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Abstract

Under-resourced speech recognizers may benefit from data in languages other than the target lan-
guage. In this paper, we boost the performance of an Afrikaans speech recognizer by using already
available data from other languages. To successfully exploit available multilingual resources, we use
posterior features, estimated by multilayer perceptrons that are trained on similar languages. For two
different acoustic modeling techniques, Tandem and Kullback-Leibler divergence based HMMs, the pro-
posed multilingual system yields more than 10% relative improvement compared to the corresponding
monolingual systems only trained on Afrikaans.

1 Introduction

Previous studies have shown that Automatic Speech Recognition (ASR) may benefit from data in lan-
guages other than the target language only under certain conditions such as there being less than one
hour of data for the training language (Imseng et al., 2012; Qian et al., 2011). Usually, a language
with large amounts of training data was used to simulate low amounts of training data (Imseng et al.,
2012; Qian et al., 2011). For instance Niesler (Niesler, 2007) studied the sharing of resources on real
under-resourced languages, including Afrikaans, inspired by multilingual acoustic modeling techniques
proposed by Shultz and Waibel (Schultz and Waibel, 2001). However, only marginal ASR performance
gains were reported.

In this paper, we focus on Afrikaans and show how to significantly boost the performance of an
Afrikaans speech recognizer that was trained on three hours of within language data, by using more than
100 hours of out of language data.

Standard ASR systems typically make use of phonemes as subword units to model human speech
production. A phoneme is defined as the smallest sound unit of a language that discriminates between
a minimal word pair (Bloomfield, 1933, p. 78). Although humans are able to produce a large variety of
acoustic sounds, we assume that all those sounds, referred to as phones, across speakers and languages,
share a common acoustic space X. Of course, no single language makes use of all phones, and most
languages only partially cover X. However, we found in previous studies (Imseng et al., 2012, 2011) that
the relation between phonemes of different languages can 1) be learned and 2) be exploited for cross-
lingual acoustic model training or adaptation. Furthermore, we found that posterior features, estimated
by multilayer perceptrons (MLPs), are particularly well suited for such tasks.

Inspired by this work, we use posterior features, estimated by MLPs that are trained on similar lan-
guages such as English, Dutch and Swiss German to successfully exploit available multilingual resources.
According to the trees summarized by Blažek (Blažek, 2005), Afrikaans and Dutch are Istveonic Ger-
manic languages whereas British English and Swiss German are also Germanic languages, but located on
different branches, namely Ingveonic and Erminonic Germanic, respectively. Intuitively, we would expect
that Dutch data should provide most benefit. Previous studies (Constantinescu and Chollet, 1997) and a
similarity analysis of Heeringa and de Wet (Heeringa and de Wet, 2008) underpin this assumption.

Using two different acoustic modeling techniques for posterior features, namely Tandem (Hermansky
et al., 2000) and Kullback-Leibler divergence based hidden Markov models (KL-HMM) (Aradilla et al.,
2008), we investigate:

• Crosslinguality: We study how out of language data can be used to improve ASR performance of an
under-resourced language and briefly discuss if there is a relation between similarity of the other
language and performance gain on the target language.
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• Multilinguality: We combine the resources of multiple languages in the form of posterior features
by concatenating MLP outputs to boost ASR performance.

• Context-dependency: Since there are large amounts of out of language data, we enrich the ex-
ploited information by adding context dependency. More specifically, we train the MLPs on context-
dependent targets.

• Context-dependent multilinguality: Given the above approaches, we study the combination of out-
puts of multiple MLPs that were trained on context-dependent targets.

We first give a brief description of both applied acoustic modeling techniques in Section 2. In Sec-
tion 3, we then present the databases that we used for the training of the MLPs as described in Section 4,
and give an overview over the investigated systems in Section 5. Previous multi- and cross-lingual pos-
terior feature studies that used more than one hour of target language data reported rather small or no
improvements (up to 3.5% relative) (Tòth et al., 2008; Grézl et al., 2011). We will present experiments
and results in Section 6 and show that the proposed systems yield more than 10% relative improvement
compared to the monolingual recognizer for both acoustic modeling techniques.

2 Acoustic Modeling

We study two different approaches to model posterior features: Tandem (Hermansky et al., 2000), il-
lustrated in Figure 1 and a Kullback-Leibler divergence based HMM (KL-HMM) (Aradilla et al., 2008),
illustrated in Figure 2. Both approaches involve the training/estimation of two different kind of distribu-
tions:

• Phoneme posterior features: The phoneme posterior features are phoneme posterior probabilities
given the acoustics and estimated with an MLP that can be trained on any auxiliary dataset. There-
fore we call it an auxiliary MLP and choose an out of language dataset with large amounts of
available data with which to train. The language of the training data determines the number of
output units K (number of phonemes) of the MLP. More details about the MLP training are given in
Section 4.

Once the MLP is trained, we consider a sequence of T acoustic feature vectors X = {xt, . . . , xT },
namely Perceptual Linear Prediction (PLP) features, extracted from within language data. As seen
in Figure 2, the phoneme posterior sequence Z = {z1, . . . , zT } is then estimated with the previ-
ously trained auxiliary MLP. To estimate zt = (z1

t, . . . , zKt )
T, we consider a nine frame temporal

context {xt−4, . . . , xt+4}. The described phoneme posterior estimation is identical for both acoustic
modeling techniques.

• HMM state distributions: The HMM states qd : d ∈ {1, . . . ,D} are associated with the target lan-
guage. Each phoneme of the target language is modeled with three states, thus the total number of
states D is equal to three times the number of phonemes of the target language.

The HMM state distributions consist of emission and transition probabilities. Based on anecdo-
tal knowledge, we fix the transition probabilities aij for both acoustic modeling techniques (see
Figures 1 and 2). The emission probabilities however are modeled differently for Tandem and
KL-HMM. As we will describe later, Tandem (Section 2.1) uses Gaussian mixtures and KL-HMM
(Section 2.2) uses a categorical distribution. The emission probabilities are trained from within
language data only. Here, we assume that we have access to a limited amount of within language
data.

In the remainder of this section, we briefly summarize both acoustic modeling techniques which will
be compared to a state-of-the-art HMM/GMM system.

2.1 Tandem

The conventional Tandem approach models the emission probabilities of the HMM states qd with mix-
tures of Gaussians. Figure 1 illustrates the HMM associated with a three-state-phoneme (q1,q2,q3).
To model the emission probabilities with Gaussians, the posterior features zt need to be post-processed.
More specifically, the log phoneme posteriors are decorrelated with a principal component analysis (PCA).
The transformation matrix can be estimated on within language data. Usually, the resulting feature vector
wt = (w1

t, . . . ,wL
t )

T, has a reduced dimensionality L.
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Figure 1: Tandem: the emission probabilities of the HMM states are modeled with Gaussian mixtures and
the MLP output is post-processed. For more details, see Section 5.1.1

2.2 Kullback-Leibler divergence based HMM

As illustrated in Figure 2, a KL-HMM is a particular form of HMM in which the emission probability of
state qd is parametrized by a categorical distribution yd = (y1

d, . . . ,yKd)
T, where K is the dimensionality

of the features. A categorical distribution is a multinomial distribution where only one sample is drawn.
In contrast to Tandem that uses Gaussian mixtures and therefore needs the post-processed features wt,
the categorical distributions can directly be trained from phoneme posterior probabilities zt.
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Figure 2: KL-HMM: the emission probabilities are modeled with categorical distributions and the MLP
output can directly be used. More details can be found in Section 5.1.2

For KL-HMM training and decoding, we use the divergence of Kullback and Leibler (Kullback and
Leibler, 1951), which is nowadays often referred to as the symmetric variant of the KL divergence, as
local score:

fSKL(zt,yd) =
1
2
fKL(zt,yd) +

1
2
fKL(yd, zt) (1)
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ID Language Number of Amount of
phonemes training data

AF Afrikaans 38 3 h
CGN Dutch 47 81 h
SZ Swiss German 59 14 h
EN British English 45 12.5 h

Table 1: Summary of the different languages with number of phonemes and amount of available training
data.

where

fKL(x,y) =
K∑

k=1

x(k) log
x(k)

y(k)
(2)

The cost function FQ(Z, Y) between the phoneme posterior sequence Z and the set of categorical
distributions Y = {y1, . . . ,yD} can be written as (Imseng et al., 2012):

FQ(Z, Y) = min
Q

T∑
t=1

[fSKL(zt,yqt
) − logaqt−1qt

] (3)

where Q = {q1, . . . ,qT } stands for all allowed state paths and yqt
is the categorical distribution associated

with qt, the state at time t. As already mentioned, the transition probabilities aqt−1qt
are fixed. A more

detailed description of training and decoding algorithms can be found in (Imseng et al., 2012).

3 Databases

We used data from four different languages as summarized in Table 1. In this section, we describe the
different databases.

3.1 LWAZI

We used the Afrikaans data that is available from the LWAZI corpus provided by the Meraka Institute,
CSIR, South Africa1 and described by Barnard et al. (Barnard et al., 2009). The database consists of
200 speakers, recorded over a telephone channel at 8 kHz. Each speaker produced approximately 30
utterances, where 16 were randomly selected from a phonetically balanced corpus and the remainder
consists of short words and phrases.

The Afrikaans database comes with a phoneme set that contains 38 phonemes (including silence) and
a dictionary is also available (Davel and Martirosian, 2009). The dictionary that we used contained 1585
different words. The HLT group at Meraka provided us with the training and test sets that will soon be
released as official benchmarking sets. In total, about three hours of training data and 50 minutes of test
data is available.

Since we did not have access to an appropriate language model, we trained a bi-gram phoneme model
on the training set and only report phoneme accuracies in this study. The bi-gram phoneme model learned
the phonotactic constraints of the Afrikaans language and has a phoneme perplexity of 15.

3.2 Corpus Gesproken Nederlands

Heeringa and de Wet (Heeringa and de Wet, 2008) reported that standard dutch seems to be the best
language from which to borrow acoustic data from, for the development of an Afrikaans ASR system. In
this study, we used data of the Spoken Dutch Corpus (Corpus Gesproken Nederlands, CGN) (Oostdijk,
2000) that contains standard Dutch pronounced by more than 4000 speakers from the Netherlands and
Flanders. The database is divided into several subsets and we only used “Corpus o” that contains pho-
netically aligned read speech data. Corpus o uses 47 phonemes and contains 81 hours of data after the
deletion of silence segments that are longer than one second. It was recorded at 16 kHz, but since we
use the data to perform ASR on Afrikaans, we downsampled it to 8 kHz prior to feature extraction.

1http://www.meraka.org.za/hlt
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3.3 SpeechDat(II)

We also used data from the British English and the Swiss German part of SpeechDat(II)2 data. The
data is gender-balanced, dialect-balanced according to the dialect distribution in a language region, and
age-balanced. The databases have been recorded over the telephone at 8 kHz and are subdivided into
different corpora. We only used Corpus S, which contains ten read sentences from each of the 2000 speak-
ers. To split the databases into training (1500 speakers), development (150 speakers) and testing (350
speakers) sets, we used the standard procedure that maintains the gender-, dialect- and age-distributions
of the database, as described in (Imseng et al., 2010). Only the training and development portions were
used for this study. The British English database uses 45 phonemes and contains 12.5 hours of data and
the Swiss German database uses 59 phonemes and contains 14 hours of data.

4 Multilayer Perceptrons

For each of the four languages (Afrikaans, Dutch, Swiss German, British English), we trained an MLP
from 39 Mel-Frequency Perceptual Linear Prediction (MF-PLP) features (C0-C12+∆+∆∆) in a nine frame
temporal context (four preceding and following frames), extracted with the HTS variant3 of the HTK
toolkit. The number of parameters in each MLP was set to 10% of the number of available training
frames, to avoid overfitting. We used Quicknet4 software to train the MLPs.

• Afrikaans: We performed forced alignment to get the targets for the MLP training. 90% of the
training set was used for training and 10% for cross-validation to stop training.

• Dutch: Corpus o of the CGN database is phonetically labeled, thus the targets for the MLP training
were available. Again 90% of the data was used for training and 10% for cross-validation.

• Swiss German and British English: We performed forced alignment to get the targets for the MLP
training. The standard training sets were used for training and the development sets for cross-
validation.

5 Systems

In this section, we will describe the systems that we investigated to study crosslingual, multilingual and
context-dependent aspects in the framework of under-resourced ASR. We will compare the performance
of the Tandem approach with the performance of KL-HMM. Furthermore, we will also compare the pro-
posed systems to an HMM/GMM baseline.

5.1 Monolingual and crosslingual systems

We define a monolingual system as a system where we only use within language data for the training,
i.e., the MLP for the feature extraction as well as the HMM for decoding are trained with Afrikaans data
only.

A crosslingual system, on the other hand, is defined as a system that uses out of language data for
the training of the auxiliary MLP. The HMM is trained from within language data and can either be a
standard HMM as used for the conventional Tandem approach or a KL-HMM.

5.1.1 Tandem

As already discussed earlier (see Figure 1), each context-dependent phoneme is modeled with three
states (qi,qj,qk). As usually done, we first train context independent monophone models that serve as
seed models for the context-dependent phoneme models. We use eight Gaussians per state to model the
emission probabilities and use PCA for decorrelation. PCA can also be used to reduce the dimensionality
to, for example, 30, as it is typically done (Qian et al., 2011; Grézl et al., 2011).

To balance the number of parameters with the amount of available training data, we apply conven-
tional state tying with a decision tree that is based on the minimum description length principle (Shinoda
and Watanabe, 1997). Tandem training and decoding is performed with HTS.

2http://www.speechdat.org/SpeechDat.html
3http://hts.sp.nitech.ac.jp/
4http://www.icsi.berkeley.edu/Speech/qn.html
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5.1.2 KL-HMM

As for Tandem, for the KL-HMM system, we train context independent monophone models that serve as
seed models for the three-state context-dependent phoneme models.

Since the KL-HMM system is handicapped by a low number of parameters (Imseng et al., 2012) (only
one K dimensional vector per state instead of eight Gaussians), we do not perform state tying, but build
a decision tree to model unseen contexts during decoding. The decision tree is a modified version of
the conventional approach proposed by Young et al. (Young et al., 1994) but is based on minimum KL
divergence instead of maximum likelihood (Imseng and Dines, 2012).

5.2 Multilingual systems

As already proposed earlier (Grézl et al., 2011), we can concatenate the output of several MLPs together.
We refer to this kind of system to as multilingual. More specifically, we concatenate the output of mul-
tiple MLPs and renormalize the resulting vector to guarantee that the feature vectors can be interpreted
as posterior distributions, as assumed by the KL-HMM. For the Tandem systems, we post-process the
normalized vectors as already described Section 5.1.1.

5.3 Context-dependent MLP output systems

The concatenated MLP outputs of the multilingual systems have a higher dimensionality than the single
MLP outputs of the mono- and cross-lingual systems and therefore can carry more information. To
enrich the exploited information of the mono- and cross-lingual systems, we also explore MLPs that
are trained on context-dependent targets instead of context independent targets (Seide et al., 2011).
Usually, the MLPs are trained on tied triphone states which are determined with the standard decision
tree approach. However, we do not have acoustic models that are necessary to build such decision trees
for all the languages. For the CGN database, for example, we have phoneme alignments only, but no
acoustic models. Therefore, we limit ourselves to a simpler strategy in this study by setting an occupancy
threshold. If a triphone does appear fewer times than a threshold, we simply back off to the monophone
model. In our case, we adjusted the occupancy threshold such that the number of MLP outputs is equal
to the dimensionality of the multilingual feature vector (which is 189).

6 Experiments and results

In this section, we analyze the performance of the different systems. For all the significance tests, we
used the bootstrap estimation method (Bisani and Ney, 2004) and a confidence interval of 95%.

6.1 HMM/GMM baseline

As shown in Table 2, we run a standard HMM/GMM system that was directly trained on the PLP features,
as a baseline. Note that the results reported by van Heerden et al. (van Heerden et al., 2009), 63.1%
phoneme accuracy, were the first set of results obtained for the data and the official train and test set
were compiled after the official database release. Personal communication with HLT group at Meraka
confirmed that the lower performance of our baseline can be attributed to the different data partitioning.

6.2 Monolingual and crosslingual systems

First, we analyze the performance of the mono- and cross-lingual systems. Despite the relatively low
amount of Afrikaans training data (3 hours), but based on previous work (Imseng et al., 2012), we
expected the monolingual system to perform best. As discussed above, we expected the Dutch system to
perform second.

As illustrated in Table 2, we trained the auxiliary MLP on one of the four languages, namely Afrikaans
(AF), Dutch (CGN), Swiss German (SZ) and British English (EN), with context-independent targets
(monophones). The HMM parameters of the Tandem systems as well as the KL-HMM parameters were
always trained on the same Afrikaans data.

In all result tables, bold numbers are significantly better than the other results for a given modeling
technique. For the KL-HMM systems, our hypothesis that the Afrikaans MLP performs best is confirmed.
We believe that the Swiss German system (SZ-mono) is performing better than the British English system
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System Model Feature Phoneme
dimension accuracy

Baseline HMM/GMM 39 61.2 %
AF-mono

KL-HMM

38 58.7 %
CGN-mono 47 58.0 %
SZ-mono 59 55.3 %
EN-mono 45 52.2 %
AF-mono

Tandem

30 61.2 %
CGN-mono 30 62.5 %
SZ-mono 30 60.4 %
EN-mono 30 60.4 %

Table 2: Afrikaans phoneme accuracy obtained from mono-lingual (AF) and cross-lingual (CGN, SZ, EN)
systems. The system extension -mono stands for the context-independent MLP targets (monophones).
The baseline uses PLP features, the KL-HMM systems raw posteriors and the Tandem systems processed
posteriors.

System Model Feature Phoneme
dimension accuracy

AF-mono 38 58.7 %
AF-CGN KL- 85 62.4 %
AF-CGN-SZ HMM 144 64.0 %
AF-CGN-SZ-EN 189 64.4 %
AF-mono

Tandem

30 61.2 %
AF-CGN 30 62.2 %
AF-CGN-SZ 30 62.0 %
AF-CGN-SZ-EN 30 62.1 %
AF-CGN-SZ-EN 189 66.2 %

Table 3: Afrikaans phoneme accuracy obtained from multilingual systems. We concatenated different
MLP outputs. The Tandem systems suffer from the dimensionality reduction that removes significant
information.

(EN-mono) in the case of KL-HMM because the dimensionality of the German posterior vectors is higher
(59) than the English posterior vectors (45) and therefore system SZ-mono has more parameters.

For the Tandem technique, however, the Dutch system (CGN-mono) performs best. We believe that
this is due to the PCA that transforms the phoneme posteriors and that the Dutch system performs best
because it has the most training data available. We note that the Tandem performance correlates with
the amount of available training data, whereas the KL-HMM performance tends to correlate with the
language similarity.

In general, we observe that the Tandem systems outperform the KL-HMM systems by at least 2.5%
absolute. This might be due to the fact that the employed Tandem system has received more attention
than the recently proposed KL-HMM system. We observed earlier (Imseng et al., 2012) that the KL-HMM
system outperforms the Tandem system in scenarios with small amounts of data (less than one hour).
The best Tandem system yields improvement compared to the HMM/GMM baseline, whereas the best
KL-HMM system does not.

6.3 Multilingual systems

Although it has not been explicitly confirmed in the literature (Niesler, 2007), we believed that the
Afrikaans ASR performance could be boosted by properly combining acoustic information from multiple
similar languages.

In this study, we investigate a normalized concatenation of MLP outputs. More specifically, we take
different MLP outputs, concatenate them and then normalize the resulting feature vector. As shown in
Table 2, during the mono- and cross-lingual experiments, for KL-HMM, system AF-mono performed best,
then CGN-mono, SZ-mono and EN-mono. Therefore, we concatenate the MLPs one by one in that order.

As shown in Table 3, we get significant improvements for both acoustic modeling techniques, by
concatenating MLP outputs.
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System Model Feat PCA Phoneme
dim %-Var accuracy

AF-dep

KL-HMM

189 - 59.9 %
CGN-dep 189 - 60.2 %
SZ-dep 189 - 58.2 %
EN-dep 189 - 54.8 %
AF-dep

Tandem

30 98% 62.0 %
CGN-dep 30 93% 63.0 %
SZ-dep 30 96% 61.8 %
EN-dep 30 95% 61.7 %
AF-dep 189 100% 64.1 %
CGN-dep 189 100% 66.5 %
SZ-dep 189 100% 65.8 %
EN-dep 189 100% 65.2 %

Table 4: Afrikaans phoneme accuracy obtained from mono-lingual and cross-lingual systems. The system
extension -dep stands for the context-dependent MLP targets (triphones). For the Tandem systems, also
the percentage of the variance that is kept by the PCA is given.

However, we observe relatively small improvements for the Tandem systems. Grézl et al. (Grézl et al.,
2011) did not observe improvements at all if they concatenated MLP outputs. As we are going to discuss
in more detail in Section 6.4, a dimensionality reduction during PCA removes some information. A
reduction to 30 dimensions for example keeps only 91% of the data variance for system AF-CGN-SZ-EN
as displayed in Figure 3. The monolingual system keeps 99% and the crosslingual systems between 97%
and 98%. Tòth. et al. (Tòth et al., 2008) reported significant decrease in performance if 95% of the
variance is kept. Therefore, we trained a Tandem system without reducing the dimensionality (keeping
the full decorrelated vector). Indeed, that system performs significantly better than all other Tandem
systems.

6.4 Context-dependent MLP outputs

In Table 3 we showed that the multilingual systems outperformed the mono- and cross-lingual systems.
However, it is not clear whether the improvement comes from the larger number of parameters or the
multilingual information. Therefore, we increased the number of parameters of the mono- and cross-
lingual systems by training MLPs on context-dependent outputs. For the sake of comparison, we used
189 triphone outputs for each MLP as described in Section 5.3. We expect the context-dependent MLP
systems to perform better than the mono- and cross-lingual systems that were trained on monophone
targets.

The results are reported in Table 4. For KL-HMM we observe an improvement of about 2% absolute for
each system compared to Table 2. We observe that the multilingual system AF-CGN-SZ-EN (Table 3) that
has a similar number of parameters (feature vectors have the same dimensionality) performs significantly
better than all mono- and cross-lingual systems presented in Table 4. Hence, we conclude that in the case
of KL-HMM the multilingual information is exploited.

For Tandem, we first reduced the dimensionality to 30 as we have done for the mono- and cross-lingual
systems. Interestingly, we observe statistically similar performance for all languages except Dutch.

Table 4 also shows how much of the variance is kept with 30 dimensions for each language. Further-
more, Figure 3 plots the amount of variance that is kept for the Afrikaans and Dutch systems as a function
of the number of retained dimensions. We observe that the MLPs trained on monophones have the steep-
est curves. The more available training data, the higher variance and the more languages contained in
the training data, the higher the variance, thus, the more dimensions we need to keep.

Using all the dimensions of the decorrelated feature vector yields significant improvement for all
systems. The best performing system is CGN-dep, with the MLP that was trained on 81 hours of Dutch
data. Hence, for Tandem, the cross-lingual systems that use MLPs trained on context-dependent targets,
perform similar to the multilingual systems.

In this study, we fixed the number of context dependent output units to 189 (by using a simple
occupancy threshold). The performance might further be increased if we use MLPs with more output
units, which should be determined with an unsupervised data-driven technique.

8



0 50 100 150 189
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

 

 

0.9106

Number of dimensions

P
er

ce
nt

ag
e 

of
 V

ar
ia

nc
e

0.9273

0.9785

0.9946

0.9741 AF−mono
CGN−mono
AF−dep
CGN−dep
AF−CGN−SZ−EN
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System Model Feat PCA Phon.
(cont. dep.) dim %-Var acc.
AF-dep 189 - 59.9 %
AF-CGN KL- 378 - 64.9 %
AF-CGN-SZ HMM 567 - 65.4 %
AF-CGN-SZ-EN 756 - 65.3 %
AF-dep

Tandem

189 100% 64.1 %
AF-CGN 189 99.6% 67.5 %
AF-CGN-SZ 189 98.9% 67.5 %
AF-CGN-SZ-EN 189 98.6% 67.8 %
AF-CGN-SZ-EN 756 100% 63.7 %

Table 5: Afrikaans phoneme accuracy obtained from context dependent multilingual systems. We con-
catenated the outputs of different MLPs, trained on context-dependent targets.

6.5 Context-dependent multilingual systems

Since we observed improvement for the multilingual systems as well as for the context dependent sys-
tems, we also concatenate multiple outputs of the context-dependent MLPs. We expect the improvements
to be cumulative.

As reported in Table 5, the KL-HMM based systems show the same behavior as in Table 3, but all
the systems perform better. Hence the hypothesis that we can exploit cumulative performance gains is
confirmed for KL-HMM systems.

Also for Tandem systems, the performance gains are cumulative. In contrast to the results in Table 3,
using the full decorrelated vector for system AF-CGN-SZ-EN yields a lower performance for the context
dependent MLP output concatenation. However, the 189 dimensions already contain 98.6% of the vari-
ance. Furthermore, we believe that the decrease in performance might be due to the high dimensionality
(756) that the Tandem system is not able to handle anymore, i.e., 3 hours of Afrikaans data are not
sufficient to train the high number of HMM parameters.

Table 6 summarizes the gains that result from multilinguality, context dependency and both. We
observe that multilingual information yields more improvement for the KL-HMM system. For the context
dependency it is vice versa, there is more improvement for the Tandem systems. The relative performance
gains of about 11% are higher then expected and we have shown that the ASR performance can be
boosted with out of language data even if there are already three hours of data available in the target
language.

7 Conclusion and future work

In this study, we successfully exploited out of language data and boosted a monolingual speech recognizer
that was trained on three hours of Afrikaans data.
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KL-HMM Phoneme accuracy rel. change
AF-mono 58.7% -
+multilingual 64.4% +9.7 %
+context 60.2% +2.6 %
+multilingual+context 65.4% +11.4 %
Tandem Phoneme accuracy rel. change
AF-mono 61.2% -
+multilingual 66.2% +8.2 %
+context 66.5% +8.7 %
+multilingual+context 67.8% +10.8 %

Table 6: Summary of the experimental results. KL-HMM gains more from multilinguality and Tandem
from context-dependency. In both cases, the gains are additive.

First, for two investigated acoustic modeling techniques, the best multilingual system yields more
than 10% relative improvement compared to the corresponding monolingual systems only trained on
Afrikaans. To the best of our knowledge, such improvements have not been reported on Afrikaans before.
Second, we also found that Tandem systems consistently outperform the KL-HMM systems. However,
the performance of the KL-HMM is extremely satisfactory. Third, careful analysis of the experimental re-
sults revealed that the KL-HMM system mostly gains improvement by exploiting multilingual information
whereas the Tandem system seems to benefit from both, contextual and multilingual information.

In the future, we will further investigate several aspects such as the training of MLPs with higher
number of output units or weighted combinations of MLP outputs rather than normalized concatenations.
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