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Abstract

Many techniques in speech processing require inference based on observations that are of-

ten noisy, incomplete or scarce. In such situations, it is necessary to draw on statistical

techniques that themselves must be robust to the nature of the observations. The Bayesian

method is a school of thought within statistics that provides such a robust framework for

handling “difficult” data. In particular, it provides means to handle situations where data

are scarce or even missing.

Three broad situations are outlined in which the Bayesian technique is helpful to solve

the associated problems. The analysis covers eight publications that appeared between 1996

and 2011.

Dialogue act recognition is the inference of dialogue acts or moves from words spoken

in a conversation. A technique is presented based on counting words. It is formulated

to be robust to scarce words, and extended such that only discriminative words need be

considered.

A method of incorporating formant measurements into a hidden Markov model for au-

tomatic speech recognition is then outlined. In this case, the Bayesian method leads to a

re-interpretation of the formant confidence as the variance of a probability density function

describing the location of a formant.

Finally, the Gaussian model of speech in noise is examined leading to improved methods

for voice activity detection and for noise robustness.
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Chapter 1

Introduction

In this thesis, the use of Bayesian inference is investigated in three distinct applications in

the field of speech technology, namely dialogue act recognition, formant analysis and noise

robustness. The unifying theme common to each of these investigations is the characteri-

sation of uncertainty, which not only allows more robust inference where only limited data

are available, but also provides a unifying framework allowing techniques to fit together in

a hierarchical manner. This chapter provides a brief review of the Bayesian methods used

in the remainder of the thesis.

1.1 Background

In around 1993, I joined Andrew Webb’s pattern processing applications group at what was

DRA (the Defence Research Agency) in Malvern (it was formerly the Royal Signals and

Radar Establishment, and subsequently the Defence Evaluation and Research Agency and

QinetiQ). I worked on some basic pattern recognition techniques, and on a radar problem.

To address a (self-) perceived deficiency in statistics, I attended a one week course given

by Anthony O’Hagan. O’Hagan taught Bayesian statistics of course, but he was also a pro-

ponent of a particular camp within the field known as subjective prior elicitation. This

technique is quite pragmatic; rather than require purely data-driven methods, it draws on

what might be described as anecdotal or heuristic evidence too. For instance, if you want to

know the accuracy of a drill, the first thing you do is ask the drill operator how accurate he

thinks it is.

Of course, O’Hagan covered other methods too, for instance weak priors and numerical

integration methods. However, the subjective aspect fixed in my mind because it was at

odds with, for instance, Andrew Webb, who was a maximum likelihood proponent, and

David MacKay, whose evidence framework was gaining attention at the time.

The collection of papers presented here began after that course, and represent my

putting into practice techniques that were taught there, and were also used within the

pattern processing groups in Malvern. The three sections are rather disparate in application

(except that they are all speech processing), but the underlying approach is the same.
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1.2 The Bayesian method

1.2.1 Historical note

The term Bayesian takes its name from a paper attributed to the Reverend Thomas Bayes

(Bayes, 1763), although Bayes’s famous theorem does not appear at all. Rather, what Bayes

did was discuss the concept of inverse probability. The theory was invented independently

by the marquis de Laplace (1812), and is built around the following rather simple relation-

ship: if there are two events, a and b, that are not independent, the joint probability of the

two events can be written

P (a,b) = P (a | b)P (b) (1.1)

or

P (a,b) = P (b | a)P (a) . (1.2)

Equating the two, we have:

P (a | b)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (b | a)

Prior︷ ︸︸ ︷
P (a)

P (b)︸ ︷︷ ︸
Evidence

, (1.3)

where the terms are often referred to as indicated. That is, if we want to use knowledge

of b to infer something about a, we can use knowledge of a to infer something about b in

combination with priors (see below). There are a great many texts on Bayesian methods;

for the purposes of this thesis I have mainly used O’Hagan (1994), but perhaps the most

ubiquitous is that of Bernardo and Smith (2000).

A note on terminology

In discussing Bayesian statistics, it is natural to refer to the theorem attributed to Thomas

Bayes. I believe there are three possible ways to do this:

Bayes’s theorem The theorem belongs to Bayes; cf. Newton’s first law.

Bayes’ theorem As above, but following a precedent used for, e.g., Greek names, which

tend to end in s, where the final s is omitted.

Bayes theorem A named theorem; the Bayes Theorem. cf. the Poincaré conjecture.

I have used these interchangeably.

1.2.2 Bayesian vs. classical

Bayesian statistics is often contrasted with the frequentist (or classical) approach, where

probability is defined as being the result of a large number of successive tests. In fact,

Bayes’s theorem has meaning in classical statistics too: It is the basis of a hypothesis test.

As long as a and b are events, all is well. If a is a parameter, θ, however, and b is data,

d, difficulty occurs in the classical situation: Whilst the value p (d | θ) can have meaning

(we have several examples of d), the value p (θ | d) does not have meaning because we
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cannot sample θ directly. Thus Bayes’s theorem does not apply to parameters in the classical

approach; rather, enough examples of d are required.

Implicit in the Bayesian approach, however, is a definition of probability as being a

degree of belief; just a number where 0 represents certainty that a proposition is false and

1 represents certainty that a proposition is true. In the Bayesian approach, there is nothing

to prevent p (θ | d) being expanded via Bayes’s theorem. This leads to two fundamental

features of the Bayesian method for parameters:

1. Inference proceeds from the posterior p (θ | d) rather than the likelihood p (d | θ).

2. A prior, p (θ), can (in fact, must) be specified representing a degree of belief over

different values of the parameter.

The key is that, whilst classical approaches distinguish parameters and data (or events), the

Bayesian approach treats them equally. Bayes’s theorem can applied to either.

One advantage of the Bayesian approach follows directly: Classical approaches are re-

liant upon p (d | θ) being well defined by being based on enough samples. The Bayesian

approach is able to augment this measurement using a prior, so when enough samples are

not present a robust result can still follow.

1.2.3 A basic problem

The Bayesian method in the context of this thesis is well illustrated in the context of a

problem where training and test data are related by an unknown parameter.

θ

Model

x

Observation

d1 d2

Data

. . . dD

Figure 1.1: An inference diagram for a simple parametric model.

Say we have an observation, x, and we need inference based on x. Typically this means

we are interested in p (x), the probability density of x. With reference to figure 1.1, x was

generated by a model with parameter θ. If θ is known, we can simply write down p (x) as

the conditional density

p (x) = p (x | θ) , (1.4)

and this is what the model generates. If θ is unknown, however, it becomes a nuisance
variable and it is necessary to marginalise:

p (x) =

∫
dθp (x | θ)p (θ)︸ ︷︷ ︸

Prior

. (1.5)

As indicated in the equation, the marginalisation requires a prior on θ. In this case, the

prior is posterior to known training data d = {d1,d2, . . . ,dD}. The situation is actually
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better written

p (x | d1,d2, . . . ,dD) =
∫
dθp (x | θ)p (θ | d1,d2, . . . ,dD) (1.6)

p (x | d) =

∫
dθp (x | θ)p (θ | d) . (1.7)

In order to evaluate the final term, we invoke Bayes’s theorem:

p (x | d) =

∫
dθp (x | θ)

p (d | θ)p (θ)

p (d)
(1.8)

Equation 1.8 is sometimes called the Bayesian predictive distribution.

Three important concepts (at least for speech processing) follow from the predictive

distribution:

1. Point estimation If p (θ | d) can be assumed to be close to a delta function at θ̂, then

equation 1.7 ceases to be an integral. Rather, it is just the likelihood given the point estimate

of the parameter:

p (x | d) = p
(
x | θ̂

)
, (1.9)

where we do not yet specify how the point estimate is obtained.

2. MAP estimation In the above case, a point estimate is required. The maximum a-
posteriori (MAP) estimate is that which maximises the fractional part of equation 1.8:

θ̂ = argmax
θ

p (d | θ)p (θ)

p (d)
. (1.10)

Notice that the denominator can be ignored.

3. ML estimation In the case that p (d | θ) can be assumed to be a delta function (i.e., at

least compared to the prior), then we can write

θ̂ = argmax
θ

p (d | θ) , (1.11)

which is the maximum likelihood (ML) estimate of θ.

So, the concept of ML training, which is a classical technique, drops out of a rigorous

Bayesian perspective given a couple of assumptions. As a “bonus”, there is also MAP training

that can be thought of as a Bayesian influenced ML approach. This also ties down the

concept of enough samples from above. Enough is enough such that the delta functions are

good approximations, and in the MAP approach, that concept of enough can come from the

prior too.

1.2.4 The merit of priors

To illustrate the effect of the prior, consider the task of finding whether or not a coin is

biassed after having seen the result of only one flip. Denote the probability of a head by ρ.

In the general case of H heads and T tails, the likelihood is

p (H, T | ρ) = ρH(1 − ρ)T . (1.12)
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This function has a maximum at

ρ̂ =
H

H+ T
. (1.13)

We are interested in the value of p (ρ | H, T). Suppose the flip yielded a head, so H = 1 and

T = 0.

1. ML estimation In the classical ML framework, all that can be done is state that an

estimate, ρ̂, of ρ is the maximum of p (H, T | ρ). So we have the value

ρ̂ML = 1 (1.14)

directly from equation 1.13, implying complete bias towards heads.
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Figure 1.2: Beta distributions; in each case the abscissa is ρ and the ordinate is p (ρ). Top
left: Flat prior p (ρ) ∝ 1. Top Right: Posterior p (ρ | H, T) for a flat prior and single flip
yielding heads. Bottom left: Prior with α = β = 100. Bottom right: Prior with α = 7 and
β = 5.

2. Flat prior Now assume that we can proceed in a Bayesian sense, so

p (ρ | H, T) =
1

p (H, T)
p (H, T | ρ)p (ρ) . (1.15)

Setting p (ρ) ∝ 1 (figure 1.2, top left), the maximum of p (ρ | H, T) is still at 1, but it is now a

function (figure 1.2, top right); there is finite probability that ρ can take any value between

0 and 1 (or more correctly, 0 < ρ 6 1; ρ cannot be zero). This is important; it implies that

the bias is probably not 1 at all. It is clear from the figure that there is a probability of 0.25

that ρ < 0.5.

3. Informative unbiassed prior In fact, p (ρ) ∝ 1 does not represent prior knowledge at

all; there is strong prior knowledge that the coin is unbiassed. This can be represented by a
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beta distribution

p (ρ) ∝ ρα−1(1 − ρ)β−1, (1.16)

where α = β and α � 1. Figure 1.2, bottom left, shows such a distribution with α = β =

100. Again following equation 1.15, we find that ρ can take any value between 0 and 1, but

the function has a clear peak at

ρ̂MAP =
H+ α− 1

H+ T + 2α− 2
=

α

2α− 1
. (1.17)

For large α, this is very close to ρ̂MAP = 0.5, so the single flip does not change the prior very

much.

4. Informative biassed prior Say there is some prior knowledge that a coin is biassed;

it appears to be generating more heads than tails. This potentially alters the prior in two

ways:

1. The maximum of the prior should be shifted away from 0.5 towards, say, 0.6. So

α 6= β.

2. The prior should be widened, representing uncertainty, so α and β should be much

smaller, closer to 1.

Say α = 7 and β = 5 (which gives a peak at 0.6, illustrated in figure 1.2, bottom right). The

posterior distribution now has a peak at

ρ̂MAP =
H+ 7 − 1

H+ T + 12 − 2
=

7
11

(≈ 0.636). (1.18)

There are two points here:

1. The initial “estimate” for a single flip is quite close to the prior.

2. Because the prior is wider, it would only take a few more flips (around 10) for the

data to have a significant effect.

This “biassed” prior, then has an effect somewhere between the “flat” and “unbiassed” priors.

More generally, it follows that an informative prior allows stronger conclusions to be drawn

with fewer data, but only if the prior is correct. Conversely, an incorrect prior will require

more data to reach the same strength of conclusion.

1.3 Applications of Bayesian methods

1.3.1 Bulk mail

Probably the most ubiquitous application of the Bayesian method in use today is the Bayesian

“Spam Filter” of Sahami et al. (1998). In that work, a rule based system for classifying bulk

email is replaced with a probabilistic one. In fact, the system is a combination of a naive

Bayes classifier, attributed to Good (1965), and a vector space model. So, it is not Bayesian

in the sense of attaching priors to parameters, but the rigorous framework is present. It is

worth stressing that the term “naive” in this context refers to the features used by the classi-

fier being assumed independent. The authors felt the need to justify the naive assumption,
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but in practice it appears to be perfectly reasonable in the sense that the resulting system

works.

1.3.2 Neural networks

An earlier (and more thorough) example of the Bayesian method is its application to neural

networks by MacKay (1991, 2003), popularised by Bishop (1995). MacKay’s multi-layer

perceptron (MLP) was useful because it could produce error-bars on the outputs owing to

its actually producing PDFs. However, his main contribution was perhaps more subtle: At

the time, it was popular to use a technique known as weight decay to penalise large weights

in the MLP. MacKay showed that weights could be penalised by means of a (Gaussian) prior.

This led to a very similar training mechanism, but with the added security of knowing what

the assumptions were. In this sense, he was showing that an ad-hoc technique could be

made rigorous by means of the Bayesian framework.

1.3.3 ASR

Automatic speech recognition (ASR) is perhaps the most persuasive illustration of the power

of both statistical rigour and the Bayesian approach. The first ASR systems were template

based (Holmes and Holmes, 2001). That is, a set of templates of individual words were

stored. A new word was compared with each template using a dynamic programming pro-

cedure, yielding a score representing a distance between the new word and each template.

The new word was classified as being the same as the template corresponding to the lowest

score.

The question then arose: How can this be generalised to the case where a whole sentence

is spoken? In particular, how can the fact that some sentences are more common than others

be accommodated. Whilst one can imagine various ad-hoc solutions, the key insight is that

it can be trivially represented as a hypothesis test: We have a set, G, of grammatical entries

(words), and some observation sequence, a. The task is choose the grammatical sequence,

g, selected from G, with highest likelihood:

ĝ = argmax
g

p (g | a) = argmax
g

p (a | g)p (g)

p (a)
. (1.19)

So, Bayes’s theorem naturally leads to the concept of an acoustic model p (a | g) and a

language model p (g). It is described by Bahl et al. (1983) amongst others. Further, the

template and dynamic programming can be seen as the evaluation given a point estimate

of section 1.2.3 and replaced by hidden Markov models (HMMs) and the Viterbi algorithm

(Viterbi, 1967; Forney, 1973). The HMMs in turn are trained using the ML estimation of

section 1.2.3 (Baum et al., 1970). The language model is normally N-gram based; Chen and

Goodman (1996) give an older but thorough review.

Given the rigorous formulation, it is then possible to bring in other techniques that would

otherwise be rather difficult to introduce. For instance, the concept of maximum likelihood

linear regression (MLLR) (Leggetter and Woodland, 1994) is now ubiquitous in ASR, but

would have been impossible without the statistical formulation.

Thus far, the above is statistically rigorous but not Bayesian. However, it has enabled

Bayesian approaches, especially in adaptation. The first was the MAP approach of Gauvain

13



and Lee (1992, 1994), which takes a necessarily Bayesian interpretation of the acoustic

model parameters, allowing use of small amounts of extra data to tune the HMM parameters

towards a particular situation. Later, the linear transform used for MLLR adaptation was

also interpreted in a Bayesian sense, allowing the transform to be trained on even smaller

amounts of data. The current state of the art is probably the structural MAP approach of

Siohan et al. (2002).

It is worth emphasising that HMMs are known not to be particularly good models of

speech. Rather, their success stems from the fact that they can be trained easily. Further,

that being more rigorous about their training leads to improved performance suggests that,

at least in this case, the suitability of the model is secondary to treating the model properly.

1.3.4 Summary

The above implies a set of principles governing the Bayesian method. Certainly the model

should be explicit, relating model parameters to data via a generative mechanism. However,

it is not important that the model is accurate; rather the analysis should reflect the assump-

tions. Unknown variables should be removed by marginalisation; MAP and ML are ap-

proximations to this. Where inference follows the opposite direction to generation, Bayes’s

theorem should be used to “invert” probability. Finally, note that priors are necessary both

for marginalisation and inverse probability.

1.4 Motivation for the thesis

Taking the applications described above together, it is possible to discern a generalisation as

follows:

1. A simple problem can be solved using an ad-hoc but intuitive formulation. The ad-hoc

formulation does not easily support more complicated cases.

2. Reformulating with statistical rigour allows more complicated cases to be supported.

Other techniques that are themselves statistically rigorous fit into the framework eas-

ily.

3. Taking a Bayesian approach to parameters allows further benefits in terms of data

sparsity.

This leads to two hypotheses1 for the thesis:

1. Where an existing technique is somehow ad-hoc or not rigorous, we hypothesise that

making it rigorous will lead to benefit in terms of allowing extensions that would not

be possible otherwise.

2. Where an existing technique is rigorous, but not Bayesian, we hypothesise that making

it Bayesian will lead to benefit in terms of robustness to small sample sizes.

Each of the papers in the following chapters, whilst targeting its own end, goes some way

to investigating these hypotheses. That is, each paper is written from a stance that the

hypotheses are true. Whilst the hypotheses are extremely general, they do provide a means

to bind the papers in the thesis, and to draw conclusions.
1Of course, these hypotheses are being stated after the work has been done. Nevertheless, I believe they are

representative of an approach taken at the outset of each piece of work in the thesis.
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Chapter 2

Dialogue

2.1 Introduction

Around 1995, I began to work closely with the speech research unit (SRU) in Malvern. In

fact, the pattern processing groups and SRU were very closely related, the former having

grown out of the latter. The project was called spoken language understanding and dia-

logue, which had the (rather unappealing) acronym SLUD.

SLUD was about investigating techniques that might be useful in data-driven processing

of events at a higher semantic level than phones or words. It grew from the observation that

automatic speech recognition (ASR) tended to be data-driven and worked well. By con-

trast, language processing tended to be rather hand crafted and worked less well. Further,

attempts at hand crafting ASR tended not to help. It was better to design algorithms that

could learn from data.

At the time, the SRU had had success in topic spotting, and in a technique that involved

using dynamic programming (DP) to find long sequences that were discriminative of topic

(Nowell and Moore, 1993, 1995). The original plan was to use these techniques to dis-

tinguish dialogue moves (more often called dialogue acts). The moves were those in the

dialogue games of Kowtko et al. (1993), using the HCRC (Human Communication Research

Centre) Map Task Corpus (Anderson et al., 1991). Initial results had been published by Bird

et al. (1995).

Our initial approach was to take a step back from the DP sequences, and find a baseline

using some very simple feature. The language modelling concepts of unigrams and bigrams

were good candidates. At the time, It was possible to submit incomplete papers to ICASSP

(the International Conference on Speech and Signal Processing); we submitted one with

blank tables of results headed 1-gram, 2-gram, DP features etc. It was rejected; this turned

out to be a good thing, because we did not progress beyond unigrams.

2.2 Relevance

In the theme of this analysis, the dialogue move recognition problem is a classic statisti-

cal small sample size problem. There are observations (words) from which inference is

required, but no data is available. Given the lack of training data, techniques based on

parameter estimation simply do not work; parameters must be marginalised.

There are two key points from a Bayesian point of view:

17



Choice of model Being explicit about the generative model leads to the correct inference

solution. It is possible to change the model slightly (from multinomial to Poisson), in

which case the statistical approach changes.

Choice of prior In this case, the prior is simple but necessary. It is an objective prior (data-

driven).

2.3 Overlap

There is some overlap between the papers in this section. In particular:

1. The core work presented in Garner et al. (1996) formed the basis of the project, and

was later extended into the journal submission (Garner, 1997), so many of the results

are repeated.

2. Many of the dialogue related results from Garner and Hemsworth (1997) are repeated

in Garner (1997).

However, Garner and Hemsworth (1997) contains an analysis of the LOB (Lancaster Oslo

Bergen) corpus, and results using absolute discounting that do not appear elsewhere. Gar-

ner (1997) includes new results based on a log-linear prior, and new results for vocabulary

pruning based on equal move probability.

It might be argued that Garner et al. (1996) is redundant given Garner (1997). I include

it because

1. It represents a chronological and appropriate approach to the research, testing mate-

rial at a conference before submitting to an archival journal and evolving the idea.

2. It is shorter and hence easier to read.

3. It has other authors, reflecting the fact that, whilst it is mainly my own work, it was

not done in isolation.

With regard to the final point, and with the benefit of experience, I believe it was a mistake

not to include the other authors on the final journal submission.

2.4 Paper walk-through

1996: A theory of word frequencies and its application to dialogue move recog-
nition

Philip N. Garner, Sue R. Browning, Roger K. Moore, and Martin J. Russell. A theory

of word frequencies and its application to dialogue move recognition. In Proceed-
ings of the International Conference on Spoken Language Processing, pages 1880–1883,

October 1996.

As the title suggests, we thought this represented a new theory of word counting; the

application to dialogue moves was secondary at the time. The prose proceeds extremely

quickly, almost skipping the background and motivation.
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The paper begins with a very quick overview of the application area; that is, an inter-

pretation of the HCRC map-task corpus as a classification task. The map-task corpus is

annotated with dialogue moves; we wanted to infer the dialogue move given the words.

The section 2.2 on methodology simply states that the maximum likelihood classification

task is dictated by Bayes’s theorem, and that the model is based on sequentially sampling a

categorical random variable. Results are presented immediately (at the top of page 2!) and

the discussion points out that something is wrong. In particular, too many utterances are

classified as ‘Ready’, and this is counter-intuitive.

Section 3 proceeds to add some rigour to what is thus far somewhat intuitive. In partic-

ular there are three insights in section 3:

1. In calculating probabilities in the intuitive way, one is actually assuming a particular

model — a multinomial.

2. If that is the assumption, there is a right way to express that assumption mathemati-

cally. Whilst it is still intuitive, it is not obvious.

3. The unknown vocabulary, V, can be removed by making the same approximation that

relates the Poisson and binomial distributions, yielding a multiple-Poisson.

4. Using this slightly different assumption, there is a right way to approach the mathe-

matics.

Section 4 presents a rather more detailed description of Zipf’s law as a means of incor-

porating prior knowledge in the formulation. Zipf’s law states that a rank ordering of word

frequencies is roughly reciprocal square root in shape. A figure is presented showing that

Zipf’s law broadly holds over a several unrelated databases.

It is shown that Zipf’s law can be reinterpreted to represent a prior for the multiple Pois-

son distribution, but it cannot quite be represented by the (conjugate) gamma distribution.

In section 5, two evaluations are presented. The first is a repeat of the evaluation of

section 2 showing that the problems associated with the intuitive solution are addressed

by the Poisson distribution, i.e., there is no counter-intuitive favour for the class ‘Ready’.

The second experiment equalises the amount of data per class (dialogue act), then plots

performance against amount of training data. This shows that both the reformulation and

the prior have quite significant benefit.

1997a: A keyword selection strategy for dialogue move recognition and multi-
class topic identification

Philip N. Garner and Aidan Hemsworth. A keyword selection strategy for dialogue

move recognition and multi-class topic identification. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, April 1997.

The paper opens by discussing topic identification, which is by definition a two-class

problem (the classes are ‘Wanted’ and ‘Unwanted’). The introduction also states that the

two class problem can be solved by maximising a measure known as ‘Usefulness’, which is

a likelihood ratio. This likelihood ratio is also a means to choose which keywords to use

(hence the name). It is then stated that in the general M-class case, the decision rule backs

off to Bayes’s theorem, but there is no general definition of usefulness to determine the
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choice of keywords. The remainder of the paper is about how to define usefulness for the

M-class problem.

Section 2 introduces some information-theoretic measures that intuitively appear capa-

ble of functioning as usefulness:

1. Mutual information can represent the information provided about a dialogue move

event by a word event.

2. Change in entropy is the increase in entropy of the ensemble given a word event.

3. Salience is a weighted mutual information used by Gorin.

Section 3 then derives a new measure being the expected change in class posterior probabil-

ity when a word is observed. This is intuitively reasonable, but also specifically maximises

the decision rule. It is shown that this strategy when applied to a multinomial based mea-

sure yields the same usefulness measure that would be used intuitively. In the case of the

Poisson distribution the form is tractable, but contains digamma functions.

Section 5 presents experiments. The basic technique was to gradually increase the size

of the vocabulary using the given usefulness metrics, and evaluate classification accuracy vs.

vocabulary. Two databases were used; the HCRC map task corpus, with classes being dia-

logue moves, and the LOB corpus with classes being report topics. For the multinomial tests,

two options were available to handle out of vocabulary words (OOVs); a default count of

0.5, or absolute discounting (from the language modelling literature). For the Poisson case,

OOVs were taken care of via the gamma prior. Results favoured the Poisson distribution,

showing that the generalisation of usefulness extended to that case. Subsequent discussion

focusses on the comparatively poor performance of mutual information, and the fact that

change in entropy can work well.

1997b: On topic identification and dialogue move recognition

Philip N. Garner. On topic identification and dialogue move recognition. Computer
Speech and Language, 11:275–306, 1997.

This paper in Computer Speech and Language is effectively a consolidation of the above

two papers; however, all sections are expanded.

The first few sections follow Garner et al. (1996), but adding context and discussion.

This places the work with respect to other literature, and puts the theory on a sound foot-

ing. The two class usefulness is explained from first principles, showing it to be a loss

minimisation strategy.

In section 3, the generative model associated with the multinomial is explained. An

experiment is presented for the naive (or intuitive) case, and the unknown word problem

is discussed in section 3.3. The section concludes by showing that the Bayesian (or max-

imum a-posteriori, MAP) solution to the multinomial (which is a dice-throwing model) is

dependent upon the vocabulary.

Section 4 introduces the multiple Poisson in detail, explaining the derivation from the

multinomial; section 5 then discusses Zipf’s law and how to use it to represent a prior. Two

possible prior forms are discussed; the first is a gamma distribution that is conjugate to the

Poisson likelihood. The second is an ad-hoc log-linear prior that fits the data better, but is

not conjugate. Word sequence probabilities are given for each of the two possible priors.
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Section 6 presents essentially the same evaluation that was first presented by Garner

et al. (1996), except that this time the log-linear prior is included. The log-linear prior is

shown not to have any benefit over the conjugate prior.

The final technical section, 7, presents a summary and extension of the work presented

in Garner and Hemsworth (1997). The multi-class discriminability measure is derived in

detail for both the multinomial and Poisson distributions. Figure 6 is a summary of the

original results; the multinomial and Poisson on the same graph emphasising the difference.

Figure 7 is new; it shows the same information, but for equal move probability. Figure 8,

however, is taken directly from the conference paper.

The conclusions state that the Poisson based measures of both probability and discrim-

inability provide a better foundation than ad-hoc or multinomial ones. Further, numerical

results from other authors are placed into context.

2.5 Analysis

2.5.1 Method

When I began working on SLUD, the other project members had thought about the dialogue

problem and about the features, but less so about the discrimination method. In particular,

they wanted to view the problem as an expanded topic spotting problem. This was itself

problematic because topic spotting is fundamentally a two class problem; dialogue move

recognition is multi-class. Further, the two class nature of topic spotting leads naturally to

likelihood ratio approaches, and this was the basis of the measure known as usefulness that

was favoured at the time. Usefulness was useful because it was both a discrimination metric

and an indicator of the utility1 of a given feature. However, it was not clear how to apply

usefulness in a multi-class problem.

In coming from a pattern recognition group, I was in a position to first sort out the

discrimination method. This amounted to going back to first principles to derive usefulness,

showing that it was just an application of maximum likelihood, and writing down the multi-

class solution. It is section 2.2 (Methodology2) of Garner et al. (1996). Whilst it seems

trivial now, at the time it was well received because it gave a sound basis to an area that

had previously not been well understood.

2.5.2 The small sample problem

In doing dialogue move (or topic) discrimination using word frequencies, it is natural to

try to attach a probability to each word in the sentence. The probability of the sentence

is then the product of the probabilities of the component words. These component word

probabilities come from training data. The naive approach is to count the number of times

a given word appeared in data of a given move (call it n), then divide by the total number

of words in that move (call it N), to give

P (w | n,N) =
n

N
, (2.1)

1I think utility is probably a better word than usefulness, but it has a distinct meaning in information theory
2Which should really be just method; methodology is study of methods
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where I am using P (w | n,N) here to loosely represent probability of word w. The notation

in the papers is more rigorous.

The difficulty arises when one tries to do this for several moves. It is illustrated by the

three “reply” moves:

R-Y is reply affirmative; it is a reply to a question and has the meaning yes. In practice, it is

composed of words such as yeah, yep, OK and all right.

R-N is the opposite; it is a negative reply to a question. It tends to be composed of words

like no, nope and different.

R-W is a more general reply to a question of the form what/where/how etc. It has a very

general vocabulary; much like normal speech.

Given a common word such as yes, it is straightforward to apply a probability to this for

moves R-Y and R-W. It is likely, however, that yes was never observed in the move R-N

(n = 0). This gives it a probability of zero, hence the whole sentence has probability zero.

Clearly something is wrong; no word can have a probability of zero; small certainly, but

not zero. The reason is data-sparsity; there simply isn’t enough training data to cover all

words in all moves. Of course, the problem is well known in language modelling, although

it typically occurs with higher order n-grams rather than unigrams.

As in the method case, the initial work had identified that there was a problem with small

sample sizes, but had applied only a temporary fix. The fix was to assume that unobserved

samples had actually occurred 0.5 times. This turned out to have come from a conversation

with someone with a statistics background who had understood the topic spotting appli-

cation, understood the counting problem, and given a quick solution based on a working

knowledge of statistical regularisation techniques. It was never meant to be an authoritative

answer.

2.5.3 Dirichlet solution

In looking at the sentences in a Bayesian manner, it is natural to look for a generative model

for the words. A good initial model is a dice-throwing model, which is represented by a

multinomial distribution. At any given time, each word has a given probability of being

selected. The probabilities of all words sum to unity.

It turns out that if one assumes a multinomial and derives the ML solution, one ends up

with the same n/N solution that the naive approach gives. This is important though; it indi-

cates that in dividing n by N, one is implicitly assuming a multinomial model. However, the

Bayesian approach also points to what is missing: With no contribution from the likelihood

term, the inference comes from the prior.

The common conjugate prior for a multinomial is a Dirichlet distribution. It turns out to

be straight-forward to represent a flat prior using a Dirichlet distribution, in which case the

maximum a-posteriori (MAP) estimate becomes

P (w | n,N) =
n+ 1
N+ V

, (2.2)

where V is the vocabulary size. Notice that when n = 0, the probability is not non-zero.

However, there is now a new parameter, V. This is explained in section 3.1 of Garner et al.

(1996).
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2.5.4 Vocabulary size

The revelation that the vocabulary size was important prompted a rather long and fruitless

search for a means to find it.

The language modellers’ approach is to fix V to some convenient number, then place

all out of vocabulary (OOV) words into an unknown word class. This works for automatic

speech recognition (ASR) because the vocabulary is assumed closed. In dialogue move

recognition, however, the vocabulary is open. Rather, we need the vocabulary from which

the words are being drawn; this is the total number of words known to all the speakers.

It turned out that various work had been done by statisticians in counting species. That

problem can be stated as follows: A biologist is collecting data at the edge of an inaccessible

forest. In one day, he has seen (say) 20 birds, 3 small mammals and one large mammal.

How many species are there in the forest? In our case, the species are words and the number

of species is the vocabulary; otherwise it is exactly the same problem. These techniques had

been applied by Efron and Thisted (1976) specifically for finding the vocabulary of William

Shakespeare.

Although the species counting techniques were interesting, one conclusion was that the

resulting vocabularies simply depended on initial assumptions. It was not an exact science.

We also tried (unsuccessfully) to put a prior on V. The same problems arise, however:

Which prior distribution, and with which parameters? Thankfully, a more elegant solution

came to light.

2.5.5 The Poisson solution

I had come across the way a Poisson distribution could be derived from a binomial. Although

the reason to do this was originally to simplify computation, it was clear that another key

points was that a binomial distribution has two parameters whereas a Poisson has only one.

It struck me that the same thing could be applied to the multinomial.

The result, as detailed in Garner et al. (1996) section 3.2, is the multiple Poisson distri-

bution. Its (crucial) advantage is that it can model known words whilst basically ignoring

OOVs. Whilst the multiple Poisson was known as a distribution, it was certainly new in

language processing. The Poisson distribution is usually used as an approximation to the

binomial. In this case, however, it represented a change in the underlying assumption of the

generative model.

2.5.6 Zipf prior

Whilst the multiple Poisson neatly got around the unknown vocabulary problem, the ques-

tion of the prior still remained. Indeed, the Poisson has a variable that can cover the whole

positive real axis rather than just 0 to 1, so a flat prior is difficult to assign. The solution was

to make use of Zipf’s law. Although it tends to be used in language processing, Zipf’s law is

really just a power law that occurs in other fields too: It says that classes chosen at random

are likely to be unlikely.

In fact, Zipf’s law is about words arranged in rank order, but figure 1 in Garner et al.

(1996) shows how to re-arrange the plot to get a probability density function (PDF) of word

frequency corresponding to the Poisson parameter. We measured the slope empirically by

using data from the internet, and fitting a conjugate gamma distribution by eye (figure 2 of
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the same paper). Although the data-sets were quite small with hindsight (< 1 m words),

data from quite different sources were found to correspond quite well.

Overall, the combination of the multiple Poisson and Zipf based prior worked well. Aside

from leading to an improved overall move classification, perhaps more importantly, it also

distributed the classifications more evenly across the available moves, evident in tables 1

and 2 of Garner et al. (1996).

2.5.7 Language modelling and vocabulary pruning

After publishing the first paper, it became clear that two issues were outstanding:

1. What we were actually doing was language modelling, albeit with a very simple

model. It was necessary to evaluate standard language model techniques such as

discounting.

2. We had been using the whole vocabulary of the task to perform classification. It had

always been clear, however, that only discriminative words were necessary. What was

less clear was how to find the discriminative words. In the two class multinomial case,

the usefulness measure also indicated discriminative words, so it had never been as

issue. The difficulty was in how to do it over multiple classes.

Both of these problems were approached by Garner and Hemsworth (1997), perhaps em-

phasising the latter.

Given the opportunity to supervise a new colleague, Aidan Hemsworth, I described this

problem to him, and he took up the challenge (amongst other things). For the language

modelling, we looked at discounting and simply implemented a standard technique. In ad-

dition, Aidan was interested in information theoretic measures for vocabulary selection, and

came up with two possible ones: Mutual information and change in entropy. He was able

to show that they could be used to select reasonable keywords. In assigning the informa-

tion measure to each word, it seemed reasonable to average or take an expectation over

the different classes. In any case, Aidan was able to build up a reasonable approach to the

problem. We also compared with a related measure known as salience introduced by Gorin

(1995).

For my part, I felt that it ought to be possible to choose words in a probabilistic sense

rather than an information theoretic sense. For instance, the usefulness measure used in the

two-class case, even though it looked like an information theoretic measure, was actually

derived probabilistically.

Driven by the fact that usefulness suggested that the useful words were the ones that

contributed most to the score, I tried an approach based on differentiating the probability

measure. One key to this was to minimise the reciprocal of probability rather than maximise

the probability itself. This is useful because Bayes’s theorem has a product in the numerator

and a sum in the denominator; the reciprocal separates into simpler terms.

Applying this method to the multinomial form of the problem resulted in virtually the

same usefulness measure that was used in topic spotting (Garner and Hemsworth, 1997,

section 3). This meant we had a generic method of finding the utility of a given word in-

dependently of the number of classes or underlying distributional assumptions. We applied

the method to the Poisson based measure and, whilst the functional form was not trivial to

compute, it was reasonably simple.
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The performance of the new usefulness and information theoretic measures is illustrated

in figures 1 and 3 of Garner and Hemsworth (1997). In summary, the combination of

the Poisson based measure and multi-class usefulness perform far better than any other

combination.

2.5.8 Improved prior distributions

The work thus far was consolidated into a journal article (Garner, 1997) that also included

a section on priors.

Previously, I had approximated the plot from Zipf’s law using a gamma distribution. This

bothered me because it really wasn’t right. Fundamentally, a gamma distribution rises poly-

nomially and falls exponentially; by contrast, the Zipf plot falls polynomially. The gamma

distribution can be made to fall polynomially, but only with a gradient greater than -1. This

is illustrated in figure 3 of Garner (1997). Also illustrated is a better fitting line based on an

ad-hoc but pragmatic distribution: A log-linear fit.

The log-linear prior was not conjugate; that is, it did not have a convenient functional

form. This led to difficulties in doing the marginalisation. It is well known that Bayesians

expend much effort, often with a copy of “Gradshteyn” (Gradshteyn and Ryzhik, 2000),

searching for solutions to integrals. This was certainly the case here. However, the integral

did turn out to have a solution in terms of confluent hypergeometric functions, and these

can be evaluated using published algorithms.

The log-linear prior gave no significant improvement over the gamma prior; rather, on

the whole it was worse. Certainly when taking into account the computational complexity

it brought no extra value.

2.5.9 Summary

The three papers Garner et al. (1996), Garner and Hemsworth (1997) and Garner (1997)

describe work in dialogue move recognition. The contributions are as follows:

A multiple Poisson based model for word frequencies that is independent of the vocabu-

lary.

A generalised measure of utility for words that is independent of the underlying distribu-

tion and of the number of classes.

A Zipf-based prior that represents Zipf’s law in terms of PDF of frequency, plus interpreta-

tions as gamma and log-linear distributions.

2.6 With hindsight

2.6.1 Multinomial

In some sense, I don’t think I dealt fairly with the multinomial distribution. For instance,

the Zipf based prior, suitably normalised for a probability, could have been applied to the

multinomial to give a word probability similar to

P (w | n,N,V) =
n+ 0.1
N+ 0.1V

, (2.3)
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where the 0.1 is the gradient of the Zipf plot, or perhaps

P (w | n,N,V) =
n+ 1/V
N+ 1

, (2.4)

with V chosen to be the vocabulary of the training set.

Certainly the multiple Poisson was neater, but I was also perhaps too keen to work on

my own invention rather than apply the insights to the simpler model.

2.6.2 Priors

Given a distribution, it is possible to work out a weak (Jeffries) prior. The weak prior is

usually quite simple, often improper. Typically for a positive quantity x such as a variance,

the weak prior is the reciprocal of the quantity, x−1. This is polynomial, not so different

from the x−0.9 that comes from setting α = 0.1 in the gamma prior.

It is possible that Zipf’s law is actually just a weak prior. Proving this would be an

achievement in itself as it would tie together two natural but unrelated occurrences.

Another possibility would have been to use an inverse-gamma distribution. The inverse-

gamma naturally rises exponentially and falls polynomially. It is, however, not conjugate; it

would probably lead to a fairly complicated marginal distribution.

2.6.3 Language modelling

I did try the multiple Poisson in a language modelling problem. At the time, I could not get

it to work better than a standard smoothed unigram model. However, I now know that ASR

performance is dependent upon assumption of an open or closed vocabulary in the language

modelling. It is possible that I simply made a mistake.

2.7 Impact

Google scholar is aware of 16 citations of the journal article; slightly fewer for each of the

two conference papers.

I am aware of the following works that have been directly influenced by one or more of

the three papers:

• The work was continued to an extent by Simon Smith and Martin Russell at the Uni-

versity of Birmingham, and is reported in the Ph.D. thesis of Smith (2003).

• The papers were used as the basis for several patents filed by Canon Inc. (Garner

et al., 2000a,b,c).

• It was acknowledged by Allen Gorin in the context of his “How may I help you?” work

at AT&T (Gorin et al., 1997).

• Probably the most high profile citation is by Bellegarda (2000) in Proceedings of the

IEEE.
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Chapter 3

Formant analysis

3.1 Introduction

At the time I was working on the dialogue move recognition, another colleague, Wendy

Holmes, was working on a segmental HMM. The segmental HMM was an attempt to get

around the fact that a speaker independent HMM could generate (when sampled) consecu-

tive frames from different people; clearly not physically realistic. The segmental HMM first

defined a segment to be the time spent in a given state, so it was a semi-Markov model.

Then for each segment it generated a sample from a speaker independent distribution; this

sample was used as the mean of a (narrower) speaker dependent distribution. The effect

was that within any segment, the samples were more representative of a single speaker

rather than many speakers.

That the segmental HMM was a better model of speech led to the notion of using it for

speech synthesis. It was (and is) in principle possible to build a codec comprising a speech

recogniser followed by a speech synthesiser. This in turn required a feature extraction tech-

nique that could be inverted; at the time, MFCC (mel-frequency cepstral coefficient) based

front-ends were not designed to do that.

In looking for a suitable feature extracter, Wendy had come across a formant analyser

written by her father, John Holmes. Formants are an attractive feature for speech synthesis.

They can be re-synthesised using a formant synthesiser. They also represent tangible and

intuitively meaningful features, at least for speech scientists.

3.2 Relevance

In the context of this analysis, this chapter is an example of subjective prior elicitation.

That is, the prior is a mathematical representation of the opinion of an informed user. This

is related to the case of the drill operator of O’Hagan (1994): To find the accuracy of a

machine, you can get a good initial estimate by asking the human operator. The difference

is that, in this case, the human is interpreting the output of the machine in a probabilistic

sense.

It is subjective; a different operator would interpret the output differently.

Modelling and marginalisation are also important: An explicit model dictates a correct

approach, replacing an ad-hoc (albeit intuitively reasonable) one.
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3.3 Overlap

Whilst the two papers are quite distinct in prose, the underlying technique is the same.

However, there is very little technical overlap; they can be viewed as a single paper that de-

scribes the formant extracter followed by a mathematical exploration of how to incorporate

the formant information into ASR.

3.4 Paper walk-through

1997c: Using formant frequencies in speech recognition

John N. Holmes, Wendy J. Holmes, and Philip N. Garner. Using formant frequencies

in speech recognition. In Proceedings of EUROSPEECH, volume 4, pages 2083–2086,

September 1997.

This paper is an overview of the formant analyser in which the three authors each de-

scribe their respective work. My own contribution is in the second half (from section 3).

The introduction proceeds by introducing formants, and stating that formants cannot work

alone to distinguish certain speech sounds. However, for some other sounds (with a peaky

structure), formants can clearly be of use. It goes on to say that formant tracking has pit-

falls, in particular where formants are either not well defined, or not well distinguished. In

such cases, however, continuity constrains ought to help.

Section 2 argues that human experts can usually label formants quite accurately up to

a certain point. The limits are illustrated in figures 1, 2 and 3; in particular, the last figure

shows that there is ambiguity when fewer formants are visible. In this latter case, the human

expert can easily make several hypotheses.

The section continues (in 2.2) by describing an ad-hoc algorithm that labels formants in

a similar manner as might be used by a human expert. The labelling is based on log power

spectral frames of 64 point discrete Fourier transforms (DFTs), and the sequence proceeds

as follows:

• Each frame is compared with around 150 hand labelled templates, the “few” closest

ones are retained.

• These few are further compared using a dynamic programming (DP) approach. The

template with the best DP score is retained.

• The frequency warping from the DP is applied to the frame at a 125 Hz quantisation.

• A finer quantisation is obtained by comparing with templates of formant shapes.

In 2.3, a further DP process is explained. Instead of running in the frequency dimension,

this one runs in the time dimension and is concerned with formant continuity.

Section 3 introduces the concept of confidence estimates. During periods of silence,

background noise, or no obvious spectral peaks, there is no confidence in the formant es-

timates. By contrast, for peaky spectra there is high confidence. This uncertainty can be

represented as the variance of a notional Gaussian distribution of underlying frequency

about the estimated value. It is explained that in the formant estimator, low confidence val-

ues are used to favour (ad-hoc) prior values for formants rather than measured ones. In the
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recogniser, however, the variance associated with confidence is added to that of the model.

This in turn is an improvement over a previous ad-hoc method.

In section 4, experiments are presented. The key point of the experiments is to use 8

cepstra, but replace the upper 3 cepstra with the 3 formant estimates; the lower 5 cepstra

represent general spectral shape. Table 1 shows a logical progression of experiments where

the performance of 5 cepstra is improved by adding 3 more cepstra, but can be improved

much more (3 times more than for cepstra) by adding 3 formants instead. The confidence

framework must be used, otherwise the results deteriorate by the addition of formants.

Alternating hypotheses also help a little.

The discussion and conclusions essentially state that the formants behave as hoped, with

the variation in error rate for various conditions being expected.

1998: On the robust incorporation of formant features into hidden Markov
models for automatic speech recognition

Philip N. Garner and Wendy J. Holmes. On the robust incorporation of formant fea-

tures into hidden Markov models for automatic speech recognition. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, volume 1,

pages 1–4, 1998.

By contrast to the first paper, the second one was written largely by me, and is largely

mathematical. It opens with an introduction of formants, and a short description of the

potential shortfalls described in Holmes et al. (1997). It then makes a short case for the

confidence measure having the potential to overcome these shortfalls. Section 2 goes on

to state that the confidence measures are actually standard deviations, and these can be

squared and used as variances of normal distributions centred on the formant estimates.

High confidence represents small variance, low confidence is large variance.

Section 3 comprises the majority of the paper, describing the mathematical formulation

in some detail. In 3.1 it is argued that the formant extracter viewed as a generative model

emits both formant estimates and confidence estimates. This can equivalently be considered

as a noisy channel model, where a formant is corrupted by zero mean Gaussian noise. The

solution is shown to be a convolution of the model distribution with that implied by the

confidence estimate. This leads to the confidence variance adding to the model variance.

Section 3.2 considers the re-estimation case. Given observations with confidences, how

does one train an HMM set. The derivation follows that of Liporace (1982), first showing

that the re-estimation of the transition probabilities is unchanged from the standard case.

The expression for the model means is shown to depend upon the re-estimate of the vari-

ances; it is stated that the current value rather than the re-estimate can be used. In the

case of the model variances, however, there is no obvious solution, and an approximation is

necessary.

Two approximations are considered. Method 1 (section 3.2.1) makes the assumption

that the confidence is time independent for a given state. Although this yields a solution, it

is not necessarily positive definite. As the degenerate case is where the confidence is low, it

is suggested that accumulation only happen for high confidence values. Method 2 (section

3.2.2) is simply a mathematical trick that allows the variance to be isolated, but also involves

the same value being replaced by its current value elsewhere in the expression.
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Section 4 briefly points out the corollary that method 1 ceases to be an approximation

for the case of constant confidence. This is identical to having additive stationary Gaussian

noise.

Experiments are presented in section 5 in the same manner as for Holmes et al. (1997):

Five cepstra that describe general spectral shape are augmented by other cepstra, or by for-

mants with various confidence handling. As reported in the previous paper, the confidence

measure is necessary to allow formants to work at all, and when used they are beneficial.

When the confidence is used in training too, a further benefit is observed, especially when

second choice formants are included. Both variance re-estimation approximations work

equally well.

3.5 Analysis

3.5.1 The Holmes formant analyser

The “usual” approach to formant extraction is to use, for instance, linear prediction, then

project the pole positions onto the unit circle by solving a polynomial. This kind of approach

has two drawbacks, however:

1. Formants are often not easily distinguished; in the extreme case, two formants can

merge into a single peak. Linear prediction cannot distinguish them in this case.

2. Formants can often disappear; the often cited case is for nasals, where one formant

simply ceases to exist.

These and similar cases are illustrated on page 2 of Holmes et al. (1997).

John Holmes had been interested in formants for many years, and was no doubt frus-

trated with automatic formant extraction techniques. I recall him telling me that, even in

the cases above, he was able to look at a spectrogram and write down perfectly accurate

formant positions. His answer to this frustration was to design a formant analyser that he

could train in a very hands-on manner. It is described by Holmes and Holmes (1996), and

subsequently by Holmes et al. (1997).

The Holmes analyser contained many (of the order of a hundred) templates in the form

of hand annotated spectra. The templates were then warped in the same manner as dynamic

time warping, but along the frequency axis, in order to match spectra under test. Templates

with small warping scores, i.e., those that were not far away for the spectra under test, were

then used to label the formant positions. Using this paradigm, John was able to simply add

more templates when mistakes were made. Over time, a good reference template set had

presumably been accumulated.

One side effect of the warping was that any formant estimate could also have associated

with it a confidence value. The confidence was largely heuristic, but could be represented as

a four bit number — an integer from 0 to 15. One extreme of confidence represented high

confidence, being clearly defined formants; the other extreme was low (or zero) confidence,

being ill-defined or even missing formants.

3.5.2 The confidence problem

In trying to use the formant analyser in the context of ASR, we came across the difficulty of

how to incorporate the confidence measures. They were clearly important; they indicated
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that some numbers should not be relied upon. How to use them was far from clear, however.

The first attempt was to weight (in a multiplicative sense) the probability densities of the

formant features by a numerical confidence value; high confidence was 1, low was 0. This

had the effect of significantly reducing the likelihood of low confidence formants but, whilst

it worked to an extent, was flawed in the sense that it was ad-hoc.

The solution was not immediately apparent, and I do not recall how I came upon it, but

the answer appeared to be to interpret the confidence as a variance. In fact, the reciprocal

of variance known as precision was probably a better analogy, but we went with variance

because it was more familiar. The interpretation is as follows: The formant estimates are

means or modes of normal distributions. The confidence values are variances. In cases of

high confidence, the variances are very small (high precision), and the normal distributions

approach delta functions. For low confidence, the variances become high (low precision).

The high variance indicates that the formant can lie in quite a wide range. In the extreme

case, the variance is infinite1, yielding a flat distribution; this is indicative of a formant

simply not existing.

The interpretation is fundamentally Bayesian; it reinterprets the formant analyser as

a degree of belief indicator. The actual underlying formant positions are unknown state

variables; the formant tracker reports a degree of belief about these variables.

One key component of this interpretation was to attach variances to the confidence

values. Both John and Wendy understood the concept, and were able to do this. The paper

was a nice collaboration between the disciplines of speech signal processing and statistics.

Although I did not have a deep understanding of the formant analyser, I was able to enhance

it by providing a more rigorous statistical approach.

3.5.3 Convolving normal distributions

Given the interpretation of the formant analyser and confidence values, it still remained to

formulate how to use resulting distributions in an HMM based ASR system. In fact, the

formulation developed in parallel with the interpretation. It is described in detail by Garner

and Holmes (1998), and reduces to a fairly simple convolution.

If the model (HMM state) has mean mm and variance vm, and the observation (for-

mant) is a mean mo and a variance vo, representing an unobserved x, the combination is a

convolution of the two distributions:

∫∞
0
dx

Model distribution︷ ︸︸ ︷
1√

2πvm
exp

(
−
(x−mm)2

2vm

)
Observation distribution︷ ︸︸ ︷

1√
2πvo

exp
(
−
(x−mo)

2

2vo

)

=
1√

2π(vm + vo)
exp

(
−
(mm −mo)

2

2(vm + vo)

)

︸ ︷︷ ︸
Combined distribution with variances added

. (3.1)

That is, the variance from the confidence adds to the variance in the HMM state distribution.

It is appealingly simple.

Further, the interpretation is clear: For high confidence, the formant variance is small,

yielding the usual HMM calculation. For low confidence, however, the added variance is

high, tending to flatten out (hence equate) all state distributions associated with that obser-

1In fact, I don’t recall if the low confidence case was mapped quite to infinity.
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vation. In turn, competing models receive the same probability density contribution from

low confidence formants, but different contribution from high confidence ones.

Results were presented by Holmes et al. (1997) showing not only that the method

worked, but that it allowed formant features to out-perform otherwise comparable cepstral

features.

3.5.4 Training

Although we had proved that the variance method worked for ASR, it was in recognition

only. The models had been trained using an ad-hoc method; I do not recall exactly how, but

most likely by simply ignoring the confidence values. It was natural to try to incorporate the

variance method in training. The formulation turned out to be simple enough, but no closed

form solution existed for the mean and variance reestimation. In searching for a solution, I

was able to postulate two approximations. Wendy (who was the one familiar with the code

base) tried both approximations. The results are detailed by Garner and Holmes (1998).

We found that incorporating the variance into training was beneficial, but not so much so

as for recognition. This made sense; the training process was able to integrate errors over

many frames rendering errors in any given frame insignificant.

One aside is that whilst formulating the training, I found a (minor) mistake in the work

of Liporace (1982), which is seen as a kind of tutorial for reestimation by some people.

3.5.5 Summary

The two papers describe work in formant analysis. Overall there are perhaps three contri-

butions:

A formant model that models formant estimates along with variances in those estimates.

A recognition paradigm where the formant variances are added to the (HMM) model vari-

ances to incorporate uncertainty.

A training paradigm where approximations are presented to incorporate the same uncer-

tainty into model training.

3.6 With hindsight

It is a source of regret that this work was not consolidated into a journal article; it could

have expanded and deepened the original papers as follows:

1. The formant method was only evaluated on two corpora of digits. Whilst this is a

sensible start point, digits only have limited phonetic coverage. In turn, formants

model some phones better than others.

2. The mapping between formant analyser internal features, confidence values and vari-

ance values could have been analysed more thoroughly. In particular, it may have been

possible to derive variance values directly from the dynamic programming process in

the spectral matching.

3. The influence of delta features could have been investigated. In particular, formants

have much better defined dynamic properties than cepstra.
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3.7 Impact

Formant tracking has never been a mainstream technique, but the attraction of such features

still draws in researchers. When they publish, they do tend to cite this work; actually the

first paper more than the second. Owing to this, these papers are cited more than any others

with which I have been involved. Google scholar reports 47 and 34 citations for the two

papers respectively.

In particular, I am aware of the following works that have been directly influenced by

the two papers:

• Wendy Holmes went on to use the formant tracker in her work on segmental HMMs

(Holmes, 2004).

• Nick Wilkinson and Martin Russell considered the problem of phone recognition in

TIMIT (Wilkinson and Russell, 2002). In fact, they report poor results that could be

improved by using the confidence as a weighting factor against MFCC features.

• Martin Russell and Philip Jackson at the University of Birmingham also used the for-

mant tracker for segmental HMMs (Russell and Jackson, 2005).

• Ljubomir Josifovsky was aware of the work and cited it in his Ph.D. thesis (Josifovsky,

2002).

• Katrin Weber at Idiap cited it in the context of her HMM2 work (Weber et al., 2003).

• Perhaps most significantly, the papers are cited in the context of uncertainty decoding

(Stouten et al., 2006). In uncertainty decoding, a variance is associated with noisy

observations, usually in the context of the vector Taylor series (VTS) noise robustness

technique. Given the variance, it is natural to use the same technique, although it was

most likely rediscovered as the formulation is fairly well known.

The use in uncertainty decoding suggests that the training formulation may be useful

for training in noise. In Garner and Holmes (1998), I noted that for constant noise

variance one of the formulations ceases to be an approximation. This means that if

noise can be assumed to lead to a constant variance in the cepstral domain then the

formula can be used.
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Chapter 4

Noise robustness

4.1 Introduction

After a brief period working for Canon in the UK, I moved close to the head office in Tokyo.

At that time, the speech group was being “moved” from the research part of Canon into the

development part. There was some pressure to commercialise recognisers that had been

developed as research engines. In testing the recognisers, we came across the two major

difficulties that befall all commercial ASR groups:

1. The recognisers had to be multilingual to work in all countries in which potential

products were sold.

2. The products were aimed at potentially noisy environments and the recognisers were

not very robust to noise.

The solution to the first problem was rather simple: Build acoustic models for all target

markets. There was no research involved, just work.

The second problem was more involved; it turns out to be more like three interconnected

problems:

VAD (voice activity detection) is to distinguish voice from simply background noise. It

determines when someone is speaking, hence when a recogniser should be active.

Noise estimation is the estimation of the background noise that has to be distinguished

from speech in VAD, or removed from the speech in noise removal.

Noise removal is the reduction of noise in corrupted speech to yield uncorrupted (or clean)

speech.

Whilst at Canon, I tackled the first two of these moderately successfully. The third one I

began at Canon, but was not able to get good results until well after moving to Idiap in

2007.

4.2 Relevance

In the context of this analysis, the noise robustness problem is a small sample size problem.

In general, the task is to estimate a variance (of speech) given only one datum (observation

frame).
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In the first paper, A Bayesian framework is defined, but only a ML solution can be ob-

tained. In the later papers, the Bayesian method is extended to marginalisation over the

noise, and MAP estimation.

By contrast with the previous chapter, the approach to priors is either non-informative

or objective. Priors can be calculated from data.

In some sense, the approach is inverted: Instead of assuming a model and following the

right statistical method, the desire for a correct statistical method influences the design of

the model (using signal to noise ratio rather than energy). This is similar to the dialogue

approach in chapter 2, where the model was changed from multinomial to Poisson to enable

a better solution.

4.3 Overlap

The first paper in this section (Garner et al., 2004b) is totally distinct, sharing only the

Gaussian model, which is not a contribution. The second two have significant overlap,

the second (Garner, 2011) being an archival journal of the first (Garner, 2009a). There

are significant differences however: Garner (2009a) contains results using MFCCs and an

analysis of a gamma based prior; Garner (2011) contains results using PLPs (perceptual

linear prediction coefficients) on more databases (although it summarises the earlier MFCC

based ones) and contains further discussion about the articulation index.

4.4 Paper walk-through

2004: A differential spectral voice activity detector

Philip N. Garner, Toshiaki Fukada, and Yasuhiro Komori. A differential spectral voice

activity detector. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, Montreal, May 2004.

The paper is about voice activity detection (VAD), and opens with a discussion of the

reasons for VAD. In mobile telephony it is to save bandwidth and in ASR it is to save com-

putation. The spectral VAD of Sohn and Sung (1998) is then introduced as an appealing

model-based VAD that has stood up well to various other standard ones. It is stated that

there are two problems with the Sohn VAD: One is that it does not distinguish spectral

shape; the other is that it assumes adjacent DFT bins are uncorrelated.

Section 2 goes on to describe the background theory. A decision theoretic framework in-

volves a hypothesis, H, corresponding to speech or non-speech; this enables a cost function

to be formulated, and the expected cost to be minimised. The resulting function is similar

to that of Sohn and Sung (1998). In 2.2, the Gaussian model is summarised, including the

VAD decision rule. A parameter κ is introduced to handle correlation between adjacent DFT

bins.

In section 3, the differential spectral modification is derived. This is based on a simple

high-pass filter (HPF) running along each frame in the frequency dimension. It is argued

that this will correct for the two problems described in the introduction. The derivation is

shown to be a probabilistic change of variable; the required integral is stated to be too com-

plicated, and an approximation is calculated by working with consecutive pairs of bins. The
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derivation then proceeds as two special cases depending on whether the gradient is positive

or negative, the resulting density being a double-sided exponential. The VAD likelihood

ratio follows trivially.

The evaluation (section 4) is performed on a proprietary database of 3360 one word

utterances each embedded in 5 second recordings. 6 noise conditions are presented, 3 of

which are much noisier than the other 3. The evaluation is a pragmatic metric based on

whether the identified region overlaps with the actual speech region in the signal. The VAD

is implemented in both power spectral and mel spectral domains, and they are compared.

The noise estimator is a modified version of that of Sohn and Sung (1998). Results indicate

that in relatively clean conditions there is no gain over the usual Gaussian VAD. In noisier

conditions, however, the differential formulation is beneficial. There is no evidence to prefer

the mel spectral domain over power spectral domain.

2009a: SNR features for automatic speech recognition

Philip N. Garner. SNR features for automatic speech recognition. In Proceedings of
the IEEE workshop on Automatic Speech Recognition and Understanding, Merano, Italy,

December 2009.

The paper is quite long for a conference paper at 6 pages. It begins with a discussion of

noise reduction in the context of ASR. Cepstral mean normalisation (CMN) is discussed for

convolutional noise, and it is stated that it also works well in additive noise, especially with

variance normalisation (CVN, or CMVN together). The Gaussian model and spectral sub-

traction (SS) are discussed for additive noise. Noise tracking and histogram normalisation

are also discussed.

Section 2 presents a simplistic analysis of CMN in the context of additive noise. It is

shown that the feature presented to the decoder in this context is actually log(1 + SNR). It

is then suggested that since this is the case, it makes sense to calculate signal to noise ratio

(SNR) at the outset, rather than rely on CMN to do it.

Section 3 then presents are more rigorous analysis. The Gaussian noise model is intro-

duced, and it is shown that SS results as a maximum likelihood (ML) solution for the speech

variance. This suggests that it is the variance that is required (or is sufficient) for the de-

coder. Motivated by this, the SNR is defined to be the ratio of variances of speech and noise

and a similar derivation is done for SNR. In sections 3C and 3D, an alternative derivation

of basically the same expression is shown to result from marginalising over the noise, an

operation not possible for SS.

Section 3E shows that it is also possible to associate a prior distribution with the SNR,

and a maximum a posteriori (MAP) solution is derived using a gamma density as the prior.

Although it requires solution of a cubic, an analytical solution is possible; a means to set

the hyperparameters is also detailed. The gamma prior is shown to discourage higher SNR

values.

Experiments are presented in section 4 on the Aurora-2 database1. Aurora-2 is a noisy

version of the TIDIGITS data; it was used to evaluate contenders for the ETSI advanced DSR2

front-end (ETSI, 2002). The database and MFCC based front-end are described, together

with four techniques under test:
1http://aurora.hsnr.de/
2ETSI: European Telecommunications Standards Institute. DSR: Distributed Speech Recognition
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1. MFCC baseline

2. Spectral subtraction

3. log(1 + SNR) with an ML solution for SNR

4. log(1 + SNR) with a MAP solution for SNR

Results are shown with CMN and with CMVN. Subsequent discussion (section 5) points out

that SNR based features can outperform all other approaches. Use of a prior can further

improve results, but it is doubtful whether the associated complexity is worthwhile. It is

hypothesised that the benefit is coming from the relative placement of noise compensation

and filter-bank.

Before the conclusion, the noise tracker is discussed in section 5B. It is stated empirically

that a correction factor for the noise tracker is cancelled by the flooring of the noise, and

this leads to a solution without hyper-parameters. It is stated that no proof is evident.

In conclusion, SNR features appear to work well in noisy conditions when combined

with CMVN.

2011: Cepstral normalisation and the signal to noise ratio spectrum in auto-
matic speech recognition

Philip N. Garner. Cepstral normalisation and the signal to noise ratio spectrum in au-

tomatic speech recognition. Speech Communication, 53(8):991–1001, October 2011.

This paper is an archival journal version of Garner (2009a). Section 1 opens by in-

troducing both additive and convolutional noise reduction. It states that, from practical

experience, it is very difficult to beat CMVN for noise robustness, even though there is no

good reason for it to be useful for additive noise. The Gaussian model is briefly introduced

along with the goals of the paper.

Section 2 proceeds to essentially repeat the background of Garner (2009a), except that

a second, speaker dependent, convolutional noise is distinguished from the usual channel

noise. This serves to show that, whilst SNR features can remove channel noise directly,

there is a convolutional noise that must still be left to CMN; hence SNR features are not a

substitute for CMN. Section 3 goes on to largely repeat the formal derivation of SNR features

from Garner (2009a).

In section 4, the paper diverges from the conference version into a discussion of the

context of the SNR features. First, it is explained that the SNR is exactly the a-priori SNR

that is ubiquitous in speech enhancement. The approach of Lathoud et al. (2005) is then

discussed as a closely related, but more complicated model. Perhaps the most important

discussion is the comparison with the articulation index (AI); it is pointed out that the two

have the same form up to the linear transform. This in turn suggests a convergence between

psycho-acoustics and known best practice in ASR.

The noise tracker is discussed at some length. It is shown that a minimum tracker, a

noise estimator and the AI are all related via a constant modification of the SNR. Therefore,

a heuristic optimisation of this parameter cannot be attributed to just one of these enti-

ties. Finally, it is stated that the interpretation of CVN in the context of SNR is trivial: It

normalises for dynamic range.
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In section 5, experiments are presented. Results from the conference paper using MFCC

features on Aurora-2 are summarised. It is stated that previous experiments on Aurora-2

are unreliable because of the artificial and constrained nature of that database. Further,

PLP features are quite common nowadays and merit investigation. Experiments are then

presented based upon two clear hypotheses: to test beyond the limits of Aurora-2, and to

test PLPs. The background of PLPs is discussed, and the feature extraction mechanism is

presented.

First, results are presented for PLPs on Aurora-3, which is still digit based, but in real

noise. Expected results a-priori from Aurora-2 are stated, and it is shown that performance

on Aurora-3 fits broadly with the expectations, except for an improvement in otherwise

matched conditions. Results on Aurora-4 are then presented, which by contrast is large

vocabulary, but with artificially added noise. Again, a-priori expectations from Aurora-2 are

borne out quite well. Overall, PLP features appear to benefit more from the SNR-cepstrum

than do MFCC features. Finally, it is briefly stated that good results could not be obtained

on meeting data with rich text evaluation. This is attributed to meeting data not being so

noisy and train-test conditions being matched. This is again in line with predictions from

Aurora-2.

In section 6, a few issues arising from the experiments are discussed. It is stated that

results are not state of the art, but are intended only for comparison; the databases are

standard and other results are in the literature.

The difference between taking SNR before and after the filter-bank is discussed. It is

hypothesised that the SNR-spectrum lends itself to coloured noise, and the noises in the test

sets are suitably coloured.

Finally, the PLP power law is discussed. It was found experimentally that not using a

compression in PLP, usually cube root, is beneficial in noise. It is hypothesised that com-

pression is not a noise robust technique, and in this scenario the noise is more important

than perceptual issues.

In conclusion, SNR-spectral features have some advantages over spectral features, and

lend themselves to a Bayesian analysis. They perform well in combination with CMVN in

noisy conditions. The SNR-cepstrum can be seen as a form of AI, and uses features known

in enhancement too.

4.5 Analysis

4.5.1 The Gaussian model of speech in noise

The core statistical model is worth emphasising as it is the basis for the whole of this noise

robustness section. Assume that the input to a DFT is white Gaussian noise. As any linear

combination of Gaussian variates is also Gaussian, each output of the DFT is Gaussian. Now

relax the model a little to say that the DFT bins are still Gaussian, but their variances can

differ (which would not be the case for input white noise). The model is now capable of

representing coloured noise.

Assume that a DFT operation produces a vector, x, with complex components, x1, x2, . . . , xF,

where the real and imaginary parts of each xf are i.i.d. normally distributed with zero mean
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and variance υf. That is,

p (xf | υf) =
1
πυf

exp

(
−
|xf|

2

υf

)
. (4.1)

In the case where two coloured noise signals are distinguished, a background noise, n, and a

signal of interest, s, typically speech, denote the noise variance as ν and the speech variance

as σ. In general, the background noise can be observed in isolation and modelled as

p (nf | νf) =
1
πνf

exp

(
−
|nf|

2

νf

)
. (4.2)

The speech, however, cannot normally be observed in isolation. It is always added to noise.

When both speech and additive noise are present the variances add, meaning that the total

signal, tf = sf + nf, can be modelled as

p (tf | σf,νf) =
1

π(σf + νf)
exp

(
−

|tf|
2

σf + νf

)
. (4.3)

4.5.2 The Sohn-Sung VAD

The investigation of Garner et al. (2004b) began as an attempt to improve VAD. At the time,

we used a VAD that simply thresholded energy, and was hence sensitive to noise levels.

Increased noise meant increasing the threshold. In looking for a promising replacement we

came across a VAD design by Sohn and Sung (1998). The Sohn VAD had two appealing

properties:

1. It was noise adaptive; it contained a noise tracker that continually estimated back-

ground noise.

2. It was based on an explicit statistical model.

The Sohn VAD’s core likelihood ratio, equation 8 in Garner et al. (2004b), is just the ratio

of equations 4.3 and 4.2, accumulated across each frame:

L (t) =

F∏
f=1

νf
σf + νf

exp

(
σf

σf + νf
· |t|

2
f

νf

)
, (4.4)

where all terms are per frame.

4.5.3 VAD Implementation

The Sohn VAD was actually introduced in two relatively short papers: Sohn and Sung (1998)

introduced the basic concept, including an innovative noise tracker. Later, Sohn et al. (1999)

added an HMM based hangover scheme, and a decision-directed speech power estimator.

The implementation began as a superset of the all these techniques. None were so difficult

to implement, and the published results suggested that all together would work well.

However, in implementing the Sohn VAD, several issues arose. These issues are not

detailed in Garner et al. (2004b), but they serve to connect that paper with those of Sohn

and colleagues.

The first is to do with the VAD metric requiring estimates of the variances σ and ν. In the

case of the noise, the estimate can come from periods of speech inactivity. For the speech
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variance, however, the estimate favoured by Sohn et al. (1999) was the decision directed

(DD) estimator of Ephraim and Malah (1984). The DD estimator is ubiquitous in speech

enhancement; it is actually defined in terms of SNR, but in spirit it is of the form:

σ̂f,i = ρσ̂f,i−1 + (1 − ρ)
(
|tf,i|

2 − νf,i

)
, (4.5)

where t is the time frame and ρ ≈ 0.98, i.e., it is an infinite impulse response (IIR) filtered

spectral subtraction. We found that for VAD, no filter was necessary; just the SS of Sohn and

Sung (1998) SS worked well, although it was necessary to floor it as with the usual ASR

noise robustness calculation.

The VAD of Sohn et al. (1999) also made use of an HMM-based state machine. The

machine had two states corresponding to speech and non-speech. However, only forward

likelihoods (“alphas”) were calculated. The reverse pass that would normally calculate

“gammas” was omitted. This had the effect of behaving like another IIR filter; there was

a definite lag in the VAD. Of course, this had the effect that the authors required: It held

the VAD on for a little while after the speech appeared to have stopped. However, it also

caused a delay in the VAD firing in the first place. We found that a more conventional

state machine of the type in figure 4.1 worked better. The basic function is that unless the

Silence Confirmed

Speech Triggered

Speech Confirmed

Silence Triggered

Figure 4.1: VAD state machine

VAD metric remains valid for a minimum time, the machine will revert to the previous state

rather than advance to a confirmed state.

So, after much experimentation, the implementation was much closer to the original

one of Sohn and Sung (1998) than that of Sohn et al. (1999).

Another difficulty was with the noise tracker. Sohn and Sung (1998) derive a noise

estimator as

ν̂f,i =
1

1 + L (t)i
|t|2f,i +

L (t)i
1 + L (t)i

ν̂f,i−1, (4.6)

which is another IIR filter. Recall that L (t) can approach zero for pure noise, and can be

very high for high SNR. So, in high SNR conditions the noise estimate remains static, but for

noise there is a time constant that approaches zero. The solution to this was to introduce a

floor of ρν:

ν̂f,i =
1 − ρν

1 + L (t)i
|t|2f,i +

ρν + L (t)i
1 + L (t)i

ν̂f,i−1, (4.7)
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so, when L (t)i is small, the time constant is defined by ρν. Equation 4.7 appears in Garner

et al. (2004b), but the above explanation does not.

4.5.4 Differential VAD

The material in the previous section is not in the paper; we did not consider it novel enough

to try to publish. However, a differential VAD modification was worth publishing, the back-

ground of which is described below.

In testing the VAD on a variety of noise conditions, we found that it was rather sensitive

to gain. That is, it was necessary to set a somewhat arbitrary threshold, and this threshold

depended on the type and level of background noise. My colleague, Toshiaki Fukada, had

suggested high-pass filtering the power spectrum as a solution to this. In turn, I had come

across a paper by Nadeu et al. (2001) where the authors had described filtering along the

frequency axis of each frame. In fact, filtering is an additive process rather than multiplica-

tive, so it would not correct for gain as such, but it did seem to present advantages.

The initial difficulty with the filter was that it appeared to be a heuristic on top of what

was otherwise a rather nice probabilistic model. However, that difficulty could be turned

into an advantage by realising that the filter was actually a probabilistic change of variable.

The filter is initially the difference between two power bins; equation 10 in Garner et al.

(2004b). The joint probability is then equation 13 in the paper, and the change of variable

is equation 16.

A further difficulty then arises: To apply the change of variable to the whole frame, the

functional form becomes combinatorially intractable. This is at least in part because equa-

tion 16 in the paper has two alternate forms depending upon the sign of the filtered value.

The solution was to consider only distinct pairs of power spectra; reducing the number of

observations from, say, 128 to 64 (or 32 mel bins to 16).

4.5.5 Evaluation metric

It is worth mentioning the evaluation metric. VAD is often measured in terms of ROC

(receiver operating characteristic) curves, or RMS (root mean square) deviation of speech-

silence boundaries. We used something we termed “gross error”, which was more pragmatic.

The general idea was that VAD for ASR can often be made to work by adding a suitably

wide collar around the region indicated to be speech. This is especially true for short com-

mand and control utterances of the sort that we were interested in. It follows that as long

as the VAD indicates part of the required speech region, it is doing well. Figure 1 in Garner

et al. (2004b) is my formalisation of a set of conditions introduced by my colleague Toshiaki

Fukada. They define acceptable and unacceptable performance conditions in terms of the

start and end of speech detection. Whilst it was never proven or reported numerically, we

found that gross error had a good correlation with word error rate.

4.5.6 From VAD to noise robustness

The work on VAD was by no means independent of noise robustness, but used a rather unso-

phisticated noise robustness model. In tackling noise robustness in earnest, we were looking

for a pragmatic solution. By this, I mean that there are two rather extreme approaches to

noise robustness:
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1. A simple approach, using techniques such as spectral subtraction or Wiener filtering.

Whilst many authors had reported success, our experience at Canon was that the

performance was variable at best. We had an in-house test-set recorded in a few rea-

sonable noise conditions. Techniques tended to work well for some noise conditions,

but less well for others. SS and Wiener filters are characterised by ML solutions that

need ad-hoc regularisation before they work at all.

2. A complicated approach, typified by the vector Taylor series (VTS) approach of Moreno

et al. (1996).

If results in the literature are to be believed, this approach works very well indeed.

However, VTS techniques are characterised by requiring a large Gaussian mixture act-

ing as a prior on the speech signal. At Canon, we were trying to make the recognisers

smaller; such a large mixture was prohibitive.

Somewhere between these two approaches was the likes of the ETSI advanced DSR front-

end (ETSI, 2002). The ETSI system worked well, but was over-complicated, lacked theoret-

ical rigour and was encumbered by patents.

It seemed to me that there ought to be a simple solution to the noise robustness problem,

at least for stationary white or coloured noise. This solution should involve one or both of

the following:

1. There should be a prior on the speech variance. This ought to give a solution in

the spirit of SS or Wiener filtering, but with the ad-hoc regularisation replaced by

justifiable hyperparameters.

2. It should be possible to marginalise over the noise.

This also followed from something I knew was wrong with the VAD work: Although it was

model based and used inverse probability, it did not marginalise over nuisance parameters,

and did not use priors. Worse, it involved point estimates (of likelihood ratios) based on

point estimates (of the speech variance) based on a single datum.

4.5.7 Initial noise robustness work

There is a significant time period between the publication of Garner et al. (2004b) and

Garner (2009a). During that time (amongst other things), I failed to advance the noise

robustness work significantly. It is instructive to briefly describe something that does not

work!

Consider the parameters of 4.3; ignoring the f subscript for simplicity, there are two

unknowns:

1. A noise variance, ν.

2. A speech variance, σ.

Certainly the noise variance is a nuisance variable and should be marginalised. The speech

variance is then either a parameter to estimate, or to marginalise if a Wiener-like solution is

45



required. However, marginalisation leads to the following difficulty:

p (t | σ) =

∫∞
0
dνp (t | σ,ν)p (ν | A,B) (4.8)

=

∫∞
0
dν

1
π(σ+ ν)

exp

(
−

|t|2

σ+ ν

)
BA

Γ(A)
ν−A−1 exp

(
−
B

ν

)
(4.9)

where p (ν | A,B) is an inverse-gamma distribution that results from estimating the PDF

of ν as in equations 16 and 17 of Garner (2009a); A and B represent the noise sample

statistics. The integral above evaluates to an incomplete gamma function, which in turn

is very difficult to do anything else with. It is the common Bayesian intractable integral

problem. The same sort of issue arises when placing an (inverse-) gamma prior on σ.

The closest I came to a solution was to assume an estimate of ν was possible (because

there are usually several noise frames), then form a MAP estimate of σ. That work is

written up as Garner (2009b); it was never published because the results do not show

any improvement over SS.

4.5.8 Cepstral normalisation

In trying to find priors for the speech variance, one of the most frustrating things was that I

could never beat cepstral variance normalisation (CVN) in terms of accuracy in noise. There

was no good reason for CVN to work, except that it “made the observation fit the model”.

Worse, the combination of whatever prior I used and CVN was worse than just CVN.

In researching the area, I came across a paper by Lathoud et al. (2005) in which good

results were reported using a measure based on SNR. The paper is actually more about

a mixture model for speech and noise; no insight is presented about the SNR. However,

it reminded me of something I had noticed much earlier; it is described in section 2A of

Garner (2009a):

log(x+ a) = log(a) +
x

a
−
x2

2a2 +
x3

3a3 . . .

= log(a) + log
(

1 +
x

a

)
.

(4.10)

i.e., taking the logarithm of speech plus additive noise as in an ASR front-end, then removing

the constant via CMN yields something based on SNR.

I tried a quick experiment using SNR instead of spectral power and the results were

extremely encouraging.

Further, something else was clear to me: Substituting ξ = σ/ν into equation 4.9, it

becomes:

p (t | ξ) =

∫∞
0
dν

1
πν(1 + ξ)

exp

(
−

|t|2

ν(1 + ξ)

)
BA

Γ(A)
ν−A−1 exp

(
−
B

ν

)
(4.11)

=
BA

Γ(A)

1
π(1 + ξ)

∫∞
0
dνν−A−2 exp

(
−
|t|2 + B(1 + ξ)

ν(1 + ξ)

)
(4.12)

i.e., all the terms in ν collect together. The noise marginalisation gives a tractable form!

This became the central concept of the work in Garner (2009a). In fact, that paper really

has two contributions:
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1. The first idea is that, in ASR, the variable that the engine is interested in is the vari-

ance, σ, rather than the undistorted observation, s, that is sought after in speech

enhancement. Given that it is σ that is required usually, it is σ/ν in the SNR case.

2. Given ξ = σ/ν, it is possible to do a proper Bayesian analysis to infer the right variable.

The analysis follows fairly trivially from the insight.

Aside from the marginalisation, the other aspect of the Bayesian approach is the prior.

In Garner (2009a), I used a gamma distribution. In fact, this distribution came from earlier

experiments reported in Garner (2009b). That it yielded a solution in the form of a cubic

was not a problem because the same thing had occurred in Garner (2009b), and I had the

code to solve it. The main reason to choose a gamma distribution was that the parameters

(β at least) can be set using some knowledge of the overall SNR. At the time, I intended to

try different priors; it is still a possible research direction.

4.5.9 Features and databases

In turning the conference paper (Garner, 2009a) into a journal paper (Garner, 2011), the

thing that most worried me was the database. I had done many experiments using Aurora-2,

which is convenient, but has two major problems:

1. It is only digits; the grammar is simple and the phonetic coverage is small.

2. It is artificial data; noise is added in the computer.

Further, Idiap had funding to work on meeting data. This led to two unsuccessful and time

consuming experiments:

1. I tried using the SNR features to train a meeting recogniser and test on rich text (the

NIST RT07 data3). The result was worse than with normal features. In fact, this was

predicted by the Aurora-2 results: meetings and rich text are not so noisy, and are

matched conditions; SNR features do not perform well on the Aurora-2 equivalent.

2. I trained a recogniser on LDC (Linguistic Data Consortium) Wall Street Journal data

(si-84) and tested on RT07. This was a mismatched system, but too mismatched. Error

rates were in the 80s; far too large to infer anything useful.

Somewhat reluctantly, I turned to the other Aurora databases. Aurora-3 is still digits,

but with real noise; Aurora-4 is continuous speech, albeit with artificially added noise and

only 5000 word vocabulary. Here, however, results were encouraging.

In addition, I looked at PLP features. Although I had never used them before, they were

popular at Idiap. SNR turned out to benefit PLPs more than MFCCs.

This was enough to write the journal paper. As such, the contribution of the journal

version is mainly experimental; it demonstrates under what conditions SNR features work.

Whilst it briefly discusses what does not work (the meeting room data), it is written from a

positive point of view. In the context of this “critical analysis”, however, it is appropriate to

talk about the negative results, hence the discussion above.

However, the journal version was also an opportunity to discuss other things. The main

item was the relationship with the articulation index (AI).

3NIST: National Institute of Standards and Technology. RT: Rich transcription
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4.5.10 Summary

The contributions over the three papers are:

A decision theoretic framework for VAD in which the otherwise arbitrary threshold is in-

dicated by priors and costs.

A differential VAD where the likelihood from the spectrum is that of a high-pass filter.

An SNR based feature that is indicated by the use of cepstral normalisation.

4.6 With hindsight

The work in these three papers was done over a number of years. It represents my gradually

learning how to better deal with the same underlying model. It follows that I would not do

it the same way if I began again.

4.6.1 VAD

Of course, the VAD would benefit from the marginalisation discussed later. In fact, the VAD

gain that prompted the work in the first place was probably due to the exponential form of

the likelihood ratio. This in turn is because it is not a marginal estimate; the marginalisation

tends to replace exponential forms with polynomial forms. In this sense, marginalising out

the noise in the VAD likelihood ratio is likely to have a significant effect.

The noise tracker could also be improved significantly: There is a circular dependency

in the VAD where the VAD depends on the noise estimate, which in turn depends on VAD.

The minimum tracking that was used later would remove the dependency.

4.6.2 SNR features

One conclusion from Garner (2009a) is that introduction of a prior does not help so much.

In fact, the form of the prior was probably wrong. If the prior were parameterised as 1 + ξ

instead of ξ, it is likely that it would be almost conjugate.

However, this is ongoing research, and these options all remain open.

4.6.3 Capacity of a Gaussian channel

My SNR feature and the articulation index (AI) have the same form as the capacity of a

Gaussian channel, a standard result in information theory. This merits a short analysis:

The formulation below is essentially a worked solution of excercise 11.2 of MacKay

(2003), but note that the notation for variances is almost the opposite of MacKay’s. The

capacity, C, of a channel is defined to be the maximum mutual information between the

input, x, and output, y (being instantiations of the random variables X and Y respectively):

C = I(X; Y) =
∫ ∫
dxdyp (x,y) log

p (x,y)
p (x)p (y)

(4.13)

=

∫ ∫
dxdyp (y | x)p (x) log

p (y | x)

p (y)
(4.14)

=

∫
dxp (x)

∫
dyp (y | x) logp (y | x) −

∫
dyp (y) logp (y) (4.15)
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In the case of a Gaussian channel, it can be shown that the information throughput is max-

imised when the source is also Gaussian. In this case,

p (y | x) =
1√
2πν

exp
(
−
(y− x)2

2ν

)
(4.16)

and

p (y) =
1√

2π(σ+ ν)
exp

(
−

y2

2(σ+ ν)

)
(4.17)

The entropy terms are standard results and the mutual information is then

C = −

∫
dxp (x) log

√
2πeν+ log

√
2πe(σ+ ν) (4.18)

=
1
2

log (σ+ ν) −
1
2

log (ν) (4.19)

=
1
2

log
(

1 +
σ

ν

)
(4.20)

Notice that the final integral above is rendered trivial by the fact that entropy does not

depend on the mean of a (Gaussian) distribution.

It follows that the SNR feature and the AI are actually measuring mutual information.

Two things are evident:

1. Although the noisy channel is evident, there is no coding going on. In this sense, the

capacity of the channel is not compromised beyond the additive noise, and the mutual

information is the maximum possible — the channel capacity.

2. Notice that the above derivation relies on entropy being independent of the mean.

The SNR feature also arises from the same operation — mean subtraction — that can

be seen as converting it to mutual information.

So, the channel capacity and AI appear to be consistent.

4.7 Impact

VAD is an old subject; all labs have a different way of approaching it. The paper on VAD

has just 3 citations according to Google scholar, perhaps owing to this kind of saturation. It

was, however, patented by Canon Inc. (Garner et al., 2004a), and may even be used in their

products.

As the later work is recent, it is difficult to measure impact; Google Scholar does not

report any citations. Certainly the work is ongoing, however, and is the basis of at least one

grant application.

It is perhaps worth noting that the final paper was well received at review, one reviewer

going as far as writing:

The author has presented a novel way of looking at some standard front-end

processing that I believe is quite insightful. It is rare to read a paper that casts

a new perspective on something that is supposed to be understood. I am happy

to recommend the paper for publication as I am sure many readers will find it

thought provoking.
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Chapter 5

Conclusions

5.1 Hypotheses

The papers in the previous chapters each contained their own conclusions. The chapters

themselves also each contain concluding material. It remains to conclude the thesis as a

whole in the sense of its binding topic of Bayesian approaches to uncertainty.

In the introduction, two hypotheses were stated:

1. Where an existing technique is somehow ad-hoc or not rigorous, we hypothesise that

making it rigorous will lead to benefit in terms of allowing extensions that would not

be possible otherwise.

2. Where an existing technique is rigorous, but not Bayesian, we hypothesise that making

it Bayesian will lead to benefit in terms of robustness to small sample sizes.

Many of the papers addressed the first hypothesis. In the case of dialogue, it was shown

that a rigorous formulation could generalise usefulness, leading to the multi-class scenario

that was not possible with the basic two-class formulation. Further, the multi-class and

model based formulation led to a rigorous metric to choose keywords that significantly

outperformed other formulations.

In the case of formant analysis, the rigorous formulation not only allowed a coherent

solution, but also led directly to being able to train the system. The training would not have

been possible otherwise.

Finally, in the case of VAD, the statistical rigour existed already. However, casting a new

idea (the high-pass filter) in the same rigorous manner allowed it to be integrated properly

where it may not have been otherwise.

So, in at least three cases, the first hypothesis is demonstrated. Certainly there is no

counter-example; no rigorous formulation led to inferior performance.

With regard to the second hypothesis, again there is evidence in its favour. Perhaps most

persuasively, the dialogue scenario presented a requirement for inference based on few or

even zero observations (words observed in one dialogue move might be absent in another).

In this case the Bayesian formulation with explicit use of a prior led to a rigorous solution.

In turn, the keyword selection strategy was also robust to small sample sizes, tending to

reject singletons.

In the formant case, the Bayesian solution also led to a rigorous and stable result when

formants were perhaps not even present. In this situation, the prior information was clear

and required a subjective Bayesian view.
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In the case of SNR features, a prior was shown to be beneficial, although perhaps not to

the same extent as the other two cases.

So, the second hypothesis is also demonstrated. Again, there is certainly no counter-

example.

5.2 Corollaries

Aside from the hypotheses, the results also lead to some corollaries. The first is that the

pursuit of a rigorous solution can influence the underlying choice of model. This happened

in each case: The word model was changed from multinomial to Poisson, the interpretation

of the formant confidence was changed to be a variance, and the SNR feature was found to

better suit the assumed model.

Although this change of model is quite tangible, there is also an intangible side to it.

The pursuit of a good model leads to an understanding of the underlying mechanisms of

the technology. In the SNR case in particular, it led to a relationship with the articulation

index. Whilst I am hesitant to read too much into this, these observations are nevertheless

interesting and merit further thought and even work.

Another corollary is that the form of the rigour is less important than the actual rigour.

For instance, in the dialogue case, the fact that the formulation was Bayesian was important,

but the form of the prior was not. The simple approximate prior was as good as the better

fitting but more involved prior. The same was true of the SNR features: changing from

uninformative to gamma did not improve results a great deal.

In fact, none of the results in this thesis represent game-changing improvements. Other

authors have published better results on similar data suggesting that more involved models

are necessary. Nevertheless, none of this is in conflict. The same rigorous method applied

to more involved models ought to lead to similar benefits.
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David Imseng, Hervé Bourlard, and Philip N. Garner. Boosting under-resourced speech

recognizers by exploiting out of language data - case study on Afrikaans. In Proceedings
of the 3rd International Workshop on Spoken Languages Technologies for Under-resourced
Languages, Cape Town, South Africa, May 2012a. To appear.
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nani, Marijn Huijbregts, Martin Karafiát, Mike Lincoln, and Vincent Wan. Transcribing

meetings with the AMIDA systems. IEEE Transactions on Audio, Speech and Language
Processing, 20(2):486–498, February 2012.
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Reima Karhila, Mikko Kurimo, Matt Shannon, Sayaka Shiota, Jilei Tian, Keiichi Tokuda,

and Junichi Yamagishi. Speaker adaptation and the evaluation of speaker similarity in

the EMIME speech-to-speech translation project. In Proceedings of the 7th ISCA Speech
Synthesis Workshop, Kyoto, Japan, September 2010.

Lakshmi Saheer, John Dines, Philip N. Garner, and Hui Liang. Implementation of VTLN

for statistical speech synthesis. In Proceedings of the 7th ISCA Speech Synthesis Workshop,

Kyoto, Japan, September 2010a.

Philip N. Garner and John Dines. Tracter: A lightweight dataflow framework. In Proceedings
of Interspeech, Makuhari, Japan, September 2010.

Thomas Hain, Lukas Burget, John Dines, Philip N. Garner, Asmaa El Hannani, Marijn Hui-

jbregts, Martin Karafiat, Mike Lincoln, and Vincent Wan. The AMIDA 2009 meeting tran-

scription system. In Proceedings of Interspeech, Makuhari, Japan, September 2010.

Danil Korchagin, Philip N. Garner, and Petr Motlicek. Hands free audio analysis from home

entertainment. In Proceedings of Interspeech, Makuhari, Japan, September 2010a.

Petr Motlicek, Fabio Valente, and Philip N. Garner. English spoken term detection in multi-

lingual recordings. In Proceedings of Interspeech, Makuhari, Japan, September 2010.
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Published with the permission of the Controller of Her Britannic Majesty’s Stationery Office. 

ABSTRACT 
Dialogue move recognition is taken as being representative 
of a class of spoken language applications where inference 
about high level semantic meaning is required from lower 
level acoustic, phonetic or word based features. Topic identi- 
fication is another such application. In the particular case of 
inference from words, the multinomial distribution is shown 
to be inadequate for modelling word frequencies, and the 
multivariate Poisson is a more reasonable choice. Zipf’s law 
i s  used to model a prior distribution. This more rigorous 
mathematical formulation is shown to improve dialogue move 
classification both subjectively and quantitatively. 

belonging to one move category were used, and all non-word 
annotation was stripped out. Punctuation was removed, and 
upper case letters were converted to lower case. 

The 128 dialogues were then split into training and testing 
sets of 64 dialogues each such that no map appeared in both 
sets. This was to prevent disclimination occuring on par- 
ticular map features, hence forcing the use of other words 
more indicative of semantic meaning. The training and test- 
ing sets contained 11799 utterances and 10265 utterances 
respectively. 

_- 

2.2. Methodology 

1. INTRODUCTION 
It has been suggested [5] that a dialogue, that is, the inter- 
action between two or more people in a conversation, can be 
represented as a series of moves (as a game of chess consists 
of alternate moves). These moves follow a natural sequence, 
with alternatives a d  counter moves. The dialogue moves 
dictate portions of speech that can be classified into the dif- 
ferent move types, and may in turn dictate sensible bounds 
between which processing can be carried out. 

The methodology was essentially that used in word based 
topic identscation, outlined as follows: 

The moves were assumed to be S m P l s  hom a random -- 
able M E {ml, m2, -. ., mM); in this w e ,  the of 
Possible mow,  was 12- Given an Utterance 2, and train- 
ing data D,  the problem is to macimk the likelihood of the 
move 7%. using Bawls  theormi 

P(z1M = m;,D)P(M = m;ID) 
P(zlD) 

P(M = nil=, D )  = 

The dialogue moves also form a natural part of the progres- 
sion &om raw acoustic data to natural language processing. 
Inference can proceed in either direction: down towards the 
acoustic recogniser or up towards the natural language pro- 
cessor. This paper is concerned with the latter, and in par- 
ticular with the question of whether it may be possible to 
construct a data driven natural language processor. Dia- 
logue move recognition can be viewed as a metric against 
which the contribution of dialogue moves to natural language 
processing can be judged. 

2. AN INITIAL EXPERIMENT 

2.1. Data 

The HCRC map task corpus [l] has been annotated at the 
dialogue move level, and this database was used as an exper- 
imental vehicle. Only utterances which could be identified as 

The denominator, P(zlD), is independent of the move and 
can be ignored. 

Assuming P(m;)  to be an abbreviation for P(M = mi), 
P(m;lD) is the prior (prior to the utterance but posterior 
to  the data), and was calculated as the number of moves of 
type mi in D divided by the total number of mows in D. 

P(zlm;,D) is the iielihood. Here, it was assumed that 
x was generated by sequentially sampling from a random 
variable W E {WI, w2! .  . . , WV}, where V is the vocabulary 
of the task, and samples from W are independent. Hence, if 
x is K words in length, 
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P ( W k l m , D )  was calculated as the number of words of type 
wk in move mi in D divided by the total number of words 
in move mi in D .  Where the count for a word in x was zero, 
that word was assumed to have occured 0.5 times. 

2.3. Results 
Table 1 shows a confusion matrix for the classification prob- 
lem so far described. The overall accuracy is 47.22%, and 
assuming the test set accuracy is binomially distributed [2], 
the 95% confidence limits for 10265 independent testing sam- 
ples are around 33%. 

Note that a disproportionate number of utterances have been 
classified as ‘Ready’. This is counter intuitive; one would 
expect utterances about which the system was unsure to be 
classified as ‘Acknowledge’, since that is the most fkequent 
class. F’urther, ‘Acknowledge’, ‘Ready’ and ‘Reply-Y’ are 
all basically af”at ive utterances (”yes”), and one would 
expect them to be indistinguishable at this level. 

3. PROBABILITY DISTRIBUTIONS 

3.1. The Multinomial 

When probabilities are calculated as a relative frequency as 
described, one is implicitly assuming a multinomial (dice 
throwing) distribution. That is, if the number of words of 
type wi in a move is ni, and N = xy=l ni,  then P(wiID) = 
% / N .  In fact, this is the maximum likelihood estimator of 
the true probability; it becomes more accurate as N + CO. 
In this case, though, some of the ni are actually zero and the 
maximum likelihood estimator breaks down completely. 

More light can be shed on the situation by considering a 
Bayesian formulation of the word probability problem [4]. 
Using a multinomial distribution with a flat Dirichlet prior, 
the probability of a single word wi being drawn from W is 

n; + 1 P(WiJD) = -. 
N + V  

The formula now depends on V, the vocabulary of the task. 
This can be thought of intuitively too: Given a biassed die, 
but no data upon which to base an approximation, most 
people would agree that a good starting point would be to 
assume a probability of throwing any particular number to 
be 1/6. This is implicitly based on the prior knowledge that 
a die has 6 sides. 

This explains the reason for assuming ni = 0.5 for unseen 
words: the probability for ni = 0 is half that for .ni = 1. V is 
large, though, and whilst it is unknown it suggests that the 
maximum likelihood estimate is consistently an overestimate 
of the true posterior probability. The largest overestimates 
of this word probability will occur in the class for which N 
is smallest; the least frequent class is ‘Ready’. 

3.2. The Multivariate Poisson 
If the underlying probability of drawing word wi from W is 
w,  then the multinomial distribution is 

P(nlw) = N !  U;, . . . w;v 
nl! . . . n v !  

where n = { n l ,  n2,.  . . , nv} and w = {wl ,  w2,.  . . , w v } .  Con- 
sider what would happen if this model were used to generate 
an infinite amount of data: It can be proved that if the W i  

are constrained to be small enough such that Nwi + X i  
N+CQ, 

nv--l 

nl!n2! . .. nv- l!  
- . . AV-1 e‘X’-X =-...- P(nlA) = 7 

where X = { X I ,  X2,. . . , A V - I } .  This is the multivariate Pois- 
son distribution. 

Note that one of the w terms has disappeared. More cor- 
rectly, any of the w terms can be made to disappear by sim- 
ply grouping them into one term; the useful approach is to 
group all unknown words into a single w,  and have that dis- 
appear. The result is a distribution which is independent of 
vocabulary; indeed it can be tailored to any arbitrarily sized 
vocabulary. -- 

The intuitive approach to the above derivation is to consider 
several throws of a die. wi relates to each individual throw, 
whereas Xi  is concerned with the rate of occurence of the 
feature of interest. 

The probability of an utterance of K words in length using 
a multivariate Poisson distribution and a gamma prior can 
be shown [4] to be 

where 12; and N are the same as in the multinomial, zi is 
the number of words of type wi in x, W is the number of 
‘keywords’ and CY and p are the parameters of the gamma 
prior. Note that this calculation refers to the probability of 
the whole utterance, not the product of the probabilities of 
the individual words. 

4. PRIOR INFORMATION 

4.1. Zipf’s Law 
Whilst it is convenient to attach a flat prior to a distribu- 
tion and simply let the data decide what to do, it must be 
acknowledged that prior information exists in the form of 
Zipf’s law[7]. Zipf’s law itself is an empirical law relating 
relative ffequenaes. If a graph is plotted of frequency as or- 
dinate, and the words rank ordered on the abscissa, that is, 
the most frequent word on the left and the least frequent on 
the right, the points will form a smooth curve with approx- 
imately reciprocal square root form; the actual analytical 
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form is discussed by McNeilIG]. Further, this law will hold 
no matter which database is used. loow0 

lccm 

1wo 

Such a graph is not very useful in that form, but integrating 
up the vertical axis produces a graph which, suitably nor- 
malised, can be interpreted as ‘Probability of Fkequency’, 
which in turn is the prior on the X terms in the Poisson dis- 
tribution. This is illustrated in figure 1, where the graph on 
the left is a traditional Zipf plot, and the one on the right is 
modified as described. 

- 
- 
- 

I 
E 
5 
8 a 
U. 

Words in Rnk order 

‘I 

Figure 1: The Zipf plot, and how to modify it to relate to 
probability. 

The graph on the right of figure 1 can be estimated with a 
histogram fiom a large dataset, and this is depicted in figure 
2. The scatter plots refer to the King James version of the 
Bible, the entire radio 4 weather forecast spotting database 
[3], and the entire HCRC Map Task corpus. Two things are 
apparent from this plot: 

1. All the plots are straight lines with the same gradient. 
If they are indeed the same, then Zipf’s law holds, and 
one dataset can be used as a prior for another. 

2. The fact that they are straight lines on a double loga- 
rithmic scale implies that the real curve is of the form 
y = Azm, where A is some normalising term and m is 
the gradient of the line. 

Note that the map Task plot is only shown for reference. 
This is supposed to be prior information, and looking at any 
of the Map Task data is cheating, never mind looking at all 
of it. 

The gamma distribution has a xm term, so it ought to be 
possible to fit a gamma distribution to this database. The 
lines on Figure 2 illustrate this. The line labelled ‘Gamma 1’ 
is a gamma distribution with parameters a = 0.1 and p =  1; 
‘Gamma 2’ is the same with ,b = 10. Shrinking a any more 
has the effect of moving the whole line downwards. 

There is clearly nothing to be gained from setting /3 to be 
anything other than 0. It only acts as a prior on the number 
of observations, which is of the order of several thousand. 
Even a value of 10 introduces more curvature than can be 
justified. Setting a to some small value may clearly be of 
benetit though. 

1m 
1 lol 
h .. 

1.97 1- 1- O.ooO1 0.001 0.01 0.7 1 
.. Nonnrl..Qbqumy 

Figure 2: Modified Zipf plot for various data sources, with 
approximate gamma distribution fits. 

5. EVALUATION 
Table 2 shows a confusion matrix for the classification exper- 
iment using the Poisson based estimate with a gamma prior 
with a set to 0.1. The classification rate is better than the 
maximum likelihood casq but more importantly, the misdas- 
sifications are much better distributed. No one class seems 
to mop up the ambiguous observations in a disproportionate 
manner. In fact, nothing is classified as ‘Ready’, but that is 
understandable since that category is indistinguishable fiom 
‘Acknowledge’. 

I 
10 20 10 40 50 60 70 

10 ‘ 
NunDnoldi8bSWS 

Figure 3: Classification rate as a function of amount of 
training data. 

To evaluate the performance of the Poisson technique more 
fully, a test data set was constructed by randomly sampling 
100 observations of each category from the test data pre  
viously described. With the classifier suitably modified for 
equal class membership priors, experiments were performed 
on training set sizes ranging from 10 to 64 dialogues. The 
results are shown in figure 3, confidence limits for 1200 test 
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samples are around f 3 % .  This plot is very gratlfymg, show- 
ing that the Poisson based estimate performs better than the 
maximum likelihood multinomial, and that incorporation of 
a Zipf's law based prior further improves performance, espe- 
cially for small amounts of training data. 

6. CONCLUSIONS 
It has been shown that the multivariate Poisson distribution 
is a justifiable and more suitable distribution to model word 
frequencies for dialogue move recognition. Incorporation of 
Zipf's law as a prior follows naturally and further improves 
performance. 

Dialogue moves can be inferred from their constituent words 
to an accuracy of around 50% using a very simple unigram 
model, implying that better performance should be possible 
using a more involved N-gram Markov model. 
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Acknowledge 
f i g n  
Check 

Clarify 
Explain 
Instruct 

Quw-W 
Query-YN 

Ready 

Reply-W 
Rep1 y-Y 

Total 

Reply-N 

Acknowledge 
Align 
Check 
Clarify 

Explain 

Query-W 
Query-YN 

Ready 

Reply-W 
Reply-Y 

Total 

h S t N C t  

Reply-N 

AGE AGN 
1795 17 
390 125 
29 38 
7 11 
23 23 
10 30 
5 8 
3 28 
82 0 
3 1 
11 13 
329 14 
2687 308 

CCK 
32 
19 
273 
54 
52 
122 
19 
47 
4 
4 
45 
25 
696 

CFY 
2 
11 
38 
35 
15 
159 
4 
10 
0 
1 
20 
4 

299 

EM 
17 
6 
46 
15 
172 
35 
5 
28 
1 
1 
28 
21 
375 

ICT 
66 
33 
251 
135 
43 
639 
29 
36 
11 
3 
82 
32 

1360 

Q-W 
4 
14 
40 
7 
11 
41 
186 
29 
0 
0 
10 
3 

345 

QYN 
18 
28 
40 
5 
9 
20 
11 
401 
0 
1 
10 
14 
557 

RDY R-N 
119 61 
114 3 
209 21 
111 8 
277 82 
425 -- 11 
47 1 
144 12 
9 0  
4 301 

108 21 
35 11 

1602 532 

R-W 
5 
9 
37 
31 
77 
49 
0 
13 
0 
3 
51 
8 

283 

AGE 
1851 
397 
41 
12 
42 
21 
9 
12 
87 
6 
22 
343 
2843 

Table 1: Confusion matrix for the initial experiment, Accuracy = 47.22% 

AGN CCK CFY 
25 39 2 
171 28 9 
42 326 28 
13 69 28 
37 101 12 
36 164 74 
15 34 3 
32 70 3 
1 4 0 
1 8 1 
18 56 16 
15 32 2 
406 931 178 

EIN 
37 
24 
109 
37 
379 
88 
9 
74 
2 
10 
83 
40 
892 

ICT 
86 
59 
359 
212 
86 

1052 
39 
81 
12 
3 

130 
38 

2157 

Q-w 
4 
14 
28 
4 
9 
27 
187 
25 
0 
0 
6 
3 

307 

QYN RDY R-N 
23 1 58 
38 0 3  
53 0 11 
9 0 4  
23 0 35 
34 0 6  
17 0 0  
438 0 3  
0 0 0 
1 0 289 
14 0 9  
14 0 3 

1 421 664 

R-W 
9 
9 
23 
30 
58 
39 
2 
13 
1 
3 
44 
9 

240 

Table 2: Confusion matrix for the Poisson based classification, Accuracy = 54.7?% 

R-Y 
323 
8 
15 
4 
2 
2 
0 
3 
0 
0 
4 

860 
1221 

R-Y 
324 
8 
17 
5 
4 
2 
0 
3 
0 
0 
5 

857 
1225 

Total 
2459 
760 
1037 
423 
786 
1543 
315 
754 
107 
322 
403 
1356 
10265 

Total 
2459 
760 
1037 
423 
786 
1543 
315 
754 
107 
322 
403 
1356 
10265 
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ABSTRACT 

The concept of usefulness for keyword selection in topic 
identification problems is reformulated and extended to the 
multi-class domain. The derivation is shown to be a gener- 
alisation of that for the two class problem. The technique 
is applied to both multinomial and Poisson based estimates 
of word probability, and shown to outperform or compare 
favourably to various information theoretic techniques clas- 
sifying dialogue moves in the map task corpus, and reports 
in the LOB corpus. 

1. INTRODUCTION 

Over the past few years, a general class of problem has 
arisen where inference is required about high level semantic 
meaning from some lower level feature set. The main man- 
ifestation of this problem is in topic identification, where a 
system is required to detect when a ‘Wanted’ topic is be- 
ing discussed in a stream of largely ‘Unwanted’ material. 
The source data can be text, the word level output of a 
speech recogniser [l], or acoustic or phonetic level data, for 
instance [Z]. 

Topic identification is traditionally a two class problem, 
but can easily be extended to multi-class by partitioning the 
‘Wanted’ class into sub-classes, for example [3]. The same 
methods have been used to do dialogue move recognition 
by other authors, eg. [4] and [5]; here the problem is spec- 
ified in terms of spoken language understanding, but the 
methodology is exactly the same as in topic identification. 

In all of these problems, one approach is to identify a 
set of ‘keywords’ or ‘key features’ W = { W I ,  w2, . . . , W W } ,  

which are sufficient to distinguish the chosen classes. This 
reduced dictionary is then used to build language models 
each indicative of a particular class; the number of key fea- 
tures (dictionary size) is a trade off between complexity and 
performance. In the two class case, the decision rule is to 
assign the observation, x = W I ,  w 2 , .  . . , W K ,  to the Wanted 
class, CW, iff 

where the w k  are the independent constituent features of 
the observation, and X is some threshold. In this paper, the 
features are words. 

The metric dictating the choice of features follows di- 
rectly from the decision rule: choose features which max- 
imise the probability ratio inside the product (weighted by 

0-8186-7919-0/97 $10.00 Q 1997 IEEE 

the frequency of occurrence of those features). For this rea- 
son, this weighted ratio has been termed ‘Usefulness’ [6]. 

The decision rule in the multi-class case is more com- 
plex. If the set of A4 classes is M = (ml,mz ,..., mM), 
then the decision rule is to maximise 

It is clear that a simple inequality cannot be formed result- 
ing in a simple ratio. 

2. INFORMATION THEORETIC MEASURES 

It is reasonable to assume that keywords should be chosen 
which maximise some measure of information. Less clear, 
though, is which measure; three possible measures can be 
identified as follows. 

Quoting Gallager [9], if m is a sample from M and w is 
a sample from W, the information provided about the event 
m = mi by the occurence of the event w = w k  as 

This is the mutual information between the two events. To 
extend the measure to apply over all classes, consider the 
expectation over classes: 

M _ .  . 

- ,---., 
i=l 

Mutual information expressed in this way is very similar to 
the expression for the change in entropy (with one changed 
term): 

This has the intuitively appealing quality of representing 
the increase in entropy of the ensemble M when word wk 
is observed. 

1823 



Salience has been used by Gorin [8] to rank words in 
order of importance to classify actions in a dialogue man- 
agement system. Salience is defined as 

M 

S ( M ;  W k )  = P(mi(Wk)I(mt;wk). 
i=l  

Writing the three measures I ( M ;  wk),  I E ( M ;  wk) and 
S ( M ;  wk), which shall be referred to as mutual information, 
entropy and salience respectively, as 

M M 

i = l  i= l  

M M 

i= l  

M 

i = l  

M 

i=l i=l 

it is clear that they are intimately related, the only differ- 
ence being whether the raw information term (the logarithm 
term) is weighted by P(m;) or P(mi1Wk). 

Gorin [SI uses some standard smoothed relative frequen- 
cies to estimate the probabilities above. In this paper, we 
use the maximum likelihood estimate 

where ni is the number of occurrences of class mi in the 
training data, and N is the total number of occurrences. 
The posterior measure P(miIWk) is evaluated via Bayes's 
theorem: 

3. USEFULNESS 

The decision rule itself can also indicate a measure of 'use- 
fulness' for each possible word: The multi-class decision rule 
is to maximise 

Denoting the reciprocal of this expression by P,, the prob- 
lem is the same as minimising 

...+ P ( z l m ~ ) P ( m ~ )  
P( 2 I mi) P( mi) 

' 

which consists of easily differentiable parts. It is reasonable 
to assume that discriminative keywords will be those which 
lead to a high rate of change of this probability. Consider 
the expected rate of change of Pi when a new feature or 
word is considered: By definition, 

where there are Zk words of type W k  in a. The new feature 
is unknown, and this is accounted for by integrating over all 
possible features. The features or words which have maxi- 
mum effect upon the decision rule are those which minimise 
this expectation (largest negative value). It is clear that the 
most useful words are those which minimise 

mi 
- P ( W k  [mi) .  

k 

This can be evaluated with all the Z k  = 0, embodying the 
assumption that the usefulness of the occurance of a word is 
independent of the number of times it has occurred already. 

Thus far, the theory only addresses choosing keywords 
to discriminate one class from the others. A natural exten- 
sion is to integrate over all classes: 

This is actually slightly non-intuitive in that a change in 
probability of one class will be accompanied by an oppo- 
site change in that of other classes. One might feel happier 
adding squared rates of change to capture both large posi- 
tive and negative gradients, but in practice this makes little 
difference. 

If it is assumed that the underlying model for the word 
generation is a multinomial (dice throwing) distribution, 
the probability of a sequence of words x conditioned on the 
class, in a maximum likelihood sense, is 

K 

where there are n ; k  words of type wk and Di words in total 
in class mi of the training set. If u ( W k )  is defined to be the 
usefulness of word W k ,  then this results in a usefulness for 
word W k  Of 

where there are nj examples of class m3 in the training 
data. In practice, the two ni terms cancel, and the N is un- 
necessary. In the special case of two classes, this expression 
can be written 

Each of these terms is exactly the same as that given by [SI, 
though from a much more general view, and corresponds 
to combining features indicative of the wanted class with 
features indicative of the unwanted class. For this reason, 
we feel justified in retaining the name usefulness. Curiously 
though, the term corresponding to class 1 is weighted by the 
probability of class 2 and vice-versa. 
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Figure 1: Map task corpus, multinomial 
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Figure 2: Map task corpus, absolute discounting 

If it is assumed that the underlying model of word gen- 
eration is Poisson, then from [5], the probability of the sen- 
tence is 

where there are W distinct words in the vocabulary, and cr 
and /3 are priors. By the same method as above, this results 
in a usefulness for word wk of 

M M 

i= l  j = 1  
j#i 

- lOg(Dj + p) + $(njk + a )  - $(nik + a)]  1 

where P(Zk1mi) is the the probability of a sentence consist- 
ing of the single word wk, and $ is the digamma function. 

4. EXPERIMENTS 

Two corpora were used: The HCRC Map Task Corpus [7], 
which is annotated at the dialogue move level, and the LOB 

UMtUirm~ - 
Mutual Inlormallon ---x--- 

Mutual I n l o l ~ l l m r . v i s e d  -..*... 
Enlropy - o 

Salience - -9 -. 
Random - -0 - 

0 200 400 600 Boo loo0 1200 1400 
DMMnery size 

-. 

Figure 3: Map task corpus, Poisson based 

corpus, which is divided into reports and essays classified 
into different topics. Each corpus was stripped of punctua- 
tion and annotation, and translated entirely to lower case. 
The map task corpus was split into training and testing 
sets of 64 dialogues each such that no map occured in both 
sets; this was to bias the discrimination against particular 
map features. There were 11799 moves in the training set 
and 10265 in the testing set. The LOB corpus was split by 
alternating reports into the training and testing sets; the 
training and testing sets both consisted of 250 reports. 

Classification experiments were performed using lan- 
guage models built from both Poisson based and multino- 
mial based probability measures, and classification rate was 
plotted against dictionary size for various keyword selection 
methods. Each probability measure was also tested against 
three randomly ordered dictionaries, the results of which 
were averaged to provide a baseline. 

For the multinomial, out of vocabulary (OOV) words 
were handled in two different ways. The first, after Nowell 
[2], involved simply scoring OOV words as if they had oc- 
cured 0.5 times. The second was to use absolute discounting 
(for example [lo]) to provide a smoothed estimate of word 
probabilities; this was only optimised for the largest dictio- 
nary size. In the Poisson based case, the hyperparameters a 
and f l  were set to 0.1 and 0 respectively after [5]. The exper- 
imental results are shown in figures 1-5 (Note the different 
ordinate scales), except those for the basic multinomial on 
the LOB corpus, which scored consistently below 14%, and 
were omitted after space considerations. 

5. DISCUSSION 

The Poisson based probability measure was developed specif- 
ically for this type of problem, indeed specifically to alevi- 
ate the OOV problems of the multinomial. I t  is gratifying, 
therefore, that the Poisson measure performs a good 5% 
better than the multinomial on the map task, and even 
better on the LOB corpus. In turn, the multi-class useful- 
ness measure was developed specifically to complement the 
Poisson based probability, and performs consistently better 
than any other dictionary pruning method for the Poisson. 

The comparitive results are still informative though. In 
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Figure 4: LOB corpus, absolute discounting 

the case of the multinomial, the new usefulness measure 
bears a striking similarity to the information based mea- 
sures, no doubt connected with the original derivation of 
information theory. This resemblance is reflected in the 
experimental performance: the entropy measure performs 
better than usefulness for large numbers of keywords. 

The behaviour of mutual information is erratic. In par- 
ticular, the words 'yes' and 'no' corresponding to positive 
and negative replies in the map task appear as the most use- 
ful when ranked by usefulness, but least useful when ranked 
by mutual information, which produces a word list that is 
intuitively 'upside down'. The graphs show the effect of 
simply reversing this list, though with a dubious improve- 
ment. In fact, there is no theoretical reason to invert the 
list. The problems with mutual information are presumably 
what prompted the invention of salience. Salience, however, 
still appears from these experiments to perform erratically; 
sometimes even worse than random. These experiments 
suggest that entropy would be a better information theo- 
retic measure. 

6. CONCLUSIONS 

The best results in this study have been obtained with 
the combination of Poisson based probability estimates for 
words, and the new multi-class usefulness measure. In this 
case, performance has been shown to improve when the dic- 
tionary size is reduced. 

It is not clear that there is any theoretically justifiable 
reason to choose any particular information theoretic mea- 
sure over another, although experimentally, entropy has 
been shown to choose good keywords consistently. It is 
better to derive a measure specifically to maximise discrim- 
inability, and in the case of the multinomial, this derivation 
yields an expression very similar to information theoretic 
ones. 
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Abstract

Dialogue move recognition is cited as being representative of a class
of problem which may be of concern in data driven natural language
processing. The dialogue move recognition problem is formulated as a
keyword-based topic identification problem, and is shown to be
sensitive to the issue of unknown vocabulary. A model based on the
multiple Poisson distribution is shown to alleviate the unknown
vocabulary issue, subject to the assumption that the occurrence of
keywords represents a small fraction of the data. A keyword selection
strategy is derived to ensure this assumption is valid. It is shown that
a modified version of Zipf’s law provides a suitable prior probability
distribution for keywords, and that its inclusion increases
classification performance.  Crown Copyright 1997

1. Introduction

A Spoken Language Understanding (SLU) system can be thought of as consisting of
several different parts; signal processing, a speech recognizer, a language model and
finally a natural language or dialogue management module. Generally speaking, current
approaches to natural language processing (NLP) tend to be very hand crafted, requiring
large amounts of prior knowledge about the structure of language. In stark contrast
to this, current speech recognition technology is almost completely data driven. The
hypothesis is that SLU technology could be improved by extending the use of data
driven methods beyond the speech recognizer into the NLP and dialogue modules.

Several authors have made some progress in this area for specific applications: In
the ATIS domain (Cohen, 1995), Schwartz, Miller, Stallard & Makhoul (1996) have
developed a model they call a Hidden Understanding Model with the appealing
symmetry of modelling higher order semantic features in a similar manner to the way
the acoustic features are modelled. Pieraccini and Levin (1995) have developed a system
called CHRONUS (Conceptual Hidden Representation Of Natural Unconstrained
Speech), which also uses Markovian models to describe semantic meaning. The work
of Gorin (1995) is also highly relevant. Several laboratories are also working on data
driven dialogue modules for the VERBMOBIL project: Reithinger and Maier (1995)

0885–2308/97/040275+32 $25.00/0/la970032  Crown Copyright 1997
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describe a statistical dialogue model for predicting dialogue events, and Schmitz and
Quantz (1996) show that knowledge of dialogue acts is necessary in a translation
system.

This work is concerned with methods that may be useful in a data driven SLU
scenario, without necessarily defining the scenario. Dialogue act recognition provides
a convenient test-bed for such methods. The particular database we use is the HCRC
map task corpus (Andersen et al., 1991), which has been annotated at the dialogue
move level. Dialogue moves are discussed by Kowtko, Isard & Doherty (1993). The
basis of dialogue moves is that when two people engage in a conversation they play a
series of games, with constituent moves, in order to impart some piece of information.
In the particular case of the map task corpus, 12 distinct moves have been identified;
many more are identified in the VERBMOBIL project (Jekat et al., 1995).

Dialogue move recognition involves classification of an input utterance, be it acoustic
or text (in this paper only text is considered), into one of M categories, and in this
sense the problem is identical to that of topic identification. In its simplest form, topic
identification is a two class problem, where the classes are referred to as “wanted” and
“unwanted”. The input can be the word level output of a speech recognizer (Carey &
Parris, 1995), or acoustic features (Nowell & Moore, 1995). Recently, with the advent
of the Switchboard corpus, the problem has been extended to the multi class domain
(e.g. McDonough, Ng, Jeanrenaud, Gish & Rohlicek, 1994).

The purpose of this paper is to formalize the theory used for topic identification in
the case of a closed set of M classes such that it can be applied to dialogue move
recognition in a robust manner. The utility of the theory is demonstrated by applying
it to the problem of dialogue move recognition on the map task corpus.

2. Probabilistic formulation of topic identification

2.1. Relationship with language modelling

Given an observation, x, typically representing a sequence of words of a particular
category, the problem is to infer the category from which it was sampled, also given
some labelled training data, D. Formally, the category is a sample m from the set M=
{m1, m2, . . . , mM}, and the solution is to assign x to the value of m resulting from

max
i

P(m=mi |x, D).

This expression can be “inverted” via Bayes’ theorem to yield

P(m=mi |x, D)=
P(x |m=mi, D)P(m=mi |D)

;M
i=1 P(x |m=mi, D)P(m=mi |D)

(1)

∝P(x |m=mi, D)P(m=mi |D).

Notice that P(x |m=mi, D) is a class dependent language model (LM); this can be made
more clear by considering the speech recognition problem. In a speech recognizer, one
is presented with an acoustic representation, a, of a sequence of words to be recognized
(an utterance). A probability, P(w |a, D), must be attached to a hypothesized sequence,
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M I. Loss matrix in topic identification

Unwanted Wanted

Treat as unwanted LUU (OK) LWU (False reject)
Treat as wanted LUW (False accept) LWW (OK)

w, of words which could have generated a originally. This probability can again be
expanded using Bayes’ rule:

P(w |a, D)∝P(a |w, D)P(w |D),

the final term being the (class independent) LM. Substituting x for w, and conditioning
the LM term on some class highlights the similarity. Topic identification, then, can be
thought of as discriminative language modelling.

2.2. The two class case

The two class case is worthy of particular mention as it is traditionally formulated
from a decision theoretic point of view: Bayesian decision theory requires utility to be
attached to combinations of classifications and actions, that is, define a loss matrix L
with elements Lij being some notional loss associated with performing action j when x
belongs to class i (see Matrix I). If j=W denotes “treat as wanted”, (for instance, have
an operator listen to a report), and j=U denotes “treat as unwanted” (for instance,
ignore the report) then LWU is the loss associated with treating x as unwanted when it
is actually wanted. For the time being, if M is redefined as M={W, U}; the expected
loss when assigning x to class W is then

LW=LWWP(m=W |x, D)+LUWP(m=U |x, D)

=LWW
P(x |W, D)P(W |D)

P(x |D)
+LUW

P(x |U, D)P(U |D)
P(x |D)

and similarly for LU. For readability, P(m=W ) has been abbreviated to P(W ), and
similarly for P(U).

To minimize expected loss when there are only two classes, it follows that a decision
rule is to classify x as W if and only if

LWW
P(x |W, D)P(W |D)

P(x |D)
+LUW

P(x |U, D)P(U |D)
P(x |D)

<LWU
P(x |W, D)P(W |D)

P(x |D)
+LUU

P(x |U, D)P(U |D)
P(x |D)

,

or more simply:

(LUW−LUU)P(x |U, D)P(U |D)<(LWU−LWW)P(x |W, D)P(W |D).
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It is generally assumed that the loss due to an incorrect classification is greater than
that due to a correct classification, that is Lij>Lii, in which case the above expression
reduces to:

P(x |W, D)
P(x |U, D)

>
P(U |D)
P(W |D)

·
(LUW−LUU)
(LWU−LWW)

. (2)

In a real application, the L terms would be set by someone with some knowledge of
the application, and the probabilities on the right hand side (the priors) would be
inferred from the data. For evaluation purposes, however, the L terms are not known
and the data is often weighted in favour of the wanted category, so the true prior is
unknown; the whole right hand side is generally replaced by a single parameter, k,
which is varied over its range to produce a receiver operating characteristic (ROC)
curve.

2.3. The multi-class case

The theory in the previous section assumes two classes, and hence can result in a single
discrimination metric. Dialogue move recognition is a multi-class problem, and can be
thought of as multi-class topic identification. It is tempting to try to use the likelihood
ratio as a metric for discrimination of the classes, but alas, for more than two classes,
an inequality cannot be formed with a single class on either side.

In the case where one of the classes corresponds to “none of the above”, i.e. a babble
topic, topic identification can be formulated as M – 1 two class problems. These can
be solved with likelihood ratios and combined into a single ROC curve. Dialogue move
recognition however, clearly, corresponds to a “closed set” topic identification problem.
Furthermore, in topic identification, one is generally interested in whether the subject
is topic or non-topic, and it is correct, and useful, to attach utility at this point. If a
car driver wishes to listen to traffic information, it is perfectly reasonable to attach a
large loss to missing a report. In dialogue move recognition, however, the dialogue
move is not the highest level question in the chain; that might be “Put me through to
someone to complain to”, in which case a large loss can be attached to being put
through to the wrong telephone extension.

The move recognition can be thought of as being much deeper in the chain, and
there is no way a utility can be justified in this problem other than to assign zero loss
to a correct classification and equal loss to all possible misclassifications. This is the
same as maximizing the likelihood of the move (class). The correct output of the move
recognizer is simply a probability for each move, which can be interpreted by the next
stage.

Without attaching utility to the various classifications, the correct strategy is to
choose the class which maximizes the probability of the class, P(m=mi |x, D), i.e. to
go back to Equation (1).

3. Calculation of probabilities

3.1. Standard maximum likelihood multinomial approach

Equation (1) requires the calculation of two probabilities: the likelihood of the particular
class occurring, P(m=mi |D), and the likelihood that the observation was generated by
the model for that class, P(x |m=mi, D).
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The easiest term to calculate is the prior, P(m=mi |D). Note that it is a prior in the
sense that it is prior to seeing the observation, x; it is still posterior to the data, D. It
simply says “What’s the probability that a particular class occurs”. Making the
simplification that each class is independent of all previous classes, the intuitive thing
to do is to divide the number of times class mi occurred in the data by the total number
of observations in the data.

The probability, P(x |m=mi, D) is more involved. For the purpose of this paper,
assume that the constituent features of x are words, generated by repeatedly sampling
a variable w vW, where W={w1, w2, . . . , ww}. This model is a unigram language
model.

The general approach in the literature is to express the likelihood term as the joint
probability of the constituent features of x.

P(x |m=mi, D)=P(w=w1, w=w2, . . . , w=wK |m=mi, D), (3)

where P(w=wk) in this context is taken to mean the probability that w takes the value
of the kth word in x. Given the independence assumption between words, Equation
(3) can be expressed as

P(x |mi, D)=P(w1, w2, . . . , wK |m=mi, D)

=P(w1 |mi, D)P(w2 |mi, D) · · · P(wK |mi, D),

the notation abbreviated slightly.
Taking “given the move type and the data” to mean “consider only the data that is

of that move type”, it is now possible to work out these probabilities. The intuitive
method is simply to use the same method as the prior: P(wk |mi, D) can be estimated
by taking the number of times that word wk occurred in the data of move type mi, and
dividing by the total number of words in all moves of that type.

3.2. An experiment

The HCRC map task corpus (Andersen et al., 1991) has been annotated at the dialogue
move level; there are 12 move types in all. The corpus was split into a training and
testing set such that no map featured in both sets; in this way, the discrimination could
be attributed to the semantic qualities of the text, not the map features.

The training data were used to calculate probabilities as described in the previous
section, and these were used to classify the utterances (observations) of the testing data.
A confusion matrix is shown in Matrix II.

The horizontal axis represents classification bins, the vertical is the actual class of
the utterances. All axes are totalled, so as an example, there were 2459 “Acknowledge”
moves in the testing data, 1795 of which were correctly classified. In total 2687 moves
were classified as “Acknowledge”.

The classification accuracy is just over 47%; Kowtko et al. (1993) state that 70–80%
of the moves can be correctly identified by a human (though using context too). The
model accuracy is believable given that the model has independence assumptions in
the move sequence and in the word sequence.
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Assuming the test set accuracy is binomially distributed (Bedworth, 1992), the 95%
confidence limits for 10 265 independent testing samples are around ±1%.

The matrix as a whole is reasonably distributed, with large values on the leading
diagonal, and smaller values off it. There is a tendency, however, for a lot of utterances
to be classified as “Ready”. The “Ready” move is generally played at the start of the
conversation, and consists of words like “right” and “okay”. Given that “Acknowledge”
also consists of exactly the same words, but is far more frequent, one would expect all
the “Ready” moves to actually be classified as “Acknowledge”. It is hypothesized in
the next section that this is a symptom of the unknown word or out of vocabulary
(OOV) problem.

3.3. The unknown word problem

When a new utterance is to be classified, a probability must be attached to each word
in that utterance. For instance, if the utterance Go to the left is to be classified, the
probability of each of the words must be evaluated for each of the classes. In a move
such as “Instruct”, which is both frequent and has a “rich” language model, most of
the words go, to, the, and left are likely to have occurred in the training data, and will
be given finite probabilities. In a move such as “Clarify”, however, the language model
is still rich but the move itself does not occur very often; in such a case, one or more
of the words in the utterance to be classified may not have occurred in the training
data.

Following the intuitive method, the probability of an unknown word is zero, so the
probability of the utterance is zero; the utterance clearly happened, so the model is
wrong. In fact, intuition can be updated: it is clear that unknown words will occur,
and that their probability ought to be non-zero and will probably be less than that of
the least frequent word in that category. The least frequent word that did occur will
have occurred once, and a common strategy (e.g. Nowell and Moore, 1995) is to count
unknown words as having occurred 0·5 times (some justification for this is hinted at
in section 3.4); this is how the confusion matrix in Matrix I was generated.

This ad hoc approach to unknown words explains the bias towards “Ready”: “Ready”
is the least frequent move, so the probability attached to an unknown word would be
0·5 divided by some small number being the number of words in that move type in the
data. Compare this with a move like “Instruct”, where the unknown word probability
is 0·5 divided by a much larger number, due to the rich and frequent nature of that
move type. Now imagine that a completely new word occurs in the utterance to be
classified: a new map feature, or a nuance of a new talker. The new word will be given
a much larger probability by the least frequent class.

3.4. Dice throwing

The OOV phenomenon is one of the main problems in language modelling, and there
is a large amount of literature on the subject. In general, the solution is to apply a
statistical smoothing function to the word probabilities, although this can involve a
lengthy cross-validation procedure to determine parameters; a recent reference is Ney,
Essen and Kneser (1995). The following sections show that for the task of discrimination,
a mathematically more attractive approach is available.

When one calculates a probability by dividing the number of occurrences of interest
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by the total number of occurrences, one is implicitly assuming a dice throwing model.
Statistically, the problem is the same as that of coin tossing or drawing coloured balls
from an urn and replacing them. If the number of occurrences of interest is represented
by n and the total number of occurrences by N, then n/N is the maximum likelihood
(ML) estimate of the true probability. ML estimates traditionally get more accurate as
n and N get large, and fall over completely as n tends to zero.

With small databases, especially cases where n is ever close to zero, it becomes
necessary to incorporate prior knowledge in some way. This is traditionally done in
classical statistics by assuming some distribution and smoothing the observations to
that distribution. In Bayesian statistics, the prior knowledge can be incorporated
explicitly, although quantifying prior knowledge is often a problem in itself.

It is instructive to consider the Bayesian formulation of the dice throwing model.
Formally, such a model is a multinomial distribution. Appendix A details a Bayesian
analysis of this formulation using a flat prior (that is, all combinations of bias are
initially estimated to have equal probability), and proves that the result can be applied
by replacing the n/N estimate with

n+1
N+W

,

where W is the total number of possible outcomes (2 for a coin, 6 for a die).
Whilst there is little justification for using a flat prior, this result is useful in that it

highlights a fundamental problem: in language modelling, W is the total vocabulary of
the task in question. It can be thought of as the total vocabulary of all the speakers
who took part in the task. W cannot possibly be known; a study by Efron and Thisted
(1976), on estimating Shakespeare’s vocabulary simply proved that it depends strongly
on initial assumptions. The problem has also been tackled by Fisher, Corbet and
Williams (1943), Goodman (1949), Good and Toulmin (1956) and McNeil (1973). W
however, is clearly large, and suggests that all probabilities calculated by the simple
maximum likelihood model will be grossly overestimated.

Note that in the Bayesian “estimate”, the probability when n=0 is half that when
n=1, which justifies in part the n=0·5 estimate in the maximum likelihood case.

3.5. The multinominal distribution and topic identification

In fact, the multinominal distribution has other problems when applied to topic
identification. Without breaking the sentence down into constituent features, the two
class discrimination metric is to classify x as wanted if and only if

log AP(x |W)
P(x |U)B>k.

Where k represents the product of the prior ratio and the loss function ratio of
Equation (2). The logarithm is generally used for practical convenience. If the words
in x are considered to be independent, P(x) can be broken down into the product of
the word likelihoods, and the classfication rule becomes
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]
K

i=1

ni log AP(wi |W)
P(wi |U)B>k (4)

where wi represents the ith word in x, and x is K words in length. This equation is
often referred to as “accumulated usefulness”.

For the purpose of topic identification, it is clear that only discriminative words need
be considered, and these words are termed keywords. The keywords are immediately
apparent, being those that result in extreme values of the likelihood ratio. In conventional
topic identification, the assumption is made that it is only necessary to compute
probabilities for these discriminative words, simply ignoring the others. In fact, it is
the probability of the whole utterance that is required.

A more subtle, but very important failure of the multinomial distribution in keyword
identification is best demonstrated by example. Consider the problem of spotting
weather reports in radio broadcasts. Words that maximize the likelihood ratio are likely
to be rain, snow, north and south, whilst words that minimize it might be minister,
stockmarket and Ambridge. Which class does the cat sat on the mat belong in? The
purely keyword-based accumulated usefulness equation falls down here, having no
evidence whatsoever to make a decision upon. The proper language modelling solution
uses default probabilities for unknown words, but these probabilities will be higher for
the least frequent class, hence favouring weather forecast given a properly representative
database.

What should be acknowledged here is the absence of keywords. The multinomial
model correctly applied does this by noticing the presence of other words that are not
keywords, but it cannot do this correctly as it does not know the vocabulary. What is
needed is a model that explicitly acknowledges zero occurrences of something, whilst
ignoring words that it has no knowledge of.

4. Removing the unknown vocabulary problem

4.1. The multiple Poisson distribution

The Poisson distribution was originally derived as an approximation to the binomial
distribution. The following brief derivation shows how the multiple Poisson distribution
can be derived from the multinomial distribution.

If qi is defined to be the underlying probability of the event w=wi, then the multinomial
distribution is

P(n |q)=
N!

n1!n2! · · · nW!
qn1

1 qn2
2 · · · qnW

W .

where q is the vector (q1, q2, . . . , qW), and n is the vector (n1, n2, . . . , nW). The sum of
the components of q is constrained to be unity.

Making the substitution ki=Nqi, and replacing qW with the sum to unity constraint,
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P(n |k)=
N!

n1!n2! · · · nW! Ak1

NB
n1

Ak2

NB
n2

· · · AkW−1

N B
nW−1

×A1−k1

N
−

k2

N
− · · ·−

kW−1

N B
nW

.

rearranging yields

P(n |k)=
kn1

1 kn2
2 · · · knW−1

W−1

n1!n2! · · · nW–1!
N(N−1)(N−2) · · · (nW+1)

NN−nW

×A1−k1+k2+· · ·+kW−1

N B
nW

.

it can be shown that as n)∞

A1−x
nB

n

)e−x,

so the limiting case turns out to be

P(n |k)=
kn1

1 kn1
2 · · · knW−1

W−1

n1!n2! · · · nW−1!
e−k1−k2−· · ·−kW−1,

where n does not contain nW, and k is the obvious thing. Note that kW and nW have
disappeared. This is just the product of W−1 independent Poisson distributions—the
multiple Poisson distribution. The approximation is valid if N is large and nW is also
large compared to the sum of the other n.

In fact, the key point here is that qW does not exist in the Poisson distribution. In
the multinomial case there is a certain amount of redundancy in that a d dimensional
multinomial actually has the constraint that all the d probabilities add to one; it is
actually a d−1 dimensional distribution. The redundancy in the p terms is mirrored in
the n terms, in that if the sum of the n (N) is known, one of the n is consequently
redundant. The Poisson distribution ties down N to a fixed (infinite) value, so nW is
redundant. In turn, this is mirrored in the k terms.

The fact that one term disappears is useful, for example: in a keyword based system,
all of the non-keywords can be grouped together and referred to as a single word, the
unknown word. If it is this unknown word that is dropped in the above derivation,
the result is an expression that is independent of unknown words. Given that all
unknown words are grouped together, regardless of how many there are, the result is
also vocabulary independent. Re-interpreting the approximations in the derivation, the
multiple Poisson distribution is valid for a large training database where the number
of occurrences of keywords is small.
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Figure 1. The Zipf plot and how to modify it to relate to probability.

The multiple Poisson is clearly the better method to use if the approximations in its
derivation are valid. This distribution has two clear advantages prior to running an
experiment:

(1) The absence of a word has a finite probability, that is, if any or all of the test
observation word frequencies are zero then P(x |D) is finite. This means the
absence of keywords can be penalized.

(2) There is a default probability for unknown words, that is, if any or all of the
training word frequencies are zero then P(x |D) is still non-zero.

5. Prior information

5.1. Zipf’s law

The parameters of the Poisson distribution are unknown, but information about them
is available via the training data. Classically, the training data would be used to estimate
the values of these parameters in a maximum likelihood sense. In more recent years
the Bayesian approach has found favour, resulting in either integrating out the unknown
parameters or calculating a Maximum a posteriori (MAP) estimate. Practically, the
two approaches tend to produce similar results in the absence of prior information; in
this case though, prior information exists in the form of Zipf’s law (Zipf, 1935).

Zipf’s law itself is an empirical law relating frequencies of words. If a graph is plotted
of frequency as ordinate, and the words rank ordered on the abscissa, that is, the most
frequent word on the left and the least frequent on the right, the points will form a
smooth curve with approximately reciprocal square root form; the actual analytical
form is discussed by McNeil (1973). Further, this law will hold no matter which
database is used.

Such a graph is not very useful in that form, but integrating up the vertical axis
produces a graph which, suitably normalized, can be interpreted as “Probability of
Frequency”, which in turn is the prior on the k terms in the Poisson distribution. This
is illustrated in Fig. 1, where the graph on the left is a traditional Zipf plot, and the
one on the right is modified as described.

The graph on the right of Fig. 1 can be estimated with a histogram from a large
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Figure 2. Modified Zipf plot for various data sources; Map task (+), King
James Bible (×), Wall Street Journal (∗).

dataset, and this is depicted in Fig. 2. The plots refer to the 35 million word ARPA
Wall Street Journal corpus, the King James version of the Bible (less than 1 million
words), and the entire HCRC map task corpus (less than 200 000 words). Three things
are apparent from this plot:

(1) All the plots are straight lines with (approximately) the same gradient on log–log
axes. If the gradients are indeed the same, then Zipf’s law holds, and one dataset
can be used as a prior for another.

(2) The smaller data sets have higher tails (the right hand end in this case). This is
a well known effect, and suggests that the large dataset is a better approximation
to the true distribution.

(3) The fact that they are straight lines on a double logarithmic scale implies that
the real curve is of the form y=Axm, where A is some normalizing term and m
is the gradient of the line.

Note that the map task plot is only shown for reference. The information in the
plots is supposed to be prior information, and looking at any of the map task data is
cheating, never mind looking at all of it.



287Topic identification and dialogue move recognition

1

1e+08

1e–06
1e–08

Normalized frequency

P
ro

ba
bi

li
ty

 o
f 

fr
eq

u
en

cy

1e–05

0.01

1e+06

10 000

100

1

0.0001

1e–07 1e–06 0.0001 0.001 0.01 0.1

Figure 3. Various fits to the Wall Street Journal data; Wall Street Journal (+),
Gamma 1 (– – –), Gamma 2 (- - -), Line Fit (· · ·).

5.2. Parameterization of prior information

To be useful as a prior distribution, some convenient parameterized form must be made
to fit the Zipf plot. The gamma distribution, defined as

P(k |a, b)=
ba

C(a)
ka−1e−bk,

has an xm term, so it ought to be possible to fit a gamma distribution to this database.
Fig. 3 illustrates this. The line labelled “Gamma 1” is a gamma distribution with
parameters a=0.1 and b=0; “Gamma 2” is the same with b=10. Shrinking a any
more has the effect of moving the whole line downwards.

There is clearly nothing to be gained from setting b to be anything other than 0;
even a value of 10 introduces more curvature than can be justified. Setting a to some
small value may clearly be of benefit though.

A gamma distribution has the advantage of mathematical convenience, being a
conjugate prior for a Poisson distribution. Rather than insisting on conjugacy and
going out of the way to make a gamma distribution fit the prior information, it ought
to be possible to find a distribution that fits the prior information, but is not necessarily
conjugate. In Fig. 3, it is clear that the line labelled “Line fit” fits the data much better
than the gamma distributions. This is simply the line y=Ax−1·7, where A was chosen
to make the line go through the data rather than above or below it.
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The gamma distribution is not proper (does not integrate to 1) if the a term falls
below −1, so the line fit is out of the range of the gamma distribution. It is possible,
however, to alter y y x−1·7 such that it is proper by moving the whole graph to the
left by an amount d such that it actually crosses the y axis. This is equivalent to
modelling the prior as

P(x)∝(x+d)−c,

where c is the (negative) gradient of the line on double logarithmic axes and d is some
small number. The value of d can be obtained by evaluating the normalizing constant

P(x)=
c−1
d1−c (x+d)−c,

and fitting to the histogram. In fact, d controls the general “height” of the line on the
graph.

Appendix B shows that assuming a Poisson model, where the parameters follow a
gamma distribution, yields the probability of a sequence of words to be

P(x |D)=\
V

i−1

C(xi+ni+a)
C(ni+a)

(D+b)ni+a

(D+b+K)xi+ni+a , (5)

where x={x1, x2, . . . , xK}, xk is the number of times word wk occurred in the observation,
ni is the number of times word wi occurred in the data, D, and D is the total number
of words in D. In practice, all of these terms are conditioned on the class too. Note
that the definition of x has been slightly overloaded here to refer to a vector of word
counts.

Matrix III shows a confusion matrix for the data with the prior set from line “Gamma
1” in Fig. 3 (a=0·1, b=0). Note that only one move is now categorized as “Ready”,
as was the problem with the ML multinomial. There is no category that scoops up all
the unclear observations either. As a result, the overall accuracy is higher than that for
the ML multinomial.

Appendix C proves that the equivalent of Equation (5) for a “log–linear” prior is

P(x |D)=\
V

i=1

(xi+ni)!
ni!

U(c, c−xi−ni, (D+K)d)
U(c, c−ni, Dd)

D1+ni−c

(D+K)1+xi+ni−c , (6)

where U(a, b, z) is Kummer’s confluent hypergeometric function sometimes known as
W(a; b; z).

Matrix IV shows a confusion matrix for the “log–linear” prior. The classification
accuracy is a little less than for a gamma prior, but within the 95% confidence limits.
There is a slight bias towards classifying moves as “Ready”, and this is detrimental
(more wrongly than correctly classified). On the whole, though, no clear conclusions
can be drawn about the relative benefits of the two priors.

In the case of the multinomial, it was clear how to assign a “flat” prior to the
distribution by simply setting all the hyperparameters to 1. In this case, however, a flat
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prior is less clear cut. By inspection, the gamma distribution can be made flat by setting
a=1 and b=0. This prior essentially says that all the ki have an equal probability of
lying anywhere from zero to infinity. This is plainly riduculous; even if all the ki were
1, then each observation on average would be expected to contain the entire vocabulary
of the task.

Matrix V shows a confusion matrix for classification using a “flat” gamma prior and
probabilities calculated using Equation (5). Considering the prior, the results are
remarkably good.

A flat prior is a mathematical convenience, though. A prior should either be non-
informative or represent real prior information. The next section shows that the addition
of Zipf’s law can be even more beneficial when training data is scarce.

6. Evaluation

In order to evaluate the different methods of assigning probabilities to observations of
sequences of words, classification experiments were performed on various amounts of
training data. Of the original 64 dialogues in the training set, 10 were used as a “burn
in” set to ensure that at least some data from each move type was present. Classifications
were then performed, adding another dialogue to the training data each time.

The hypothesis was that the approaches using prior information should perform
better than those without for small amounts of training data. In addition, the use of a
log–linear prior should improve on the conjugate gamma prior.

Figure 4 shows the classification performance for the various methods for the range
of training data sizes used. The behaviour is broadly as predicted: all of the Poisson
based measures outperform the standard multinomial, and the inclusion of prior
information increases performance for small amounts of training data.

The log–linear prior does not perform as well as expected, though. In fact, the gamma
prior is consistently better. The reason for this is most likely to be that the log–linear
fit is only a somewhat ad hoc attempt to fit the Zipf plot. Whilst it fits the visible part
of the plot, there is no reason to believe that it fits the unseen part to the extreme left.
In fact, the log–linear curve bends downwards to cross the axis in this region, and the
unseen plot is unlikely to do this. In turn, it is this region which is most important
from the point of view of reverting to prior information because it contains the unknown
words. The gamma distribution has two advantages here: it does not actually cross the
axis, and for larger amounts of data it does not dictate a particular functional form,
i.e., the functional form with a gamma prior is the same as for a flat prior.

The evaluation as shown is somewhat biased in that certain moves (notably “Acknow-
ledge”) are very easy to classify, and are very prevalent. A more objective evaluation
should use a test set with equal probability of occurrence of any particular move. This
is reflected in Fig. 5: A test set was constructed by randomly sampling 100 observations
of each type of move from the original test set, and this knowledge was reflected by
ignoring P(mi |D). The effect of this is to increase “performance resolution”. The overall
performance is lower reflecting the lower frequency of easy to classify moves, but the
curves are now separated, emphasizing the importance of prior information. The 95%
confidence limits on the classification rate for this smaller test set are around ±3%.

In the latter figure, the curves for the two informative priors are coincident for a
while, but separate when there is a large amount of data, although they still lie within
each other’s 95% confidence limits. It can be concluded at this stage that there is
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Figure 4. Classification performance vs. amount of training data for the four
different probability measures. ML multinomial (+), Poisson, flat prior (×),
Poisson, gamma prior (∗), Poisson, log–linear prior (Φ).

nothing to be gained from using the log–linear prior, especially since the functional
form is unnecessarily complicated.

7. Pruning the vocabulary—keyword identification

7.1. Discussion

In the preceding sections, no attempt has been made to choose those words that are
discriminative. The vocabulary size has been defined as the complete vocabulary of the
training data. In fact, it is clear that some words will have a much greater discriminative
effect than others, and even that some words will have no discriminative effect at all.
Further, the multiple Poisson approximation to the multinomial becomes more valid
as the combined rate of occurrence of vocabulary words decreases. Pruning the
vocabulary should therefore increase the performance of the model. One can imagine
some optimal vocabulary that is small enough to allow the Poisson approximation to
be valid, yet large enough to retain discriminability.

In the traditional topic identification scenario, the discriminative words are chosen
as those that maximize the ratio (4), and are referred to as keywords. This ratio is
referred to as usefulness because it identifies those words that are useful. In the multi-
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Poisson, log–linear prior (Φ).

class case, however, the single ratio does not apply and it is less clear how to attach a
discriminability measure to words.

7.2 A multi-class discriminability measure

The decision rule itself can be used to indicate the measure of discriminability for each
word in the vocabulary: the overall decision rule is to maximize

P(mi |x, D)=
P(x |mi, D)P(mi |D)

P(x |D)

=
P(x |mi, D)P(mi |D)

;M
j=1 P(x |mj, D)P(mj |D)

over all moves in M. This is the same as minimizing the reciprocal, in which case the
summation appears in the numerator and the expression breaks down into a sum of
ratios:
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Pi=
P(x |m1, D)P(m1 |D)
P(x |mi, D)P(mi |D)

+
P(x |m2, D)P(m2 |D)
P(x |mi, D)P(mi |D)

+· · ·+
P(x |mM, D)P(mM |D)
P(x |mi, D)P(mi |D)

,

which consists of easily differentiable parts.
When choosing a feature set, it is desirable to choose features that have maximum

effect upon the decision rule. Consider an observation, x, consisting of a single word
wk. The difference in Pi after obsering x is likely to be proportional to

∂Pi

∂xk Kxk=0

.

where xk is the number of times words wk occured in x. It is natural to use the expectation
of this expression over all words in the vocabulary:

EA∂Pi

∂xkB=]
V

k=1

∂Pi

∂xk

P(wk |mi, D),

and since the problem is multi-class, an expectation can also be taken over classes.

EA∂P∂xkB=]
M

i=1

EA∂Pi

∂xkBP(mi |D).

Interchanging the order of summation, the contribution of a particular word wk to this
expression is

U(wk)=]
M

i=1

∂Pi

∂xk

P(wk |mi, D)P(mi |D).

It follows that, since Pi is to be minimized for a correct classification, words should
be chosen which minimize U(wk).

Consider first the case where the words are assumed to be distributed multinomially.
The probability of a sequence of words x conditioned on the class, in a maximum
likelihood sense, is

P(x |mi)=\
K

k=1

nik

Di

,

where, with a change of notation to allow conditioning on the class, there are nik words
of type wk and Di words in total in class mi of the training set. Differentiating as
prescribed and setting xk=0 results in
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U(wk)=]
M

i=1

nik

Di

ni

N]
M

j=1
jri

nj

ni

log
njkDi

nikDj

,

where there are nj examples of class mj in the training data. In practice, the two ni terms
cancel, and the N is unnecessary.

In the special case of two classes, this expression can be written

U(wk)=−P(m2)P(wk |m1) log
P(wk |m1)
P(wk |m2)

−P(m1)P(wk |m2) log
P(wk |m2)
P(wk |m1)

.

Each of these terms is exactly the same as that given by Parris and Carey (1994),
though from a much more general view, and corresponds to combining features
indicative of the wanted class with features indicative of the unwanted class. For this
reason, the name usefulness is retained. Curiously though, the term corresponding to
class 1 is weighted by the probability of class 2 and vice-versa.

In the case of the Poisson based estimate for word probability, consider one of the
terms of Pi, comparing move j with move i:

\
V

k=1
CC(njk+a+xk)

C(njk+a)

(Dj+b)njk+a

(Dj+b+K)njk+a+xkD nj

N

\
V

k=1
CC(nik+a+xk)

C(nik+a)

(Dj+b)nik+a

(Di+b+K)nik+a+xkD ni

N

,

rearranging yields

\
V

k=1
CC(njk+a+xk)
C(nik+a+xk)

C(nik+a)
C(njk+a)

(Dj+b)njk+a

(Di+b)nik+a

(Di+b+K)nik+a+xk

(Dj+b+K)njk+a+xkD nj

ni

.

Differentiating with respect to a single xk yields the same expression multipled by

log(Di+b+K)−log(Dj+b+K)+w(njk+a+xk)−w(nik+a+xk) ,

where w is the digamma function. Setting all the xk=0 as before, and K=0, the
expression for the usefulness of word wk becomes

U(wk)=]
M

i=1

P(wk |mi)]
M

j=1
jri

nj [log(Di+b)−log(Dj+b)

+w(njk+a)−w(nik+a)] ,
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Figure 6. The effect on the classification rate of pruning the vocabulary; ML
multinomial (+), Poisson, gamma prior (×).

where P(wk |mi) is the probability of an observation consisting of the single word wk.
The usefulness in the Poisson case is essentially the same form as that for the

multinomial (the two logarithm terms can be written as the logarithm of a ratio), with
the addition of the digamma functions. Digamma functions simply relate gamma
functions to their first derivatives. Practically, the expression is more complicated to
compute as the P(wk |mi) term is a product over all keywords, but mathematically the
result is reassuringly simple.

7.3. Evaluation

The 64 dialogues of the same training set as before were used to generate ordered lists
of words for the ML multinomial and Poisson with gamma prior probability measures.
Classification experiments were then performed using all 64 training dialogues and the
same test situations as before, but with various vocabulary sizes. The results for the
full test set are shown in Fig. 6.

Figure 7 shows the same results, but for the equally distributed test set used before.
The features of the Poisson based curve are enhanced in the latter figure.

There is a definite peak in the Poisson curve at 300 keywords which corresponds to
an optimal vocabulary size. To the right of this point, the performance of the multinomial
continues to increase as the unknown vocabulary becomes less of a problem. The
performance of the Poisson based system deteriorates though. One reason for this is
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Figure 7. The effect on the classification rate of pruning the vocabulary for
equal move probability; ML multinomial (+), Poisson, gamma prior (×).

clearly the failing nature of the approximation in the derivation of the multiple Poisson
distribution.

The other reason is that the system is including words which only occurred once in
the training set and are not discriminative. If a word only appears once, it will be
treated as positively discriminative for the move in which it appears. With fewer than
300 keywords both systems deteriorate, and with fewer than 100 words there is simply
not enough information to retain performance.

Results were reported by Garner and Hemsworth (1997), comparing several other
methods of pruning the vocabulary. These results are summarized in Fig. 8, which
shows the effect of pruning the vocabulary for a Poisson based model, using various
pruning strategies. The key labels refer to measures as follows: usefulness is discussed
in this paper, and the line is identical to that in Fig. 6. Mutual information,

I(M; wk)=]
M

i=1

log
P(mi |wk)

P(mi)
P(mi) ,

is the information provided by word wk about the set of moves M. Mutual information
reversed can be thought of as−I(M;wk), and was used because it was not clear whether
to maximize large positive or negative values. Entropy is defined as



299Topic identification and dialogue move recognition

1400

56

24
0

Vocabulary size

%
 c

or
re

ct

1000

36

200 800400 600

54

52

50

48

46

44

42

40

38

34

32

30

28

26

1200
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based model; Usefulness (+), Mutual information (×), Mutual information
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IE(M; wk)=−]
M

i=1

P(mi) log P(mi)+]
M

i=1

P(mi |wk) log P(mi |wk) ,

and represents the increase in entropy of the ensemble M when word wk is observed.
Salience is defined as

S(M; wk)=]
M

i=1

P(mi |wk) log
P(mi |wk)

P(mi)
,

and is used by Gorin (1995) in his language acquisition work. The line labelled
“Random” is simply a random pruning of the vocabulary. It is clear that usefulness
outperforms all other methods considered in this experiment.

8. Conclusions

This paper has outlined a consistent and rigorous approach to keyword-based topic
identification, resulting in a robust enough theory to give good results when applied to
dialogue move recognition. This leads to the practical result that dialogue moves can
be inferred using a unigram language model to an accuracy of around 50%. The
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approach, however, is more important than the actual result. Dialogue move recognition
can clearly be much improved using dialogue context and acoustic intonation: Reithinger,
Engel, Kipp and Klesen (1996) report an accuracy of around 40% predicting 18
intentional dialogue acts from a VERBMOBIL corpus using purely dialogue context,
and Taylor, Shimodaira, Isard and Kowtko (1996) report approximately 55% on the
map task corpus using purely intonation. In a more genuine experiment on a similar
corpus again using intonation (Taylor, King, Isard, Wright and Kowtko, 1997), a move
accuracy of around 39% is reported, which goes up to around 44% when dialogue
history is considered.

In short, it is suggested that the multiple Poisson distribution is a better distribution
with which to model words than a multinomial, since it alleviates the unknown
vocabulary problem. This advantage far outweighs the approximate nature of the
distribution. When the approximation is taken into account and only discriminative
words are chosen, the multiple Poisson distribution performs even better.

Zipf’s law provides a convenient subjective linguistic prior to incorporate into the
posterior probability in a Bayesian sense. Its inclusion further improves performance.

This paper only goes as far as suggesting that there is some optimal vocabulary to
use for a particular task; it does not suggest how to find that vocabulary, other than
the obvious use of a validation set.

An assumption taken throughout is that the word and dialogue move boundaries
are known, which is not the case in the context of, for instance, automatic speech
recognition (ASR). Any extension to ASR would need to acknowledge the uncertain
nature of the transcription, and one possible approach would be the use of lattices.
The probability of a single utterance could then be evaluated as the sum of the
probabilities of the words in each path through a lattice, weighted by the probability
of the path. This, however, remains a subject for future research. The problem of
detection of move boundaries has been addressed by Cettolo and Corazza (1997).
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Appendix A: probability “estimates” from the multinomial

The following proof is by no means new, but is included in an abbreviated form for
reference. For a more complete discussion of the techniques involved, see any text on
Bayesian statistics.

A predictive distribution, P(x |mi, D), is sought, where x is a sequence of words. To
simplify the notation, assume that all of the calculations in this section are conditioned
on m=mi, i.e. P(x |D)oP(x |m=mi, D). Assume that x was generated by repeatedly
sampling a variable w from the set W={w1, w2, . . . , wW}. If there are K words in x,

P(x |D)=P(w=w1, w=w2, . . . , w=wk |D).
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If there are nk words of type k in D, and N words altogether, and the unconditional
probability P(w=wk) of each word is qk, the core problem is to find

P(x |D)=P(x |n, N)=P
1

0

· · ·
W P

1

0

dqP(x |q, n, N)P(q |n, N),

where q={q1, q2, . . . , qW}, and the notation is meant to mean “integrate w.r.t. each
qk”.

With reference to, for instance O’Hagan (1994), applying Bayes’ theorem to the final
term and assuming q follows a Dirichlet distribution, if there are xi words of type wi

in x, then

P(x |D)=P
1

0

· · ·
W P

1

0

dq qx1
1 qx2

2 · · · qxW
W

qn1+a1−1
1 qn2+a2−1

2 · · · qnW+aW−1
W

// dq qn1+a1−1
1 qn2+a2−1

2 · · · qnW+aW−1
W

=
B(n1+a1+x1, n2+a2+x2, . . . , nW+aW+xW)

B(n1+a1, n2+a2, . . . , nW+aW)
,

where B(a, b, . . .) is the multivariate beta function.
It is actually more informative to look at this equation for a specific sequence: the

terms for any word that does not appear in x simply cancel, leaving terms for the
words that do occur, so the probability of the sequence {w1, w1, w2, w2} is

n1+1
N+W

n1+2
N+W+1

n2+1
N+W+2

n2+2
N+W+3

.

A flat prior has been assumed by setting a1=a2=aW=1. Notice that the expression
is equivalent to adding each word of the observation, x, to the data, D, before evaluating
the next word. This effect is sometimes known as Laplace’s rule.

Appendix B: word probabilities from the multiple Poisson

Given an observation x containing xk words of type wk, the probability P(x |D) is
required. This depends upon the parameters of the Poisson distribution and is given
by

P(x |D)=P
x

0

· · ·
V P

x

0

dkP(x |k, D)P(k |D). (B.1)

This integral is actually a lot easier than it looks because the multiple Poisson
distribution is simply the product of V independent Poisson distributions.

An important consideration here is that of “window size”. In the case of the
multinomial, the probability of generating n sets of l words is the same as the probability
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of generating a single set of n×l words. For the multiple Poisson, the concept of
window size is more important, and the two cases are different. One approach would
be to choose a window size natural to the application such as length of observation.
Observations are generally of different length, though, so the approach taken here is
to normalize the window to be one word long, and to treat an observation length l as
l separate observations.

Consider the univariate version of P(k |D): the univariate Poisson distribution is
defined to be

P(n |k)=
kne−k

n!
.

If a sequence of D trials results in observations n={n1, n2, . . . , nD}, then

P(n |k)=
kn1e−k

n1!

kn2e−k

n2!
· · ·

knDe−k

nD!

=
kn1+n2+· · ·+nDe−Dk

n1!n2! · · · nD!

=kne−Dk .

The nk can be either 1 or 0 corresponding to a word either appearing or not appearing,
whereas the n refers to the number of occurrences in the D trials. Using Bayes’ theorem
to obtain the posterior,

P(k |D)=
P(n |k)P(k)

/
x

0
dkP(n |k)P(k)

.

Assuming that P(k) is a gamma distribution, and that the normalizing terms cancel,

P(k |D)=
kne−Dkka−1e−bk

/
x

0
dk kne−Dkka−1e−bk

=
kn+a−1e−(D+b)k

/
x

0
dk kn+a−1e−(D+b)k

=
(D+b)n+a

C(n+a)
kn+a−1e−(D+b)k .

Assuming that all the ki are drawn from the same gamma distribution, the multivariate
case is simply the product of these over all words, that is
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P(k |D)=\
V

i=1

(D+b)ni+a

C(ni+a)
kni+a−1

i e−(D+b)ki .

The likelihood term of (B.1) is simply the raw multivariate Poisson distribution,

P(x |k, D)=P(x |k)=\
K

k=1
A\

V

i=1

kxik
i e−ki

xik! B ,

where xik is the number of words of type wi in position k in x, x being K words in
length.

Equation (B.1) can be rearranged and evaluated as V independent integrals thus:

P(x |D)=P
x

0

· · ·
V P

x

0

dk\
K

k=1
A\

V

i=1

kxik
i e−ki

xik! B\
V

i=1

(D+b)ni+a

C(ni+a)
kni+a−1

i e−(D+b)ki

=\
V

i=1
C
(D+b)ni+a

C(ni+a) P
x

0

dki\
K

k=1
A
kxik

i e−ki

xik! Bkni+a−1
i e−(D+b)kiD

=\
V

i=1
C
(D+b)ni+a

C(ni+a) \
K

k=1

1
xik! P

x

0

dkik
xi+ni+a−1
i e−(D+K+b)kiD

Since xik is always either 1 or 0, and the integral is now just another gamma integral,
the final form is

P(x |D)=\
V

i=1
CC(xi+ni+a)

C(ni+a)

(D+b)ni+a

(D+b+K)xi+ni+aD .

In practice, this equation simplies in that if VqK, xi will mostly be zero and the
gamma functions cancel. Further, <V ( · )ni+a=( · )N+Va, so the product is only over K

terms.
This distribution is related to the negative binomial distribution. Consider for the

moment the terms inside the product, which can be written

(xi+ni+a−1)!
xi!(ni+a−1)!

(1−p)ni+apxi

where p=(D+b−1)−1. The xi disappeared in the derivation since it was always 0 or
1. This expression is of the form



305Topic identification and dialogue move recognition

P(x |r, p)=Ar+x−1
x Bprqx

which is the negative binomial distribution that Fisher used to count butterflies (Fisher,
Corbet & Williams, 1943) and that Efron & Thisted (1976) used to model Shakespeare’s
output. The derivation differs from Fisher in its use of a prior distribution, and since
the a terms are not necessarily integer, the normalizing term cannot be written using
factorials.

Appendix C: Poisson distribution with “log–linear” prior

Following the notation and argument in Appendix B, P(k |D) is required. This is the
product of all the univariate cases, where a single univariate case is given by

P(k |n)=
kNe−Dk(k+d)−c

/
x

0
dkkNe−Dk(k+d)−c

,

assuming the normalizing constants cancel.
The integral in the denominator can be solved by noticing the similarity with the

integral definition of the confluent hypergeometric function (Gradshteyn & Ryzhik,
1980):

C(a)U(a, b, z)=P
x

0

e−ztta−1(1+t)b−a−1dt.

Making the change of variable t=k/d, the integral in the denominator becomes

I=P
x

0

dt d(dt)ne−Ddt(d+dt)−c

=dN+1−c P
x

0

dt tNe−Dt(1+t)−c

=dN+1−cC(N+1)U(N+1, N+2−c, Dd).

Changing notation to allow for the multivariate case, an proceeding as in Appendix
B,
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P(x |D)=P
x

0

· · ·
V P

x

0

dk\
K

k=1
A\

V

i=1

kxik
i e−ki

xik! B

×\
V

i=1

kni
i e−Dki(ki+d)−c

dni+1−cC(ni+1)U(ni+1, ni+2−c, Dd)

=\
V

i=1 C /
x

0
dki <

K

k=1 A
kxik

i e−ki

xik! B kni
i e−Dki(ki+d)−c

dni+1−cC(ni+1)U(ni+1, ni+2−c, Dd)D
=\

V

i=1 C <
K

k=1

1
xik!

/
x

0
dkik

xi+xi
i e−(D+K)ki(k+d)−c

dni+1−cC(ni+1)U(ni+1, ni+2−c, Dd)D .

Again, xik can only ever be 0 or 1. The whole expression can be simplified using the
Kummer transformation

U(a, b, z)=z1−bU(1+a−b, 2−b, z).

In addition, some of the d terms cancel, and the arguments to the gamma functions
are always integer so factorials can be used, yielding

P(x |D)=\
V

i=1

(xi+ni)!
ni!

U[c, c−xi−ni, (D+K)d]
U(c, c−ni, Dd)

D1+ni−c

(D+K)1+xi+ni−c .

The relationship with the gamma prior expression is now evident; this expression is
like that for a flat prior, but with c as a notional “initial count” for ni, and the addition
of the ratio of confluent hypergeometric functions.
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ABSTRACT

Formant frequencies have rarely been used as acoustic
features for speech recognition, in spite of their phonetic
significance.  For some speech sounds one or more of the
formants may be so badly defined that it is not useful to
attempt a frequency measurement.  Also, it is often difficult
to decide which formant labels to attach to particular
spectral peaks.  This paper describes a new method of
formant analysis which includes techniques to overcome
both of the above difficulties.  Using the same data and
HMM model structure, results are compared between a
recognizer using conventional cepstrum features and one
using three formant frequencies, combined with fewer
cepstrum features to represent general spectral trends.  For
the same total number of features, results show that
including formant features can offer increased accuracy over
using cepstrum features only.

1. INTRODUCTION

It has been known for many years that formant frequencies
are important in determining the phonetic content of speech
sounds.  Several authors have therefore investigated formant
frequencies as speech recognition features, using various
methods for basic analysis, such as linear prediction [1], [2],
analysis by synthesis with Fourier spectra [3], and peak
picking on cepstrally smoothed spectra [4].  However, using
formants for recognition can sometimes cause problems, and
they have not yet been widely adopted.  It is obvious, for
example, that formant frequencies cannot discriminate
between speech sounds for which the main differences are
unrelated to formants.  Thus they are unable to distinguish
between speech and silence or between vowels and weak
fricatives.  Whenever any formants are poorly defined in the
signal (e.g. in fricatives), measurements will be unreliable,
and it is therefore essential that their estimated frequencies
should be given little weight in the recognition process.

To be useful as features for automatic speech recognition,
formant frequencies must be supplemented by signal level
and general spectral shape information, such as provided by
low-order cepstrum features, for example.  However, when-
ever the speech spectrum has a peaky structure, the phonetic
detail is better described by formant frequencies than by the
more usual higher-order cepstrum features, which have no
simple relationship with formant frequencies.

It is impossible to determine from the spectrum of some
speech sounds whether a particular peak should be
associated with one formant or with a pair, and sometimes a
formant may be so weak as a consequence of weak
excitation that it causes no peak in the spectrum.  Either of

these situations can cause all higher-frequency formants to
be wrongly labelled, with disastrous effects on the recog-
nition.  In such cases alternative labellings must be
produced, and any uncertainties that cannot be resolved in
other ways must be resolved within the recognition
algorithm.  The decisions are thus delayed until the words
have been recognized [1].  However, many labelling
uncertainties of single frames can be safely resolved merely
by applying formant continuity constraints [2], which are a
general property of speech.  First applying continuity
constraints is actually better for the standard HMM
formalism, which does not exploit continuity of features.

This paper presents a new method of formant analysis which
has provision for dealing with ambiguous labelling and with
indistinct formants. The method has been used to
supplement low-order cepstrum features for speech
recognition.

2. NEW METHOD FOR FORMANT ANALYSIS

2.1 Human interpretation of formants

When supplied with a wide-band spectrogram of a speech
signal, an expert in experimental phonetics can usually
estimate fairly well where the formant trajectories are for all
parts of the signal for which such an interpretation would be
useful.  For those parts of the signal where the formant
peaks of a particular spectral cross-section are not well
defined, an expert can normally still make a reasonable
interpretation by using phonetic knowledge about the
normal properties of speech sounds and by interpolation
between neighbouring sounds for which the formant
structure is clearer.  It is generally more difficult to estimate
formant frequencies automatically, given the same short-
term spectral analysis that is the basis of spectrographic
display.  However, the task is easy if the spectral cross-
section of the signal has a small number of clearly defined
peaks.  Provided that each of the three lowest-frequency
peaks is in the frequency range typical of one of the three
lowest formants, only one sensible formant interpretation of
the spectral shape is possible.

Fig. 1 shows a spectral cross-section which has clear peaks,
with the positions of the formants marked.  On these
occasions a single spectral cross section is all that is
required to make a reliable estimate.  Sometimes, however,
two formants may be so close in frequency that they give
rise to only a single spectral peak.  There can also often be
occasions where a total of three spectral peaks are visible,
but the frequencies and intensities might be such that the
middle peak could plausibly be F2 by itself and the third
peak be F3, or the middle peak could be F2 and F3 together,
with the third peak being F4.  In this case even a human
expert would be incapable of making a reliable choice,
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Fig. 3.  Ambiguous formant labelling  Fig. 4.  Frequency warping of pattern (trace 1) into warped
            pattern (trace 2) to align with input (trace 3)

given only a single spectral cross-section.  However, the
expert would be able to postulate a small number of
plausible alternatives, where in most cases all but one of
these alternatives could subsequently be rejected by using
continuity constraints.  Thus unambiguous formant traject-
ories would be obtained for a substantial proportion of any
utterance.   Fig. 2 shows a spectral cross-section for which
F1 and F2 are obviously both associated with the lowest-
frequency peak, whereas the spectrum shown in Fig. 3 is an
example where there is uncertainty about the correct
formant labelling, and both of the marked formant
allocations would be plausible.

An important novelty of the formant estimation method
described in this paper is that it exploits this human ability
to apply formant labels to spectral cross-sections, giving
alternative formant allocations to peaks where appropriate.

2.2 Preliminary formant estimates

The formant analysis uses log power spectra derived from
64-point FFTs of a signal sampled at 8 kHz.  To ensure that
the cross-sections represent the formants as well as possible,
the FFTs are taken from regions immediately after points of
excitation of the vocal tract, selected on the basis of a local
power maximum.  There is a store of about 150 typical
spectral cross-sections, each of which is associated with one
or more sets of plausible labellings of the lowest three
formants, provided by a human expert.  Each input spectral
cross-section is first compared with all the stored patterns,
to select a few which have the most similar general spectral
shape.  These few patterns are then compared with the input
using a dynamic programming (DP) technique in the
frequency domain to find the frequency scale warping of the
stored patterns which gives the best match to the input.
Fig. 4 illustrates a typical warping operation.  The DP cost
function includes components dependent on spectral level,
spectral slope and extent of frequency warping.  The pattern
with the best DP score and any close competitors are
selected for further consideration.  The frequency warping
of each such pattern is applied to the formant frequencies

stored with the pattern, to give preliminary formant frequen-
cy estimates.  These estimates are quantized at the 125 Hz
spacing of the FFT, and more finely quantized formant
frequencies are derived by matching typical formant shapes
to the spectrum in the region of the chosen FFT points.

2.3 Selection of smooth formant tracks

Any alternative formant labellings given by the few best-
fitting patterns are used as input to an additional DP
process, which finds the best smooth trajectories through the
available formant frequency candidates.  A second pass of
the DP smoothing process is then made, in which the best
formant labelling given by the first pass is used as an
additional input to the DP cost function.  This second pass
will give an alternative smooth path through the available
formant candidates if the score for such a path is not much
worse than the score of the best path.

The formant analysis method usually gives a unique formant
interpretation of speech signals, and never gives more than
two different interpretations.  Whenever it is apparent from
a spectrogram where the formants should be, it is extremely
rare for the algorithm to fail to give the correct values, and
they are nearly always provided by the first choice.  For
each output formant frequency an estimate of confidence in
the measurement is derived based on spectral level and
spectral curvature, so that less reliable formant frequencies
can be given less weight in recognition decisions.

2.4 Analysis example

Fig. 5 shows a typical spectrogram with superimposed
formant tracks.  During the [∫] and the [t] burst F1 has been
omitted because there was no confidence in its accuracy.
The two alternative interpretations of F2 and F3 are both
reasonable, but the first choice obviously provides correct
continuity into the nearby phones.  Neither F2 nor F3 could
be usefully estimated during the [d] closure, and F2 in the
[n] was only given any confidence for one frame.  The first
choice is clearly correct during the first part of the [eI ]
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Fig. 5.  Spectrogram of the words "ocean today", with superimposed formant tracks.
Tracks are not plotted when there is no confidence in their accuracy.

diphthong, but the second choice was initially a plausible
interpretation, until the later part of the diphthong had been
analysed to reveal the first-choice F2 moving close to F3.

3. USING CONFIDENCE ESTIMATES AND
AMBIGUITY IN RECOGNITION

Alternative formant sets arising from labelling ambiguity
have so far been accommodated in recognition just by
choosing the formant set which gives the highest HMM
emission probability for each frame and model state.

During silence or background noise, and whenever there is
no obvious spectral peak near to the estimated formant
frequency, there will be no confidence in the formant
frequency estimate, which should not then be used at all in
the recognition.  In this case, the appropriate formant
information to use in the recognizer should be specified by
prior information about its likely position.  During peaky
vowel spectra on the other hand, the measured frequencies
will be given high confidence, although there may be
occasional labelling ambiguity.  There is a continuum of
possibilities between these two extremes that can most
suitably be accommodated by regarding the uncertainty of
formant position as the variance of a notional Gaussian
distribution of the true frequency about the estimated value.

The probabilistic interpretation leads naturally to the
incorporation of prior knowledge about formant positions
when the confidence is low.  This prior knowledge is used
by shifting the mean of the formant distribution away from
the measured value, towards some suitable prior value for
that formant.  A heuristic procedure has been devised for
using the estimated confidence computed from the spectrum
to derive a formant measurement standard deviation and
bias towards a prior distribution, both expressed in Hz.
Although this process is ad hoc, it has been found to give
plausible values and experimentation has shown that the
precise values are not critical to recognition performance.

Assuming that variances are associated with all formant
measurements, the HMM emission probability calculation

needs to be modified to allow for a continuum of possible
variance values for each formant.  It can be shown that in
the case of Gaussian models this modification corresponds
to a convolution of the formant and model distributions, so
that the variances simply add.  The use of variance thus
provides a sound theoretical framework to represent
confidence associated with formant estimates, which is an
improvement over an earlier version [5] of the formant-
based recognizer, whereby the confidence was simply used
as a weight to multiply log probabilities.

4. EXPERIMENTS

The aim was to compare recognition results using formant
features for describing fine spectral detail with those
obtained using a more conventional mel-cepstrum
representation.  In order to directly assess the usefulness of
the formants, the same total number of features was used for
both representations, and exactly the same low-order
cepstrum features were used for describing general spectral
shape.  Thus the only difference was in the use of formants
versus higher cepstral coefficients for representing detailed
spectrum shape.  The experiments were performed for the
simple task of connected-digit recognition. While the details
of the front-end processing and the modelling task have not
been optimized to maximize performance, the system
provides a good basis for comparative experiments.

4.1 Experimental set-up

The test data were four lists of 50 digit triples spoken by
each of 10 male speakers.  The training data were from 225
different male speakers, each reading 19 four-digit strings
taken from a vocabulary of 10 strings.  The output of the
FFT was used both to estimate formant frequencies with
associated confidence measures and to compute the mel-
cepstrum.  Experiments were then carried out to compare a
representation using the first eight cepstrum coefficients and
an overall energy feature, with a feature set in which
cepstrum coefficients 6, 7 and 8 were replaced by the three
formant features.  To provide a basis for comparison, an
experiment was also carried out using a representation



Experimental condition % Correct % Subs. % Del. % Ins. % Error
5 cepstrum features + energy 95.5 3.5 1.0 0.3 4.8
8 cepstrum features + energy 96.0 3.0 1.0 0.3 4.3

5 cepstrum features + energy + 3 formants 94.0 4.8 1.2 11.6 17.6
Include confidence measure with formants 96.9 2.3 0.8 0.3 3.4

Also include second choice formants 97.1 2.2 0.7 0.3 3.2
Table 1. Connected-digit recognition performance for front-end representations using only cepstrum features compared with a
representation with the higher-order cepstral coefficients replaced by formant features.

which simply omitted cepstrum coefficients 6, 7 and 8, so
using a total of only six features.

In all cases, three-state context-independent monophone
models and four single-state non-speech models were used,
all with single-Gaussian pdfs and diagonal covariance
matrices.  The model structure was a simple left-to-right one
which included self-loop transitions.  Model means were
initialized from a very small quantity of hand-annotated
training data (twelve digits from each of two speakers), with
all model variances initialized to the same arbitrary value.
All model parameters were trained with ten iterations of
Baum-Welch re-estimation.  During training, an appropriate
lower limit was imposed on all the model variance
parameters, to prevent them training to unrealistically low
values which could prevent generalisation to the test data.

4.2 Treatment of formant features

As a pre-processing stage for both training and recognition,
each observed formant value was moved towards its prior by
an amount determined by the observation’s confidence
measure.  The result of this stage was that high-confidence
formant values were unchanged but, as the confidence
decreased, the formant was moved further towards its prior.
When there was no confidence, the prior value was used.

The main benefit of the confidence measure and multiple
formant hypotheses was expected to be in the recognition
stage, as the training process is much more constrained.
Therefore, in training, the second choice formant values
have not yet been used and no further use has so far been
made of the confidence measure.  Both were optionally
included in the recognition phase, as described in Section 3.

4.3 Results and discussion

The results given in Table 1 show that, provided the degree
of reliability in the formant estimation is taken into account,
recognition performance is better when using formant
features than when using only mel-cepstrum features.  When
compared with the results using just six cepstrum features,
the benefit from adding the three formant features is three
times greater than that obtained by adding the three
additional cepstrum features.

When alternative formant sets were also included, there was
a further small improvement in performance.  Only a small
improvement was expected because the first-choice values
given by this algorithm are usually the correct ones.  When
they are correct, allowing the second choice could only
increase recognition errors.  It is therefore clearly desirable
to find some way of using an estimate of the relative
probabilities of correctness of the first and second choice in
the recognition, and this will be included in future research.

The recognition results demonstrate the importance of using
formant measurement accuracy in order to obtain good
recognition performance.  When the formant features were
not given special treatment, there were significant problems
with insertion errors.  These errors were caused by
mismatches between the formant frequencies in the non-
speech models with those measured for the non-speech
regions of the test data.  A simple word-insertion penalty
did not reduce these errors, but they disappeared when the
formant confidence measure was incorporated.

5. CONCLUSIONS

These simple experiments have already demonstrated that a
recognition system using formant features can provide better
performance than one using mel-cepstrum features alone,
for the same total number of features.  We now need to
confirm that similar benefits are obtained on a more
challenging task with a larger database.  The next stage of
algorithm development is to incorporate both the variance
representing confidence in formant measurement and the
multiple formant hypotheses in an extended Baum-Welch
re-estimation process.  It is also possible to incorporate the
shift of uncertain formant measurements towards their
priors within the probabilistic formalism itself, in place of
the heuristic approach used here.

Other issues to investigate include the use of time derivative
features, which ought to be more valuable for smoothly-
changing formants than for high order cepstrum features,
particularly because formant transitions are known to be
important cues for place of articulation of consonants.
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ABSTRACT

A formant analyser is interpreted probabilistically via a
noisy channel model. This leads to a robust method of in-
corporating formant features into hiddenMarkov models for
automatic speech recognition. Recognition equations fol-
low trivially, and Baum-Welch style re-estimation equations
are derived. Experimental results are presented which pro-
vide empirical proof of convergence, and demonstrate the
e�ectiveness of the technique in achieving recognition per-
formance advantages by including formant features rather
than only using cepstrum features.

1. INTRODUCTION

Formant frequencies are known to be important in deter-
mining the phonetic content of speech sounds. Formants,
however, are not generally used as features for automatic
speech recognition as they may be ambiguous or badly de-
�ned and do not provide the necessary information for mak-
ing certain distinctions (such as identifying silence). A new
method of formant analysis has recently been presented [1]
which includes techniques to overcome the di�culties nor-
mally associated with extracting and using formant infor-
mation. Firstly, in cases of ambiguity, alternative sets of
formant frequencies are o�ered to the recognition process.
Secondly, a novel feature of the new formant analyser is
that each formant frequency estimate is assigned a measure
of con�dence. The con�dence measure is important be-
cause it allows for cases where formants are poorly de�ned
in the signal (e.g. fricatives) so that any single estimate
of frequency is likely to be unreliable. In such cases, it
is essential that the estimated frequencies are given little
weight in the recognition process, and that the recognition
decision is based on signal level and general spectral shape
information.

Whilst it is clear that the con�dence measures have im-
plications when the formants are used as features in speech
recognition, it is not obvious how to include such measures
in, for instance, an HMM based system. In this paper,
we present a method for interpreting con�dence estimates
which can then be rigorously incorporated into a probabilis-
tic model.

2. INTERPRETATION OF THE CONFIDENCE

MEASURE

The formant analyser produces a con�dence value for each
formant for each time frame. This value represents and

estimate of the con�dence in the accuracy of the formant
frequency measurement, and is derived automatically based
on spectral level and curvature. The con�dence values are
represented as standard deviations which, when squared,
can be thought of as variances of normal distributions cen-
tred upon the formant estimates. Interpreted in this way,
the formant analyser emits the parameters of a normal dis-
tribution representing its belief about the position of each
formant. When the con�dence is high, the variance is low,
representing strong belief in the estimate, and weak belief
outside it. At the other extreme, a low con�dence repre-
sents a high variance representing almost equal belief in all
possible frequencies. This belief oriented interpretation is
necessarily Bayesian.

3. MATHEMATICAL FORMULATION

3.1. Recognition

In conventional hidden Markov modelling, a state is as-
sumed to emit an observation, yt, according to some out-
put distribution. In this paper, we will assume that the
output probability distribution for state j is a single mul-
tivariate normal with mean �j and covariance matrix �j .
The required probability at time t is

Pr
�
yt �st

;�st

�
= N (yt;�st

;�st):

With the formant analyser, the observation comprises
both a formant vector, f t, and a con�dence vector, ct. The
actual feature vector, being the real values of the formant
frequencies, is unknown. The con�dence measure of the for-
mant analyser is assumed here to take the form of variance.

Given that we observe a distribution, the required ex-
pression for the output probability of the state is now

Pr
�
f t;Ct �st

;�st

�
;

where Ct is the (diagonal) matrix of formant variances.
The most informative way to proceed is to expand this ex-
pression thus

Pr
�
f t;Ct �st

;�st

�
=

Pr
�
f t Ct;�st

;�st

�
Pr
�
Ct �st

;�st

�
;

and then to make the assumption that the con�dence mea-
sure produced by the formant analyser is a reliable estimate,
hence Pr

�
Ct �st

;�st

�
= Pr (Ct) = 1, since the con�dence



measure is clearly independent of the output distribution
parameters.

It can now be argued that the model proposed so far
is mathematically the same as a noisy channel model, and
that it in practice it is easier to think of it in these terms.
The state output distribution emits a value, yt, which then
passes through a noisy channel with zero mean and covari-
ance Ct; f t is then the noisy observation. The expression
of interest is clearly

Pr
�
f t Ct;�st

;�st

�
;

which is the same as before, but without the prior on Ct.
To evaluate this expression, we must acknowledge that

the measured vector, f t, depends upon the unknown output
vector yt, and this vector must be integrated out:

Pr
�
f t Ct;�st

;�st

�
=Z

<n
dyt Pr

�
f t yt;Ct;�st

;�st

�
Pr
�
yt Ct;�st

;�st

�
;

where <n denotes the n-dimensional Euclidean space of pos-
sible observations. Observing some obvious independencies
and substituting normal distributions,

Pr
�
f t Ct;�st

;�st

�
=Z

<n
dytN (f t;yt;Ct)N (yt;�st

;�st):

This form is very intuitive, it just states that the output
probability should be evaluated for all possible values of
the feature vector, weighted by the formant analyser's belief
of each value. Given that N (f t;yt;Ct) � N (yt;f t;Ct),
the integral is the convolution of two normal distributions.
It can be shown that the variances simply add, the result
being

Pr
�
f t Ct;�st

;�st

�
= N (f t;�st

;�st +Ct):

So, to incorporate the formant variances in recognition,
we simply add the appropriate con�dence variance to that
of the output distribution. This result is intuitively pleas-
ing: For high con�dence (low variance), the usual expres-
sion applies, and for low con�dence the output distribution
widens to equally favour all output values.

3.2. Re-estimation

The re-estimation problem is to �nd a set of parameters
� which maximises the likelihood Pr (O �) of an observa-
tion sequence O = o1;o2; : : : ;oT . � consists of an S � S
transition probability matrix A, and means and covariance
matrices �i and �i; where i = 1; : : : ; S. Substituting the
pair ff t;Ctg for ot, the probability of the observation is

Pr (O �) =
X
s

as0

TY
t=1

ast�1stN
�
f t;�st

;�st +Ct

�
:

Following Liporace's interpretation of Baum's method
[2], we de�ne an auxiliary function Q(�;�):

Q(�;�) =
X
s

Pr (O; s �) log Pr
�
O; s �

�
;

which has the property that

Q(�;�) > Q(�;�)) Pr
�
O �

�
> Pr (O �) :

Expanding the � portion of Q and rearranging the �nal
term to isolate the parameters to be re-estimated,

Q(�;�) =

X
s

Pr (O; s �)�

"
log as0

+
TX
t=1

�
log ast�1st �

n

2
log(2�)�

1

2
log

���st +Ct

��
�

1

2

�
f t � �st

�0 �
�st +Ct

��1 �
f t � �st

��#
:

It is clear that the re-estimation equations for the tran-
sition probabilities will be unchanged from the standard
ones. The means and covariances, however, are likely to be
di�erent. First the means: Given that

@

@x
(y � x)0A(y � x) = �A(y � x)�A0(y � x)

for any general matrix A, and the covariance term is sym-
metric,

@Q(�;�)

@�j

=

�
X
s

Pr (O; s �)
X

ft: st=jg

�
�j +Ct

��1 �
f t � �j

�
;

Interchanging the order of summation and equating to zero,

TX
t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct

��1 �
f t ��j

�
= 0;

Following Liporace, we would be able to pre-multiply by
the inverse of the matrix term. Here, however, Ct is frame
dependent and must remain. Rearranging yields the re-
estimation formula for the mean:

�j =

0
@ TX

t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct

��1

1
A
�1

�
TX
t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct

��1

f t:

We assume that the current value of the covariance ma-
trix can be used, instead of the re-estimate. We also note
that, in the fully multivariate case, this expression requires
a matrix inversion for each frame.

Now consider the covariance re-estimation. Liporace
di�erentiates with respect to the inverse, but here it is more



convenient to use the matrix itself:

@Q(�;�)

@�j

=

�
1

2

X
s

Pr (O; s �)
X

ft: st=jg

(
@

@�j

log j�j +Ctj

+
@

@�j

�
f t � �j

�0 �
�j +Ct

��1 �
f t � �j

�)
:

Taking each term separately,

@

@�j

log j�j +Ctj = (�j +Ct)
�1

:

Strictly, when di�erentiating with respect to a symmetric
matrix, the o� diagonal elements of the result should be
doubled [4]. In this case, however, this result is to be com-
bined with another where the same e�ect happens, and it
is both consistent and more readable to `ignore' this e�ect.
Liporace's derivation omits this caveat, though his results
are valid for the same reason. It can be shown with refer-
ence to [3] that

@

@A
x
0(A+B)�1

x = �
�
(A+B)�1

�0
xx

0 �(A+B)�1
�0
:

So, denoting f t��j by x, interchanging the order of sum-
mation as before and equating to zero yields

TX
t=1

X
fs: st=jg

Pr (O; s �)
h
(�j +Ct)

�1

� (�j +Ct)
�1
xx

0(�j +Ct)
�1

i
= 0: (1)

At this stage, it is clear that �j cannot be isolated, and
it is necessary to make an approximation. Two alternative
approximations are proposed, as described below.

3.2.1. Method 1

Equation 1 can also be written,

TX
t=1

X
fs: st=jg

Pr (O; s �)
h

(�j +Ct)
�1
�
�j +Ct � xx

0� (�j +Ct)
�1

i
= 0:

We now assume that Ct is independent of time for a given
state, that is, it can be assumed constant for the duration
of the state. This approximation is not unreasonable be-
cause the con�dence with which the formant frequencies
are estimated will generally be similar for all the feature
vectors corresponding to any one model state. The two in-
verse terms can now be brought outside the summation,
and the expression can then be pre- and post-multiplied by
the inverse of those terms leaving a single instantiation of
�j :

TX
t=1

X
fs: st=jg

Pr (O; s �)
�
�j +Ct � xx

0
�
= 0:

Rearranging,

�j =

TX
t=1

X
fs: st=jg

Pr (O; s �)
�
xx

0 �Ct

�
TX
t=1

X
fs: st=jg

Pr (O; s �)

:

This approximation appears to have a problem: Where Ct

is large, the term in square brackets will not be positive
de�nite, which is one of the conditions cited by Liporace
for the re-estimation to be valid. A remedy is to simply
ignore the contribution of frames for which this term is not
positive de�nite, that is, the sum of the eigenvalues is not
positive. The e�ect of this is that the system is not trained
on low con�dence frames, which is entirely reasonable. For
states where one or more frame elements are always low
con�dence, we suggest that this will be true in recognition
too, and hence the Ct term will dominate there also. In the
particular case where the covariance is assumed diagonal,
the individual elements of the term in square brackets can
be handled individually.

3.2.2. Method 2

Starting again from equation 1, notice that the �rst term
in the squares brackets can be written

(�j +Ct)
�1 = �

�1

j

�
I +Ct�

�1

j

��1

: (2)

Hence, by substituting equation 2 into equation 1, and pre-
and post-multiplying both sides by �j , a term in �j can be
isolated. This means that the equation can be rearranged
thus:

�j =0
@ TX

t=1

X
fs: st=jg

Pr (O; s �)
�
I +Ct�

�1

j

��1

�j

1
A
�1

�
TX
t=1

X
fs: st=jg

Pr (O; s �)

�j(�j +Ct)
�1
xx

0(�j +Ct)
�1
�j :

(3)

If it is assumed that �j terms on the right hand side can
be replaced by their previous values, then equation 3 con-
stitutes a re-estimation equation for �j .

4. COROLLARY

The problem as described is applicable to any feature set
which is subject to additive, time varying Gaussian noise. A
particular special case is that where the uncertainty (noise)
can be assumed constant with time. Practically, this means
that C is no longer dependent upon t, and certain matrix
terms in the re-estimation equations become independent
of the summation and cancel. In particular, the �rst re-
estimate of the covariance above ceases to be an approxi-
mation, and the re-estimate of the mean reverts to the same
as that for the conventional noiseless case.



5. EXPERIMENTS

5.1. Method

The new method for incorporating formant con�dence mea-
sures in both training and recognition was tested using the
same speaker-independent connected-digit recognition task
with three-state phone models as was used in earlier studies
[1]. As with the previous experiments, the baseline feature
set comprised the �rst eight mel-cepstrum coe�cients and
an overall energy feature. The performance of this feature
set was compared with one in which coe�cients 6, 7 and 8
were replaced by three formant features for describing �ne
spectral detail. In the case of the formant features, the con-
�dence measures were incorporated �rst in recognition and
then also in training, testing both of the approximations
suggested in the previous section for the re-estimation of
the model variances. For both training algorithms, it was
veri�ed experimentally from the training-set probabilities
that the re-estimation process converged after a few iter-
ations. For all model sets, a total of ten iterations were
performed before testing the models in recognition.

Alternative formant sets arising from labelling ambigu-
ity were optionally accommodated in training and recog-
nition, simply by choosing the formant set which gave the
highest HMM emission probability for each frame and model
state. Results using the con�dences and alternative formant
sets were compared with those obtained when no special
treatment was given to the formant features.

5.2. Results and Discussion

From the results shown in Table 1 it can be seen that the for-
mant features gave very poor performance unless the degree
of con�dence in their measurement accuracy was taken into
account. When the formant features were not given special
treatment, there were serious problems with insertion er-
rors. These errors were caused by mismatches between the
formant frequencies in the non-speech models with those
measured for the non-speech regions of the test data. These
errors disappeared when the con�dence measure was incor-
porated in recognition.

A small additional bene�t was obtained by also incorpo-
rating the con�dence measure in training, with very similar
results being obtained for the two suggested approaches to
training the model variances. In all cases, further small
improvements in recognition performance were obtained by
including alternative formant sets. The lowest error-rate of

Model Set %Subs. %Del. %Ins. %Err.
8 cepstrum features+energy 2.8 1.0 0.2 4.0

5 cepstrum features+energy+3 formants 5.2 1.0 10.2 16.4
Add formant con�dence measure (recognition only) 2.1 0.7 0.2 3.0
Also include second choice formants in recognition 2.1 0.4 0.4 2.9
Add con�dence measure in training (method 1) 2.0 0.6 0.2 2.8

Also include second choice formants (training and recognition) 1.9 0.6 0.1 2.6
Add con�dence measure in training (method 2) 2.0 0.6 0.2 2.8

Also include second choice formants (training and recognition) 1.8 0.6 0.1 2.5

Table 1: Connected-digit recognition performance for di�erent feature sets.

2.5% that was achieved with the formants demonstrates a
substantial improvement over the �gure of 4.0% that was
obtained when using only mel-cepstrum features, for the
same total number of features.

These digit-recognition experiments have provided a good
basis for initial comparisons, and experiments are now in
progress to evaluate performance on the more demanding
task of phone recognition using the TIMIT database.

6. CONCLUSIONS

We have shown that formant frequency estimates with con-
�dence levels can be interpreted probabilistically, and that
this interpretation leads to theoretically justi�able variants
of the standard HMM recognition and re-estimation equa-
tions. Further, the theoretical results have been evaluated
experimentally and shown to work in practice. Consider-
able recognition performance advantages have been demon-
strated from incorporating formant features in this way, in
comparison with using only cepstrum features.

It is planned to incorporate the formant representation
into a segmental modelling paradigm to model formant tra-
jectories, and then to progress towards developing an ap-
propriate underlying model of time evolving speech charac-
teristics.
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ABSTRACT

The Voice Activity Detection (VAD) problem is placed into a de-
cision theoretic framework, and the Gaussian VAD model of Sohn
et al. is then shown to fit well with the framework. It is argued that
the Gaussian model can be made more robust to correlation and
expected spectral shapes of speech and noise by using a differen-
tial spectral representation. Such a model is formulated theoreti-
cally. The differential spectral VAD is then shown by experiment
to be consistently superior to the basic Gaussian VAD in a speech
recognition setting, especially for noisy environments.

1. INTRODUCTION

Voice Activity Detection (VAD) is important in various applica-
tions involving speech. Perhaps the most common application is
in telecommunications, where the main reason for the VAD is to
save bandwidth by not transmitting non-speech portions of the in-
put signal. Marzinzik and Kollmeier [1] present a useful recent
review of the subject.

We are interested in (VAD) for the purpose of Automatic Speech
Recognition (ASR) in general, and noise robust ASR in particular.
VAD is important in ASR because it distinguishes the non-speech
portions at the beginning and end of an utterance from the utter-
ance itself. In doing this, the VAD ensures that the decoder, which
is computationally intensive, only runs when necessary. This point
is particularly important in embedded applications, where process-
ing power is limited. The main difference between a VAD used in
telecommunications and one used in ASR is that the latter typi-
cally uses a state machine in order to avoid false detections and to
remain active during speech pauses.

A VAD working in the spectral domain, and with an appeal-
ing statistical basis, has been introduced by Sohnet al. [2, 3].
This spectral VAD has been shown to be superior to three standard
VADs (QCELP, EVRC and G.729B) in a telecommunications en-
vironment. That result is reinforced in a comparison by Stader-
mannet al. [4], who find the spectral VAD to be superior to base-
lines based on frame energy and spectral entropy. The work has
also been extended by Choet al. [5], who show that smoothing
can alleviate problems with errors in the end of speech region.

The spectral VAD of Sohnet al. is based on a simple Gaussian
assumption. This basic Gaussian model has two distinct problems:

1. The model has no knowledge of the spectral shape of either
the speech or the noise. It is well known, however, that
speech has distinct spectral peaks (formants). Conversely,
many types of noise have a smooth spectral shape.

2. From a purely statistical point of view, the model assumes
that adjacent spectral bins are uncorrelated. This is not true,
especially for speech, and even more especially for observa-
tions from the overlapped triangular mel-spaced filterbank
typical of current ASR systems.

In this paper, we evaluate the basic Gaussian VAD algorithm
described above in an ASR context. We then argue that a differ-
ential spectral representation can minimize the effects of the two
problems described above. We derive a differential spectral ver-
sion of the Gaussian VAD, and show that it leads to improved per-
formance.

2. BACKGROUND THEORY

2.1. Decision theoretic framework

Define a boolean variable or hypothesisH, which can take val-
ues 0 and 1.H = 0 indicates non-speech andH = 1 indicates
the presence of speech. A VAD produces an estimate (or choice),Ĥ, given some observation. For this derivation, assume that the
observation is the (complex) spectrums.

The above leads to a simple decision theoretic formulation:

Define a loss or cost function,C �H; Ĥ�, that attaches a cost to

each combination ofH andĤ. Typically, the cost should be low
for a correct classification, and high for an incorrect one. The ex-
pected costs of the two possible classifications are thenE (C (H; 0) j s) =XH C (H; 0)P (H j s) ; (1)E (C (H; 1) j s) =XH C (H; 1)P (H j s) : (2)

We can now choose the classification,Ĥ, that has the smaller ex-
pected cost; that is: ChoosêH = 1 ifXH C (H; 1)P (H j s) <XH C (H; 0)P (H j s) : (3)

Expanding the summations and rearranging,P (H = 1 j s)P (H = 0 j s) > C (0; 1)� C (0; 0)C (1; 0)� C (1; 1) : (4)

Given that we will assume a model for the generation ofs, it
is useful to apply Bayes’s theorem to the conditional probabilities
in equation 4. Notice that the evidence (denominator of Bayes’s



theorem) term cancels, givingp (s j H = 1)p (s j H = 0)| {z }
Likelihood ratio,L (s) � P (H = 1)P (H = 0)| {z }

Prior ratio

> C (0; 1)�C (0; 0)C (1; 0)�C (1; 1)| {z }
Cost ratio

; (5)

where we refer to the terms as indicated.
The prior ratio and cost ratio can be set to unity given the fol-

lowing broad assumptions:� The likelihood of an observations being speech is as likely
as it being non-speech.� The cost of an accurate classification is zero, and the costs
of the two inaccurate classifications are identical.

Of course, the above assumptions may not be true for a given sce-
nario, in which case the terms can be set accordingly. The com-
bination of cost ratio and prior ratio into a single threshold term
yields the likelihood ratio test used by Sohnet al.. The advantage
of the decision theoretic approach is that it gives some insight into
what the threshold should be.

2.2. Gaussian model

Broadly following Sohnet al. [3], but with a minor change of no-
tation to allow subscripts to refer to vector elements, assume that
both the speech and noise can be modeled by Gaussian distribu-
tions (more accurately, the real and imaginary components of each
spectral bin are i.i.d. Gaussian). This is identical to the assumption
made in the Ephraim Malah formulation for speech enhancement
[6]. We define two probability distributions:p (s j H = 0) = SYk=1 1��k exp�� s2k�k� ; (6)p (s j H = 1) = SYk=1 1� (�k + �k) exp�� s2k�k + �k� ; (7)

wheres is theS dimensional complex spectrum observation,sk
is the magnitude of thekth element ofs, �k is the variance of thekth dimension of the speech signal and�k is the variance of thekth dimension of the noise signal. All of the above is for a single
frame, although thef subscript is omitted for clarity. Equation 7
follows from that fact that the sum of two Gaussian random vari-
ates is Gaussian with variance equal to the sum of the individual
variances.

Substituting equations 6 and 7 into equation 5 gives a VAD
likelihood ratio ofL (s) = SYk=1 �k�k + �k exp� �k�k + �k � s2k�k� : (8)

Notice that equation 8 is defined in terms of spectral power mea-
sures, eventhough the assumptions so far are based on complex
spectrum.

2.3. Correction for correlation

When taking a product of probabilities known to be correlated, it is
normal to make a simple correction for the correlation in the form
of a weighted geometric mean,p (s) = SYk=1 p (sk) 1�S ; (9)

where� is an optimised constant analogous to the language model
match factor in ASR. Sohnet al. do this implicitly by taking the
unweighted geometric mean (� = 1), although in this framework
that is an extreme solution and represents absolute correlation be-
tween bins.� = 1=S represents complete independence.

3. DIFFERENTIAL SPECTRAL VAD

We suggest that the single zero high-pass filter (HPF),s2k0 = s2k+1 � s2k 1 � k < S; (10)

applied in the frequency dimension of each power spectral frame
will tackle the problems highlighted in section 1 as follows:

1. The HPF will map the smooth spectrum associated with
noise, especially the flat spectrum of white noise or impulse
noise, to a flatter spectrum centered around zero. This is
much closer to the spectrum of silence.

2. The subtraction will reduce or eliminate the correlation be-
tween adjacent spectral bins.

In fact, the decorrelation effect has been demonstrated in the con-
text of robust ASR by Nadeuet al. [7], who show that such a filter
can be used in place of the cosine transform normally used in ASR.

In the VAD context, however, we require a probability distri-
bution associated with the filter. This is derived as follows:

First, notice that the single zero filter of equation 10 corre-
sponds to a probabilistic change of variable with1 � k < S and
an integral overs2S . This integral turns out to be highly non-trivial.
Instead, we decimate the above substitution as follows, allowing
the problem to be solved asS=2 identical and much simpler inte-
grals: s2k0 = s22k � s22k�1 1 � k � S=2: (11)

In this case, the length of the resulting feature vector isS=2 instead
of S � 1. For the rest of the derivation in this section, as the
integrals are identical, we simply consider the case wherek = 1.

Second, given that the distribution of the complex spectrum is
Gaussian, it can be shown by change of variable that the distribu-
tion of spectral power is the exponential distribution,p �s2 j �� = 1� exp��s2� � ; (12)

where� is a variance parameter to be substituted later. It follows
that the joint distribution of two exponentially distributed observa-
tions is p �s21; s22 j �1; �2� = 1�1�2 exp�� s21�1 � s22�2� : (13)

The PDF of the filtered signal arises from changing one of the
variables toz = s22 � s21 and integrating out the other variable. To
perform the integral, notice that in the case wherez � 0, s22 � z
ands21 � 0. Also, whenz � 0, s21 � �z ands22 � 0. This
suggests the use of two different integrals:



In the case wherez � 0,p (z j �1; �2) = Z 10 ds21 p �s21� p �z + s21�= Z 10 ds21 1�1�2 exp�� s21�1 � z + s21�2 �= 1�1�2 exp�� z�2�� Z 10 ds21 exp��s21 � 1�1 + 1�2 ��= 1�1�2 exp�� z�2� � �1�2�1 + �2 : (14)

Similarly, in the case wherez � 0,p (z j �1; �2) = Z 10 ds22 p �s22� p �s22 � z�= 1�1�2 exp� z�1� � �1�2�1 + �2 : (15)

Substituting back forz, and combining the two results,p �s22 � s21 j �1; �2� =8>><>>: 1�1 + �2 exp��s22 � s21�2 �
if s22 � s21,1�1 + �2 exp��s21 � s22�1 �
if s22 � s21. (16)

Note that both expressions are identical whens21 = s22.
The likelihood ratio follows easily from equation 16 by sub-

stituting for�1 and�2. Assuming for simplicity thats22 > s21, the
likelihood ratio is the ratio of the following two equations:p �s22 � s21 j H = 1� = 1�1 + �1 + �2 + �2 exp�� s22 � s21�2 + �2� ; (17)

and,p �s22 � s21 j H = 0� = 1�1 + �2 exp��s22 � s21�2 � ; (18)

which evaluates toL �s22 � s21� = �1 + �2�1 + �1 + �2 + �2� exp�� s22 � s21�2 + �2 + s22 � s21�2 � ;= �1 + �2�1 + �1 + �2 + �2� exp�s22 � s21�2 � �2�2 + �2� : (19)

The full likelihood ratio is the product of this expression applied
to each pair of spectral bins,L (s) = S=2Yk=1L �s22k � s22k�1� : (20)
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Fig. 1. Classification of VAD start and end times. The dark portion
represents speech, the box represents the VAD result.

4. EVALUATION

4.1. Testing data

The VADs were evaluated using an in-house database, some as-
pects of which were designed specifically for VAD evaluation.
The database consists of 14 speakers (7 male and 7 female) each
speaking 40 utterances in each of 6 different environments. This
is 3360 utterances in total. The utterances are isolated Japanese
city names, but are each 5 seconds in length. Typically, the first 2
seconds are background noise, the utterance itself is one second or
less, and the final 2 seconds are background noise. The data have
been manually marked up with the speech start and end times. The
data were recorded on a portable (PDA-like) device using an ear-
mounted microphone, the actual microphone being close to the
speaker’s cheek.

Five of the six environments were chosen to be representative
of those where the portable device might be used:

1. The laboratory sound-proof room.

2. A large open-plan office with carpets and fans.

3. A reverberant but open and quiet company lobby.

4. A cafeteria at lunch-time with constant babble noise.

5. A busy suburban street with occasional traffic.

6. A quieter, more open, outdoor area on a windy day.

The average signal to noise ratio for each environment is shown in
table 1.

4.2. Evaluation metric

The main evaluation metric consisted of a classification of each
utterance into one of the states indicated in figure 1. These are
based on a combination of the speech start and end times, and can
be thought of as a variation of the classes used by Roscaet al. [8].
The four classifications drawn with dashed lines represent the VAD
working well, or in such a way that can be corrected using wide
margins. The bottom result in the right-most column represents a
correct non-detection of an empty utterance, one of which exists
(accidentally) in our database. The seven other classifications are
certainly errors, being either insertions, deletions or the offset time
not being detected in the recording.

The right-most column of figure 1 provides a useful metric
for optimizing�: too small a value leads to large likelihoods and



Table 1. Error rate (%) for four VAD configurations. Also shown
is the SNR for each environment, and the optimized value of� for
each VAD configuration.

Power Mel
SNR (dB) Gauss Diff. Gauss Diff.

1 (clean) 28.5 0.4 0.4 0.2 0.2
2 (office) 24.7 1.8 1.8 1.3 1.0
3 (lobby) 24.1 0.7 0.5 0.4 0.2
4 (cafe) 16.6 9.8 9.6 4.6 3.8
5 (street) 15.8 6.3 4.1 3.6 3.4
6 (outside) 21.4 6.3 5.2 8.9 5.5� 2:5 3:0 1:0 1:0

missing end times. Too large a value, however, leads to deletions.
For ASR, we favour insertions over deletions as insertions can be
handled using garbage modeling. Missing end times, however, are
particularly bad as they cause the recogniser to “hang” and ulti-
mately give an errorful recognition.

4.3. VAD construction

The VAD is inserted into the spectral part of the normal signal pro-
cessing chain used in ASR. In this case, the signal is sampled at
11.025 KHz and pre-emphasized. Overlapping frames of 256 sam-
ples are then taken every 10 ms to form a 128 bin power spectrum
(the bin at� is discarded). The power spectrum is transformed into
32 mel spaced bins using half overlapping triangular filters.

The noise variance from the previous frame,�f�1, is used
in the likelihood calculation, and is then updated using a slightly
modified version of the estimator described by Sohnet al. [2],�̂f = 1� ��1 + L (s)s2f + �� + L (s)1 + L (s) �̂f�1; (21)

where�� = 0:95, and�̂ = (�̂1; �̂2; : : : ; �̂S)T . The speech vari-
ances,�k, are estimated using power spectral subtraction as sug-
gested in [2], except with the usual over-subtraction and flooring.
The VAD was found not to be sensitive to the over-subtraction and
flooring values, but note that the flooring means that equation 8
does not reach it’s minimum value of 1. For this reason, the cost
ratio of equation 5 was set a little above 1 (actually 2.5).

The actual start and end points of the speech were determined
using a simple state machine that requires at least 10 frames indi-
cated to be speech in a 1 second window in order to transition to
the speech state, and 40 frames of contiguous non-speech to tran-
sition into the non-speech state.

4.4. Results

The original Gaussian based VAD, and the differential spectral
VAD were tested in both power spectral and mel spectral domains.
In each case, the parameter� was adjusted manually to minimize
the number of deletions and missing end times as described in sec-
tion 4.2. The results are shown in table 1.

The first 3 environments are relatively noise-free; there is no
significant difference resulting from the choice of VAD. There is,
however, a slight bias in favour of using the mel domain. The latter
3 environments are comparatively noisy, and show more variation.
In particular, the mel domain is more robust to the babble noise of

the cafeteria. The power spectral domain, however, is more suited
to the outdoor wind noise.

Broadly, the differential VAD produces fewer errors than the
equivalent non-differential formulation. This confirms the utility
of the differential spectral approach. We have also confirmed that
this improved VAD performance leads directly to improved speech
recognition performance on the same database.

Finally, one obvious difference between the Gaussian and dif-
ferential VADs is that the former uses a probability for each spec-
tral bin, whereas the latter uses a probability for each pair of bins.
In order to confirm that the advantage of the differential VAD is not
simply through using half the parameters, we constructed a com-
parable Gaussian VAD by averaging adjacent bins. This approach
only contributed detrimentally to the performance.

5. CONCLUSION

We have placed a spectral VAD into a rigorous decision theoretic
framework, and evaluated it in an ASR environment. In order to
optimize it to an ASR feature space, and make it robust to noises
with smooth spectra, we have re-formulated it as a differential
spectral VAD, again in a rigorous statistical manner. We have
shown the differential spectral formulation to be superior to the
basic Gaussian for an ASR application.
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Abstract—When combined with cepstral normalisation tech-
niques, the features normally used in Automatic Speech Recog-
nition are based on Signal to Noise Ratio (SNR). We show
that calculating SNR from the outset, rather than relying on
cepstral normalisation to produce it, gives features with a number
of practical and mathematical advantages over power-spectral
based ones. In a detailed analysis, we derive Maximum Likelihood
and Maximum a-Posteriori estimates for SNR based features,
and show that they can outperform more conventional ones,
especially when subsequently combined with cepstral variance
normalisation. We further show anecdotal evidence that SNR
based features lend themselves well to noise estimates based on
low-energy envelope tracking.

I. INTRODUCTION

An important problem encountered in speech signal pro-
cessing is that of how to normalise a signal for the effects
of noise. In speech enhancement the task is to remove noise
from a signal to reproduce the uncorrupted signal such that it
is perceived by a listener to be less noisy. In Automatic Speech
Recognition (ASR), the task is to reduce the effect of noise
on recognition accuracy. In this paper, we will concentrate on
the latter (ASR) problem.

Two categories of noise are generally considered: Additive
noise is that which represents a distinct signal other than the
one of interest. Convolutional noise is that which alters the
spectral shape, and can be associated with either the signal of
interest, or both the signal and the additive noise.

Cepstral Mean Normalisation (CMN) is a well established
technique that compensates for convolutional noise. It is based
on the persuasive observation that a linear channel distortion
becomes a constant offset in the cepstral domain. CMN also
affords some robustness to additive noise. Cepstral Variance
Normalisation (CVN) has been observed to provide further
noise robustness [1], and the combination of CMN and CVN
is now quite ubiquitous in ASR.

Orthogonal to the cepstral normalisation approach, many
common practical solutions for additive noise compensation
are based on the assumption of a simple additive Gaussian
model for both speech and noise in the spectral domain. In
ASR, the spectral subtraction approach of Boll [2] is well
established, and often used as a means to derive a Wiener
filter. In speech enhancement, much work is based on the
technique of Ephraim and Malah [3]. Both these techniques
have influenced the design of the ETSI standard ASR front-
end [4].

Techniques that rely on noise subtraction are dependent
upon some means of measuring the background noise in a

signal. Often, it is sufficient to simply average the first few
frames of an utterance, however this is not robust to changing
noise levels. Ris and Dupont [5] present a survey of methods
to measure noise, favouring the low-energy envelope tracking
approach of Martin [6]. Lathoud et al. [7] present a statistical
spectral model that yields both noise and speech estimates.

Cepstral and spectral techniques are often combined. This
is a natural approach as, theoretically, the two approaches
are designed to tackle different types of noise. For instance,
histogram normalisation, a logical progression of CMN/CVN
to higher order moments, has been successfully combined with
spectral compensation techniques by Segura et al. [8]. Lathoud
et al [7], who describe their technique as “Unsupervised” spec-
tral subtraction (USS), also report good results in combination
with cepstral normalisation.

In this paper, we analyse the relationship between spec-
tral and cepstral normalisation. We first present a simplistic
analysis, then a more detailed Bayesian analysis, showing that
knowledge of the presence of cepstral compensation should
influence the chosen approach to spectral compensation. The-
oretical results are evaluated leading to a conclusion that
SNR based features represent a theoretically rigorous but
computationally simple approach to ASR, and could easily
be incorporated into more advanced techniques.

II. SIMPLISTIC APPROACH TO NOISE

A. Cepstral Mean Normalisation

In a simplistic, but informative, view of an ASR front-end,
an acoustic signal is Fourier transformed to give a vector of
spectral coefficients (s1, s2, . . . , sF )T. After a linear transform
implementing a non-linear frequency warp, the cepstrum is
calculated. The cepstrum involves a logarithm followed by
another linear transform. In the presence of only convolu-
tional noise, (c1, c2, . . . , cF )T, which is multiplicative in the
frequency domain, the logarithm becomes

log(cfsf ) = log(cf ) + log(sf ), (1)

where log(cf ) is constant over time, but log(sf ) varies. Hence,
subtraction of the cepstral mean results in removal of the
constant convolutional noise term. When the filter-bank is
considered, the above holds if the cf are assumed constant
within a given filter-bank bin.

In the presence of only additive noise, the noise is assumed
to remain additive after the Fourier transform. In this sense,



the logarithm operation becomes

log(sf + nf ) = log(nf ) + log

(
1 +

sf
nf

)
, (2)

where (n1, n2, . . . , nF )T is the noise spectrum. The right hand
side of (2) is evident from the Taylor series of log(x + y),
and emphasises that CMN would remove the constant term
log(nf ).

B. Properties of SNR features

It appears from the above analysis that, if we use CMN, the
features that are presented to the ASR decoder are actually (a
linear transform of) the logarithm of one plus the signal to
noise ratio (SNR). This will happen even if the additive noise
is simply the minimal background noise usually associated
with clean recordings. It follows that we could try to calculate
the SNR from the outset rather than calculate a spectral power
measure and rely on CMN to produce the SNR. A-priori, such
an approach has at least two appealing properties:

1) The flooring of the logarithm happens naturally. SNR
values cannot fall below zero, so the argument of the
logarithm is naturally floored at unity.

2) SNR is inherently independent of gain associated with
microphones and pre-amplifiers.

We will show that SNR is also mathematically appealing.
The approach is analogous to that of Lathoud et al. [7]. The

only difference is that Lathoud et al. explicitly floor the SNR
using (in our present notation)

max

(
1,
sf
nf

)
. (3)

III. A MORE RIGOROUS ANALYSIS

In contrast to the previous section, which was left deliber-
ately simplistic, we now present a more rigorous derivation of
a SNR based feature. We begin by defining a Gaussian model
of speech in noise, and proceed by showing that power spectral
subtraction can be seen as a particular maximum-likelihood
(ML) solution. We then derive ML and MAP estimators for
the SNR.

A. Gaussian model

Let us assume that a DFT operation produces a vector, x,
with complex components, x1, x2, . . . , xF , where the real and
imaginary parts of each xf are i.i.d. normally distributed with
zero mean and variance υf . That is,

f (xf | υf ) =
1

πυf
exp

(
−|xf |

2

υf

)
. (4)

In the case where we distinguish two coloured noise signals,
a background noise, n, and a signal of interest, s, typically
speech, denote the noise variance as ν and the speech variance
as ς . In general, the background noise can be observed in
isolation and modelled as

f (nf | νf ) =
1

πνf
exp

(
−|nf |

2

νf

)
. (5)

The speech, however, cannot normally be observed in iso-
lation. It is always added to noise. When both speech and
additive noise are present the variances add, meaning that the
total signal, tf = sf + nf , can be modelled as

f (tf | ςf , νf ) =
1

π(ςf + νf )
exp

(
− |tf |2
ςf + νf

)
. (6)

The above model is the basis of the Wiener filter and of the
widely used Ephraim-Malah speech enhancement technique
[3]. The goal is usually formulated as requiring an estimate of
sf ; this proceeds via estimation of ςf .

We assume that an estimate, ν̂, of ν is available via solution
of (5) during, for instance, non-speech segments of the signal.

Consider using (6) as a basis for estimation of the speech
variance, ς . We drop the f subscript for simplicity. Bayes’
theorem gives

f (ς | t, ν̂) ∝ f (t | ς, ν̂) f (ς) . (7)

If we assume a flat prior f (ς) ∝ 1, substituting (6) into (7),
differentiating with respect to ς and equating to zero gives the
well known maximum likelihood estimate,

ς̂ = max
(
|t|2 − ν̂, 0

)
. (8)

This is known to provide a “reasonable” estimate of the
speech variance, but always requires regularisation. In ASR,
the ML estimate is known as power spectral subtraction. It is
regularised by means of an over-subtraction factor, α, and a
flooring factor, β:

ς̂ = max
(
|t|2 − αν̂, βν̂

)
. (9)

B. ML SNR estimate

The purpose of the above derivation is to show that a
commonly used speech feature can be seen in a Bayesian
sense as an estimate of the variance ς . We now follow the
same procedure, but aim from the outset to estimate SNR.
Define

ξf =
ςf
νf
, (10)

where ξf is exactly the a-priori SNR of McAulay and Malpass
[9], popularised by Ephraim and Malah [3]. The f subscript
indicates that the SNR is frequency dependent. Substituting
ςf = ξfνf into (6),

f (tf | ξf , νf ) =
1

πνf (1 + ξf )
exp

(
− |tf |2
νf (1 + ξf )

)
. (11)

The subscript is dropped again hereafter for simplicity.
This time, the posterior is in terms of ξ,

f (ξ | t, ν̂) ∝ f (t | ξ, ν̂) f (ξ) . (12)

Assuming a flat prior, substituting (11) into (12), differentiat-
ing and equating to zero,

ξ̂ = max

(
|t|2
ν̂
− 1, 0

)
. (13)



It is shown in section IV that this result requires no further
normalisation to work well. Further, notice that

log(1 + ξ̂) = log

(
max

[
1,
|t|2
ν̂

])
, (14)

which is the same form as (3). However, no ad-hoc spectral
model is necessary.

We note that in the Decision Directed estimator of [3], the
ML estimate of ξ of (13) is regularised using an estimate based
on the previous spectral magnitude estimate. This is further
explored by Cohen [10], and is used in a modified form in
[4], [11]. Whilst these approaches are beyond the scope of the
present study, our approach does not preclude using them.

C. Marginalisation over noise variance

Thus far we have assumed that an estimate, ν̂, of the
noise variance is available. The form of (11), however, with
multiplicative instead of additive terms in the denominators,
allows marginalisation over the noise variance.

If we have N frames (spectral vectors) of noise, {n}N =
{n1,n2, . . . ,nN}, that are observed in isolation, we can write

f (νf | {n}N ) =

∏N
i=1 f (ni,f | νf ) f (νf )

∫∞
0
dν′

∏N
i=1 f

(
ni,f | ν′f

)
f
(
ν′f

) , (15)

where the products are over the likelihood terms, not the
priors. Again, hereafter we drop subscripts for simplicity. The
likelihood terms are exactly the form of equation (5), and
we arbitrarily choose a non-informative prior f (ν) ∝ ν−1.
Equation (15) then reduces to the inverse gamma distribution

f (ν | {n}N ) =
BA

Γ(A)
ν−A−1 exp

(
−B
ν

)
(16)

where

A = N, B =
N∑

i=1

|ni,f |2 . (17)

The MAP solution, ν̂, of ν would be

ν̂ =
B

A+ 1
, (18)

however, we can use the distribution to marginalise over ν.
Equation (12) becomes

f (ξ | t) ∝ f (ξ)

∫ ∞

0

dν f (t | ξ, ν) f (ν | {n}N ) . (19)

Substituting (11) and (16) into (19), the forms are conjugate
and the integral is just the normalising term from the inverse
gamma distribution.

f (ξ | t) ∝ f (ξ)×

BA

Γ(A)

Γ(A+ 1)

ξ + 1

(
|t|2 + (ξ + 1)B

ξ + 1

)−(A+1)

.

(20)

D. Marginal ML estimate

If we assume a flat prior, f (ξ) ∝ 1, as before, differentiating
(20) and equating to zero gives

ξ̂ = max

(
A |t|2
B
− 1, 0

)
(21)

Curiously, equation (21) is basically the same as equation (13).

E. MAP estimate

Instead of using a flat (improper) prior for the speech
variance, it is possible to use a proper prior representing real
information. The prior distribution should allow (encourage,
even) the SNR to be zero, but should discourage large values;
greater than a few tens of decibels. Here we use the gamma
distribution

f (ξ | α, β) =
1

βαΓ(α)
ξα−1 exp

(
− ξ
β

)
. (22)

Substituting this into (20), differentiating and equating to zero
yields a cubic in ξ

a3ξ
3 + a2ξ

2 + a1ξ + a0 = 0, (23)

with

a3 = −1,

a2 = −β + (α− 1)β − |t|2 /B − 2,

a1 = −β + βA |t|2 /B + (α− 1)β |t|2 /B
+ 2(α− 1)β − |t|2 /B − 1,

a0 = (α− 1)β + (α− 1)β |t|2 /B,

(24)

The cubic is readily solved using the cubic equation [12], and
always has at least one real root. The root can, however, be
negative, so the resulting ξ̂ should be floored at zero.

To set the hyper-parameters, we find that simply constrain-
ing the expectation of the gamma distribution to be the average
ML SNR of the current frame works satisfactorily,

E (ξf ) = αβf (25)

βf =
1

α
E (ξf ) =

1

α


 1

F

F∑

f=1

|tf |2
ν̂f
− 1


 , (26)

and, empirically, α = 0.01.
For illustration, figure 1 shows a histogram of SNR (actually

|t|2 /ν̂) at 1000 Hz for the clean part of the aurora 2 training
data. Also shown is a gamma distribution with α = 0.01 and
β set such that the expectation is 48dB, the approximate SNR
of the clean aurora 2 data. The plot is in the log domain.
Notice that the gamma distribution is basically flat (caused by
α being close to 0), but falls rapidly for high values, i.e., it is
largely uninformative but discourages high SNR.

We choose a gamma prior in this study for simplicity. Other
authors (a recent example is [13]) have made persuasive cases
for the speech prior being closer to a generalised gamma
distribution. In ASR, the speech prior is often represented by
a large Gaussian mixture [14].
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IV. EXPERIMENTS

To allow comparison with [7] we present experimental
results on aurora 2. The aurora 2 task [15] is a well known
evaluation for noise compensation techniques. It is a simple
digit recognition task with real noise artificially added in 5dB
increments such that performance without noise compensation
ranges from almost perfect to almost random. Both clean
(uncorrupted) and multi-condition (additive noise corrupted)
training sets are provided, along with three test sets:

A Data corrupted with the same noise used in the
(multi-condition) training.

B As test set A, but using different noise.
C A subset of the noises above, but additionally with

a convolutional filter.
Aurora 2 does not distinguish evaluation and test data, so
results may be biased towards this dataset and should be
considered optimistic.

We used a simple “MFCC” front-end with a 256 point
DFT every 10ms. The noise reduction techniques were applied
in the power-spectral domain (129 bins), after which a filter
bank of 23 mel-spaced triangular bins was applied. The
usual logarithm and truncated DCT then produced 13 cepstral
coefficients (including C0) plus first and second order delta
coefficients. Where CMN and CVN were applied, the means
and variances were calculated separately for the whole of each
utterance.

The noise values were obtained using the low-energy enve-
lope tracking method described in [5], but with a simplified
correction factor from [16]: The 20 lowest energy samples in
a sliding 100 frame (1 second) window were averaged, and
multiplied by a correction factor, C. See section V-B for a
discussion of this factor.

Complete results are shown in Figure 2. Each graph rep-
resents a full aurora evaluation with both multi-condition and
clean training. The SNR of clean testing data was measured
to be around 48dB, and is off the axis, but the result is shown
as the first number in parentheses in the legend. The second

number in the legend is the usual aurora figure of merit: the
average of the scores from 0dB to 20dB.

Each graph in the left column represents use of CMN,
whereas the right column represents use of CVN (implying
CMN also). The four rows are, respectively, the value passed
to the filter-bank being

1) The usual non-SNR (power spectral) features.
2) As 1, but with spectral subtraction.

ς̂ = max
(
|t|2 − αν̂, βν̂

)
, (27)

with α = 1 and β = 0.1, found with a coarse grid
search.

3) One plus the maximum likelihood estimate of SNR from
the marginal distribution

ξ̂ + 1 = max

(
A |t|2
B
− 1, 0

)
+ 1, (28)

= max

(
A |t|2
B

, 1

)
. (29)

4) One plus the MAP estimate of the SNR with a gamma
prior,

ξ̂ + 1, (30)

where ξ̂ is the solution of the cubic in (23) and (24).
We stress that these results are not state of the art for this

database; the purpose is to compare techniques.

V. DISCUSSION

A. Performance

The most significant result of these experiments is that the
CVN results for the SNR features agree with, even exceed,
those in [7]. This is despite the fact that no involved spectral
model is used to distinguish the speech and noise. It seems
that simply being able to track the background noise level with
the low-energy envelope is enough.

The use of the simple gamma prior has a small benefit, but
at the cost of an extra parameter and finding the solution to a
cubic equation. Whilst this is not computationally onerous, it is
doubtful whether it is worthwhile given the good performance
of the much simpler ML solution. However, the spirit of the
approach is important; it shows a principled way to incorporate
prior information.

Spectral subtraction gives an improvement over the baseline,
but does not respond to CVN. This is at odds with the results in
[8], but in agreement with our own anecdotal evidence. This is
a curious result since there is not a large theoretical difference
between SNR features and spectral subtraction. The practical
difference between the two is that SNR features normalise
before the filter-bank, whereas CMN works after it. If we
denote the filter-bank weights for a single bin by w1, w2, . . .,
the SNR features presented to the decoder are of the form

log (1 + w1ξ1 + w2ξ2 + · · · ) , (31)



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (98.41, 88.62)
multi b (98.41, 88.62)
multi c (98.40, 89.06)

clean a (99.11, 66.18)
clean b (99.11, 71.39)
clean c (99.16, 66.90)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (97.97, 90.94)
multi b (97.97, 90.75)
multi c (98.17, 90.38)

clean a (99.13, 77.98)
clean b (99.13, 78.78)
clean c (99.19, 78.27)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (98.06, 90.69)
multi b (98.06, 90.21)
multi c (98.05, 91.14)

clean a (98.77, 73.77)
clean b (98.77, 77.58)
clean c (98.87, 74.99)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (97.91, 89.78)
multi b (97.91, 89.53)
multi c (98.19, 89.52)

clean a (98.82, 74.67)
clean b (98.82, 75.98)
clean c (98.84, 75.32)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (97.88, 89.31)
multi b (97.88, 89.40)
multi c (97.82, 89.62)

clean a (98.90, 67.31)
clean b (98.90, 72.52)
clean c (98.77, 67.87)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (97.84, 90.26)
multi b (97.84, 90.33)
multi c (97.88, 89.63)

clean a (98.70, 81.18)
clean b (98.70, 82.61)
clean c (98.63, 82.09)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (98.08, 89.97)
multi b (98.08, 89.52)
multi c (98.00, 90.13)

clean a (98.81, 70.55)
clean b (98.81, 75.58)
clean c (98.82, 71.05)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

-5 0 5 10 15 20 25

A
cc

ur
ac

y 
(%

)

Signal to Noise Ratio (dB)

multi a (97.89, 89.72)
multi b (97.89, 90.02)
multi c (97.72, 89.16)

clean a (98.67, 81.73)
clean b (98.67, 82.97)
clean c (98.66, 82.45)
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whereas the spectral subtraction features are closer to the form

log

(
1 +

w1s1 + w2s2 + · · ·
w1n1 + w2n2 + · · ·

)
. (32)

Given that log(a + b) ≈ log max(a, b), we hypothesise that
a large noise component anywhere in the band spanned by
the given bin could dominate the latter expression. This in
turn offers some explanation for the improved performance of
SNR features. It remains a subject for further investigation.

B. Noise tracker correction factor

The low-energy envelope tracker normally requires correc-
tion as its estimate is biased too small. In [16], Lathoud et al.
suggest that a multiplicative correction factor

C =
1

(1.5γ)2
, (33)

works well, where γ is the fraction of samples assumed to be
noise. In our case, γ = 0.2 so C = 11.1. In fact, we found
that, whilst this correction factor was necessary for the spectral
subtraction approach, a value of C = 1 was better for SNR
features (the results in Figure 2 are for these values).

It is tempting to conclude that SNR features do not need
a correction factor. However, it is more likely that the noise
tracker with C = 1 was producing noise estimates about 11
times too small, so the SNR estimates were 11 times too large.
Writing the situation as

log(1 + 11ξ) = log(11) + log

(
1

11
+ ξ

)
, (34)

it is clear that this corresponds to using a smaller floor in the
logarithm. This floor is also very close to the one empirically
found to work well as the parameter β in spectral subtraction.

The low-energy envelope is a noise floor rather than a noise
estimate; it is intuitively reasonable that this floor is also the
level below which speech and noise cannot be distinguished.
We hypothesise that the optimal value of C in low-energy
envelope tracking is the same as the optimal floor for SNR.
Thus, when using SNR based features, these values cancel out
giving a parameter-free feature. Proof that C = 1 is optimal
for SNR features, however, will require a careful mathematical
and experimental analysis.

VI. CONCLUSIONS

SNR features for ASR have several practical and mathemat-
ical advantages over the more usual spectral power features.
The naive SNR estimate is actually the optimal estimate under
a fairly rigorous Bayesian analysis, and the framework leaves
room for further incorporation of prior information, as is
common recently in ASR. SNR features perform well in noisy
conditions, and outperform other features when combined with
CVN. Prior information incorporated via a gamma prior dis-
tribution improves results still further, although the difference
may not merit the extra complexity. In practice a different
prior form, or one trained on real data ought to work better.

We have some evidence that the optimal correction factor
used in low-energy envelope tracking cancels exactly the

flooring used in the logarithm for SNR features, making SNR
features almost parameter-free when noise is estimated in this
manner.
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Abstract

Cepstral normalisation in automatic speech recognition is investigated in the context of robustness to additive noise. In this paper, it is
argued that such normalisation leads naturally to a speech feature based on signal to noise ratio rather than absolute energy (or power).
Explicit calculation of this SNR-cepstrum by means of a noise estimate is shown to have theoretical and practical advantages over the
usual (energy based) cepstrum. The relationship between the SNR-cepstrum and the articulation index, known in psycho-acoustics, is
discussed. Experiments are presented suggesting that the combination of the SNR-cepstrum with the well known perceptual linear pre-
diction method can be beneficial in noisy environments.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

An important problem encountered in speech signal
processing is that of how to normalise a signal for the
effects of noise. In speech enhancement the task is to
remove noise from a signal to reproduce the uncorrupted
signal such that it is perceived by a listener to be less noisy.
In automatic speech recognition (ASR), the task is to
reduce the effect of noise on recognition accuracy. This
paper concentrates on the latter (ASR) problem.

Two categories of noise are generally considered: Addi-
tive noise is that which represents a distinct signal other
than the one of interest. Convolutional noise is that which
alters the spectral shape, and can be associated with either
the signal of interest, or both the signal and the additive
noise.

The present work stems from the practical experience
that it is very difficult to improve upon cepstral normalisa-
tion techniques for noise robustness. Cepstral mean nor-

malisation (CMN) (Furui, 1981) is a well established
technique that compensates, in a theoretically sound way,
for convolutional noise. It is based on the persuasive obser-
vation that a linear channel distortion becomes a constant
offset in the cepstral domain. More heuristically, CMN also
affords some robustness to additive noise. Cepstral vari-
ance normalisation (CVN) (Viikki and Laurila, 1997;
Viikki and Laurila, 1998) generally results in very good
noise robustness, but the reason for this is not well
understood.

Many common practical solutions for additive noise
compensation are based on the assumption of a simple
additive Gaussian model for both speech and noise in the
spectral domain. In ASR, the spectral subtraction
approach of Boll (1979) is well established. In speech
enhancement, much work is based on the technique of
Ephraim et al. (1984). Both these techniques have influ-
enced the design of the ETSI (2002) standard ASR front-
end. However, at least in a batch mode of operation, and
certainly combined with multi-condition training, CMN
combined with CVN can exceed the performance of all
these techniques.
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In this paper, building on previous work, the theoretical
effect of CMN and CVN in additive noise is studied. It is
shown that the use of CMN implies that the features pre-
sented to an ASR decoder are in fact measures of (log) sig-
nal to noise ratio (SNR) rather than (log) energy. Based on
this observation, a SNR feature is derived formally, the
derivation providing both theoretical and practical advan-
tages over the equivalent for energy based features.

The SNR-cepstrum is then placed in context amongst
other techniques, emphasising that there is a great deal of
commonality between noise robustness in ASR, speech
enhancement and indeed the workings of the inner ear.

The paper is split roughly into two parts. Sections 1–4
are largely theoretical, expanding previous work to give a
thorough basis for the SNR-cepstrum. Sections 5–7 pro-
ceed to evaluate the SNR-cepstrum in the context of the
linear predictive features that are common in modern
ASR systems.

2. Background

In a simplistic, but informative, view of an ASR front-
end, an acoustic signal is Fourier transformed to give a vec-
tor of spectral coefficients (s1, s2, . . . , sF)T. After a linear
transform (filter-bank) implementing a non-linear fre-
quency warp, the cepstrum is calculated. The cepstrum
involves a logarithm followed by another linear transform
(DCT).

2.1. Convolutional noise

Although only one is normally considered, note that two
types of convolutional noise can be distinguished:

1. A source noise, g = (g1,g2, . . . ,gF)T, associated only with
the speech signal. This can be thought of as being repre-
sentative of a speaker.

2. A channel noise, h = (h1,h2, . . . ,hF)T, associated with the
microphone and transmission channel.

In the presence of convolutional noise, which is multipli-
cative in the frequency domain, the logarithm for each fre-
quency bin, f 2 {1,2, . . . ,F}, becomes

logðhf gf sf Þ ¼ logðhf Þ þ logðgf Þ þ logðsf Þ; ð1Þ

where log(sf) varies, and log(hf) is constant over time.
log(gf) is taken to represent the component of the speech
that is constant over time, being some characteristic of
the speaker.

It follows from Eq. (1) that, if log(sf) can be assumed to
have zero mean, the noise terms can be removed by sub-
tracting the long term average of the log-spectrum. This
is achieved by cepstral mean normalisation (Furui, 1981,
although the technique has been attributed to Atal even
earlier) or by the RASTA processing of Hermansky and
Morgan (1994). Note also that, when the filter-bank is con-

sidered, the above holds if the hf and gf are assumed con-
stant within a given filter-bank bin.

2.2. Additive noise

When additive noise is also present, typically it is
assumed to remain additive after the Fourier transform.
In this sense, the logarithm operation becomes

logðhf gf sf þ hf nf Þ ¼ logðhf Þ þ logðgf sf þ nf Þ: ð2Þ

where (n1,n2, . . . ,nF)T is the noise spectrum. From Eq. (2),
it appears that CMN and the like cannot work in signifi-
cant additive noise unless the additive noise is removed
first. To this end, there is a large body of work focusing
on additive noise removal. In ASR, the spectral subtraction
approach of Boll (1979) was further developed by, for in-
stance, Van Compernolle (1989), and is well established.
It is often used as a means to derive a Wiener filter. In
speech enhancement, much work is based on the technique
of Ephraim et al. (1984).

The state of the art in additive noise robustness is prob-
ably in the body of work based on the additive model of
Acero and Stern (1990,), and the vector Taylor series
approach of Moreno et al. (1996,). Such techniques are
characterised by a large Gaussian mixture prior on the
speech signal, a recent exemplar being Li et al. (2007). It
is not the goal of the present paper to approach the perfor-
mance of such techniques. Rather, a building block is pre-
sented that could be used in combination with these
techniques.

2.3. SNR features

The logarithm of a sum can be written

logðxþ aÞ ¼ logðaÞ þ x
a� x2

2a2 þ x3

3a3 . . .

¼ logðaÞ þ log 1þ x
a

� �
:

ð3Þ

Although the relationship is clear without the series expan-
sion, the latter emphasises that the term log(a) is the com-
ponent that is independent of x. This in turn suggests that
Eq. (2) might better be written

log hf gf sf þ hf nf

� �
¼ logðhf nf Þ þ log 1þ

gf sf

nf

� �
; ð4Þ

emphasising that CMN would actually remove the con-
stant term log(hfnf), or its mean if either hf or nf were
non-deterministic.

It appears from the above analysis that, if CMN is used,
the features that are presented to the ASR decoder are
actually (a linear transform of) the logarithm of one plus
the signal to noise ratio (SNR). This will happen even if
the additive noise is simply the minimal background noise
usually associated with clean recordings. It follows that one
could try to calculate the SNR from the outset rather than
calculate a spectral power measure and rely on CMN to
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produce the SNR. A-priori, such an approach has at least
three appealing properties:

1. The flooring of the logarithm happens naturally. The
SNR (expressed as a power ratio) cannot fall below
zero, so the argument of the logarithm is naturally
floored at unity, and the logarithm is hence positive.

2. SNR is inherently independent of h, the convolutional
noise associated with microphones and the gain associ-
ated with pre-amplifiers.

3. If applied before the filter bank, the assumption that hf

remains constant over the range of the filter bin is no
longer required.

It turns out that SNR is also mathematically appealing.
Notice that, whilst the channel noise, hf, is cancelled by

taking the SNR, the source noise, gf, is still present. How-
ever, for high SNR it will be removed by CMN. It follows
that the SNR is not a replacement for CMN in its speaker
normalisation sense. It also suggests that direct comparison
of SNR based features with CMN would not be fair.

3. The SNR spectrum

In contrast to the previous section, which was left delib-
erately simplistic, a more rigorous derivation of a SNR
based feature is now presented. After defining a Gaussian
model of speech in noise, the derivation proceeds by show-
ing that power spectral subtraction can be seen as a partic-
ular maximum-likelihood (ML) solution. Two ML
estimators for the SNR are then derived.

3.1. Gaussian model

Assume that a DFT operation produces a vector, x, with
complex components, x1; x2; . . . ; xF , where the real and
imaginary parts of each xf are Gaussian, independent
and identically distributed (i.i.d.) with zero mean and var-
iance tf. That is,

pðxf jtf Þ ¼
1

ptf
exp � jxf j2

tf

 !
: ð5Þ

In the case where two coloured noise signals are distin-
guished, a background noise, n, and a signal of interest,
s, typically speech, denote the noise variance as m and the
speech variance as B. In general, the background noise
can be observed in isolation and modelled as

pðnf jmf Þ ¼
1

pmf
exp � jnf j2

mf

 !
: ð6Þ

The speech, however, cannot normally be observed in iso-
lation. It is always added to noise. When both speech and
additive noise are present the variances add, meaning that
the total signal, tf ¼ sf þ nf , can be modelled as

pðtf j1f ; mf Þ ¼
1

pð1f þ mf Þ
exp � jtf j2

1f þ mf

 !
: ð7Þ

Although neither the Gaussian nor i.i.d. assumptions are
likely to be true in practice, the above model is the basis
of the Wiener filter and of the widely used Ephraim et al.
(1984) speech enhancement technique. The goal is usually
formulated as requiring an estimate of sf . However, it is
first necessary to find an estimate of Bf.

3.2. Variance as an ASR feature

The well known maximum likelihood estimate of Bf is
instructive in determining the right approach for the defini-
tion and estimation of SNR. It proceeds as follows, where
the f subscript is dropped for simplicity: Assume that an
estimate, m̂, of m is available via solution of (6) during, for
instance, non-speech segments of the signal. The estimate
of the speech variance, B, then follows from Bayes’
theorem,

pð1jt; m̂Þ / pðtj1; m̂Þpð1jm̂Þ: ð8Þ

Assuming pð1jm̂Þ ¼ pð1Þpðm̂Þ and a flat prior p(B) / 1, substi-
tuting (7) into (8), differentiating with respect to B and
equating to zero gives the ML estimate,

1̂ ¼ max jtj2 � m̂; 0
� �

: ð9Þ

Notice that, in ASR at least, this is simply power spectral
subtraction. More generally, it is known to provide a “rea-
sonable” estimate of the speech variance, but always re-
quires regularisation. In ASR, it is regularised by means
of an over-subtraction factor, a, and a flooring factor, b:

1̂ ¼ max jtj2 � am̂; bm̂
� �

; ð10Þ

as in (Van Compernolle, 1989).
The above derivation shows that a commonly used

speech feature can be seen in a Bayesian sense as an esti-
mate of the variance B. This interpretation is reinforced
when convolutional noise is considered. Making the substi-
tution yf ¼

ffiffiffiffiffi
hf

p
xf in Eq. (5), the Jacobian determinant is

h�1
f , so

pðyf jhf ; tf Þ ¼
1

phf tf
exp �

jyf j
2

hf tf

 !
; ð11Þ

i.e., the convolutional term multiplies the variance, exactly
as in the simplistic model of Section 2.

The above implies that estimation for the purposes of
ASR can focus on the variance, B, rather than the (uncor-
rupted) observation, s, as in enhancement.

3.3. ML SNR estimate

Motivated by the term of interest being the variance,
define the SNR as
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nf ¼
1f

mf
; ð12Þ

The f subscript indicates that the SNR is frequency depen-
dent. Substituting Bf = nfmf into (7),

pðtf jnf ; mf Þ ¼
1

pmf ð1þ nf Þ
exp � jtf j2

mf ð1þ nf Þ

 !
: ð13Þ

The subscript is dropped again hereafter for simplicity.
This time, the posterior is in terms of n,

pðnjt; m̂Þ / pðtjn; m̂Þpðnjm̂Þ: ð14Þ

Assuming a flat prior, substituting (13) into (14), differenti-
ating and equating to zero,

n̂ ¼ max
jtj2

m̂
� 1; 0

 !
: ð15Þ

3.4. Marginalisation over noise variance

Thus far it has been assumed that an estimate, m̂, of the
noise variance is available. In a Bayesian sense, however,
the noise is a nuisance variable, the correct approach being
to marginalise over it. In the case of variance estimation,
such marginalisation is not easily tractable. By contrast,
the form of (13), with multiplicative instead of additive
terms in the denominators, presents no major difficulty
for marginalisation.

If there are N frames (spectral vectors) of noise,
fngN ¼ n1; n2; . . . ; nNf g, that are observed in isolation,
one can write

pðmf jfngN Þ ¼
QN

i¼1pðni;f jmf Þpðmf ÞR1
0

dm0
QN

i¼1pðni;f jm0f Þpðm0f Þ
; ð16Þ

where the products are over the likelihood terms, not the
priors. Again, hereafter subscripts are dropped for simplic-
ity. The likelihood terms are exactly the form of Eq. (6), and
a non-informative prior, p(m) / m�1, is arbitrarily chosen.
Eq. (16) then reduces to the inverse gamma distribution

pðmjfngNÞ ¼
BA

CðAÞ m
�A�1 exp �B

m

� �
ð17Þ

where

A ¼ N ; B ¼
XN

i¼1

jni;f j2: ð18Þ

The MAP solution, m̂, of m would be

m̂ ¼ B
Aþ 1

; ð19Þ

however, the distribution can be used to marginalise over m.
Assuming the prior on SNR is independent of the noise
estimate, Eq. (14) becomes

pðnjtÞ / pðnÞ
Z 1

0

dmpðtjn; mÞpðmjfngNÞ: ð20Þ

Substituting (13) and (17) into (20), the forms are conjugate
and the integral is just the normalising term from the
inverse gamma distribution.

pðnjtÞ / pðnÞ � BA

CðAÞ
CðAþ 1Þ

nþ 1

jtj2 þ ðnþ 1ÞB
nþ 1

 !�ðAþ1Þ

:

ð21Þ

If a flat prior, p(n) / 1, is assumed as before, differentiating
(21) and equating to zero gives a marginal ML estimate:

n̂ ¼ max
Ajtj2

B
� 1; 0

 !
ð22Þ

Curiously, Eq. (22) is basically the same as Eq. (15). It was
shown by Garner (2009) that this result requires no further
regularisation to work well.

Hereafter, the SNR vector, n, is referred to as the SNR-
spectrum. This leads to the resulting cepstrum being called
the SNR-cepstrum.

4. Context

Whilst the above derivation is novel to the knowledge of
the author, the SNR-spectrum is by no means a new con-
cept. Rather, it draws together several loosely related
topics.

4.1. Enhancement

n is exactly the a-priori SNR of McAulay et al. (1980),
popularised by Ephraim et al. (1984). In enhancement, this
measure is used as an intermediate result in the reconstruc-
tion of an enhanced spectrum. The Wiener filter can be
defined in terms of the SNR:

w ¼ n
nþ 1

: ð23Þ

In the decision directed estimator of Ephraim et al. (1984),
the ML estimate of n of (15) is regularised using an esti-
mate based on the previous spectral magnitude estimate.
This is further explored by Cohen (2005), and is used in
a modified form in ETSI (2002), Plapous et al. (2004).
Whilst these approaches are beyond the scope of the
present study, the proposed approach does not preclude
using them.

4.2. Automatic speech recognition

Lathoud et al. (2005) present an ad-hoc model allowing
a signal to be described in terms of noise and speech spec-
tra. Those authors perform what they refer to as “Unsuper-
vised” spectral subtraction. In fact, they explicitly floor the
SNR using (in the present notation)

max 1;
sf

nf

� �
: ð24Þ
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Notice that

logð1þ n̂Þ ¼ log max 1;
jtj2

m̂

" # !
; ð25Þ

which is the same form as (24). However, no ad-hoc spec-
tral model is necessary. It was shown by Garner (2009) that
this formulation can actually exceed the performance re-
ported by Lathoud et al. (2005).

The terminology raises an interesting issue: in the con-
text of CMN, there is little difference between using the
SNR-spectrum, and spectral subtraction. This is explored
below in Section 6.2.

4.3. Relationship with articulation index

Allen (1994) describes earlier work by Fletcher analysing
the probable workings of the inner ear. In particular, Allen
states that Fletcher’s experiments suggest that the cochlea
is sensitive to SNR:

The signal to noise ratio of each cochlear inner hair cell
signal is important to the formation of the feature chan-
nels since [the channel error] is known to depend directly
on these SNRs rather than on spectral energy.

Later, Allen (2005) defines the articulation index (AI) as

AIk ¼ min
1

3
log10ð1þ c2snr2

kÞ; 1
� �

: ð26Þ

The AI is lower bounded at 0 by the logarithm, and upper
bounded at 1 by a heuristic 30 dB dynamic range of speech.

Notice that the AI has the same form, except for linear
transformation, as the speech feature described above that
arises from CMN. This in turn is known to work well in
ASR. These two derivations are totally independent. It fol-
lows that, under CMN, the feature being presented to an
ASR decoder is the AI, just as in the human ear.

In fact, the AI has been used directly as an ASR feature
by Lobdell et al. (2008). The approach of those authors was
to use the AI specifically to mimic the function of the ear.
In this sense, the present approach is complementary, dri-
ven more mathematically than perceptually.

4.4. Noise tracker

In order to obtain a noise estimate, Garner (2009) used
the low-energy envelope tracker advocated by Lathoud
et al. (2006), based on Ris and Dupont (2001) and Martin
(2001). The low-energy envelope tracker normally requires
correction as its estimate is biased too small. Lathoud et al.
(2006) suggest that a multiplicative correction factor

C ¼ 1

ð1:5cÞ2
; ð27Þ

works well, where c is the fraction of samples assumed to be
noise. However, Garner (2009) found that a value of C = 1
was better for the SNR-cepstrum, rather than the C � 11

that would be implied from Eq. (27). This in turn implied
that the feature being presented to the decoder was closer to

logð1þ 11nÞ ¼ logð11Þ þ log
1

11
þ n

� �
: ð28Þ

The right hand side of Eq. (28) implies that this corre-
sponds to using a smaller floor in the logarithm. Further,
it is close to the one empirically found to work well as
the parameter b in spectral subtraction. However, the left
hand side of Eq. (28) suggests a relationship with the AI:
Allen (2005) states that the value c from Eq. (26) should
be around 2. The square is certainly the same order of mag-
nitude as the 11 that occurs empirically in the results of
Garner (2009). C is based on noise minima and c is based
on speech maxima; whatever the actual value of these con-
stants, the present approach is unable to distinguish them.
However, that they appear to cancel each other out sug-
gests they have the same origin.

4.5. Cepstral variance normalisation

Whilst cepstral variance normalisation (CVN) is known
to provide noise robustness (Viikki and Laurila, 1997,
1998), the justification for this is normally attributed to a
heuristic and brute force shift of the observation PDF
towards that of the model. This heuristic is used to good
advantage in histogram normalisation (Segura et al.,
2002; de la Torre et al., 2005). In the context of the
SNR-spectrum, however, the concept of CVN is far more
tangible: It is normalising SNR dynamic range.

As an aside, it follows that it may be possible to normal-
ise for SNR at some other point in the processing chain.
This has been investigated by the author without success.
An obvious tentative conclusion is that the removal of
the source noise, g, via CMN is important beforehand.

4.6. Summary

The SNR-spectrum arises as a natural consequence of
doing CMN on ASR features. CVN then takes on a phys-
ical interpretation as normalisation of the SNR dynamic
range in dB. If defined more formally as the ratio of speech
and noise variances, the intuitive estimator of SNR is also
the marginal ML estimator under Gaussian noise.

The SNR-cepstrum appears to be exactly (differing only
by linear transform) the AI of Fletcher as defined by Allen,
suggesting a close relationship with the sensory mecha-
nisms in the cochlea. Calculating the SNR-cepstrum as
suggested both by the cochlea and practical computation
leads to better noise robustness at low SNR.

5. Experiments

5.1. Previous results

Garner (2009) presented results showing that SNR
based MFCC (mel frequency cepstral coefficients) features
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were more noise robust than the usual energy based fea-
tures on the aurora 2 database. The aurora 2 task (Hirsch
and Pearce, 2000) is a well known evaluation for noise
compensation techniques. It is a simple English digit recog-
nition task with real noise artificially added in 5 dB incre-
ments such that performance without noise compensation
ranges from almost perfect to almost random. Both clean
(uncorrupted) and multi-condition (additive noise cor-
rupted) training sets are provided, along with three test
sets:

A Data corrupted with the same noise used in the (multi-
condition) training.

B As test set A, but using different noise.
C A subset of the noises above, but additionally with a

convolutional filter.

Aurora 2 does not distinguish evaluation and test data,
so results may be biased towards this data-set and should
be considered optimistic. It should also be stressed that
the results in this paper are not state of the art for this data-
base; the purpose is to compare techniques.

Aurora 2 is very useful for optimisation and evaluation
of front-ends; this is because it runs quickly and has a thor-
ough test set. However, several criticisms can be levelled at
aurora 2:

1. It is real noise, but added artificially. This assumes that
the additive noise assumption is exact, and ignores
effects associated with the fact that speakers will modify
their voices to compensate for noise presence.

2. It is digits, hence with a limited grammar and incom-
plete phonetic coverage.

There is also a somewhat intangible feeling in the com-
munity that aurora 2 results are often not reflected in real
world systems.

The results of Garner (2009) are summarised in Fig. 1.
Each graph represents a full aurora 2 evaluation for either
multi-condition or clean training. As the results for the dif-
ferent test sets (A, B and C) are virtually indistinguishable
when CMN is used, each curve is the average of the three
sets. The SNR of clean testing data was measured to be
around 48 dB, and is off the axis, but the result is shown
as the first number in parentheses in the legend. The second
number in the legend is the usual aurora 2 figure of merit:
the average of the scores from 0 dB to 20 dB. Both num-
bers are averaged over the three test sets.

The first curve in Fig. 1 shows an MFCC baseline using
CMN in clean (mismatched) training conditions. The fol-
lowing two curves show the benefits of using CVN too
(CMVN: cepstral mean and variance normalisation), and
of multi-condition (matched) training. The next curve
shows that spectral subtraction cannot improve on CVN,
whilst the penultimate curve shows that the SNR-cepstrum
can further improve on CVN in mismatched conditions.
The final curve shows that the SNR-cepstrum does not

afford any further improvement in matched conditions.
In fact, all techniques perform very similarly under multi-
condition training.

Notice that, whilst the aurora 2 figure of merit is higher
for the SNR based features, it is mainly gained from
improvements below about 15 dB SNR. In cleaner condi-
tions, the usual energy based features perform better. It
seems reasonable to attribute this difference to the noise
tracker. Certainly the noise tracker is imperfect, and it is
the only major difference between the two techniques at
high SNR.

5.2. Hypotheses

In the present investigation, two hypotheses are under
test:

1. State of the art systems often use linear prediction fea-
tures as alternatives to the MFCCs used in previous
work. Do such features also benefit from the use of
SNR based features?

2. The previous experiments were limited to the scope of
aurora 2. Do the benefits of SNR based features tran-
scend the restrictions of this database?

5.3. Perceptual linear prediction

Linear prediction (LP) is a common speech analysis
method that represents speech using an all pole model
(Makhoul, 1975). In the context of ASR, it is used to
smooth a spectrum based on the fact that the signal origi-
nates from a vocal tract.

LP is normally used in ASR in the form of the percep-
tual linear prediction (PLP) of Hermansky (1990). PLP
modifies the auto-correlation calculation in the first stage
of the LP calculation as follows:

1. The power spectrum is binned into critical bands sepa-
rated according to the bark scale.

2. The bands are weighted according to an equal loudness
criterion.

3. The bands are compressed by a cube root representing
the power law of human hearing.

PLP has become quite widely used in state of the art
ASR systems, e.g., the AMIDA system of Hain et al.
(2009). In this sense, it merits investigation in the SNR-
spectrum framework.

Whilst LP has a rigorous mathematical underpinning,
PLP is more a set of heuristics. That is, the spectral warp-
ing is not derived as such, it is introduced in an ad-hoc, but
intuitively reasonable manner. Using the same intuition,
PLP cepstra can be calculated based on SNR rather than
energy. If PLP is seen as simply a smoothing operation,
it is reasonable to assume that the same smoothing can
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be applied to the SNR spectrum rather than the power
(energy) spectrum.

5.4. Method

Features in the spirit of PLP were extracted using the
Tracter toolkit (Garner and Dines, 2010). That is, pre-
emphasis was used in lieu of an equal loudness weighting,
then a 256 point DFT was performed every 10ms. The
power spectrum of 129 bins was applied to a filter bank
of 32 mel-spaced triangular bins (rather than bark spaced
trapezoidal bins). The filter bank was cube root com-
pressed (initially), then the usual DCT and LP recursions
yielded 13 cepstral coefficients (including C0) plus first
and second order delta coefficients. Cepstral means and
variances were calculated separately for the whole of each
utterance; all new results in this paper use both CMN
and CVN.

The SNR based PLP features were extracted as above,
except using one plus the ML estimate of the SNR as
described in Section 3.4. The LP calculation was as above,
except that no cube root compression was employed. This
was found to improve performance significantly, and is dis-
cussed later in Section 6.3.

Following Garner (2009), the noise values were obtained
using the low-energy envelope tracking method described
by Ris and Dupont (2001), but with a simplified correction
factor of Lathoud et al. (2006): The 20 lowest energy sam-
ples in a sliding 100 frame (1 second) window were aver-
aged, but not multiplied by any correction factor.

5.5. Aurora 2 results

Results are shown in Fig. 2. The energy based PLP
features perform similarly to the energy based MFCC

features. However, the improvement for SNR based
features is considerably more than that for MFCCs in
the mismatched (clean training) case. This is encouraging;
it strongly suggests not only that the SNR spectrum is
applicable to PLP features, but that it is more suited to
PLP features than to MFCCs.

5.6. Aurora 3 and 4 results

Aurora 3 and 4 go some way to combat the criticisms
that are often levelled at aurora 2.

Aurora 3 is a digit subset of SpeechDat-Car; that is, a
similar task to aurora 2 but uttered in real noise. The noise
is various driving conditions of a car. Several languages are
available; the present experiments are performed on the
German (Netsch, 2001) and Danish (Lindberg, 2001)
versions. As with aurora 2, a standardised train and test
harness is provided using HTK. However, as the noise
conditions are real, only three conditions are defined:

wm is well-matched; a mixture of all conditions and
microphones for both training and testing.

mm is mid-mismatch; training with quiet and low noise
data on a hands free microphone, testing on high
noise data from the same microphone.

hm is high-mismatch; training in all conditions on a close
talking microphone, testing in low and high noise on
a hands free microphone.

No SNR information is immediately available for the
Danish database. However, Netsch (2001) gives SNR dis-
tributions for the various microphones and conditions.
The close talking microphone averages around 20 dB,
and the hands free microphones averages around 5–
10 dB; however all conditions spread 10 dB either side of
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Fig. 1. A summary of previous aurora 2 results for MFCC features. See the text for a description.
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the average. Given these broad measurements, and com-
paring with aurora 2 results, a-priori it may be expected
that SNR features may not afford any improvement on
the wm and mm conditions. However, an improvement is
expected for the hm condition; although perhaps not as
much as in aurora 2 as the mismatch is not as large.

Results are shown in Fig. 3. Contrary to expectations,
there is a small improvement across the board, except for
the Danish matched conditions. As expected, however,
the improvement is most significant for the highest
mismatch.

Aurora 4 is a noisy version of the well known wall street
journal (WSJ) based SI-84 task. Aurora 4 goes back to
using real noise artificially added to otherwise undistorted
speech, but is large vocabulary (5000 words), hence cover-
ing the phone set thoroughly. As in aurora 2, both clean
and multi-condition training sets are defined. However,
rather than define tests at particular SNRs, 14 individual

enumerated tests are specified; these are summarised in
Table 1.

Although a test harness was made available by Parihar
et al. (2004), other authors have written their own (e.g.,
Au Yeung and Siu, 2004). In the present experiments, a
scheme in the spirit of that of Parihar et al. (2004), but
using HTK, was used.

To better reflect a typical WSJ system, the 16 kHz data
were used with a 400 point DFT and 40 bank mel filter.
Other parameters were as in the 8 kHz experiments.
Results are shown in Fig. 4 (Sennheiser microphone) and
Fig. 5 (second microphone). A priori, from the aurora 2
result, one would not expect the multi-condition results
to vary much between SNR and energy based PLPs. The
added noise is in the range 5–15 dB, however, which is
within the range in which SNR features have been shown
to afford an improvement. In this sense, the clean training
results should be better for SNR based PLPs.

In practice, the a-priori expectations are borne out quite
well.

5.7. Rich text

The SNR-cepstrum was briefly evaluated in the context
of meeting room recognition. The baseline was the
AMIDA RT06 system of Hain et al. (2006). Only the first
pass was evaluated, and only the IHM (individual headset
microphone). At an early stage, it was clear that the results
from the SNR-cepstrum were no better than those from the
baseline, and further experiments were abandoned.

In fact, this result is broadly what would be expected
a-priori given the aurora 2 results. The training and test
condition are matched, and the SNR is quite high; perhaps
better than the notional 15 dB threshold.
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Fig. 2. PLP results on aurora 2 database.

Fig. 3. PLP results on aurora 3 database. The G and D prefixes refer to
German and Danish respectively.
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5.8. Experimental conclusions

The hypotheses are hence proven:

1. PLP features appear to benefit from SNR spectra in the
same way as MFCC have been shown to do. At least on
aurora 2, the results are better than for MFCCs.

2. Predictions made on the basis of aurora 2 results carry
over to real noisy data, and to a large vocabulary
system.

6. Discussion

6.1. State of the art

The experiments show that SNR-spectrum based
features can be beneficial in noisy environments when
there is a mismatch between the training and testing
conditions. Garner (2009) also showed that such fea-

tures out-perform various types of spectral subtraction.
No other comparison is made with other noise robust-
ness techniques. Rather, the use of standard databases
means the results can be readily compared with those
in the literature. No claim is made that the SNR-
spectrum gives state of the art results. For instance,
Li et al. (2007) report considerably better results on
aurora 2.

6.2. Analysis

That the SNR-spectrum performs well is a curious result
since there is not a large theoretical difference between
SNR spectrum features and energy spectrum features when
CMN is used. The difference is that the SNR spectrum fea-
tures normalise before the filter-bank, whereas CMN
works after it.

If the filter-bank weights for a single bin are denoted by
w1,w2, . . . , the SNR features presented to the decoder are
of the form

Table 1
Test set composition for aurora 4.

Microphone Clean Noise added between 5 dB and 15 dB

Car Babble Restaurant Street Airport Train

Sennheiser 1 2 3 4 5 6 7
Second 8 9 10 11 12 13 14

Fig. 4. PLP results on aurora 4 database – Sennheiser microphone.

Fig. 5. PLP results on aurora 4 database – second microphone.
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log 1þ w1n1 þ w2n2 þ � � �ð Þ; ð29Þ

whereas the energy based features are closer to the form

log 1þ w1ðs1 þ n1Þ þ w2ðs2 þ n2Þ þ � � �
w1n1 þ w2n2 þ � � �

� �
: ð30Þ

In broadband noise, "f:sf� nf, both expressions clearly
reduce to the same value (log 1). However, if the noise is
isolated to a particular bin, f, then only one term in the first
expression will approach zero. In the second, the whole
expression will reduce. It follows that the noises in the
experimental conditions are suitably coloured for this effect
to be significant.

These results are complementary to those of Lobdell
et al. (2008), who also find advantages associated with AI
features, albeit working after the filter-bank, and without
cepstral normalisation.

6.3. PLP power law

One corollary of the aurora 2 experiments is that the
cube root compression of Stevens (1957) normally used in
PLP is not beneficial in the presence of noise. Whilst it is
not the object of this study to investigate optimal PLP
parameters, one hypothesis is as follows:

The compression affects the relative contribution of
large and small spectral values in the LP calculation.
Higher powers favour the higher values. The smaller power
of 0.33 in PLP will enhance the contribution of smaller
spectral values. The smaller values are likely to be noise.
It follows that compression is in general not a noise robust
operation. This issue is related to the SNR spectrum in that
the SNR calculation can reduce noise peaks.

It can be tentatively concluded that additive noise is a
more dominant concern than optimal compression in the
present experimental conditions.

7. Conclusions

SNR-spectrum features for ASR have several practical
and mathematical advantages over the more usual spectral
power features. The naive SNR estimate is actually the
optimal estimate under a fairly rigorous Bayesian analysis,
and the framework leaves room for further incorporation
of prior information, as is common recently in ASR.
SNR features combined with CMN and CVN perform well
in noisy conditions, especially when the SNR is below
15 dB.

The SNR-spectrum combined with the usual cepstral
processing can be seen as an independent derivation of
the articulation index. This also leads to insights into
how to handle the noise tracker. Certainly the empirically
optimal configuration is one with no hyper-parameters.
The SNR-spectrum is also closely related to features
known to be beneficial in speech enhancement.

Experiments on artificial and restricted data give results
that appear to generalise to real and less restricted data.

Whilst no effort has been made to approach state of the
art noise robustness figures, the SNR-spectrum appears
complementary to techniques producing such results.
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Benı́tez, C., Rubio, A.J., 2005. Histogram equalization of speech
representation for robust speech recognition. IEEE Trans. Speech
Audio Process. 13 (3), 355–366.

Ephraim, Y., Malah, D., 1984. Speech enhancement using a minimum
mean-square error short-time spectral amplitude estimator. IEEE
Trans. Acoust. Speech Signal Process. ASSP-32 (6), 1109–1121.

ETSI, Speech Processing, Transmission and Quality Aspects (STQ);
Distributed speech recognition; Advanced front-end feature extraction
algorithm; Compression algorithms, ETSI Standard 202 050, ETSI,
v1.1.1, 2002.

Furui, S., 1981. Cepstral analysis technique for automatic speaker
verification. IEEE Trans. Acoust. Speech Signal Process. 29, 254–272.

Garner, P.N., 2009. SNR Features for automatic speech recognition, In:
Proc. IEEE Workshop on Automatic Speech Recognition and
Understanding, Merano, Italy.

Garner, P.N., Dines, J., 2010. Tracter: a lightweight dataflow framework.
In: Proc. Interspeech, Makuhari, Japan.

Hain,T., Burget, L., Dines, J., Garau, G., Karafiat, M., Lincoln, M.,
Vepa, J., Wan, V., 2006. The AMI meeting transcription system:
progress and performance. In: Proc. NIST RT06 Spring Workshop.

Hain, T., Burget, L., Dines, J., Garner, P.N., El Hannani, A., Huijbregts,
M., Karafiat, M., Lincoln, M., Wan, V., 2010. The AMIDA 2009
meeting transcription system. In: Proc. Interspeech, Makuhari, Japan.

Hermansky, H., 1990. Perceptual linear predictive (PLP) analysis of
speech. J. Acoust. Soc. Amer. 87 (4), 1738–1752.

1000 P.N. Garner / Speech Communication 53 (2011) 991–1001



Hermansky, H., Morgan, N., 1994. RASTA processing of speech. IEEE
Trans. Speech Audio Process. 2 (4), 578–589.

Hirsch, H.-G., Pearce, D., 2000. The Aurora experimental framework for
the performance evaluation of speech recognition systems under noisy
conditions. In: ISCA ITRW ASR2000 “Automatic Speech Recogni-
tion: Challenges for the Next Millenium”, Paris, France.

Lathoud, G., Magimai-Doss, M., Mesot, B., Bourlard, H., 2005.
Unsupervised spectral substraction for Noise–Robust ASR. In: Proc.
IEEE Workshop on Automatic Speech Recognition and Understand-
ing, San Juan, Puerto Rico, 2005.

Lathoud, G., Magimai-Doss, M., Bourlard, H., 2006. Channel normal-
ization for unsupervised spectral subtraction, IDIAP-RR 06-09, Idiap
Research Institute, URL <http://publications.idiap.ch>.

Li, J., Deng, L., Yu, D., Gong, Y., Acero, A., 2007. High-performance
HMM adaptation with joint compensation of additive and convolutive
distortions via vector Taylor series. Proc. IEEE Workshop Autom.
Speech Recognit. Understanding. IEEE, Kyoto, Japan.

Lindberg, B., 2001. Danish SpeechDat-Car Digits Database for ETSI STQ
Aurora Advanced DSR, Technical Report, CPK, Aalborg University,
URL <http://aurora.hsnr.de/download/sdc_danish_report.pdf>.

Lobdell, B.E., Hasegawa-Johnson, M.A., Allen, J.B., 2008. Human speech
perception and feature extraction. In: Proc. Interspeech, Brisbane,
Australia.

Makhoul, J., 1975. Linear prediction: a tutorial review. Proc. IEEE 63 (4),
561–580.

Martin, R., 2001. Noise power spectral density estimation based on
optimal smoothing and minimum statistics. IEEE Trans. Speech
Audio Process. 9 (5), 504–512.

McAulay, R.J., Malpass, M.L., 1980. Speech enhancement using a soft
decision noise suppression filter. IEEE Trans. Acoust. Speech Signal
Process. 28 (2), 137–145.

Moreno, P.J., 1996. Speech recognition in noisy environments. Ph.D.
Thesis, Department of Electrical and Computer Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213.

Moreno, P.J., Raj, B., Stern, R.M., 1996. A vector Taylor series approach
for environment-independent speech recognition. In: Proc. IEEE
Internat. Conf. on Acoustics, Speech and Signal Processing, Vol. 2,
Atlanta, US, pp. 733–736.

Netsch, L., 2001. Description and Baseline Results for the Subset of the
Speechdat-Car German Database used for ETSI STQ Aurora WI008
Advanced DSR Frontend Evaluation, STQ Aurora DSR Working
Group input document AU/273/00, Texas Instruments, URL <http://
aurora.hsnr.de/download/sdc_german_report.pdf>.

Parihar, N., Picone, J., Pearce, D., Hirsch, H.G., 2004. Performance
Analysis of the Aurora Large Vocabulary Baseline System. In: Proc.
12th European Signal Processing Conf., Vienna, Austria.

C. Plapous, C. Marro, L. Mauuary, P. Scalart, A Two-Step Noise
Reduction Technique, in: Proc. IEEE Internat. Conf. on Acoustics,
Speech and Signal Processing, Vol. I, Montreal, Canada, 289–292,
2004.

Ris, C., Dupont, S., 2001. Assessing local noise level estimation methods:
application to noise robust ASR. Speech Commun. 34 (1–2), 141–158.

Segura, J.C., Benı́tez, M.C., de la Torre, A., Rubio, A.J., 2002. Feature
extraction combining spectral noise reduction and cepstral histogram
equalisation for robust ASR. In: Proc. Internat. Conf. on Spoken
Language Processing, pp. 225–228.

Stevens, S.S., 1957. On the psychophysical law. Psychol. Rev. 64 (3), 153–
181.

Van Compernolle, D., 1989. Noise adaptation in a hidden Markov model
speech recognition system. Comput. Speech Lang. 3 (2), 151–167.

Vikki, O., Laurila, K., 1997. Noise Robust HMM-Based Speech Recog-
nition using Segmental Cepstral Feature Vector Normalization, in:
Robust Speech Recognition for Unknown Communication Channels,
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