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Abstract

We address the discovery of typical activities in video
stream contents and its exploitation for estimating the ab-
normality levels of these streams. Such estimates can be
used to select the most interesting cameras to show to a
human operator. Our contributions come from the follow-
ing facets: i) the method is fully unsupervised and learns
the activities from long term data; ii) the method is scal-
able and can efficiently handle the information provided by
multiple un-calibrated cameras, jointly learning activities
shared by them if it happens to be the case (e.g. when they
have overlapping fields of view); iii) unlike previous meth-
ods which were mainly applied to structured urban traffic
scenes, we show that ours performs well on videos from a
metro environment where human activities are only loosely
constrained.

1. Introduction and Context

In many visual surveillance set-ups, a human operator
has to monitor multiple views. As the number of cameras is
huge and the operator can only screen a limited set of views,
it becomes critical to design algorithms that automatically
pre-select or suggest the cameras to be shown to the human
operator. Such pre-selection could be handled by a high
level algorithm taking as input some continuous abnormal-
ity measure for each camera. In this article, we propose an
approach to produce such abnormality measures.

Related work – The first category of approaches for ab-
normality rating is to explicitly model abnormal events and
build detectors for these [3]. These supervised approaches
provide strong semantics but require to be able to i) define
the events of interest; ii) learn detectors from short amounts
of data and iii) handle large variations in view points etc. As
ideally, our system should scale to a large number of cam-
eras, we want to minimize the amount of configuration like
having to define any regions of interest or rules, or gathering

and labeling training data on each camera view.
The second class of approaches are the unsupervised ap-

proaches, as the one we consider in this article. In this cate-
gory, there have been attempts to model activities in indoor
scenes like a metro station scene. To handle multiple cam-
eras, approaches generally rely on predefined calibration in-
formation between cameras as in [10] or learn it automati-
cally [11]. However, the common problem of most existing
multi-camera approaches for human activity analysis is that
they rely on person tracking [12, 2, 11] or re-identification.
In our context, we process poor quality videos with a lot
of occlusions and tracking in such conditions is still a re-
search challenge, so we prefer lower level features such as
instantaneous motion or background subtraction as in [6].

In parallel, with the success of topic models in unsuper-
vised learning in different domains, advanced models were
proposed for activity modeling such as in [5, 4]. This class
of approaches have the ability to discover dominant activity
patterns occurring in the scene using simple low-level fea-
tures. In this article, we use one such model called Proba-
bilistic Latent Sequential Motifs (PLSM) [9]. PLSM, un-
like other topic models, represents activities as temporal
patterns called motifs. These motifs typically correspond
to dominant activities in the scene. Furthermore, they also
enable us to infer their start times in a new test video.

Existing topic models were demonstrated only on highly
constrained scenes such as traffic scenes and with a single
viewpoint [5, 9, 4]. In our case, we explore the use of these
models in the context of a metro station that contains multi-
ple cameras and loosely constrained activities.

Article Structure – Section 2 introduces our approach
that uses a state of the art temporal topic model to extract
normal activities. We also explain how we produce an ab-
normality measure from these activities. In section 3, we
validate the model ability to capture meaningful activity
patterns using synthesized video data. In section 4, we ap-
ply the model on real videos from a metro station and con-
clude in section 5.



Figure 1. Overall process used: low level feature extraction and quantization, dimensionality reduction using HDP, temporal activity
extraction using PLSM. (HDP: Hierarchical Dirichlet Process, PLSM: Probabilistic Latent Sequential Motifs)

2. Proposed Approach
2.1. Overview of the Approach

Our approach towards abnormality detection is to first
learn normal activities in the scene. Then, we consider as
abnormal any activity that cannot be sufficiently explained
as a mixture of these learned normal activities. An ab-
normality can be roughly categorized into two types [7]:
1) events that are fundamentally unusual in appearance, and
2) unusual order of events, where all or most of these events
are normal. The adopted PLSM model [9], due to its com-
plete representation of scene activities, can simultaneously
capture both kinds of abnormalities.

Compared to [9], we use different low level features and
a different low-level processing. To avoid the need for a
complex background model, we only use quantized optical
flow features. We further process these features with a Hi-
erarchical Dirichlet Process (HDP) [8] (in place of Proba-
bilistic Latent Semantic Analysis, PLSA). HDP has the ad-
vantage that it automatically finds the number of topics that
best matches the observed data.

In the next subsection, we introduce notations and ex-
plain how we create the “temporal documents” used as in-
put of PLSM. We also explain how we use the output of
PLSM to do rate the abnormality of a scene.

2.2. Two-Level Topic Models

As introduced in section 2.1, we use two levels of topic
modeling: first HDP, then PLSM. Fig. 1 depicts the over-
all process, including both training and runtime phases. To
avoid confusion in the notation, we will systematically use
the “ll” superscript for low level (HDP) elements.

Feature extraction – For each view, we first extract op-
tical flow features (motion direction) on a dense image grid.
We keep only pixels where some motion is detected and for
these, we quantize the motion into 9 “categories”: one for
each of the 8 uniformly quantized directions and one for
a “really-slow” motion. A low-level word wll is defined
by a camera index, a position in the image and a motion
“category”. The size of this low level vocabulary is usu-

ally around 30000 words (considering only words that are
actually observed). On these low-level words, we run a slid-
ing window of 1 second long (5 frames), without overlap.
For each second ta, we obtain an histogram nll(wll, dllta)
of low-level words from all cameras (Fig. 1a) in the cor-
responding window. Here, dllta is the low level document
obtained from the sliding window at a time ta.

Multi-Camera – As illustrated in Fig. 1, the camera
views are fused right after feature extraction. The subse-
quent processing, and particularly HDP and PLSM, perform
co-occurrence analysis that automatically find and exploits
possible relations between cameras (more in section 4.1).

Low-level HDP – On the (unordered) set of documents
{dllta}ta, we apply the HDP topic model, for which a pub-
licly available implementation was used [1]. The goal is to
perform a dimensionality reduction: HDP learning takes as
input nll(wll, dllta) (word counts for the each dllta ) and out-
puts as set of “topics” (Fig. 1b). Each topic zll is defined as
distribution p(wll|zll) over the words and corresponds to a
soft cluster of words that regularly co-occur in documents.

HDP (both learning and fitting) also outputs another in-
formation that is, for each document dllta , a decomposition
of it as a mixture of existing topics, expressed as the dis-
tribution p(zll|dllta). We use this information, re-weighted
by the amount of activity at instant ta, to build the tempo-
ral documents (Fig.1c) that will be the input of PLSM. A
temporal document d is expressed as n(w, ta, d), the (high-
level) word counts at each time ta instant in the temporal
document. Here is the corresponding formula:

n(w, ta, d) = p(zll|dllta) ·
∑
wll

nll(wll, dllta) (1)

Higher-level temporal motifs (PLSM) – Given the tem-
poral documents obtained after HDP, we directly apply the
PLSM algorithm [9]. PLSM takes as input a set of temporal
documents n(w, ta, d) and decomposes it as a set of tem-
poral motifs (z) and when they start in each document (ts).
More precisely, PLSM “un-mixes” the documents by learn-
ing jointly the recurring motifs (Fig.1d) and their starting
times. Each motif z is defined by a probability distribution



p(w, tr|z) indicating the probability of observing the word
w after tr time steps from the beginning of the motif. For
each temporal document d, the starting times are described
by a distribution p(ts, z|d) over the variables ts (starting
times) and z (motifs).

Testing on new videos – For new videos of the same
viewpoint, we can create the corresponding temporal docu-
ment using the same process as during the learning, keeping
the HDP topics fixed. In the same way, we then process the
obtained temporal document with PLSM, keeping the ac-
tivities (motifs) fixed. Eventually, we have the motifs (from
the learning phase) and their starting times p(ts, z|d) for the
temporal documents corresponding to the new videos.

2.3. Measure for Abnormality Rating

We can extract an abnormality measure from the mo-
tifs and their optimal starting times p(ts, z|d). The mea-
sure we use is a “reconstruction error” defined as the dis-
tance between the original document and the document re-
constructed as a mixture of the motifs p(w, tr|z) occurring
at p(ts, z|d). In fact, the observed temporal document is a
matrix of counts n(w, ta, d) but the PLSM model produces
a probability table p(w, ta|d) of a word w occurring at the
absolute time ta:

p(w, ta|d) =
∑
ts

∑
z

p(ts, z|d)p(w, tr = ta− ts|z) (2)

To allow direct comparison, we normalize the whole tempo-
ral document (so that it becomes a probability table). Then,
our abnormality measure at a given instant ta is given by:

abnorm(ta, d) =
∑
w

∣∣∣∣n(w, ta, d)n(d)
− p(w, ta|d)

∣∣∣∣ (3)

Where n(d) is the total number of observations in the tem-
poral document d.

3. Model Behavior on Synthetic Activities

Virtual Scene To validate the implementation of PLSM
and to check if it recovers meaningful motifs, we generate
synthetic “videos” featuring red circles moving along some
predefined trajectories. Fig. 2 depicts the single-view syn-
thetic scene with the different trajectories. On these videos,
apart from some minor artifacts due to the absence of tex-
ture, the optical flow extraction is perfect.

Each person (red dot) follows either the T1, T2 or T3
path, at a constant but randomized speed. A person on T3,
will take the T3A route by default but will take the T3B one
if another person is arriving on T2 (and is close enough).

Recovered HDP Topics and Activities After running
HDP (see Fig. 1), we obtain some topics that represents lo-
calized activities in the image. From a model perspective,

Figure 2. Scene used for synthetic experiments (see section 3).

Figure 3. Four topics distributions p(wll|zll) among the 31 ex-
tracted. For improved readability, we represent a topic p(wll|zll)
by only considering the location of the words wll (we do not rep-
resent motion direction). Other topics are like these four, covering
a part of the trajectories in the scene.

Figure 4. The 4 recovered motifs (p(w, tr|z) for the 4 z values)
corresponding to T1, T2, T3A and T2+T3B activities. Color gra-
dient represents time (tr), starting from blue.

we obtain a number of topics and, for each of them, a distri-
bution over the words p(wll|zll). With the scene presented
above, we obtain 31 topics that properly segment the exist-
ing motion patterns. Fig. 3 shows examples of four topics
taken among them.

These 31 HDP topics are used to build the temporal doc-
uments as explained in section 2.2. We then use PLSM to
extract motifs from these temporal documents. In Fig. 4,
we show the motifs obtained when asking PLSM to find 4
motifs. We see that we recover the four activities T1, T2,
T3A and T3B. It is interesting to note that T3B never hap-
pens without a synchronized occurrence of T2: the motif
captures this systematic co-occurrence.

4. Abnormality Rating in a Metro Station
We are interested in modeling normal activities in videos

taken from cameras in a metro station. In this section, we
apply the same procedure as in section 3 but on real video
data. We first show some retrieved activity motifs obtained
from PLSM on the videos and then go on to present how
they are used for abnormality detection.



4.1. Retrieved Topics and Motifs

Scenes and Parameters – To test our model under
different conditions, we considered two different scenes.
The first scene (Sc1) is made of two cameras, with non-
overlapping viewpoints, recording two neighboring areas:
a stairs/escalator area and a walking area. The second
scene (Sc2) is made of the hall of a metro station which is
recorded by two cameras with overlapping viewpoints. The
hall is connected to the two station entrances, contains two
vending machines and has a row of turnstiles used as entry
or exit points to the metro network.

Used Parameters – We used two hours of training video
in 704x288 at 5 frames per seconds, for each camera of each
scene. In the experiments shown here, HDP selected a num-
ber of low-level topics between 70 and 80 (depending on the
runs). Also, we configured PLSM with a maximum motif
length of 15 seconds and asked for 20 motifs.

Multi-camera and HDP – Each scene is a video mon-
tage of two cameras that is then processed as in Fig. 1. The
features computed therefore come from both the views. The
HDP topics (not shown for space reasons) properly capture
multi-camera relationships in spite of the almost continuous
people activity. HDP topics spans the two views when there
is an overlap between them (as in Sc2) and are limited to
individual views when there is no such overlap (as in Sc1).

PLSM motifs on Sc1 – Fig. 5 illustrates the motifs we
recover for Sc1. These motifs are highly meaningful:
• We nicely recover the person going up using the esca-

lator in a) and down using the stairway in b).
• On the upper area, we recover the different trajecto-

ries. For example, we get the exit trajectories coming
either from the (non visible) mezzanine in c) or from
the stairway in d) (with the motif correctly spanning
over the two cameras).
• We also get entering trajectories (from the turnstiles).

We get multiple variations (6 of them) that cover differ-
ent positions (persons more or less close to the camera)
and different speeds. One speed variation is shown in
e) and f) which differ only by the color palette: f) ends
in green meaning it is slower/longer than e).

PLSM motifs on Sc2 – Fig. 6 shows 9 representative
motifs retrieved for Sc2. Here again, we obtain motifs that
represent classes of activities:
• In a) and b), we recover people entering the station and

going to the nearest turnstiles.
• In c), we can observe that people entering from the

left side often go to the right side. This behavior is
explained by the presence, on the right, of an elevator
and the escalator for going down to the platform.
• In d), we capture people coming from the escalator

(blue in the middle left part of the lower image), and

then exiting the station (in red) after passing behind the
pillar. We also see that this behavior is actually corre-
lated with some activity on the right: we see here the
two ways of reaching the station exits from the metro
platform.
• In e) and f), we see the typical trajectory of people that

just use the station as an underground passage without
actually going beyond the turnstiles.
• In g), h) and i), we show one of the ways of going to the

vending machines in g); and the two ways of leaving
the vending machines ( h) for the one on the left, i) for
the one on the right).

4.2. Extracted Abnormalities

Given the strong semantic of the motifs extracted for the
views in the metro station, we try to use them for abnormal-
ity rating and expect meaningful results. We evaluate the
abnormality measure (reconstruction error) as presented in
section 2.3. Scene Sc1 is more constrained, so we rather
illustrate the results on Sc2. Fig. 7 shows an annotated plot
of the abnormality measure for Sc2:

• The high abnormality in the beginning, cf a), is ex-
plained by a group of 7 persons moving from place to
place in the hall, mostly with non straight movement.
• Abrupt changes in trajectory, such as in b), also cause

an increase in abnormality. In such a case, the tempo-
ral aspect plays an important role: each subpart of the
trajectory is mostly normal.
• Numerous abnormality peaks are caused by people

blocking each other. This is the case for all boxes in
green. In the typical example of c), three groups have
conflicting trajectories and this will cause most of the
people to slow down and change trajectory.
• In d), the peak is caused by tourists with rolling suit-

cases that first stop then move along turnstiles.
• The case of e) is a surprisingly rare event: a young

woman arrives running in a curved trajectory, then falls
down and is joined in a hurry by some friends.

5. Conclusion

In this article, we presented an approach for abnormality
rating of video streams. It consists of two steps, first, au-
tomatically finding recurrent (normal) motion activity pat-
terns, and second, measuring abnormality as the deviation
from the learnt normality. The normal recurrent activity
patterns are extracted using two levels of topics models.
First, Hierarchical Dirichlet Process (HDP) is used at lower
level to operate a dimensionality reduction by capturing the
groups of co-occurring low-level motion features. Second,



a) c) e)

b) d) f)

Figure 5. [best viewed in color] Representative motifs for Sc1 (for comments, see the body of the article). Color gradient represents time
with blue: start of the motif, green: middle (7 seconds later), red: end of the motif (14 seconds later).

a) d) g)

b) e) h)

c) f) i)

Figure 6. [best viewed in color] Representative motifs for Sc2 (for comments, see the body of the article). Color gradient represents time
with blue: start of the motif, green: middle (7 seconds later), red: end of the motif (14 seconds later).



Figure 7. Abnormality detection on Sc2 using PLSM motifs

at a higher level, we modeled temporal information using
Probabilistic Latent Sequential Motifs (PLSM).

We obtained meaningful motifs from PLSM, each corre-
sponding to a typical human activity. From these motifs we
showed that we were able to extract interesting events from
a video of 2 hours. We showed that such an approach can
be applied to loosely constrained scenes such as human mo-
tion in a metro station. In particular, we demonstrated that
the method can jointly process and correctly handle multi-
ple cameras (without any calibration), enabling to monitor
automatically larger areas in the metro station.
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