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ABSTRACT

Posterior based acoustic modeling techniques such as Kullback–
Leibler divergence based HMM (KL-HMM) and Tandem are
able to exploit out-of-language data through posterior fea-
tures, estimated by a Multi-Layer Perceptron (MLP). In this
paper, we investigate the performance of posterior based ap-
proaches in the context of under-resourced speech recognition
when a standard three-layer MLP is replaced by a deeper five-
layer MLP. The deeper MLP architecture yields similar gains
of about 15% (relative) for Tandem, KL-HMM as well as
for a hybrid HMM/MLP system that directly uses the poste-
rior estimates as emission probabilities. The best performing
system, a bilingual KL-HMM based on a deep MLP, jointly
trained on Afrikaans and Dutch data, performs 13% better
than a hybrid system using the same bilingual MLP and 26%
better than a subspace Gaussian mixture system only trained
on Afrikaans data.

Index Terms— KL-HMM, Tandem, hybrid system, deep
MLPs, under-resourced speech recognition

1. INTRODUCTION

Under-resourced speech recognition is a very challenging
task. The main reason for this is the large amount of data
that is usually required to train current recognizers. There-
fore, acoustic modeling techniques that are able to exploit
out-of-language data such as Kullback–Leibler divergence
based HMM (KL-HMM) [1], Tandem [2] or Subspace Gaus-
sian mixture models (SGMMs) [3] have been developed and
extensively studied. KL-HMM and Tandem both exploit
out-of-language data through posterior features, estimated
by a Multi-Layer Perceptron (MLP) that was trained on
out-of-language data. SGMMs on the other hand exploit
out-of-language data through parameter sharing.
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Recently, it has been shown that deep MLP architectures
can greatly improve the performance of automatic speech
recognition (ASR) systems [4]. Most deep MLP based ASR
studies use hybrid HMM/MLP systems, where the MLP out-
put is directly used to model the emission probability of the
HMM states. However, if the MLP output is used as a fea-
ture [5, 6], conclusions tend to be more ambiguous, i.e. it is
not clear if deeper MLP architectures are beneficial.

In this study, we build on our previous results [1] and in-
vestigate how deep MLP architectures affect the performance
of posterior based acoustic modeling techniques that are par-
ticularly well suited for under-resourced ASR. As an addi-
tional reference point, we also evaluate SGMMs that do not
rely on posterior features.

Taking Afrikaans as a representative of an under-resourced
language (target language), we use large amounts of out-of-
language data to improve an Afrikaans speech recognizer.
Since Afrikaans is similar to Dutch, we intuitively expect that
Dutch data provides most benefit for an Afrikaans speech
recognizer [7]. Indeed, we already compared how English,
Dutch and Swiss German data influence the performance of
an Afrikaans speech recognizer and found that Dutch data
yielded most improvement [8]. Hence, in this paper, we will
use Dutch as a representative of the well-resourced language.
In this context, we already compared phoneme accuracies
of KL-HMM, Tandem, SGMM, conventional maximum
likelihood linear regression (MLLR) and maximum a pos-
teriori (MAP) adaptation systems [1]. Here, we compare
word error rates (WERs) of KL-HMM, Tandem, SGMM and
hybrid HMM/MLP systems. For KL-HMM, Tandem and
HMM/MLP, we also investigate the impact of a deep MLP
compared to the standard MLP.

The remainder of this paper is structured as follows: Sec-
tion 2 described the databases that are used in this work. Sec-
tion 3 then introduces all the investigated systems and Sec-
tion 4 presents the experimental results.
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ID Language number of Amount of
phonemes trn data test data

AF Afrikaans 38 3 h 50 min
CGN Dutch 47 81 h -

Table 1. Summary of the different languages with number of
phonemes and amount of available data.

2. DATABASES

We used data from Afrikaans and Dutch as summarized in
Table 1. In this section, we describe the two databases.

2.1. LWAZI

The Afrikaans data is available from the LWAZI corpus
provided by the Meraka Institute, CSIR, South Africa1 and
described by [9]. The database consists of 200 speakers,
recorded over a telephone channel at 8 kHz. Each speaker
produced approximately 30 utterances, where 16 were ran-
domly selected from a phonetically balanced corpus and the
remainder consisted of short words and phrases.

The Afrikaans database comes with a dictionary [10] that
defines the phoneme set containing 38 phonemes (including
silence). The dictionary that we used contained 1,585 differ-
ent words. The HLT group at Meraka provided us with the
training and test sets. In total, about 3 h of training data and
50 min of test data is available (after voice activity detection).

The bi-gram language model, built on the training sen-
tences, has 1.1% out-of-vocabulary words and a perplexity of
about 19 on the test set.

2.2. Corpus Gesproken Nederlands

We used data of the Spoken Dutch Corpus (Corpus Gespro-
ken Nederlands, CGN) [11] that contains standard Dutch pro-
nounced by more than 4,000 speakers from the Netherlands
and Flanders. The database is divided into several subsets
and we only used Corpus o because it contains phonetically
aligned read speech data pronounced by 324 speakers from
the Netherlands and 150 speakers from Flanders. Corpus o
uses 47 phonemes and contains 81 h of data after the deletion
of silence segments that are longer than one second. It was
recorded at 16 kHz, but since we use the data to perform ASR
on Afrikaans, we downsampled it to 8 kHz prior to feature
extraction.

3. SYSTEMS

In this section, we describe the systems under investigation.
The systems can be divided into three different categories: (a)
monolingual systems, using only Afrikaans data; (b) crosslin-
gual systems, using only Dutch data during MLP training; and

1http://www.meraka.org.za/hlt

Afrikaans HL HU OU TRN DEV
Standard 1 1,366 1,447 35.0% 30.8%
Deep 3 6,636 1,447 41.8% 35.0%

Table 2. Summary of the Afrikaans MLP training. The
number of hidden layers (HL), the total number of hidden
units (HU) and the number of output units (OU) are given.
Frame accuracies on the training (TRN) and cross-validation
set (DEV) are shown as well. Note that we fixed the num-
ber of hidden units to be the same than for the Dutch MLPs
presented in Section 3.2.

(c) bilingual systems, using Afrikaans and Dutch data during
MLP training. This, coupled with the various different archi-
tectures, leads to quite a lot of systems. For a summary, see
Table 5.

3.1. Monolingual systems

The monolingual systems serve as reference systems only. In
this paper, we evaluate a conventional HMM/GMM system,
an SGMM system and two hybrid HMM/MLP systems, one
based on a three-layer MLP (standard hybrid system) and one
based on a five-layer MLP (deep hybrid system).

3.1.1. HMM/GMM

The HMM/GMM system is a standard cross-word context-
dependent speech recognizer that models each triphone with
three states and is based on 39 Mel-Frequency Perceptual
Linear Prediction (MF-PLP) features (C0–C12 + ∆ + ∆∆),
extracted with the HTK toolkit [12]. As usually done, we first
trained context-independent monophone models that were
then used as seed models for the context-dependent triphone
models. We used eight Gaussians per state to model the
emission probabilities. To balance the number of parameters
with the amount of available training data, we applied con-
ventional state tying with a decision tree that is based on the
minimum description length principle [13], resulting in 1,447
tied states.

3.1.2. Monolingual SGMM

The SGMM acoustic modeling technique allows compact
representation of large collection of mixture-of-Gaussian
models and has shown its capability to outperform conven-
tional HMM/GMMs in monolingual as well as cross- or
multi-lingual scenarios [3, 14]. For the monolingual SGMM
system, we trained all the parameters from Mel-Frequency
cepstrum coefficients (MFCCs), using Afrikaans data only. In
total we used 500 Gaussians and the substate phone-specific
vectors had 50 dimensions.



Dutch HL HU OU TRN DEV
Standard 1 1,366 1,789 59.0% 56.5%
Deep 3 6,636 1,789 64.2% 60.3%

Table 3. Summary of the Dutch MLP training. The number
of hidden layers (HL), the total number of hidden units (HU)
and the number of output units (OU) are given. Frame accu-
racies on the training (TRN) and cross-validation set (DEV)
are shown as well.

3.1.3. Monolingual HMM/MLP

The monolingual HMM/MLP systems used the same 1,447
tied states as the HMM/GMM system presented in Sec-
tion 3.1.1. For the standard hybrid system, we trained a
three-layer MLP and for the deep hybrid system, we trained
a five-layer MLP (each hidden layer had similar number of
hidden units) using Quicknet software [15]. We randomly
split the three hours of Afrikaans training data into an MLP
training set (90%) and an MLP cross-validation set (10%).
We trained the MLPs from the 39-dimensional MF-PLP fea-
tures in a nine frame temporal context (four preceding and
following frames). More details about the MLP training are
given in Table 2. For this study, the only difference between
the three-layer and the five-layer network was in the num-
ber of parameters (and in the number of hidden layers). We
did not employ more elaborated training procedures such as
pre-training or dropout. The resulting posterior probabilities
were divided by the priors and then directly used as emission
probabilities.

3.2. Crosslingual systems

The crosslingual systems exploit Dutch data during MLP
training. More specifically, we trained a standard and a deep
MLP with all the available Dutch data. As we already did
in earlier studies [1], we developed a standard HMM/GMM
system with all the Dutch training data to obtain 1,987 tied
states targets. We set the number of parameters for the stan-
dard MLP to 10% of the available number of training frames,
resulting in a hidden layer with 1,366 units. As suggested by
studies on deep MLPs [16], we targeted about 2000 hidden
units per layer in the deeper MLP and therefore set the num-
ber of parameters to 50% of the available number of training
frames, leading to a total of 6,636 hidden units distributed to
three hidden layers. We used 90% of the training set for MLP
training and 10% for cross-validation to stop training. More
details about the MLP training are given in Table 3.

In this paper, we investigated two approaches that benefit
from exploiting out-of-language data through posterior fea-
tures: Tandem and KL-HMM. In both approaches, Afrikaans
data is passed through the MLP trained on Dutch and the
resulting posterior features are then used to train the HMM
parameters (see Sections 3.2.1 and 3.2.2). Since the hybrid
HMM/MLP approach is bound to the tied states target used

during the MLP training, we did not evaluate a crosslingual
HMM/MLP system. However, as an additional reference
point, we also evaluated a crosslingual SGMM system that
did not use the Dutch posterior features, but used the Dutch
data for global parameter training as described in [1].

3.2.1. Crosslingual Tandem

Similar to the conventional HMM/GMM system, for the
Tandem system, we trained context-independent monophone
models that served as seed models for the three-state context-
dependent triphone models. Because of the ambiguous results
from earlier studies [5, 6], we evaluate a standalone Tandem
system (similar to the system in [6]) as well as an augmented
Tandem system, where augmented refers to our concatenating
of MF-PLP features with the posterior features (similar to the
system in [5]). We used eight Gaussians per state to model
the emission probabilities. As in our previous study [1], we
used PCA for dimensionality reduction and fixed the dimen-
sionality such that 99% of the variance was preserved. This
procedure resulted in 286-dimensional features (we used the
same feature dimensionality for the posteriors of the standard
and the deep MLP). To have comparable Tandem systems,
we run PCA again after concatenating MF-PLP features with
posterior features and reduced the dimensionality to 286.

3.2.2. Crosslingual KL-HMM

The KL-HMM acoustic modeling technique can directly
model raw posterior features. Therefore no post-processing
is necessary. In the KL-HMM acoustic modeling approach,
the HMM states are parametrized with reference posterior
distributions (categorical distributions) that can be trained
by minimizing the Kullback–Leibler divergence between the
categorical distributions and the posterior features. More de-
tails about training and decoding in the KL-HMM framework
can be found in, for instance, [1]. Similar to HMM/GMM
and Tandem, the KL-HMM system was trained based on
the context-independent monophone models that served as
seed models for the three-state context-dependent triphone
models. For KL-HMM, we applied a decision tree clustering
reformulated as dictated by the KL criterion [17]. We found
in our previous study that the best KL-HMM performance
is achieved with a fully developed tree (about 15,000 tied
states), therefore we did the same for this study.

3.2.3. Crosslingual SGMM

SGMMs can be naturally exploited in under-resourced sce-
narios, since most of the model parameters can be estimated
on well-resourced datasets. Therefore, we use the crosslin-
gual SGMM system as an additional reference point in this
study. To exploit out-of-language data, the SGMM model pa-
rameters can be divided into HMM-state specific and shared



AF & Dutch HL HU OU TRN DEV
Standard 1 1,366 1,447 48.3% 38.3%
Deep 3 6,636 1,447 53.1% 42.1%

Table 4. Summary of the MLP trained on Dutch first and the
re-trained on Afrikaans. The number of hidden layers (HL),
the total number of hidden units (HU) and the number of out-
put units (OU) are given. Frame accuracies on the training
(TRN) and cross-validation set (DEV) are shown as well.

parameters. The crosslingual SGMM used Dutch data dur-
ing training of the globally-shared (language-independent)
parameters and Afrikaans data for the training of the HMM-
state specific parameters [3]. Similar to the monolingual
SGMM system, we used 500 Gaussians and the substate
phone-specific vectors had 50 dimensions.

3.3. Bilingual systems

Inspired by a recent study [6], the bilingual systems that we
present are based on MLPs that were trained on Afrikaans and
Dutch data. More specifically, we took the two Dutch MLPs
(standard and deep) trained in Section 3.2 and removed the
output layer. Then, we appended a new randomly initialized
output layer and trained the MLP (all layers) to estimate pos-
terior probabilities for the 1,447 Afrikaans tied states by using
Afrikaans data. More details about the MLP training are given
in Table 4. In this study, we investigated three acoustic mod-
eling techniques that are able to exploit the posterior prob-
abilities estimated with the bilingually trained MLP: hybrid
HMM/MLP, Tandem and KL-HMM. Again, SGMM serves
as a reference not using posterior features.

3.3.1. Bilingual HMM/MLP

The bilingual HMM/MLP systems are essentially the same
systems as the monolingual HMM/MLP ones presented in
Section 3.1.3. The monolingual HMM/MLP systems used the
posterior probabilities estimated with the MLP only trained
on Afrikaans data, and the bilingual HMM/MLP systems em-
ployed the posterior probabilities estimated with the MLP first
trained on Dutch data and then re-trained on Afrikaans data.

3.3.2. Bilingual Tandem

Similar to the crosslingual Tandem systems, presented in Sec-
tion 3.2.1, we trained a standalone and an augmented Tandem
system based on three-state context-dependent triphone mod-
els. We used eight Gaussians per state to model the emission
probabilities and used PCA for decorrelation. To preserve
99% of the variance we reduced the feature dimensionality to
146.

3.3.3. Bilingual KL-HMM

The bilingual KL-HMM system resembles the crosslin-
gual KL-HMM system, presented in Section 3.2.2. The
1,789 dimensional Dutch posterior features were replaced by
1,447 dimensional feature vectors, trained on Dutch and on
Afirkaans data.

3.3.4. Bilingual SGMM

The bilingual SGMM system used Dutch and Afrikaans
data during training of the globally-shared parameters and
Afrikaans data only for the training of the HMM-state spe-
cific parameters. We used 500 Gaussians and the substate
phone-specific vectors had 50 dimensions.

4. EXPERIMENTS

In this section, we first discuss the hypotheses under investi-
gation, then present the experimental results.

4.1. Prior expectations

Given the systems described in Section 3, we hypothesize the
following:

1. Based on the success of deep architectures in recent
studies [4], we hypothesize that the deep MLP archi-
tectures yield improvement for all systems.

2. Recent literature [5] suggests that adding hidden lay-
ers does not improve the performance of a augmented
Tandem system. We therefore assume that MLP output
post-processing reduces the performance gain resulting
from deeper MLP architectures and hypothesize that:

(a) hybrid systems gain most from a deeper MLP ar-
chitecture because they directly use the estimated
posteriors probabilities as emission probabilities.

(b) KL-HMM gains more than Tandem because the
posterior features are directly modeled without
post-processing.

3. Multilingual data was successfully used to generate
deep neural network features for low resource speech
recognition [6]. Therefore, we hypothesize that the
gains from the deep MLP architecture and the out-of-
language data exploitation are complementary.

4.2. Results

The experimental results are summarized in Table 5. All the
systems based on deep MLPs outperform the equivalent sys-
tem based on the standard MLP, hence hypothesis 1 is demon-
strated.



System Std. Deep Rel. Gain

Monoling.
HMM/GMM 11.4% - -
SGMM 9.5% - -
HMM/MLP 12.3% 9.9% 20%

Crossling.

Tandem 10.5% 9.4% 10%
+MF-PLP 9.7% 9.5% 2%

KL-HMM 9.6% 9.0% 6%
SGMM 8.5% - -

Biling.

HMM/MLP 9.3% 8.0% 14%
Tandem 9.9% 8.4% 15%

+MF-PLP 9.7% 8.9% 8%
KL-HMM 8.0% 7.0% 13%
SGMM 8.5% - -

Table 5. Achieved word error rates (WERs) of the mono-
lingual, crosslingual and bilingual systems described in Sec-
tion 3. Std. stands for the standard (three-layer) MLP and
deep for the deep (five-layer) MLP. The relative gain by using
the deeper MLP is also given.

For the bilingual scenario, HMM/MLP, KL-HMM and
standalone Tandem yield very similar improvement if the
standard and deep MLP performance are compared. There-
fore we must reject hypothesis 2. We evaluated a standalone
and an augmented Tandem system. Our results are in line
with earlier studies [5, 6] where it was found that deep MLPs
yield improvement for standalone systems [6], but only to a
limited extend for augmented Tandem systems [5]. It seems
reasonable to conclude that the concatenation of the MLP
output with MF-PLP features diminishes the advantage of the
deep MLP architecture.

Although the experimental results suggest that the relative
gain decreases in cross- and bi-lingual scenarios compared to
the monolingual HMM/MLP system, it seems that the gains
from out-of-language data exploitation and a deep MLP archi-
tecture are still complementary. Thus, hypothesis 4 is demon-
strated.

The bilingual KL-HMM systems yields the best perfor-
mance (13% relative improvement compared to the hybrid
HMM/MLP system). We attribute the advantage of the KL-
HMM system to the fact that the hybrid system is bound to
the tied state targets used during the MLP training. Hence the
hybrid system uses about 1,500 tied states. The KL-HMM
system on the other hand is more flexible and allows more tied
states to be used, even in under-resourced scenarios. The par-
simonious use of parameters of the KL-HMM system (cate-
gorical distributions) allows training of an HMM with 15,000
tied states, only using three hours of Afrikaans data.

Furthermore, Table 5 also reveals that the crosslingual and
the bilingual SGMM perform similarly. The crosslingual en-
vironment is particularly well suited for the SGMM system
because the shared parameters can be trained on Dutch data
and the language specific parameters on Afrikaans data. In

the bilingual case however, the 3 h of Afrikaans data are dom-
inated by the 80 h of Dutch data during the shared parameter
training. The MLP based systems yield more improvement
from the bilingual setup because the MLPs estimate Afrikaans
tied states posteriors instead of Dutch tied states posteriors in
the crosslingual case.

5. CONCLUSION

We investigated under-resourced speech recognition in the
context of an Afrikaans speech recognizer that benefits from
Dutch data, and compared how the performance of posterior
based approaches changes if a standard three-layer MLP is
replaced by a deeper five-layer MLP. We have shown that the
deeper MLP structure equally improved a hybrid HMM/MLP
and a standalone Tandem system as well as a KL-HMM sys-
tem. Further, experiments revealed that gains from the deeper
MLP architecture and out-of-language data exploitation are
complementary. The best performing bilingual system, KL-
HMM based on the MLP that was jointly trained on Afrikaans
and Dutch data, performs 13% better than a hybrid system
using the same bilingual MLP and yields 26% relative im-
provement if compared to a monolingual SGMM system only
trained on Afrikaans data.

We therefore conclude that deep MLP architectures are
suitable for under-resourced speech recognition, with the KL-
HMM being the most promising.
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