environment, and therefore the set-up (where,
how many, and what type of sensors are used) and choice of a tracking
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environments -homes, offices, classrooms- equipped with multiple cameras
located on room sides, along with microphone-arrays and potentially net-
worked pervasive devices that can perceive ongoing human activities and
respond to them. These settings usually involve the tracking of few people.
Cameras usually provide good image quality, and people sizes in the im-
ages are relatively high and of the same value across camera views. In this
context, robust and accurate tracking results have been demonstrated, e.g.
[Bernardin et al., 2006, [Fleuret et al.l |2008|, and current goals consists of
improving tracking robustness under higher crowding levels, recovering the
pose of objects in addition to their localization, exploiting other modalities
such as audio |[Bernardin and Stiefelhagen) [2007], and characterizing people
activities.

Meetings and teleconferences -whether for professional of for families-
are other specific but nonetheless important scenarios that require tracking
technologies, as highlighted in other chapters of this book in the meeting
case. In these scenarios, localizing people in the room is less the issue
than assessing their presence and image position, and understanding their
activities and interactions. They therefore rely on different and potentially
lighter settings than the smart room cases. Cameras (and microphones) are
often located on a table, displays (e.g. showing remote participants) or walls,
and focus at people upper body and faces. Good performances have been
reported as well in this case, although tracking the head whatever under
any pose can remain challenging. For instance, in meetings, people can look
down for quite a long time, resulting in head tilts that face detectors can
not cope with, and thus require robust tracking techniques to be handled.

Tracking problem formulation. Several approaches can be used to for-
mulate the tracking problem. In a simple case, tracking can be done by
detecting objects at each frame and matching them across time using mo-
tion heuristics to constrain the correspondence problem. Other deterministic
approaches can also be exploited, such as the popular Mean-Shift approach
that is quite appropriate for tracking faces due to their distinctive skin-
colored faces. However, in general, such methods have difficulties with short
term ambiguities and for performing robust long term tracking.

In past years, Bayesian state-space formulations have been shown to
be very successful to address the single or multi-person tracking problem
[Isard and MacCormick, 2001, Khan et al., 2005, Smith et al., 2005, [Yao
and Odobez, 2008a]. As will be described in the next section, it offers a
principled and intuitive way of introducing dependencies between variables
of the state and observation spaces, and general tools for inference and model
parameter learning. Note that while the probabilistic tracking framework
is appealing, it does not solve all the problems by itself. For instance, due
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to the curse of dimension in multi-object tracking, solving the inference
problem is not a straightforward issue. The use of a plain particle filter will
quickly fail when more than 3 or 4 people need to be tracked. In recent
years, several tools such as reversible-jump MCMC stochastic optimization
have been introduced and shown to be more effective at handling the large
dimensional state.

Chapter organization. In this chapter, our goal will be to highlight some
important aspects of tracking that we believe have been shown to be suc-
cessful in past years, as well as current limitations, focusing on the two
set-ups of interest (smart rooms, meetings). The list of reviewed works will
therefore not be exhaustive, both in breadth and in depth, but illustrative
of approaches and of developments that have been performed in the context
of the EU AMI and related projects.

The next section reviews the main principles and elements of Bayesian
tracking and of particle filters which has been identified as one of the main
successful frameworks for tracking. We then review and illustrate with more
details multi-person tracking techniques for smart environments, followed by
a section more dedicated to face and head pose tracking, which is the main
task in conference and meeting scenarios. The complementary exploitation
of audio information for these tasks is described in a separate section before
the conclusion.

6.2 State-space Bayesian tracking

The Bayesian formulation of the tracking problem is well known. Denoting
the hidden state representing the object configuration at time ¢ by x; and
the observation extracted from the image by z;, the objective is to estimate
the filtering distribution p(x¢|z1.;) of the state x; given the sequence of all
the observations z1.4 = (z1,...,2¢) up to the current time. In order to solve
the problem recursively, standard assumptions are usually made: the state
follows a first order Markovian process, i.e. p(x¢|X1:t—1,21:t) = p(X¢|x¢-1),
and the observations are conditionally independent given the state sequence,
ie. p(z¢|x1.t,21.4-1) = p(z¢|x¢). Bayesian tracking then amounts to solving
the following prediction and update equations:

p(X¢|Z1:0-1) = / P(Xe|xe—1)p(Xe—1|Z1:0—1)dx—1 (6.1)
Xt—1
p(xt|z14) o< p(ze|xe)p(xe|Z1:0-1)- (6.2)

which involve two important terms: the process dynamics p(x¢|x;—1), and
the data likelihood p(z¢|x;). Methods to solve the above equations depend
on how these terms are modeled. [Arulampalam et al.,[2002] provides a good
and detailed review of these. Below, we only discuss two of them.
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6.2.1 The Kalman filter

The main assumption of this model is linearity and Gaussianity: the dy-
namics is given by x; = f(x4—1,v¢) = Ayx¢—1 + v¢ and similarly for the
observation model: z; = g(x;, wy) = Cyx; + wy, where v, and wy are zero-
mean Gaussian noise with covariances V¢ and XVt  respectively. Under
these assumptions, all probability distributions of the model (the joint and
marginals) are known to be Gaussian, including the predictive and filtering
ones. The main advantages are that a closed-form solution to the above
equations can be found, with a principled way to fuse multiple observations,
e.g. from different modalities, and account for both process and measure-
ment uncertainties at each time step. The model suffers from important
drawbacks however: it has difficulties in handling more complex dynamics
due to non-linearity or state-dependencies (i.e. when a state component
at time ¢ depends on another state component at the same time). But in
vision, the main issue of the KF is the measurement model. First the KF
modeling requires the tracker to extract observations of a similar nature
to the state like localization observations. That is, if one wants to exploit
image observations and therefore powerful object representations directly in
the tracking framework, such as color histograms or shape features, defin-
ing C; or more generally the g measurement function is very complex if
not impossible. Secondly, due to clutter and local ambiguities, likelihood
distributions (and hence the predicted and filtering distributions) in vision
are often multimodal, something that is not accounted for by the Gaussian
assumption.

6.2.2 Monte-Carlo methods

In non-Gaussian and non linear cases, the recursive equations can be solved
using sampling approaches, also broadly known as Particle Filter (PF). The
idea behind the PF approach consists in representing the filtering distribu-
tion in a non parametric way, using a set of Ny weighted samples (particles)
{x},wj',n =1,..., Ng}, and updating this representation when new data ar-
rives. The standard PF relies on the importance sampling principle. Given
the particle set of the previous time step, {x}" ;,w} {,n = 1,..., Ny}, con-
figurations of the current step are drawn from a proposal distribution x} ~
p(ze|xy)p(xi[x; 1)
q(xilx;_1,2t)

In addition, to avoid sample impoverishment, a resampling step need to be
regularly applied |[Arulampalam et al., [2002].

The PF frameworks offers several advantages: handling of non-linear,
non-Gaussian, and multimodal distributions; easy accounting of probabilis-
tic relationships and dependencies between variable, much more opportunity
and diversity for likelihood modeling, ease of programming. Four main el-
ement enter in the definition of a PF tracker. We discuss below general

q(x¢|xi_,2;). The weights are then updated as w{ oc wi_,
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issues regarding them, while subsequent sections will provide more specific
examples.

The state space. The state space defines the object parameters one wishes
to recover. In its simplest case, one might only be interested in the location
of an object in the 2D image plane or in the 3D space. However, depending
on the scenario, one is often interested in recovering object-centric informa-
tion, such as its size, orientation, or pose. In general, the selection of an
adequate state space is a compromise between two goals: on one hand, the
state space should provide the richest information to further higher level
analysis modules, and be precise enough so as to model as well as possible
the information in the image and video. In other words (and even if such
information is not requested by the application), adding relevant auxiliary
variables in the state space that simplifies the modeling of other components
(dynamics, appearance) is often useful [Perez and Vermaak, 2005]. On the
other hand, the state has to remain simple enough and appropriate to the
quality level of the data (i.e. the impact of changing the state variable value
should be observable on the data) in order to obtain reliable estimates and
keep the computation time low.

The dynamical model. Defined by p(x;|x;—1), it provides the prior on the
state sequence and governs the temporal evolution of the state. Often, for
simplicity, the dynamics of each state components are defined independently,
e.g. using auto-regressive models for continuous variables. However, simple
but efficient dependencies can be specified in the dynamics. The graphical
model in Fig. shows an example related to head pose tracking. Another
typical example is switching dynamical models, where the state x; = (s¢, at)
is characterized by object parameters s¢ (e.g. a person’s location) and an ac-
tivity index ag (e.g. the person is either static or moves). Then we can have
p(xe|x¢—1) = p(se|st—1, a¢)p(aglac—1), where in the first term the activity ag
controls which dynamics is applied to s¢, and the second term models the
sequence of activities (and thus implicitely the transitions between activities
that will introduce discontinuities in the dynamics of st).

The likelihood model p(z;|x;) measures the adequacy of data given the
proposed configuration of the tracked object. This is probably the most
important term for the tracking success. Ideally, the likelihood should always
have its maximum at the right state value. It should be broad so that
the closer a particles is from the true state, the higher its likelihood, and
peaky enough to separate the object from the clutter and provide a precise
localization. |Deutscher et al., [2000] addressed this issue by proposing an
annealed PF, where the likelihood is progressively changed from a broad
distribution into the final peaky one by controlling a temperature coefficient
as in simulated annealing optimization. Broadly speaking, likelihood based
on color-histograms or patches are often broad (they are robust to imprecise
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localization or scale), while those based on contours are more peaky.

Proposal and sampling scheme. The proposal q(x¢|x;_1, ) specifies the
sampling mechanism responsible for exploring the state space in an intelli-
gent way, i.e. it has to propose new state configurations in high probability
regions of the filtering distribution. In the CONDENSATION seminal paper
[Isard and Blake, [199§], the Bootstrap filter was used, in which the proposal
is defined as the state dynamics, which simplifies the particle weight expres-
sion (weights are directly proportional to the likelihood). However, despite
the representation with samples, which can handle temporally localized am-
biguities, the Bootstrap PF is sensitive to drift and can not recover from
tracking failures. Ways to overcome this issue as well as more advanced
sampling strategies will be introduced in the next Sections.

6.3 Person Tracking in Rooms

In the following we give an overview of main Bayesian methods proposed
in the literature, grouping them into two categories according to whether
they represent and sense objects in 2D or 3D space. Some were specifically
designed to operate in a Smart Room type environment while others address
tracking in a general setting and are important to get a more comprehensive
overview of the problem. We will zoom into some technical detail of one
representative paper per approach, will explicitly refer to the specific aspects
of applying them in a Smart Room settings.

6.3.1 Specific issues

Object tracking is a well studied topic in Computer Vision (see e.g. [Yilmaz
et al., |2006] for a survey) and proposed solutions differ largely in the type
of environment they are designed to operate on (indoor vs. outdoor, single
camera vs. multi-camera) and adopted methodology (model-based vs. data-
driven, distributed vs. centralized). When the targeted application requires
the tracking of a number of interacting people in an indoor setting, the main
challenges posed to video analysis can be summarized as follows:

High variability in pose and appearance. There is a great amount
of variability in the way people appear in images. This is true even when
observing a single subject over a short period of time, from a fixed viewpoint,
in a controlled environment. It is therefore difficult to characterize a human
subject in the image domain and, as a consequence of that, both detecting
such a target and subsequently re-localizing it from frame to frame become
ambiguous processes.

Occlusions. Interacting people are usually located close to each other,
and they may remain at the same location, e.g. as long as a conversation
goes on among them. From a tracking perspective this means that people’s
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Figure 6.1: B-spline head-shoulder (a) and articulated hand (b) implicit
shape models to track in 2D on contours with CONDENSATION. (Images
taken from Active Contours. Courtesy by Andrew Blake and Michael Isard.)

bodies may be rendered partially or even completely occluded into one or
more cameras, simultaneously, for an unpredictable amount of time. The
likelihood of occurrence of such events is high in our envisaged scenarios,
thus reliable tracking can only be achieved by methods that explicitly reason
about occlusions.

Clutter and uneven illumination. It is not always possible to describe
the appearance of an object with discriminative features. This is of par-
ticular concern when tracking people in populated scenes, where due to
incomplete modeling the visual signature of one person may match that of
another, or where a similar pattern may appear in the background. Addi-
tional difficulties arise during occlusion, where only a partial measurement
of it, if any, may be available. In environments where the lighting condi-
tions cannot be controlled (like a windowed scene) color based measurements
may be distorted by local variations in illumination. These sources of un-
certainty are likely to cause failures if their effects are not properly handled
(technically speaking, major failure modes are drift and coalescence).

In summary, our envisaged scenario encompasses factors out of our con-
trol that unavoidably induce intrinsic uncertainty in the measurements upon
which a tracking process is instantiated. This motivates our choice to fo-
cus on Bayesian sampling methods for tracking which, either implicitly or
explicitly, propagate estimates in form of distributions, and are thus able
to represent and maintain uncertainty which is inherently present in the
measurements.

6.3.2 Tracking in the image plane

Contour tracking. The particle filter was first proposed as a tracking
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framework in the late 90ies. In their seminal work [Isard and Blakel 1998]
proposed a sampling scheme for contour tracking, namely CONDENSA-
TION, which was found to be outstanding (w.r.t. state-of-the-art at that
time) in coping with the complexity of tracking agile motion in clutter. Au-
thors proposed parametric B-splines to model the head-shoulder shape of
a person when captured from a near-horizontal view (see Fig. . The
state x; of a person is hereby encoded by the B-spline parameter vector,
thus an implicit representation was chosen. The adopted likelihood p(z:|x;)
measures the degree of overlap between the spline at x; and image edges
z; detected along a set of spline normals (the probes), assuming that the
edge pixels are normally distributed along the probe normals. To account
for missing edges (e.g. due to low contrast w.r.t. background) an outlier
probability term was added to the model. State evolution was modeled as a
linear 2nd order process whose parameters were learned from labeled data.

Color based tracking. Contour based methods attempt to re-localize a
target using information only about its shape, thus with cues that may not
allow to discriminate between subjects when tracking multiple people (the
key factor causing coalescence). To exploit a more discriminative charac-
terization of a subject, a color tracker can be designed, whose state x; is
typically chosen to be the center, the apparent motion, and the scale and
aspect ratio of the bounding box or ellipse enclosing the object’s extent in
the image [Perez et al.,[2002]. The dynamical model p(x;|x;—_1) is a Gaussian
with diagonal covariance matrix whose entries define the amount of change
that each component of x; may undergo from one frame to the next. The
likelihood p(z¢|x;) is defined in terms of a distance between color features
(e.g. histograms) extracted from the bounding box at x; and a reference
model of the target. The performance depends strongly on how well the
reference model matches the target’s appearance at its current state. To
handle pose changes and uneven illumination, either additional cues invari-
ant to those factors such as motion, depth, and sound are used |Perez et al.,
2004, Badrinarayanan et al., 2007], or the external part of the object (the lo-
cal background) is included in the likelihood definition [Lehuger et al., [2006].
To avoid drift, i.e. adaptation to background clutter and subsequent locking,
the weights associated to the fusion scheme must be carefully selected and,
ideally, updated on-line from data evidence |Badrinarayanan et al., 2007].

6.3.3 Tracking in 3D space with calibrated camera(s)

A multitude of 2D approaches find their analogs in 3D methods. An impor-
tant difference is that with a 3D approach the correlation between measure-
ments from different cameras can be explicitly modeled in the likelihood and
conditioned to a unique state and appearance characterization of the object,
which is then more appropriate as it simplifies multi camera integration and
presents several additional advantages. Parameter setting, in most cases,
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Figure 6.2: The ground plane POM computed with a variational minimiza-
tion technique from blobs extracted by background subtraction on the im-
ages to the right (only two of the three images that where used are shown)
[Fleuret et al. |2008].

will have a physical meaning (e.g. the standard height of a person, the av-
erage speed of a walking person [Yao and Odobez, [2008a]). Similarly, prior
information about the state values will be more easy to specify, as they are
somewhat ‘built-in’: for instance, according to the 3D position, we automat-
ically know what should be the size of a person in the image plane. Finally,
occlusion reasoning -when tracking multiple people- is simplified when using
the 3D position. It is important to note that some approaches perform early
fusion [Fleuret et al., 2008, |Canton-Ferrer et al.,[2008] to obtain 3D observa-
tions and track in a 3D appearance space and thus absolutely need multiple
cameras, while others interpret images as projections of the 3D world
land MacCormickl, {2001}, Lanz, 2006, [Yao and Odobez, 2008b] and can track
multiple targets even with a single calibrated camera.

Tracking on voxels. In indoor environments one can often assume that
the background is stable, and that a robust model of it can be initialized and
updated over time, either independently on each camera, or more robustly
by exploiting redundancy in a calibrated setting |Tzevanidis and Argyros,
. A discrete occupancy representation of the 3D space can then be
generated at each iteration via space carving: a voxel (a element of the
3D grid representing the scene) is labelled as foreground by checking the
consistency of its projection with the model across all view’s. In
Ferrer et all 2008] a PF in the voxel space propagates particles with a
likelihood measuring the fraction of foreground voxels in its 26-connected
neighborhood. Although this way the particles do not really represent the
state of a target but rather volume elements that may be associated to its
body, their expectation can be used to approximate the center of mass of an
isolated object. To avoid merging when multiple targets are being tracked
with independent filters a blocking scheme is used to down-weight particles
ending up in the envelop (an ellipsoid) of the estimated previous state of
another target. Voxel based tracking is effective with many cameras and
when a top-down view of the scene is available [Stiefelhagen et al., 2008].
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Tracking by projection on the ground plane. Voxel based techniques
rely on a discretized representation of the 3D scene, which reach their limits
when the monitored space becomes large (explosion in the number of voxels).
Since the movements of people are constrained to the ground plane, a more
effective approach is representing and estimating the state of people on the
2D reference plane. The Probabilistic Occupancy Map (POM) represents a
virtual top-down view of the scene where each entry in the POM corresponds
to the probability of a location in the 2D plane being occupied. In [Fleuret
et al. [2008] such probabilities are inferred from background subtraction im-
ages computed from multiple synchronized views (Fig. [6.2). By representing
humans as simple rectangles to create synthetic ideal foreground images we
can evaluate if people are at a given location. Such probabilities of occu-
pancy are approximated at every location as the marginals of a product law
minimizing the Kullback-Leibler divergence from the true conditional pos-
terior distribution. This allows to evaluate the probabilities of occupancy
at every ground location as the fixed point of a large system of equations,
avoiding combinatorial explosion (curse of dimension) in the number of tar-
gets and utilized views. POMSs are powerful representations for detection,
and can be combined with a color and motion model to compute the trajec-
tories of a variable number of people going through complex occlusions, by
searching for individual trajectories using the Viterbi algorithm over frame
batches of a few seconds, and using heuristics to decide on the order in which
such trajectories are processed.

Integrating detection and target interaction in the Bayesian model.
Visual interactions among targets, scene structure and the sensing geometry
(occlusions, shadows, reflections, etc.) induce dependencies in the appear-
ance of the targets. In addition, there are physical constraints (two targets
cannot occupy the same location in space) and behavior patterns (people
look to each other during a conversation, or move in groups) that relate the
state of a target to that of the others. The processes governing such in-
teractions are known and can be modeled in the Bayesian framework when
the joint state of the scene (x; is a multi-dimensional vector with an en-
try for each of the interacting entities) is being tracked. Such interactions
can be implicitly exploited when defining the likelihood term as done in
the BraMBLe system [Isard and MacCormick, [2001]. There, generalized-
cylinder shape model and perspective projection are used to map the joint
multi-target ground plane state into an image partition (Fig. that al-
lows to define an occlusion robust likelihood based on learned color features
in which object states ’interact’ to best explain the data. |[Khan et al., 2005]
use a more direct approach and define a dynamical model which includes an
explicit interaction term (modeled through a Markov Random Field, MRF)
to enforce the spatial exclusion principle within an efficient sampling scheme.
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Figure 6.3: Image partition induced by the projection of a joint 3D multi-
target hypothesis using part-based generalized-cylinder shape model [Isard
land MacCormick,, 2001} [Yao and Odobez, 2008b], and real time estimates

with HJS-PF implementing a color based likelihood built over it 20006,
using one calibrated camera.

6.3.4 Multi-object tracking inference

While Bayesian tracking in the joint space is a powerful framework, the
computational burden induced by the curse of dimension (see Fig. is
a major concern when it comes to implementation. Particle filtering (i.i.d.
sampling) attempts to populate the full support of the proposal density,
whose volume increases exponentially with the dimension of the state space,
thus requiring the number of particles to increase exponentially as well. To
address this issue, MCMC methods attempt to sample the state space more
intelligently, by generating particles in a sequence that is controlled by a
Markov chain (MC). MCMC is most effective if the chain peaks towards
the modes of the posterior which may be obtained by including the current
measurement in the design of the chain. [Yao and Odobez|, 2008b] define the
chain in such a way by designing MC moves from a mixture with one com-
ponent integrating the output of a detector and the other emulating blind
propagation to account for the case where detection has not succeeded or is
not reliable (e.g. during occlusion, or in the presence of clutter). To track a
variable number of targets, where joint particles of different dimensions have
to compete due to uncertainty in the detection process (i.e. the dimension
of the state space is itself a random variable), the RJ-MCMC framework
is adopted [Smith et al., 2005, Khan et al. 2005 Yao and Odobez, [2008b].
Additional moves are implemented (i.e. the MC chain is expanded) to al-
low for track initialization (a birth move, driven by detection on locations
that are not covered by active tracks), track termination (a dead move, upon
thresholding the likelihood), and identity exchange (a swap move, where the

appearance models of targets are exchanged). Gibbs sampling [Hue et al.,
2002| is another technique for sampling in high-dimensional space.

94



This chapter appeared in:
Multimodal Signal Processing: Human Interactions in Meetings.
Steve Renals, Herv Bourlard, Jean Carletta and Andrei Popescu-Belis
6.3. PERSON dRAGSKONGHRIREURRGsitd PRS- YISZIAL TRACKING

n3

one target two targets three targets

Figure 6.4: The curse of dimension: independent sampling (particle filtering)
in the joint space requires the number of particles increase exponentially with
the dimension of the state space, i.e. with the number of tracked targets.

Approximating the Bayesian model. To avoid the curse of dimension
inherent in the joint formulation, the underlying Bayesian model can be
simplified. In the Mean Field approach |[Medrano et al., 2009] a factored
representation [, ¢(xF|z1.¢) of the multi-target posterior is updated over
time by iterating over a set of fixed point equations minimizing the approxi-
mation error introduced by the factored representation (its KL divergence to
the joint posterior). This leads to efficient inference over a less complex but
much flexible representations of the posterior if dependencies are of generic
form but defined pairwise, an assumption that in general does not hold for
occlusions.

A factored representation of the posterior is also propagated in the Hy-
brid Joint Separable (HJS) tracking framework of [Lanzl, 2006]. Differently
to Mean Field, the assumptions here are on the ¢’s which are chosen to
be the marginals of the joint multi-target posterior (shown to be the a pri-
ori optimal choice for ¢ in the KL divergence sense). While tracking with
the HJS model does, per-se, not induce any savings (explicit marginaliza-
tion with generic dynamical and likelihood model is still exponential), it
is shown that with a joint likelihood implementing the occlusion process
(Fig. the marginals can be updated with quadratic upper bound in the
number of targets, without the curse of dimension, leading to a framework
that scales. To do so, HJS-PF exploits occlusion dependencies to avoid ex-
ponential blow-up in the likelihood update (i.e. explicit marginalization)
and is therefore specifically designed to handle visual interactions. MCMC
sampling in the joint space, on the other hand, can be applied to tracking
under generic interactions in the state space. Note however that it is pos-
sible to embed, via Belief Propagation, MRF dynamics in the HJS model
to effectively account for pair-wise state-space dependencies and introduce,
for instance, a model of social behavior for each target that is learned from
tracks collected during natural interactions |Zen et al., |2010].

To further alleviate the computational burden in multi target tracking
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the number of particles can be adapted to tracking uncertainty, which may
vary significantly over time due to occlusion, clutter, illumination, etc. In
[Lanz, 2007] an information theoretic rule is derived which uses entropy es-
timation to decide on-the-fly on how many particles are needed to maintain
uncertainty on the estimates of the chosen representation (on the joint, its
factors, or on each marginal independently). This way the trade-off be-
tween robustness and efficiency is self managed by the multi target PF in a
consistent manner.

6.4 Head tracking and pose estimation

Due to the crucial role that faces play in human communication, the real-
time visual detection and tracking of faces and estimation of their head pose
has been a topic of particular interest in meeting and video-conferencing
applications or in the analysis of social interaction. In the following, we
present some techniques that have been used for these tasks, introducing
first simpler head tracking algorithms, and then focus on approaches that
also address head pose estimation.

6.4.1 Head tracking

For many applications of interest, head tracking can be conducted in the
2D plane. Hence the Bayesian techniques described in Section relying
either on shape or color histogram information have been widely applied for
this task. Below we complement these on three specific points: skin color
detection, tracking-by-detection, tracking failure detection.

Skin detection. Locating skin-coloured regions is an obvious approach
when dealing with faces, and is useful not only for face detection and track-
ing due to its low computation cost, but also for head pose estimation.
[Kakumanu et al., |2007] present a recent and comprehensive survey of the
field. Much of the existing literature on skin colour modelling is about
building a general colour likelihood model — i.e. a model across all possi-
ble ethnicities and illumination conditions. However, such a general model
can still be distracted by objects that are approximately skin-toned, like
wood and T-shirts. There are two main keys for improving skin detection.
The first one is to build a color model of the background, allowing to com-
pute likelihood-ratios thus avoiding the problem of setting a skin likelihood
threshold. The second one is to perform automatic adaptation of the colour
model, e.g. by updating some model parameters (e.g. of a Gaussian). The
selection of appropriate data (pixels) for adaptation is the critical point.
For a tracking task, this can be done recursively by using the output of the
tracker at the previous step. However, this is subject to drift issues, e.g.
in case of track loss or if the person does not face the camera. A better
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approach consists of using side information independent of color. This can
be achieved by fusing skin with shape information for instance, or, more
robustly, by relying on prior on the skin location inside the bounding-box
returned by a face detector.

Tracking by detection. It is commonly believed that face tracking can be
solved using a face detector. However, despite much progress on multi-view
face detection, even in “simple” scenarios where people predominantly look
towards the camera 30 to 40% of faces are missed [Duffner and Odobez,
2011]. Unfortunately, the missed detections do not happen at random time,
since they are often due to common head poses that people naturally take
to look at other people or to look down (at a table, or if they are bored)
and can last for long periods. In practice, this means that face detection
algorithms have to be complemented by robust tracking approaches; not
only to interpolate detection results or filter out spurious detection, but also
to allow head localisation over extended periods of time.

There are two principled ways (that can be combined) in which detec-
tions zfet’j can be used in a PF tracker. The first one is to consider them
as observations and hence define an appropriate likelihood term that typi-

27| )) drives the particles towards their

cally p(zf![x,) o exp (—xi -
closest detection and thus prevents drift. The second one is to use them in

the proposal, by defining it as a mixture according to:

Net )
q(xe|xi—1,2¢) o< Bp(xefxe—1) + (1= 5) > p(xi|z{") (6.3)
=

with the first term favoring temporal continuity, and the second favoring
automatic (re-)initialization. Note that particles sampled around detections
that are unlikely according to the dynamics will receive a very low weight (cf
the weight update rule in Section , and will be discarded quickly with
high probably. Handling these particles which are useless result in a loss of
computation resources. This can be avoided by allowing in the dynamical
term random jumps in the whole space with a low (but non zero) probability,
or by only considering the closest detections for sampling if such jumps are
not desirable.

Track creation and failure detection. Few works address these issues,
although they are essential for real system applications. It is often assumed
that a face detector is used for initialization, but how to rely on a face
detector? When a high detection threshold is used, there is a risk of missing
an early track initialisation, while with a low threshold false track alarms
are likely to occur. Even fewer works address track termination. Indeed,
how do we know that a tracker is doing fine or that there is a failure? This
is an important issue in practice, since a false failure detection may mean
losing a person track for a long period until the detector finds the face again.
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Most algorithms work recursively and assess tracking failure from the
(sudden) drop of likelihood measures but these are not always that easy to
control in practice. Principled methods like the RJ-MCMC methodology
described in [6.3.3] exist to integrate track creation and termination, but
usually rely on appropriate global scene likelihood models that are difficult
to build in multi-face tracking. [Duffner and Odobez, 2011 show that it is
simpler and more efficient to address this issue by designing a side tracking
failure detector. Such a detector can rely on multiple features characterizing
the tracker status, some of which would be difficult to formally integrate in
the tracking framework: likelihood, estimated state mean and spread, as well
as observations about abrupt change detection in these values. In addition,
when the camera is static, the above method automatically learns over time
the usual face locations or person behavior, an information that greatly helps
in improving the failure detection accuracy.

6.4.2 Joint head tracking and pose estimation

Broadly speaking, head pose tracking algorithms differentiate themselves
according to whether or not the tracking and the pose estimation are con-
ducted jointly. In the first case, a generic tracker is used to locate the head,
and then features extracted at this location are used to estimate the pose
using any regression or classification tools. For example, [Stiefelhagen et al.
2002] used neural networks for such a task. Decoupling the tracking and pose
estimation results in a computational cost reduction. However, since pose
estimation is very sensitive to head localization as shown in many studies,
head pose results are highly dependent on the tracking accuracy.

A better alternative consists in modeling tracking and pose recognition
as two paired tasks in a single framework. In this way the tracking robust-
ness is improved by defining a pose-dependent observation model while the
pose estimation accuracy is increased due to a better localization of the tar-
get. This is the approach taken by [Lozano and Otsuka, [2009]. They adapt
a generic 3D Active Shape model (ASM) to a specific face in the first frame,
learn the corresponding texture, and then track the resulting 3D template
with a PF. This methods require that high enough resolution images are
used. In addition, tracking failures often occur when the pose reaches pro-
file views, due to the small visual area covered by the face and the large
uncertainty in pose estimation that results from this. In such cases, track-
ing only resumes when the face is detected. These are common issues shared
with approaches that rely on the tracking of facial features.

Appearance-based head pose tracking using a Rao-Blackwellized
PF (RBPF). To still benefit from the joint location and pose tracking in
low to mid-resolution face images and achieve more robust and continuous
tracking, pose specific appearance models can be exploited. More precisely,
in our work, the state-space comprised continuous parameters allowing for
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scaling,
. eccentricity

Figure 6.5: Mixed continuous and discrete head state space [Ba and Odobez,
. Continuous parameters (S; for position, box size and eccentricity, ¢
for in plane-rotation) specify where is the head in the image plane, while a
discrete index [; denotes the out-of-plane head orientation.

the localization of the head in the image plane (including the in-plane pose
angle ), and an index [; denoting one of the discretized out-of-plane head
poses, as illustrated in Fig. [6.5] Then, appearance models were built for
each possible value of [. Usually, two types of observations are used: skin
features, which provide little pose information but are important for tracking
robustness; and texture features that are more discriminative with respect to
pose. For instance, as illustrated in Fig. in [Ricci and Odobez, 2009] we
relied on skin binary masks and on Histogram of Oriented Gradients (HOG)
features to allow for real-time processing, and on a large-margin approach
to learn the pose specific likelihood models.

From the inference viewpoint, a RBPF method was proposed in [Ba and
. It is an approach that can be applied when the filtering pdf
of some state components can be computed exactly given the samples of
the remaining components. In our mixed-state approach, this is the case of
the discrete head pose labels I;: given the sequence of head positions, the
inference of [} can be performed as with a standard HMM. In other words,
the sample representation of the filtering pdf is:

In PF: {Si’:tvfﬁ:tv i:tvwz"}f\]:sl and in RBPF: {Si:h’yi:t?ﬂgat)vwz}?]:sl with

wi o< p(Si.p Yots Wt |Z1:0), W X P(STopy Vietl21:0), 7 (1) = PLe] STty Y1t Z1:0)-
These highlights the main differences between the PF and RBPF. In the
PF weight w{, the probability of a sample location is always tied to a given
sample pose, whereas in RPBF, the probability @} of the location whatever
the pose is estimated: the pose component has been marginalized in the
RB process, and its distribution w.r.t. sample i is maintained in 7}(l;). In
concrete terms, this marginalization will help in tracking rapid head pose
changes by testing all poses at each time step, not only those that are the

most likely according to the dynamics, and fewer samples will be needed (e.g.
50 instead of 200 in [Ba and Odobez, 2005]) for the same performanceﬂ

!Note however that the computation per sample is higher for the RBPF.
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Figure 6.6: Graphical model of [Ba and Odobez, 2005]. Example of features
for head representation [Ricci and Odobez, [2009).

6.4.3 Head pose estimation in smart rooms

Head pose estimation in smart rooms or open spaces is very challenging.
Due to the size of the space covered by cameras field-of-view, heads and
faces are often seen with low resolution. In addition, people usually have
more freedom to move so that less prior on the pose can be exploited: heads
seen from the side or the back as well as down-looking viewpoints are more
common. This differs from more specific applications (e.g. HCI, meetings) in
which cameras can be placed to face people’s expected gaze directions. Nev-
ertheless, despite these difficulties, in order to move beyond position-based
activity analysis, and due to its importance for behavior understanding, gaze
and its head pose surrogate are becoming a new important research topic.
Several probabilistic methods have been proposed to address this issue,
several of which have been evaluated in the Clear07 contest (http://isl.
ira.uka.de/clear07/). The method of [Ba and Odobez, 2005] has been
extended to the multi-camera smart room scenario [Ba and Odobez [2007].
Independent 2D joint location and pose head trackers are run on each view
(although tracking in the 3D space might be better), and the pose estimates
from the different views are fused using the amount of skin pixels in the head
region as reliability factor (pose estimators are more accurate for frontal
than profile or back faces). A similar scheme is used by [Segura et al., |2007],
but with an approach directly embedded in the 3D space and relying on a
multi-camera set-up. There, given a person position, the head localisation is
further refined by fitting an ellipse to voxel information, and the positions of
the skin blobs within the head region in each view are used to infer the head
pose. The approach of |[Lanz and Brunelli, 2006] uses a similar color-based
approach, where measured color histograms are compared to protocol-based
initialized histogram templates sensitive to head orientation to evaluate the
data likelihood. In addition, the measured histograms are collected in an
image region sensitive to the head orientation w.r.t. the body (when a person
is looking to the left in an image, his/her head center is often located to the
left of the body axis) whereby achieving a joint body and head orientation
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tracking. This latter method suggests that in such low resolution conditions,
using external information like the coupling with body information is indeed
often necessary to obtain more robust performance.

6.5 Audio-visual tracking

Acoustic data provided by microphone-arrays can also be used to localize
people in room, and are of course of primary importance when analyzing in-
teraction behaviors in meeting situations or smart rooms without requesting
people to wear head-sets or lapels. Thus, many audio-visual (AV) tracking
algorithms have been considered for the multi-person tracking task, and
more recently, for head pose estimation. Below, we summarize the main
points related to this issue.

6.5.1 Audio-visual tracking

Audio and video signals are the result of different person activities, and
measure different physical quantities. Because of this, their role for tracking
is not symmetric, and provide some good complementarity.

The time difference of arrival (TDOA) of a sound source signal at a pair
of microphones, which depends on the location of the source, is the main
characteristic exploited for sound localization. TDOA observations can for
instance be obtained by finding peaks in the Generalized Cross-Correlation
(GCC) function between the acquired signals, and 3D location can be ob-
tained by combining the TDOA information from several microphone pairs.
Note that more robust observations (to noise, to the energy of the signals, to
their frequency content -impulse sounds vs speech voiced sounds) exist, and
the reader can refer to the audio chapter of this book for more information
on the topic.

Audio is interesting for providing cheap instantaneous observations which
can be conveniently exploited for tracking initialization and tracking failure
recovery. It is of course the primary cue for inferring speaking activity as
far as a good speech/non-speech segmentation can be conducted. On the
other hand, audio source localization can be quite inaccurate due to several
reasons: low signal-to-noise ratio when speakers are far from the microphone
array, room reverberations, overlapped speech, presence of secondary audio
sources -computers, doors, footstep sounds. Importantly, as people are not
speaking all the time, audio localization information is discontinuous and
might not be available for long periods. In such conditions, keeping track of
the identity of potentially moving people from audio signals will essentially
rely on some form of biometric approaches, i.e. on the extraction of acoustic
signatures characterizing people voices and on their association over time,
which is a difficult task in practice.
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Video, on its side, provides continuous localization information, usually
with a higher accuracy than audio, but is subject to drift and failure, unless
face/person detectors are regularly used. And in many cases, video resolu-
tion is not high enough and much more cumbersome to be used for speaking
activity detection.

The Bayesian approach described in Section [6.2] with its sampling ap-
proximation proved to be particularly adapted to exploit the complemen-
tary of the cues and their specificities. We explain below how this can be
achieved.

State space and AV calibration. Associating audio and video observa-
tions requires the existence of some mapping function between both modal-
ities. When tracking two or a group of persons in front of a single camera,
the state space is often defined in the image domain, and complemented
with a discrete index indicating the speaking status of a person. In such
cases, special configurations have often been assumed, allowing to relate in
a simple way the azimuth angle of a single microphone array (placed as close
as possible to the camera center) to the column number in the image plane.
In [Gatica-Perez et al.l 2007], which addresses multi-speaker tracking in non-
overlapping cameras, a more general yet simple data-driven method is used.
There, audio estimates are mapped into the (camera index, 2D location)
state space using a nearest-neighbor approach exploiting (audio,video) state
pairs gathered during a training phase. This non-parametric approach is
efficient, allows to easily handle distortions, but does not allow for a precise
audio-visual mapping.

When multiple cameras or microphone arrays are available, a 3D location
state space can be more conveniently used. It assumes a jointly calibrated
audio-visual system able to associate with a 3D location the corresponding
image and audio measurements. Note that the sound signal produced by a
human is located more or less 20cm in front of the mouth. Hence, a state
space characterizing a person should be able to locate this point if one wants
to exploit audio.

Data fusion, likelihood models, and proposals. The transient and
cheap localization information nature provided by the audio signal can be as-
similated to a simple additional detection. Therefore, its integration within
an AV PF framework can be done following the two methods described in
tracking-by-detection paragraphs of Section either as an additional
likelihood ternﬂ or in the proposal to potentially recover from failure or ini-
tiate a new track [Gatica-Perez et al. |2007]. Note that the second option is

2A point of attention here is that, as with all multi cue likelihoods for PF, acoustic
and visual likelihood should have comparable sensitivity to small state changes, i.e. they
should both be equally broad. GCC from microphone pairs with short baseline is, in
general, irregular and spiky, and must be smoothed to obtain an acoustic likelihood good
for PF with, e.g., color likelihood.
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Figure 6.7: The plot shows the y coordinate (in mm) of the estimated source
location (crosses - audio only) and body centroid (stars - video only) of a
person turning around while speaking (left image). There is an evident offset
of about 20cm among the two. The plot shows also that the acoustic and vi-
sual likelihoods from [Brutti and Lanz, |2010] provide location estimates that
are sufficiently accurate to exploit this offset for audio-visual pose tracking.

only possible if (i) the audio localization information is sufficiently reliable
to sample the full state or part of it; and (ii) synchronization between the
processed signals can be achieved. If such conditions are not met in real
time systems, data fusion then consists in associating sound sources (possi-
bly separated into speech/non speech categories) with the visually tracked
person or head in a late fusion process.

Also, as with the video case, one advantage of the PF is that audio
information can be treated usefully without requiring to first perform 3D
reconstruction through triangulation or optimization. For instance, when
using a single microphone array, azimuth and elevation angles can be mea-
sured with some precision, but depth is often very unreliable. Still, audio
can be used for 3D tracking (using a 3D stereo or multi-camera system) to
check that the 3D localization of a person head (or mouth, cf above) is con-
sistent with some audio TDOA or GCC measurements which taken alone
would not be able to provide good 3D estimates.

Inference. Multi-speaker tracking can be considered as a specific instance
of multiple person tracking. Thus, all considerations w.r.t. complexity, curse
of dimension, and inference discussed in Section are valid, as well as
the Rao-Blackwellized PF methodology described in Section[6.4.2] that often

could be used to perform an exact inference on the speaking status variable.

6.5.2 Head pose tracking with audio information

Due to the geometry of the human vocal tract, the acoustic emission pat-
tern of a speaking person is not uniform but uni-directional. Furthermore,
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the location of the speech source (the mouth) has a horizontal offset from
the body center along the head orientation (see Fig. . While these
two factors, if ignored, complicate acoustic localization in reverberant en-
vironments and late fusion with visual estimates for multi modal tracking,
they can be conveniently exploited to estimate the joint 3D position and
orientation state of a person with audio-visual particle filtering.

In [Brutti and Lanz, 2010] the color histogram based PF described at
the end of Section [6.4.3] is integrated with an additional orientation sen-
sitive acoustic likelihood for 3D pose tracking with multiple cameras and
distributed microphone pairs. For a given state (representing body cen-
troid and horizontal head orientation) GCC based TDOA likelihoods are
evaluated for each pair at the mouth position (i.e. at the 3D point shifted
horizontally by 20cm from the body axis along the state direction). Then,
a joint acoustic likelihood is constructed as a weighted sum of individual
contributions. The weights are hereby computed from the state, taking into
account the spatial distribution of microphone pairs in the environment:
higher weights are given to pairs which are located in the direction of the
state (where the direct wavefront is expected to form the dominant peak
in the GCC function), while others that are placed lateral or opposite to it
(where reverberations may suppress the contribution of the direct wavefront)
are assigned a low weight. Acoustic measurements integrated this way, if
available (this is decided upon joint likelihood thresholding), stabilize head
pose estimates while speaking, especially when the color model of the target
is either weak (as e.g. for a bald person) or noisy (if acquired via detection).

6.6 Conclusion and further reading

In this chapter, we have shown that the Bayesian framework is a powerful
yet flexible formalism to address the tracking of single or multiple persons,
and of their characteristics (head pose, speaking status). It allows to eas-
ily introduce appropriate state variables and observations and model their
relationships in order to get a good representation of their probabilistic
dependencies. Thanks to the use of sampling inference methods, we can
exploit appropriate likelihood models (exhibiting multiple modes, providing
finer information about the observations) in both the visual and audio do-
main. Generic methodological points have been illustrated using examples
from working systems that have been developed within the AMI or the CHIL
European projects.

To learn more about sampling methods for sequential Bayesian state
estimation the interested reader is referred to |Isard and Blake] 1998, |Aru-
lampalam et al., 2002] for particle filtering and to |Gilks et al., [1996] for an
introduction to MCMC. Recommended surveys of state-of-the-art methods
are [Yilmaz et al., 2006] for object tracking, [Kakumanu et al., 2007] on skin
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modeling and detection, and [Murphy-Chutorian and Trivedi, 2009] for head
pose estimation. For a comprehensive presentation of sampling techniques
as a framework for sequential data fusion of multiple cues and modalities we
indicate [Perez et al., 2004, |Gatica-Perez et al.l 2007].
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