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Abstract

We present a theoretical investigation into the use of normalised artificial neural network (ANN) outputs in

the context of hidden Markov models (HMMs). The work is motivated by the pursuit of a more theoretically

rigorous understanding of the Kullback-Liebler (KL)-HMM. Two possible models are considered based respec-

tively on the HMM states storing categorical distributions and Dirichlet distributions. Training and recognition

algorithms are derived, and possible relationships with KL-HMM are briefly discussed.
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1 MLPs in ASR

1.1 The softmax

A common approach in multi-layer perceptron (MLP) based pattern recognition is to use a “softmax” (sometimes
called multiple logistic) activation function at the output layer (Bridle, 1990). The softmax activation function
results in an observation, ot, at time t:

ot = (ot,1,ot,2, . . . ,ot,P)
T,

P
∑

i=1

ot,i = 1, ot,i > 0. (1)

Notice that the output of softmax has the form of a categorical probability distribution, so it can be used in
certain operations that are only well-defined if that is so. The outputs may be more-or-less useful estimates
of posterior probabilities, depending on the way it is trained. Generally, however, the softmax is taken as an
estimate of posterior probabilities. In particular, when incorporated into an HMM as an HMM/ANN hybrid,
each state of the HMM is associated with a specific one of the labels represented by the output of the softmax
(Bourlard and Morgan, 1994; Morgan and Bourlard, 1995a,b). It is conventional to compute a number to use
as the HMM output likelihood for a specific state by dividing the appropriate output from the softmax by the
prior probability for the class.

1.2 Tandem

In the tandem model of Hermansky et al. (2000), the softmax outputs are passed through a logarithm that
allows them to be treated as Gaussian random variates. This form is then modelled using a normal HMM/GMM
system.

Tandem is not a rigorous statistical model. However, it is known to perform very well in speech recognition,
demonstrating that the softmax representation carries useful information.

1.3 KL-HMM

More recently, the Kullback-Leibler (KL) HMM was introduced by Aradilla et al. (2007); Aradilla Zapata (2008).
In the KL-HMM, the output distribution of each state of the HMM is replaced by a multinomial distribution
(constrained to be a categorical distribution) that can, in principle, emit any of the labels represented by the
softmax. Rather than evaluating an output likelihood, a score is calculated being the KL divergence between
the multinomial stored in the state, and the one represented by the softmax output.

In this report, we take the stance that the KL-HMM derives its performance from its ability to separate the state
labels and the softmax labels, rather than the KL formulation. We derive two generative models that use broadly
the same parameterisation, but have a different statistical interpretation.

One goal is to understand what generative statistical assumption could lead to the KL formulation, or something
similar to it.
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2 Categorical model

2.1 Model formulation

Assume that each HMM state, qd,d ∈ {1, 2, . . . ,D}, stores a categorical distribution; that is, a multinomial
distribution where only one sample is drawn.

p (ρ | θd) = θd,ρ,

P
∑

ρ=1

θd,ρ = 1. (2)

The softmax outputs can also interpreted as categorical distributions,

p (ρ | ot) = ot,ρ,

P
∑

ρ=1

ot,ρ = 1, (3)

but note that the softmax do not actually generate phones. Rather, they encode the belief that a phone was
emitted by the state. Given the deterministic relationship between ot and xt, the values ot,ρ can be referred to
as either p (ρ | xt) or p (ρ | ot). In either case, they have the form of posterior probabilities.

qd Identifier for the state
qt State at time t

q The state sequence q1,q2, . . . ,qT

θd The categorical distribution on state d

αd The hyperparameter of the Dirichlet prior for θd

ρt The class generated by the state at time t

ρ The sequence of classes generated by the state sequence
ot The softmax output at time t

O The set (matrix) of softmax outputs
xt The observed audio representation at time t

X The set (matrix) of observed audio representations
ω The prior on the softmax outputs

Table 1: Notation.

qd θd

αd

ρt xt ot

ω

T

Figure 1: Generative diagram in plate notation for categorical model before training. Arrows mean “influences”,
rectangles are assumed fixed, circles are state variables. Shading means observable. The large box means
“repeat T times”.

Figure 1 shows the model in plate notation1. A Dirichlet prior can be assumed for θd:

p (θd | αd) =
1

B(αd)
θ
αd,1−1
d,1 θ

αd,2−1
d,2 . . . θ

αd,P−1
d,P , (4)

where αd,ρ = 1 represents a flat prior.

1http://en.wikipedia.org/wiki/Plate_notation
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The full joint distribution can be read off the inference diagram as:

p (θd,ρ,O) = p (θd | αd)

T
∏

t=1

p (ρt | θd)p (ot | ρt,ω) (5)

= p (θd | αd)

T
∏

t=1

p (ρt | θd)
p (ot | ω)p (ρt | ot)

p (ρt | ω)
(6)

= p (θd | αd)

T
∏

t=1

p (ot | ω)
1

p (ρt | ω)
p (ρt | θd)p (ρt | ot) , (7)

where

p (ρt | ω) =

∫

dot p (ot | ω)p (ρt | ot) , (8)

and the integral is over the unit hypercube.

It is tempting to drop the term p (ot | ω) because it is observed. However, doing so would reduce the integral to
simply p (ρt | ot) which would then cancel. In fact, this is a reminder that ot is simply an estimate of p (ρt | θd),
and has a distribution.

2.2 Priors

The prior term, p (ρt), is normally calculated directly from the data. However, in this framework it is more
involved. Assume a Dirichlet prior:

p (ot | ωt) =
1

B(ωt)
o
ωt,1−1
t,1 o

ωt,2−1
t,2 . . .o

ωt,P−1
t,P . (9)

Equation 8 then evaluates to a beta function with a single hyperparameter incremented by 1 that in turn cancels
with the one in the Dirichlet:

∫

dot p (ot | ωt)p (ρt | ot) =

∫

dot

1

B(ωt)
o
ωt,1−1
t,1 o

ωt,2−1
t,2 . . .o

ωt,P−1
t,P ot,ρt

(10)

=
Γ(ωt,1 +ωt,2 + · · ·+ωt,P)

Γ(1 +ωt,1 +ωt,2 + · · ·+ωt,P)

Γ(ωt,ρt
+ 1)

Γ(ωt,ρt
)

(11)

p (ρt | ω) =
ωt,ρt

ωt,1 +ωt,2 + · · ·+ωt,P
. (12)

As for the value of ω, we can attempt to come up with a maximum likelihood value:

p (ω | O) ∝

T
∏

t=1

p (ot | ω) (13)

=

T
∏

t=1

1

B(ω)
oω1

t,1o
ω2

t,2 . . .oωP

t,P . (14)

Differentiating w.r.t. ω and equating to zero has no closed form solution, even after logarithm. However, a
solution is given in section 3.3.

It is possible, however, to make an informed approximation. Consider ot being a generative (categorical)
distribution generating labelled training data where the labels are the same as the classes produced by the
softmax.

p (ot | l) =
1

p (l)
p (ot)

T
∏

t=1

p (lt | ot) (15)

=
1

p (l)
on1

t,1o
n2

t,2 . . .onP

t,P (16)

where there are nρ frames of class ρt in the training data. So, we have a posterior of sorts on ot, and by
inspection ωt ≈ nt.
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In practice, the Dirichlet of equation 9 with ωt = nt represents very strong prior information (N is large). This
will cause it to dominate any posterior calculation. It is possible (and usual) to reduce the effect of such a prior
by scaling the counts; that is, write

ωρ =
nρ

N
ν, (17)

where ν is an arbitrary scale factor being a hypothetical number of samples that the prior is taken to represent.
Notice that p (ρt | ω) is unchanged by the re-parameterisation.

2.3 Parameter estimation

To train the model, a-priori we expect the solution to be similar to that for Gaussian mixture weights. we assume
Viterbi training here, i.e., we don’t consider all state sequences. However, we need EM for the summation inside
a product. The auxiliary function is

Q(θ ′

d,θd) =
∑

ρ

p (ρ | θd,O) log
(

p
(

θ ′

d,ρ,O
))

, (18)

where the summation is over all possible combinations of sequence ρ. Combining the auxiliary function with a
Lagrange multiplier, λ, to enforce a sum to one constraint and substituting in the full joint of equation 7,

∂

∂θ ′

d,ρ





∑

ρ

p (ρ | θd,O) log
(

p
(

θ ′

d,ρ,O
))

− λ



1 −

P
∑

ρ=1

θ ′

d,ρ







 = 0 (19)

∂

∂θ ′

d,ρ





∑

ρ

p (ρ | θd,O)

(

logp
(

θ ′

d | αd

)

+

T
∑

t=1

logp
(

ρt | θ
′

d

)

+ C

)

− λ



1 −

P
∑

ρ=1

θ ′

d,ρ







 = 0 (20)

∂

∂θ ′

d,ρ





P
∑

ρ=1

log θ
′αd,ρ−1

d,ρ +
∑

ρ

p (ρ | θd,O)

(

T
∑

t=1

log θ ′

d,ρ + C

)

− λ



1 −

P
∑

ρ=1

θ ′

d,ρ







 = 0 (21)

where the constant C represents the terms independent of θ ′

d. Differentiating,

αd,ρ − 1

θ ′

d,ρ

+
∑

ρ

p (ρ | θd,O)
∑

t:ρt=ρ

1

θ ′

d,ρ

+ λ = 0 (22)

αd,ρ − 1

θ ′

d,ρ

+
1

θ ′

d,ρ

T
∑

t=1

∑

ρ:ρt=ρ

p (ρ | θd,ot) + λ = 0 (23)

1 − αd,ρ −

T
∑

t=1

p (ρt | θd,ot) = λθ ′

d,ρ. (24)

(25)

Summing over ρ gets rid of θ ′

d,ρ. So,

λ =

P
∑

ρ=1

(

1 − αd,ρ −

T
∑

t=1

p (ρt | θd,ot)

)

, (26)

and

θ ′

d,ρ =
1

λ

(

1 − αd,ρ −

T
∑

t=1

p (ρt | θd,ot)

)

. (27)

The expression for the latent class follows directly from the full joint:

p (ρt | θd,ot) =
1

p (ot,θd)
p (ρt,θd,ot) (28)

=
1

p (ρt | ω)
p (ρt | θd)p (ρt | ot) . (29)
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Substituting,

θ ′

d,ρ =
1

∑P
ρ=1

(

1 − αd,ρ −
∑T

t=1
1

p(ρt|ω)
θd,ρot,ρ

)

(

1 − αd,ρ −

T
∑

t=1

1

p (ρt | ω)
θd,ρot,ρ

)

(30)

=

αd,ρ − 1 +
1

p (ρ | ω)
θd,ρ

T
∑

t=1

ot,ρ

P
∑

ρ=1

(

αd,ρ − 1 +
1

p (ρ | ω)
θd,ρ

T
∑

t=1

ot,ρ

) . (31)

In principle, it is possible to set all αd,ρ equal. However, it does make sense to set it more like

αd,ρ =

{

0.2 if d = ρ,

0.1 otherwise.
(32)

2.4 Model evaluation

In recognition (decoding), we are typically interested in maximising the probability of a state sequence, q, given
the parameters and observation. This expands via Bayes as the quantity

q = argmax
q

p (q | X) ; p (q | X) ∝ p (q)p (X | q) . (33)

If qt = d, this can be written in terms of θd and ot given the deterministic relationships above. The actual class,
ρt, that is emitted is not known and must be marginalised. Writing in terms of the full joint and substituting
equation 7:

p (X | q) = p (O | θd) =
p (θd,O)

p (θd)
(34)

=

T
∏

t=1

p (ot | ω)

P
∑

ρt=1

1

p (ρt | ω)
p (ρt | θd)p (ρt | ot) . (35)

Or, written as a logarithm over T frames, we have:

logp ({o}T | θd) =

T
∑

t=1

log



p (ot | ω)

P
∑

ρt=1

1

p (ρt | ω)
p (ρt | θd)p (ρt | ot)



 (36)

=

T
∑

t=1

logp (ot | ω) +

T
∑

t=1

log





P
∑

ρt=1

1

p (ρt | ω)
p (ρt | θd)p (ρt | ot)



 . (37)

Notice that there is still a prior, p (ot | ω), on the softmax output (equivalently on the data, xt). There are two
interesting things:

1. It is independent of the state sequence, so can be ignored in a maximisation.

2. It is actually the same term in the denominator of equation 33. In this sense it just cancels, and the
proportionality symbol of equation 33 becomes equality:

p (q | X) =

T
∏

t=1

P
∑

ρt=1

1

p (ρt | ω)
p (ρt | θd)p (ρt | ot) . (38)

2.5 Corollaries

2.5.1 Relationship with conventional hybrids

Notice that when the state does not store a distribution, only a label, we have ρt = qt and p (ρt | θqt
) = 1.

Hence,
T
∏

t=1

p (xt | qt) =

T
∏

t=1

p (qt | ot)

p (qt | ω)
, (39)
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which is the usual hybrid HMM/ANN expression.

2.5.2 Relationship with scalar product

Writing the core part of equation 5 as

p (ot | θd) =

P
∑

ρt=1

p (ρt | θd)p (ot | ρt) , (40)

the operative term is clearly a scalar product. This is nearly identical to the Posterior Scalar Product of Picart
(2009).

It is also identical to the formulation of Rottland and Rigoll (2000), who simply treat the softmax outputs
divided by the prior p (ρt) in the same manner as Gaussian outputs in a mixture.

2.5.3 Relationship with KL-HMM

Writing

L = log

P
∑

ρt=1

1

p (ρt | ω)
p (ρt | θd)p (ρt | ot) (41)

= log

P
∑

ρt=1

Q(ρt)
p (ρt | θd)

Q(ρt)

p (ρt | ot)

p (ρt | ω)
(42)

This holds for any arbitrary distribution Q(ρt). Now use Jensen’s inequality to give a lower bound

L >

P
∑

ρt=1

Q(ρt) log

(

p (ρt | θd)

Q(ρt)

p (ρt | ot)

p (ρt | ω)

)

(43)

=

P
∑

ρt=1

Q(ρt) log
p (ρt | θd)

Q(ρt)
+

P
∑

ρt=1

Q(ρt) log
p (ρt | ot)

p (ρt | ω)
. (44)

If we set Q(ρt) = p (ρt | ot), this is very close to the (symmetric) KL divergence. Certainly the form is the same.
The differences are that the terms before the logarithms are the same, and the final denominator is a prior.
Nevertheless, the relationship is evident.
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3 Dirichlet model

3.1 Model formulation

We seek a probability distribution that outputs observations of the same form as the softmax. Such a distribution
is the Dirichlet distribution:

p (x | θ) =
Γ(θ1 + θ2 + · · ·+ θP)

Γ(θ1)Γ(θ2) . . . Γ(θP)
xθ1−1

1 xθ2−1
2 . . . xθP−1

P , (45)

=
1

B(θ)

P
∏

ρ=1

x
θρ−1
ρ ,

P
∑

ρ=1

xρ = 1. (46)

In this case, the softmax outputs are interpreted as normalised numbers. There is no probabilistic interpretation
required. This is analogous to the Tandem interpretation. A slightly more involved model is the Dirichlet
mixture of Chen et al. (2007), apparently duplicated by V. et al. (2011).

qd θd

αd

ot

T

Figure 2: Generative diagram in plate notation for Dirichlet model before training. Arrows mean “influences”,
rectangles are assumed fixed, circles are state variables. Shading means observable. The large box means
“repeat T times”.

The full joint distribution follows directly from figure 2:

p (θd,O) = p (θd | αd)

T
∏

t=1

p (ot | θd) . (47)

3.2 Priors

The prior in this case is on the parameter of a Dirichlet distribution. There is not an obvious distribution to use
in this case, so we proceed with

p (θd) ∝ 1. (48)

3.3 Parameter estimation

Say we have T observations;

∂

∂θd,ρ
log

T
∏

t=1

p (ot | θ) = TΨ

(

∑

ρ

θd,ρ

)

− TΨ(θd,ρ) +

T
∑

t=1

logot,ρ = 0, (49)

where Ψ(·) is the digamma function. There is no closed form solution. The “normal” approach is to use Newton-
Raphson iterations to solve this equation; this is detailed by Chen et al. (2007). The situation is also discussed
by Wicker et al. (2008).

Another possibility is the EM-like solution given by Minka2, evaluated by Huang3 where he points out a lower
bound on the gamma function

Γ(x) > Γ(y) exp [(x− y)Ψ(y)] (50)

2http://research.microsoft.com/en-us/um/people/minka/papers/dirichlet/minka-dirichlet.pdf
3http://www.stanford.edu/~jhuang11/research/dirichlet/dirichlet.pdf
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so

log Γ(x) > xΨ(y) + log Γ(y) − yΨ(y) (51)

where equality holds for x = y. This allows us to write

log

T
∏

t=1

p
(

ot | θ
′
)

> T





P
∑

ρ=1

θ ′

d,ρ



Ψ





P
∑

ρ=1

θd,ρ



− T

P
∑

ρ=1

log Γ(θ ′

d,ρ) +

P
∑

ρ=1

(θ ′

d,ρ − 1)

T
∑

t=1

logot,ρ + C

(52)

so

∂

∂θ ′

d,ρ

log

T
∏

t=1

p
(

ot | θ
′
)

= TΨ





P
∑

ρ=1

θd,ρ



− TΨ(θ ′

d,ρ) +

T
∑

t=1

logot,ρ = 0 (53)

Ψ(θ ′

d,ρ) = Ψ





P
∑

ρ=1

θd,ρ



+
1

T

T
∑

t=1

logot,ρ. (54)

One point here is that it is necessary to invert the Ψ function, but Minka shows that it can be done using
Newton-Raphson.

3.4 Model evaluation

Given an observation set, O, we can write the log-likelihood as

log

T
∏

t=1

p (ot | θd) = T log Γ





P
∑

ρ=1

θd,ρ



− T

P
∑

ρ=1

log Γ(θd,ρ) +

P
∑

ρ=1

(θd,ρ − 1)

T
∑

t=1

logot,ρ. (55)

3.5 Corollary

Writing the final term of equation 55 as

T
∑

t=1

P
∑

ρ=1

(θd,ρ − 1) logot,ρ (56)

it is clear that the accumulated value is a scalar product involving the parameter and the logarithm of the
observation. So, it has information-theoretic overtones.
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4 Conclusions

We have detailed two possible generative models with the same structure as the KL-HMM of Aradilla Zapata
(2008):

1. A categorial model, in which HMM states are assumed to store a categorical distribution. Such a distribu-
tion emits phones.

2. A Dirichlet model, in which HMM states are assumed to store a Dirichlet distribution. Such a distribution
emits vectors of the form in equation 1.
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des sciences et techniques de l’ingénieur.
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A Kullback Leibler

There is some uncertainty over how to handle the asymmetry of the KL divergence. In fact, Kullback and
Leibler (1951) defined the divergence to be symmetrical; they referred to the asymmetric versions as “mean
information for discrimination” measures.

From Kullback and Leibler (1951), we have “the mean information for discrimination between H1 and H2 per
observation from distribution µ1” is

I(1 : 2) = I1:2(X) =

∫

dxp (x | H1) log
p (x | H1)

p (x | H2)
, (57)

where H1 is the hypothesis that the data x originated from distribution µ1. Kullback (1987) expresses a prefer-
ence for the term I(1 : 2) to be called “discrimination information” rather than “distance”. Then the “divergence
between µ1 and µ2” is

J(1, 2) = J12(X) (58)

= I1:2(X) + I2:1(X) (59)

=

∫

dx (p (x | H1) − p (x | H2)) log
p (x | H1)

p (x | H2)
. (60)

So, clearly

J(1, 2) =

∫

dxp (x | H1) log
p (x | H1)

p (x | H2)
+

∫

dxp (x | H2) log
p (x | H2)

p (x | H1)
. (61)
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