
TROPER
HCRAESER

PAIDI

WORD EMBEDDINGS THROUGH
HELLINGER PCA

Rémi Lebret        Ronan Colloberta

Idiap-RR-29-2013

AUGUST 2013

aIdiap

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148000666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Word Embeddings through Hellinger PCA
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Abstract

Word embeddings resulting from neural lan-
guage models have been shown to be success-
ful for a large variety of NLP tasks. However,
such architecture might be difficult to train and
time-consuming. Instead, we propose to dras-
tically simplify the word embeddings compu-
tation through a Hellinger PCA of the word
co-occurence matrix. We compare those new
word embeddings with the Collobert and We-
ston (2008) embeddings on several NLP tasks
and show that we can reach similar or even
better performance.

1 Introduction

Building word embeddings has always generated
much interest for linguists. Popular approaches such
as Brown clustering algorithm (Brown et al., 1992)
has been used with success in a wide variety of NLP
tasks (Schütze, 1995; Koo et al., 2008; Ratinov and
Roth, 2009). Those word embeddings are often as-
sociated with a low dimensional-vector space where
the dimensions can be seen as features potentially
describing syntactic or semantic properties. Re-
cently, distributed approaches based on neural net-
work language models (NNLM) have revived the
field of learning word embeddings (Collobert and
Weston, 2008; Huang and Yates, 2009; Turian et
al., 2010; Collobert et al., 2011; Chen et al., 2013).
However, a neural network architecture can be hard
to train. Finding the right parameters to tune the
model is often a challenging task and it takes time
to train the whole thing.

This paper aims to show that such good word em-
beddings can be obtained using simple linear oper-
ations. We show that similar word embeddings can
be computed using the word co-occurrence statistics
and a well-known dimensionality reduction opera-
tion such as Principal Component Analysis (PCA).
We then compare our embeddings with the (Col-
lobert and Weston, 2008) embeddings on several
NLP tasks.

2 Related Work

As 80% of the meaning of English text comes from
word choice and the remaining 20% comes from
word order (Landauer, 2002), it seems quite im-
portant to preserve word order. Connectionist ap-
proaches have therefore been proposed to develop
distributed representations which encode the struc-
tural relationships between words (Hinton, 1986;
Pollack, 1990; Elman, 1991). Most recently, a neu-
ral network language model was proposed in Ben-
gio et al. (2003) where word vector representations
are simultaneously learned along with a statistical
language model. This architecture inspired other
authors: Collobert and Weston (2008) designed a
neural language model which eliminates the linear
dependency on vocabulary size, Mnih and Hinton
(2008) proposed a hierarchical linear neural model,
Mikolov et al. (2010) investigated a recurrent neural
network architecture for language modeling. Such
architectures being trained over large corpora of un-
labeled text with the aim to predict correct scores
end up learning the co-occurence statistics.

Linguists assumed long ago that words occurring
in similar contexts tend to have similar meanings



(Wittgenstein, 1953). Using the word co-occurrence
statistics is thus a natural choice to embed sim-
ilar words into a common vector space (Turney
and Pantel, 2010). Common approaches calculate
the frequencies, apply some transformations (tf-idf,
PPMI), reduce the dimensionality and calculate the
similarities (Lowe, 2001). Considering a fixed-sized
word vocabulary D, the co-occurence matrix is then
vocabulary size dependent. To reduce the dimen-
sionality of the co-occurence matrix F by mapping
F into a matrix f of size W × d, where d � |D|,
techniques such as Singular Valued Decomposition
(SVD) is widely used (e.g. LSA (Landauer and Du-
mais, 1997), ICA (Väyrynen and Honkela, 2004)).
However, word co-occurence statistics are discrete
distributions. We thus believe that information the-
ory distance measure such as Hellinger distance
should be more efficient than Euclidean distance to
smooth the matrix F .

3 Word Representations Model

A NNLM learns which words among the vocabulary
appears more likely after a given context sequence of
words. More formally, it learns the next word prob-
ability distribution. Instead, simply counting words
on a large corpus of unlabeled text can be perform
to retrieve those word distributions and to represent
words (Turney and Pantel, 2010).

3.1 Word co-occurence statistics
”You shall know a word by the company it keeps”
(Firth, 1957). It is a natural choice to use the word
co-occurence statistics to acquire representations of
word meanings. Raw word co-occurence frequen-
cies are computed by counting the number of times
each word w ∈ D occurs after a context sequence of
words T :

p(w|T ) = p(w, T )

p(T )
=

n(w, T )∑
c n(w, T )

(1)

where n(w, T ) is the number of times each context
word w occurs after the context T . The next word
probability distribution p for each word or sequence
of words is thus obtained. It is a multinomial distri-
bution of |D| classes (words). A co-occurence ma-
trix of size N × |D| is thus obtained by computing
those frequencies over all the N possible sequences
of words.

3.2 Hellinger distance

Similarities between words can be derived by com-
puting a distance between their corresponding word
distributions. Several distances (or metric) over dis-
crete distributions exist, such as the Bhattacharyya
distance, the Hellinger distance or Kullback-Leibler
divergence. We chose here the Hellinger distance for
its simplicity and symmetry property (as it is a true
distance). Considering two discrete probability dis-
tributions P = (p1, . . . , pk) and Q = (q1, . . . , qk),
the Hellinger distance is formally defined as:

H(P,Q) = − 1√
2

√√√√ k∑
i=1

(
√
pi −

√
qi)2 (2)

which is directly related to the Euclidean norm of
the difference of the square root vectors:

H(P,Q) =
1√
2
‖
√
P −

√
Q‖2 (3)

Note that it makes more sense to take the Hellinger
distance rather than the Euclidean distance for com-
paring discrete distributions, as P and Q are unit
vectors according to the Hellinger distance (

√
P and√

Q are units vector according to the `2 norm).

3.3 Dimensionality Reduction

As discrete distributions are vocabulary size depen-
dent, using directly the distribution as a word em-
bedding is not really tractable for large vocabulary.
We propose to perform a principal component anal-
ysis (PCA) of the word co-occurence probabilities
square root matrix to represent words in a lower di-
mensional space while minimizing the reconstruc-
tion error according to the Hellinger distance.

4 Experimental Setup

We evaluate the quality of our embeddings obtained
on a large corpora of unlabeled text by comparing
their performance of several NLP tasks against per-
formance obtained on these tasks with the Collobert
and Weston (2008) embeddings.



4.1 Building Word Representation over Large
Corpora

Our English corpus is composed of the entire En-
glish Wikipedia1 (where all MediaWiki markups
have been removed), the Reuters corpus and the
Wall Street Journal (WSJ) corpus. We chose to con-
sider lower case words to limit the number of words
in the vocabulary. Additionally, all occurrences of
sequences of numbers within a word are replaced
with the string “NUMBER”. The resulting text was
tokenized using the Stanford tokenizer2. The data
set contains about 1,652 million words. As vocab-
ulary we considered all the words within the super-
vised evaluation tasks data sets described in section
4.2. This results in a 48,004 words vocabulary. To
build the co-occurence matrix we use two different
sets of context words:

• the most common words in our corpus split
into two sets: the 10,000 and the 50,000 most
common. The resulting embeddings after PCA
are respectively called H

(10000)
1 and H

(50000)
1

in section 4.3. We also built the co-occurence
probabilities matrix without the square root to
highlight the importance of this aspect with
N = 10000. The resulting embeddings are
called E

(10000)
1 .

• the vocabulary itself and a subset version by
keeping the 10,000 most frequent words. The
resulting embeddings are respectively called
H

(10000)
2 and H

(48004)
2 in section 4.3.

Each word is represented in a 50-dimensional vector
as the Collobert and Weston (2008) (CW) embed-
dings.

4.2 Supervised Evaluation Tasks
CW embeddings3 proved that they can improve
the generalization performance on several NLP
tasks (Turian et al., 2010; Collobert et al., 2011;
Chen et al., 2013). Using our word embeddings, we
thus trained the sentence-level log-likelihood archi-
tecture described in Collobert et al. (2011) with the
exact same parameters on three NLP tasks.

1Available at http://download.wikimedia.org. We took the
May 2012 version.

2Available at http://nlp.stanford.edu/software/tokenizer.shtml
3Available in SENNA at http://ml.nec-labs.com/senna/.

Part-Of-Speech (POS) it aims at labeling each
word with a unique tag that indicate its syntactic
role. Sections 0-18 of Wall Street Journal (WSJ)
data are used for training, while sections 19-21 are
for validation and sections 22-24 for testing.

Chunking (CHUNK) it aims at labeling segments
of a sentence with syntactic constituents. Chunk-
ing is often evaluated using the CoNLL 2000 shared
task4. Sections 15-18 of WSJ data are used for train-
ing and section 20 for testing. Validation is achieved
by splitting the training set.

Named Entity Recognition (NER) it labels
atomic elements in the sentence into categories such
as “PERSON” or “LOCATION”. The CoNLL
2003 setup5 is a NER benchmark data set based on
Reuters data. The contest provides training, valida-
tion and testing sets.

These evaluation tasks are mainly syntactic. We
wish to evaluate whether our word embeddings can
also capture semantic.

Semantically Related Words Word embeddings
have been recently benchmarked in Chen et al.
(2013). They proposed several evaluation tasks to
test the syntactic and semantic properties of differ-
ent embeddings. To evaluate the semantic charac-
teristics we selected the Synonyms and Antonyms
task which attempt to classify synomyns word pairs
against antonyms word pairs extracted from Word-
net. We followed the exact setup described in the
paper. We ended up with 3,900 different word pairs
equally distributed among synonyms and antonyms.

4.3 Results
For the three NLP tasks, networks are fed with two
raw features: lower case words, and a capital letter
feature. The “caps” feature tells if each word was
in lowercase, was all uppercase, had first letter cap-
ital, or had at least one non-initial capital letter. No
other feature has been used to tune the models. Re-
sults summarized in Table 1 reveal that performance
on NLP tasks can be as good with word embeddings
from a word co-occurence matrix decomposition as
with a neural network language model trained for
weeks. Using a 10,000 words vocabulary built over

4See http://www.cnts.ua.ac.be/conll2000/chunking
5http://www.cnts.ua.ac.be/conll2003/ner/



Approach POS CHUNK NER
(PWA) (F1) (F1)

CW (LM1) 97.10 93.65 87.58
CW (LM2) 97.20 93.63 88.67
H

(10000)
1 97.11 93.38 88.29

E
(10000)
1 97.02 92.46 86.90

H
(50000)
1 97.02 93.05 87.79

H
(10000)
2 97.05 93.02 87.19

H
(48004)
2 97.20 93.75 88.15

Table 1: Comparison in generalization performance on
POS, chunking and NER tasks. We report results from
(Collobert et al., 2011) with neural networks trained with
CW embeddings (LM1: from a 100,000 words vocabu-
lary; LM2: from a 130,000 words vocabulary) and with
our own word embeddings (H1, E1 and H2). Gener-
alization performance is reported in per-word-accuracy
(PWA) for POS and F1 score for other tasks.

a large corpus yields similar performance than a neu-
ral language model with a 130,000 words vocabu-
lary. The Hellinger distance demonstrates its value
compared to the Euclidean distance. We can also re-
mark that enlarging the vocabulary size does not im-
prove the results when the words come from large
corpora. However, performance increases when the
co-occurence distributions are computed with words
from the evaluation data sets.

For the synonyms and antonyms classification
task, we used a SVM with RBF-kernel as linear clas-
sifier as in (Chen et al., 2013). We obtained a similar
accuracy between CW embeddings and the H(48004)

2

embeddings. We again notice the Hellinger distance
outperform the Euclidean one. As for the evaluation
on POS, chunking and NER, H(10000)

1 embeddings
outperform H

(50000)
1 in term of accuracy. Results on

this task are summarized in table 2.

5 Conclusion

We have demonstrated that appealing word embed-
dings can be obtained by computing a Hellinger
PCA of the word co-occurence matrix. While a neu-
ral network language model can be painful and long
to train, we can get a word co-occurence matrix by
simply counting words over a large corpus. The
resulting embeddings give similar results on NLP
tasks even from a N × 10, 000 word co-occurence

Embeddings Accuracy (%)
CW (LM2) 76.95
H

(10000)
1 71.51

E
(10000)
1 68.05

H
(50000)
1 70.26

H
(10000)
2 70.10

H
(48004)
2 76.00

Table 2: Accuracy on Synonyms and Antonyms tasks
with different word embeddings.

matrix. We have shown that adding more common
words to the word co-occurence matrix does not
help to increase performance. However by adding
more specific words (like for H

(48004)
2 which con-

tains all words within the evaluation data sets even
the rare ones) performance can be improved. Having
a significant but not too large set of common words
seems sufficient for capturing most of the syntac-
tic and semantic characteristics of words. To refine
the embeddings, it is crucial to also add the most
discriminative words. Future work should explore
more context words to build the co-occurence ma-
trix. Bullinaria and Levy (2007) demonstrated that
using the left word context can improve general per-
formance. We could also apply this method to em-
bed sequences of words in a common space.
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