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Abstract—In this paper, we give an overview of the AMIDA
systems for transcription of conference and lecture room meet-
ings. The systems were developed for participation in the Rich
Transcription evaluations conducted by the National Institute
for Standards and Technology in the years 2007 and 2009 and
can process close talking and far field microphone recordings.
The paper first discusses fundamental properties of meeting
data with special focus on the AMI/AMIDA corpora. This is
followed by a description and analysis of improved processing
and modeling, with focus on techniques specifically addressing
meeting transcription issues such as multi-room recordings or
domain variability. In 2007 and 2009, two different strategies
of systems building were followed. While in 2007 we used our
traditional style system design based on cross adaptation, the
2009 systems were constructed semi-automatically, supported by
improved decoders and a new method for system representation.
Overall these changes gave a 6%–13% relative reduction in word
error rate compared to our 2007 results while at the same time
requiring less training material and reducing the real-time factor
by five times. The meeting transcription systems are available at
www.webasr.org.

Index Terms—AMI corpus, Juicer, meeting transcription, mul-
tiple distant microphone, resource optimisation, rich text.

I. INTRODUCTION

O VER the past decades, automatic speech recognition
(ASR) research has progressed from work on carefully

crafted tasks to real applications that do not require cooperation
by the user. Significant progress was made on tasks such
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as transcription of broadcast news (BN) and conversational
telephone speech (CTS), although they remain challenging
despite substantial investment from many sides. Aside from
advances in core ASR technology these tasks also established
the need for additional information apart from the raw sequence
of words. Segment information such as timing boundaries or
speaker identities are helpful for downstream processing and
help readability. This gave rise to new tasks such as diarization
(“who spoke when”), automatic capitalization or disfluency
removal, yielding rich transcripts. The U.S. National Institute
for Standards and Technology (NIST) started to benchmark
rich transcription (RT) systems in 2002 [1], with further com-
petitions held in 2004, 2005, 2006, 2007, and 2009. In this
paper, we present the AMIDA systems developed for these
benchmark tests.
Moving on from two-person conversations (as in the CTS

task) the past decade saw interest in the processing of meeting
speech under a large variety of conditions and scenarios (e.g.,
[2]). The driving force is not the interest in more generic speech
tasks but in the analysis and streamlining of meetings them-
selves. Many people spend considerable time in meetings and
complain about low efficiency, and loss of information—only
very formal meetings normally are minuted. So far, computers
are still rarely used in streamlining the process or for extracting
and retaining the essential information. Efficiency is even
poorer when the meeting participants are not in the same room,
i.e., using teleconference facilities. In the days of decreasing
travel budgets and concerns for the environment, video- and
teleconferencing is more widely used and thus the opportunity
to record, process, recognize, and categorize the interactions in
meetings is recognized even by sceptics of speech and language
processing technology. This area was also the focus of the AMI
and AMIDA projects [3]: acquisition, multi-modal recognition,
and higher level processing of data from distributed or single
room meetings.
Meetings are an audio-visual experience by nature, but

verbal communication forms the backbone of most meet-
ings, and automatic transcription of speech in meetings is
of crucial importance for meeting analysis, content analysis,
summarization, and analysis of dialog structure. Enabled by
the availability of the ICSI meeting corpus (see Section II)
NIST included meeting transcription into RT evaluations from
the beginning, even though only as a pilot study for the first
years. While ASR is often solely associated with transcription,
applications often do not require full transcripts (e.g., content
linking [4]). Application specific optimization can yield better
results for tasks, but the diverse nature of such application
in this domain requires falling back to standard metric-based
assessment of transcription and diarization. In the RT’06 evalu-
ation the concept of meetings was cast wider by distinguishing
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between conference and seminar style meetings. The latter
separated presentational meetings, where discussions with an
audience can occur but are not the norm.
The transcription systems presented here are the joint effort

of the AMI/AMIDA group, in a close international collabora-
tion that participated in the RT evaluations every year since
2005 [5] with very competitive results in 2007 and 2009, on far
and near-field tasks [6]. The rest of the paper is organized as
follows: We first discuss data resources available for meeting
processing and their properties, with special focus on the
AMI corpus. This is followed by descriptions of processing of
acoustic signals, language and acoustic modeling and decoding.
We outline the system design strategy and give results on RT
test sets in Section VII.

II. MEETING DATA

Many meeting resources are available in several languages.
The resources available in English are diverse—they rarely in-
clude speakers with a single accent. The speakers in several cor-
pora are people involved with research, and include a large pro-
portion of non-native English speakers. Hence, the data used
for training of AMIDA systems includes a mixture of U.S. and
U.K. speakers and a very high proportion of foreign speakers
from French, German, and many other origins. While this natu-
rally makes the task difficult, on the positive side robustness is
obtained through multi-accent training.
Another property of the meetings domain is the diversity

in recording. While some corpora provide speech recordings
with a large number of microphones in different configurations,
others simply use one microphone in the middle of the meeting
table for acquisition. Even for close-talking recordings the
diversity in microphone quality causes substantial differences
in signal quality. For example, only some resources use noise
cancelling microphones or highly directional microphones
[7]–[10]. The impact on signal to noise ratios and crosstalk is
substantial. In the case of far field recordings, some corpora
provide microphone arrays in well defined configuration while
others intentionally place microphones according to conve-
nience. Conference and seminar style meetings differ in the
distance of the speaker from the microphone and room acous-
tics. In all cases, a major concern is synchronous recording
of sources. Especially for the far field, sample synchronicity
would be desirable but is only provided in a few cases.
The first corpus available was the ICSI Meeting corpus [10],

consisting of 70 technical meetings with a total of 73 hours
of speech. The number of participants is variable and data
is recorded with head-mounted and a total of four table-top
microphones. Further meeting corpora were collected by NIST
[9] and ISL [7], with 13 and 10 hours, respectively. Both NIST
and ISL meetings have unconstrained content (e.g., people
playing games or discussing sales issues) and variable numbers
of participants. The main additions in 2007 were the completion
of the AMI corpus [8] and the second phase release of the NIST
corpus. The AMI corpus consists of 100 hours of meetings
where 70 hours follow so-called “scenarios” where certain
roles are acted by the meeting participants. The meetings are
recorded at three different sites and, due to the proximity to
research, include a large percentage of non-native English

TABLE I
SEGMENT STATISTICS FOR MEETING CORPORA

TABLE II
PERPLEXITIES OF INTERPOLATED LMS ON THE AMI CORPUS.

DENOTES “INTERPOLATION WITH”

speakers. A further small addition (7 hours of transcribed
meetings) was added in 2009 with the AMIDA corpus which
consists of meetings held at two locations.

A. AMI Corpus

Data was collected at three different instrumented meeting
rooms in Europe (Edinburgh, Idiap, TNO). The meeting lan-
guage is English, but many participants are non-native speakers
of the language. Each meeting normally has four participants
and the corpus is split into a scenario portion and an uncon-
strained meetings portion. Each scenario in the corpus consists
of four meetings with the same participants working on a con-
strained task. For a full description the reader is referred to [8] or
the documentation available with the corpus. For the purpose of
ASR the data has some unique properties. Table I shows the raw
average segment statistics for several corpora.1 Segment lengths
vary greatly, with AMI corpus recordings having much longer
sentences on average, hinting at more controlled speech. The
short segments on the CHIL data are surprising given that these
are from seminar meetings. The speaking rate however is very
similar for all corpora, varying between 3.1 and 3.6 words per
second. The higher control is visible when looking at language
model (LM) performance. In Table II, perplexities of 3-gram
models obtained by linear interpolation of a model derived from
the AMI corpus with background material from BN (150 MW),
CTS (3 MW), and other meeting sources (1 MW), and all com-
bined. The models are constructed in five-fold cross-validation.
It is clear that scenario meetings, making up a larger propor-
tion of the corpus, are much lower in complexity. Note that CTS
and meeting data include automatically collected web data [11].
Further analysis of perplexities (Table III) also reveals that the
language of origin also has considerable effect. An investigation
of out of vocabulary (OOV) words (not shown here) cannot ex-
plain the differences, with the speakers of French origin having

1A segment here is defined as speech not interrupted with silence of at least
100-ms length.
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TABLE III
PERPLEXITIES OF LMS ON THE AMI CORPUS WITH

DISTINCTIONS ON LANGUAGE OF ORIGIN

TABLE IV
%WER ON TWO 6-HOUR TEST SETS FROM THE AMI CORPUS

(WITH AND WITHOUT OVERLAPPED SPEECH)

lowest perplexity (even lower than native English speakers) and
German speakers the highest.
Another distinguishing factor is the recording configuration.

Circular microphone arrays are used in well defined placement
in the meeting room. Table IV shows experimental results on the
benefit of multiple microphones. Experiments were conducted
using different acoustic data from the same meetings, including
beamforming (as described in [5]) with varying numbers of
microphones. All acoustic models were trained using standard
maximum-likelihood estimation on the AMI corpus only and
results were obtained on two different 6-hour test sets, one only
with segments with overlapped speech and one without. One
can observe considerable degradation between close talking and
single distant microphone performance; however, some can be
regained from beamforming. Overlapped speech is nonetheless
a significant problem which reduces such improvements.

B. Test Sets and Test Conditions

The NIST evaluation data has over the years not only in-
cluded meetings from sources outlined above, but also from
meetings recorded by Virginia Tech University (VT) and the
Linguistic Data Consortium (LDC). Equally test sets for sem-
inar style meetings from the CHIL corpora have been provided.
In the past we have shown that the performance of the AMIDA
systems on seminar data is strongly correlated to conference
room meeting transcription [6], [12]. Hence, we have excluded
such data from this paper. The AMIDA systems were also tested
on the speaker attributed speech to text transcription (STT) task
using the diarization output from the ICSI diarization system
[13]. Again, it was found that a modest amount of errors are
added to the STT results and hence further analysis was ex-
cluded. The rest of the paper uses the RT 2005, 2007, and 2009
evaluation test sets, rt05seval, rt07seval, and rt09seval, respec-
tively. Distinctions between the independent head microphone
(IHM) and multiple distant microphone (MDM) tasks are ex-
plicitly made in the text. In 2009, one new aspect, meetings

TABLE V
LM INTERPOLATION WEIGHTS FOR BUILDING OF 4-GRAM LMS

recorded on two sites, connected with video conferencing, were
included.

III. VOCABULARY AND LANGUAGE MODELING

Meetings cover a wide range of topics, however, both vocab-
ulary and language modeling appears to be mostly driven by
the fact that these are conversations that normally make use of
small vocabularies. In [14] and [15], padding of meeting vo-
cabularies with the most frequent words from BN sources up
to 50 000 words was found to be sufficient to yield out-of-vo-
cabulary (OOV) rates below 1%. This property was retained
on rt07seval and rt09seval; thus, any vocabulary updates where
mostly related to LM training corpus changes. Languagemodels
(LMs) were constructed in a two-stage process. In the first in-
stance, component models from diverse sources are constructed
and optimal interpolation weights are found. Table V shows the
10 out of 15 components with the highest weights. The large
set of components is driven by the experience that even BN
sources can be very helpful, as outlined in Table II. The set
of components include sources from web data search [16]. In
a second stage, the interpolated LM serves as basis for a re-
newed web-data search using the methods outlined in [11]. The
approach allows limiting of the search, and hence only 20 MW
of web data are collected and used to train an additional LM
component for further interpolation. Re-interpolation with only
the components that had a weight of more than 1% yield the final
model. The final 2007 4 gram LM had a perplexity of 73.1 on
the on RT06 evaluation data. Table VI shows perplexity results
for two LMs, one optimized for seminar data, one for confer-
ence room meetings. In both cases the RT’06 data sets served as
estimation sets for interpolation. Modest improvements can be
observed from the two-stage approach. However, tuning of LMs
to the two domains clearly brings significant improvements.
This LM construction paradigmwas used for all AMIDA lan-

guagemodels. AsOOV rates are generally found to be low using
word list padding, only words from the 2007 evaluation data
were added to the 2009 word lists. The 2009 LMs were built for
a different decoder and LMs using lower n-gram cutoff thresh-
olds were constructed. As the LM sources themselves did not
change, no new web-data was added at this point. Table VII
shows the impact on OOV, perplexity, and WER performance.
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TABLE VI
LM CONSTRUCTION FOR CONFERENCE AND SEMINAR MEETINGS.

PERPLEXITIES ON rt07seval

TABLE VII
%WER FOR DIFFERENT LMS ON THE rt07seval AND rt09seval IHM SETS

The number of n-grams was increased considerably and had to
be reduced through entropy pruning [17].

IV. ACOUSTIC PREPROCESSING

Two fundamental modes of operation exist for meetings.
Either a microphone is associated with a single speaker (IHM)
or one or many microphones are used to record the voices of all
speakers. The IHM case is most similar to CTS or BN, where
microphones are placed close to the mouth. However, it also
includes lapel microphones which often capture a significant
amount of speech energy from surrounding speakers. For
MDM, different acoustic modeling may be used, for example
using channel adaptive training [18]. However, the standard for
most systems is to transform the acoustic signal from multiple
microphones into a single audio stream and then process the
signal in a similar fashion to IHM signals. The ASR systems
usually benefit from segment information, i.e., the time bound-
aries of speech segments. Furthermore, systems are speaker
adaptive; thus, speaker cluster information is required. While
the speaker identity is clear for IHM data, automatic segment
clustering is required for far field input.

A. Close Talking

Segmentation of meetings is a difficult task due to the con-
siderable amount of cross-talk. The AMIDA systems use a
multi-layer perceptron (MLP)-based speech/silence classifier
trained on MF-PLPs and features representing correlation and
energy of competing channels [19]. Even though classifica-
tion is binary, a large number of speech and silence training
examples are required. Table VIII shows the influence of in-
creasing amounts of training data on recognition performance
and compares with reference segments. Larger training sets
gave different segment statistics and better results, although
not uniformly for all meeting rooms. In the case of the most
difficult situation (CMU lapel microphones), the results even
degrade due to poorer proportional representation in the new
training set.

TABLE VIII
%WER ON rt07seval FOR REFERENCE SEGMENTS, AND HOURS OF MLP

TRAINING DATA. CMU/EDI/NIST/VT ARE MEETING ROOMS

The segmenter itself is implemented as a hidden Markov
model (HMM) to allow the inclusion of duration constraints,
speech/silence class priors, and an insertion penalty. The output
probabilities are given by scaled versions of the MLP poste-
riors. Originally, mostly the insertion penalty was changed to
alter the number of segments. Fig. 1 displays histograms of
segment lengths on the rt07seval data. The first histogram 1(a)
shows reference segmentation. Forced alignment with ASR
models yields the second histogram 1(b). Histogram 1(c) was
obtained when the main focus was on optimization of segment
numbers with the insertion penalty. This approach produced
a strong bias towards shorter segments. Appropriate tuning
of all hyper parameters yielded a statistic more similar to the
target distribution [Fig. 1(d)]. This method in turn gave very
good ASR results on rt07seval. Table IX shows results on
the rt09seval set. As can be observed the difference between
reference and automatic segmentation is substantial, with 3.5%
WER absolute. In addition, the effect of the silence prior on
performance does reveal significant influence with the best
performance 36.1%. The table also includes oracle results as
if the optimal silence prior had been set per meeting or per
channel. It is clear that at least the meeting specific settings
have significant influence. Further analysis reveals that one
meeting has significantly lower energy and signal to noise ratio
compared to the standard. The degradation compared to the
reference segmentation here is larger than 10% WER absolute.
A normalization of energy is likely to improve the situation.

B. Far Field

The number of microphones available for corpora outlined
in Section II ranges from 1 to 16. Hence, the approach used
needs to allow for variation, even though the NIST paradigm
allows systems to make explicit use of meeting room character-
istics, the AMIDA systems have not done so. Instead the audio
signal is enhanced by beam-forming based on time-delay-of-ar-
rival (TDOA) that can be used with any number of microphones
[5]. After noise-filtering of the audio channels the TDOA is
estimated. The estimates here, however, are noisy and hence
post-filtering is applied. The system presented in [20] has put
considerable effort on Viterbi post-filtering to yield smooth tra-
jectories. A comparison of that system with [5] showed 2.2%
WER absolute reduction on rt07seval and we hence used the
toolkit for the RT’09 system.
The second task is segmentation and speaker clustering. In

work on the RT’07 system we found a considerable mismatch
between requirements for diarization and ASR [6]. ASR sys-
tems require clusters of reasonable size and can cope with seg-
ments that contain significant amounts of silence. In previous
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Fig. 1. Segment duration histograms on rt07seval for different segment sources. (a) Manual. (b) Forced alignment. (c) #seg optimized. (d) Histogram optimized.

TABLE IX
%WER ON rt09seval. CHOOSING THE PROBABILITY OF

SILENCE . O STANDS FOR ORACLE RESULT

years, we made use of such segmentation and clustering pro-
vided by ICSI/SRI (e.g., [15]). For the 2009 system a diarization
framework based on [21], specifically adapted for ASR, was in-
cluded. The acoustic pre-processing is identical to before, i.e.,
microphone array beamforming with the BeamFormIt toolkit
[20]. However, the energy based beamformer now delivers a
single audio stream together with the relative time delay esti-
mates between the channels. In contrast to [21], where only the
beamformed audio was used for clustering, the delay values now
augment standard MFCC features. Fig. 2 illustrates the process.
Segment clustering is using the Bayesian information criterion

Fig. 2. Clustering of beam-formed audio.

(BIC), with the initial number of clusters based on the amount of
data. The Mel-frequency cepstral coefficient (MFCC) and delay
feature streams are normalized to yield identical average BIC
scores.
Table X showsWER results of automatic approaches, in com-

parison with the reference, for segmentation and speaker clus-
tering. The loss from automatic segmentation alone is 1.7%, not
surprisingly the difference after adaptation is similar. The dif-
ference between the unadapted results with or without speaker
information originates from cepstral mean and variance normal-
ization (CMN/CVN) as that is also speaker based. Using delay
features for clustering brings substantial performance gain, and
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TABLE X
%WER ON rt07seval USING THE FIRST (UNADAPTED) AND THIRD (ADAPTED)

PASS OF THE RT’07 AMIDA MDM SYSTEM

TABLE XI
%WER RESULTS ON rt09seval MDM USING AN ADAPTED SYSTEM AND

SEGMENTS FROM ROOM 1, ROOM 2, OR BOTH ROOMS

the final loss from automatic speaker clustering is 1.6%. Exper-
iments indicate that the losses for automatic segmentation and
clustering are almost additive.
1) Echo Filtering: One challenge specific to rt09seval are

meetings held in two rooms. This implies that audio was picked
up by microphones in the first room (room 1) and was played
through a loud-speaker in the second room (room 2). Naturally
the microphones in room 2 pick up speech from that loud-
speaker. One could assume that the audio is transported by a
conferencing system that inevitably includes echo cancellation.
However such systems are not always accessible and echo
cancellation itself is far from perfect. Thus automatic filtering
of the “echo segments” is required. The conferencing system
introduces an unknown and variable audio transfer delay be-
tween rooms aside from clock differences, and the assignment
of speakers to rooms is unknown.
When performing recognition it is desirable to adapt the ASR

system to speakers, and to the recordings that are not distorted
by a loudspeaker. This assumption is also verified by the results
in Table XI. For both automatic and reference segmentation the
best performance is achieved when filtering out echo segments.
The filtering itself is performed as follows (a frame is a segment
of speech, typically of length 500 ms).

1) For each room generate beam-formed audio.
2) Perform speaker segmentation on room 1 audio.

a) For each speaker and frame, calculate the delay be-
tween the audio from room 1 and room 2 based on
maximum cross correlation.
If delay , increment room 1 count, otherwise the
room 2 count.

b) Assign speaker to room with highest count.
c) Discard segments from speakers in room 2.

Fig. 3. Example of the echo filtering algorithm.

3) Repeat using segmentation from room 2 audio, discarding
segments assigned to room 1.

Fig. 3 shows an example of frame counts. Speaker clustering
output yielded too many clusters, but the important ones are
clearly visible. With the above algorithm the single speaker in
the remote room is clearly identified from each side. Results
on the rt09seval multi-room meetings reveal that 3.1% WER
absolute can be gained from using automatic room filtering
compared to using only audio from one (i.e., the best) room
(Table XI), but naturally this number depends on the amount
spoken in each room. Interestingly, when using reference
segmentation, the loss is only 2.4%, which seems to indicate
that differences in segmentation are indeed a problem.

V. ACOUSTIC MODELING

Acoustic modeling for meetings differs only in some aspects
from other areas such as CTS or BN. The first aspect, addressed
here, is data selection, in particular for MDM data. A second
issue is the availability of in-domain data. A total of 177 hours
of IHM speech was available for training of the RT’09 system,
and slightly less before. Hence, efforts to utilize the much larger
resources, such as CTS data, can be beneficial. Aside from these,
two methods have given gains consistently over many test and
training sets: the use of posterior features and discriminative
training.

A. Data Selection

Speech overlap varies from corpus to corpus and from
meeting to meeting between 10% and 30% of the total meeting
duration. Beamforming methods used here cannot separate
two concurrent speakers. As back-channel messages are very
common, significant distortion can be observed when including
overlap speech, even with small amounts of overlap (see
Table IV). Our experiments indicated [12] that simply using
IHM segments for training of MDM models was sub-optimal.
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TABLE XII
%WER ON rt07seval USING DIFFERENT THRESHOLDS

ON CONFIDENCE SCORES IN LATTICES

Instead we aimed to avoid segments with overlap: Removal of
segments that contain any form of overlap would ignore more
than 50% of the data, and is thus unacceptable. The segment
boundaries given by manual annotation are often crude, and in-
clude significant amounts of silence. Hence, automatic methods
for finding and removing true overlap need to be used.
The strategy employed requires forced alignment of all IHM

segments followed by detection of the nearest word boundary to
an overlap region. These are chosen as cutting points. Using this
method about 154 hours of training data were retained. How-
ever, alignment is often unreliable in boundary regions even for
IHM channels, and boundaries have no silence attached. An ad-
ditional confidence based selection was used to remove an ad-
ditional 10% of the data. Word lattices were generated for the
complete training set and ranked according to the highest word
level posterior probability in the lattices. A threshold on the
posterior was chosen to remove a given percentage of the data.
Table XII shows results for maximum-likelihood(ML) and min-
imum phone error (MPE) [22] training. While reasonable gain
is observed for ML, the impact on discriminative training (1 it-
eration) is modest.

B. Adaptation From CTS

The Fisher corpus recordings are an extensive resource for
conversational speech, and appear to be well suited to the task
of meeting adaptation [15], [23]. The corpus data was prepared
in the usual fashion, including the deletion of non-uniform
amounts of silence at segment boundaries. A total of 170 hours
of silence based on the manual segmentation was deleted,
leaving a total of 2000 hours of speech. Naturally, CTS data has
4-kHz bandwidth (NB) whereas meetings are recorded typically
with 8 kHz (WB). Using wider bandwidth gives significantly
better results. In [12] and [24] we have presented a method to
retain the benefit from wideband data modeling while retaining
the gain from CTS data adaptation using maximum a posteriori
(MAP) adaptation [25] with inclusion of heteroscedastic linear
discriminant analysis (HLDA) [26]. Unfortunately, a detailed
description cannot be given here and the interested reader is
referred to those papers.
Table XIII shows the performance on the rt05seval set using

models trained in the mapped narrow-band space on PLP fea-
tures using VTLN, HLDA and MPE MAP [3]. Note that the
baseline performance for CTS models does not change for the
2000 hour models. Solely training on meeting data yields sig-
nificantly better results. However, after MPE-MAP adaptation,
an overall improvement of 1.3% is observed.

C. Posterior Features

The use of posterior features consistently gave good improve-
ments on meeting data. In original implementations the state

TABLE XIII
%WER RESULTS ON rt05seval ADAPTING CTS MODELS TO MEETING
DATA INCLUDING NB/WB TRANSFORMS AND JOINT HLDA ESTIMATION.

CTS/MTG DENOTE THE AMOUNT OF HOURS OF TRAINING DATA

Fig. 4. Stacked bottleneck feature computation.

level posterior probabilities were estimates using two MLPs,
one associated with times before the current time (left context,
LC) and the other with the right context (RC) [12], [27]. This
implementation required the use of HLDA for decorrelation and
reduction of feature sizes. Later developments found that bot-
tleneck (BN) MLPs gave similar or better performance while
avoiding the need for substantial dimensionality reductions. It
is straight-forward to extend BN features with the LCRC par-
adigm. In this case the output of LC and RC BN MLPs forms
the input to a “merger” MLP, again with BN output, resulting in
LCRCBN features [27].
The training of three MLPs is time consuming and requires

considerable tuning. While conceptually the inputs to the final
merger MLP are estimates of posterior probabilities of the cur-
rent speech frame with respect to left, right, and central con-
text, the BN framework does not make explicit use of these.
The basic concept in stacked BN (SBN) features is to replace
the conditional MLPs with MLPs that always focus on a central
frame. Given such an MLP it can be used to provide features
derived from the left, the right, or in the case of SBN features,
the middle of the current frame by simply taking its output at
relevant time distance to the current frame. Fig. 4 illustrates the
process, starting from a filterbank output illustrated in time and
frequency. A Hamming window and discrete cosine transform
(DCT) are applied to each filterbank band, retaining the coef-
ficients 0–5. Three areas in the input spectra form the input to
three identical (i.e., with same parameters) MLPs yielding three
vectors that then form the input to the merger MLP. The size of
the input window for the first stage MLP can be smaller than for
LCRCBN features as an additional central vector is added.
Surprisingly, even the modification of the condition in MLP

training has a positive effect. Table XIV shows a comparison of
the feature types. Results are obtained using vocal tract length
normalization (VTLN); CMN/CVN and BN features augment
the PLP standard feature vectors. The resulting feature vector di-
mensionality ranges from 69 to 80 with configurations yielding
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TABLE XIV
%WER ON rt07seval USING REFERENCE SEGMENTATION

TABLE XV
%WER ON rt07seval. USE OF DISCRIMINATIVE TRAINING TECHNIQUES

WITH DIFFERENT FEATURES

the best result being displayed. SBN features clearly outper-
form all other variants. The number of trainable parameters in
the system is reduced, allowing for training of larger MLPs to
reach the same number of trainable parameters in the whole
architecture.

D. Discriminative Training

Aside from VTLN and the use of posterior features, equiv-
alent performance gains can be obtained from discriminative
training such as MPE [22]. In the context of adaptation from
CTS (Section V-B) discriminative training is difficult and
MPE-MAP only partially allows transfer of gains from CTS to
meeting data. Even more powerful training techniques suffer
from the same problem. Hence, for the RT’09 systems all
models were trained on meeting data only. In that way, the
considerable complexity due to the use of the Fisher corpus for
training was avoided and the simpler training setup allowed
use of fMPE training [28].
fMPE is implemented using the region-dependent linear

transform (RDLT) framework [29]. Posterior probabilities
of the Gaussians are computed for each frame and these are
spliced with the averages of posteriors for adjacent frames 1–2,
3–5, and 6–9 on the right and likewise for the left context.
This means that 7 groups spanning 19 frames in total were
used. All Gaussians from an ML trained HMM model are
pooled and clustered using agglomerative clustering to create
a Gaussian mixture model with 1000 components. Only offset
features (not the posteriors) are used. Table XV shows results
for use of fMPE in conjunction with BN features as outlined in
Section V-C. fMPE is always applied to the full feature vector.
One can observe that the gains are not additive. The 6.2%
WER absolute gain from using SBN features and ML training
is reduced to 3.6% after the joint use of fMPE and MPE. At
this level, the improvement from MPE is 1.9% WER absolute
and an additional 1.4% absolute (5% relative) is obtained with
fMPE. The advantage of SBN over LCRC BN features in the
end is small despite lower feature vector dimensionality.

VI. DECODING

Juicer, a weighted finite-state transducer (WFST)-based
decoder [30] was used in previous systems, including 2007.
However significant changes where made to its core allowing
much faster and more accurate operation. The main changes

Fig. 5. Real-time factor (RTF) against %WER on rt07seval IHM for various
decoding arrangements with HTK HDecode and Juicer. “Baseline” refers to
lattice generation with a bigram LM and rescoring with a 4-gram LM.

are the inclusion of a modular front-end called Tracter [31],
improved token passing and histogram pruning, use of acoustic
model independent WFSTs and integration of the Hidden
Markov Model Toolkit (HTK) for acoustic model computa-
tions. These changes had a considerable impact on processing
speed against performance. Due to size constraints, and in
contrast to lexical tree based decoders such as HTK HDecode,
static WFST-based decoding requires language models to
be pruned before WFSTs can be constructed, thus incurring
performance degradation. However, on the positive side, higher
order n-grams can be included with limited impact on real time
factors.
Fig. 5 shows performance against decoding speed on the

rt07seval IHM test data. The solid horizontal line marks HDe-
code performance by generation of bi-gram lattices, followed
by 4-gram lattice re-scoring. The dashed line marks an identical
configuration, but using a language model generated with
entropy pruning as described in [17], and shows a degradation
in performance by 0.5%. The remaining curves show results
obtained with Juicer and the same pruned LM. The WER
results obtained with the 2-pass strategy (at about 30 RTF) are
matched in a single decoding pass at around 2 RTF. Equiva-
lently, the 0.5% degradation from the best performance is also
observed when using HDecode with the equivalent trigram LM.
Table XVI shows WER results and RTF at different pruning
levels. Surprisingly, little impact on WER is observed with
larger LMs when RTF is roughly kept constant. This implies
that the best strategy is to build the largest WFST possible
regardless of target speed. Equivalently, Table XVII shows
impact of dictionary sizes and n-gram order. The dictionary
size can be reduced substantially while retaining modest degra-
dation, allowing very compact decoding.
Juicer has a total of six pruning parameters that can be

changed to influence processing speed. As grid search for such
parameters is very costly we have made use of gradient based
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TABLE XVI
EFFECT OF ENTROPY PRUNING AND USING FIXED BEAM SETTINGS.

%WER AND RTF PERFORMANCE ON rt07seval MDM

TABLE XVII
CHANGE OF LEXICON SIZE AND N-GRAM ORDER.
%WER AND RTF PERFORMANCE ON rt07seval MDM

search methods described in [32] to find the best possible con-
figurations. As we found clear dependence of such parameters
on the acoustic and language models used, optimal operating
curves were generated for each acoustic model/language model
combination.

VII. SYSTEM DESIGN AND RESULTS

The construction of offline ASR systems is mostly governed
by raw performance and much less focus is put on processing
speed. The objective in NIST RT evaluations again was on op-
timal WER result and hence multi-pass recognition strategies
are standard. Two fundamental concepts govern the design of
such ASR systems: adaptation and the use of complimentary
system output. The systems outlined in this paper make use of
adaptation in the form of cepstral mean and variance normaliza-
tion per speaker, VTLN, andmaximum-likelihood linear regres-
sion (MLLR) [33]. The AMIDA systems use complementary
system output created in several ways, by employing different
language models and vocabularies, acoustic training data and
acoustic model training as well as different features. The var-
ious outputs can then be used in cross-adaptation, i.e., making
use of the output of one pass to adapt another model set. The
second option is system combination using confusion network
combination or ROVER.
Fig. 6 shows an outline of the RT’07 system where the main

design paradigm was cross-adaptation. A total of four different
acoustic model configurations are used. Standard PLP/HLDA
models (M1) are required for the initial stages to allow esti-
mation of VTLN warp factors. Models constructed on PLP/
LCRC (M2) and MFCC/BN (M3) features are designed to yield
slightly different output operating at similar word error rates.
The fourth model set is based on CTS adaptation as outlined in
Section V-B whereas all other models are trained on meeting
data only. The figure also highlights the fact that the first best
output, lattices and confusion networks are passed between the
stages. Table XVIII shows results for several key passes. The

Fig. 6. AMIDA RT’07 system schematic. denotes lattice generation,
acoustic rescoring.

Fig. 7. ROTK modules. Data lists hold metadata such as speaker or segment
information, DLP files list data lists and processing information.

TABLE XVIII
%WER RESULTS ON rt07seval FOR SEVERAL PASSES

OF THE AMIDA 2007 AND 2009 IHM SYSTEMS

difference between the initial and final passes is considerable
but most of the gain is achieved in the first stages of cross
adaptation. Without cross-adaptation, 2% absolute poorer per-
formance is obtained [6]. Most notably the expensive training
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Fig. 8. Graph of the 2009 MDM system. Arcs describe data types; NULL indicates transport of metadata only. Boxes hold module instance, module, and config-
uration names.
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TABLE XIX
%WER ON rt09seval IHM FOR THE AMIDA RT’09 SYSTEM. IDI/EDI/NIST ARE MEETING ROOMS

of CTS adapted models only gave small further improvements.
These results gave rise to a completely different strategy de-
veloped for the AMIDA 2009 systems. First, the system soft-
ware was cast in the form of the resource optimization toolkit
(ROTK). Here, the system is compiled from a set of funda-
mental modules, for example: PLP computation; decoding using
a specific configuration; adaptation; or segmentation. Fig. 7 il-
lustrates the input and output of a module. Apart from pro-
cessing raw data, modules also provide metadata, e.g., speaker
labels, in a systematic way and each module has certain data
types it can process, e.g., raw audio files. The actual processing
is specified by a module configuration file. Hence, the same
module can operate differently, for example by using different
acoustic or language models for decoding. System implementa-
tion then can be performed by simply writing a module graph of
the form displayed in Fig. 8 which displays the 2009 AMIDA
MDM system. Most branches in this graph deal with front-end
processing. In contrast, The IHM system graph (not shown)
is considerably larger and contains cross-adaptation and lattice
rescoring.
Aside from the data flow the toolkit also automatically or-

ganizes distribution of processing on a computing grid. While
these are implementation details the representation also allows
to build graphs semi-automatically by finding modules that
would fit into the graph.Multiple module combinations can then
be tested automatically, replacing the manual design process.
This approach was adopted for parts of the graph generation for
the RT’09 systems to find optimal parameter configurations.
Aside from the new modeling outlined in previous sections,
adaptation was also slightly altered. Under normal NIST RT
evaluation regimes, only 10 minutes of a meeting form a test set.
However the complete meeting, typically longer than 30 min-
utes can be used for adaptation purposes. Little gain was found
by direct use of more data. Instead, complementary decoding
was performed to find segments of agreement, to only use those
for adaptation purposes. In this process, typically half of the
data is discarded and small but consistent gains were obtained.
For IHM the acoustic models developed were: HLDA-PLP/ML
(M1) and HLDA-PLP/MPE (M2), VTLN/SBN/MPE/fMPE
(M3), VTLN/LCRCBN/MPE/fMPE (M4). For MDM, no
LCRCBN models were created. The language models used are
a 4-gram LM based on 50 K vocabulary, and a 7-gram LM
with 6 K vocabulary. Table XVIII compares results for the

TABLE XX
%WER ON MDM FOR THE AMIDA RT’09 SYSTEM. SEG

DENOTES AUTOMATIC (AUT) OR REFERENCE (REF) SEGMENTATION
AND I/F ARE INITIAL AND FINAL PASSES

IHM system on the rt07seval data with the 2007 system. An
overall improvement of 1.5% WER absolute can be observed
with a much simpler system that also now operates in about a
fifth of the time, at 19.5 RTF. Table XIX shows the results in
more detail for the various decoding passes for automatic and
manual segmentation. One can clearly observe the difficulty
with one NIST meeting as described in Section IV-A while the
IDI meeting room recordings give poor results due to the use
of non-noise cancelling microphones. Overall it is found that
(in contrast to rt07seval) neither lattice rescoring nor confusion
networks give significant gains. The M3 output is available at
9.8 RTF. MDM performance is shown Table XX. The differ-
ence between IHM and MDM is WER relative, which is
similar to that for manual segmentation. However, the cause for
the two microphone cases is not the same: The difficulties of
the NIST meeting for IHM are due to sound levels. By contrast,
those for MDM are caused by the large number of very active
speakers. Note that MDM scoring excludes overlapped speech.

VIII. CONCLUSION

In this paper, we have presented our work on meeting tran-
scription for the AMIDA systems. We have outlined the basic
properties of conference room meeting data and the core tech-
nologies tested and developed for the complete AMIDA sys-
tems.We put special emphasis on the specific aspects of the data,
such as far field recognition, reverberant and noisy environ-
ments, but also language and lexical issues. While vocabulary
and language modeling show some influence from diversity in
topics, themain source of difficulty appears to originate from the
complex acoustic environment. Acoustic modeling techniques
are found to behave in similar way to the CTS task, with strong
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gains from techniques such as VTLN, HLDA, MPE, and poste-
rior features. However, adaptation from CTS models was found
to only bring modest gains, partly due to bandwidth issues. We
have outlined the benefit of essential technologies onNIST eval-
uation test sets in detail. Two approaches to system design are
explained and the results for both systems are compared. Both
systems are available for tests at www.webasr.org. For compar-
ison to other state-of-the-art systems the interested reader is re-
ferred to publications by NIST on the outcome of RT evalua-
tions which can be found on their web pages.
Although the results on NIST evaluation data are among the

best achieved (see [34] or publications in this special issue),
there is clearly substantial room for improvement. While more
data for training will undoubtedly help, more fundamental
issues on room acoustics and noise robustness need to be
addressed for significant progress. The NIST paradigm is still
somewhat optimistic, for example in terms of the number of
speakers, the recording settings (e.g., quality and location of
microphones) or the language and interaction style used in
real-world meetings (most recordings are based on scenarios!).
These are issues of robustness. The gap between close-talking
and far-field performance is still wide, and much worse when
using a single microphone.
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