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Abstract

Classical Boosting algorithms, such as AdaBoost, build a strong classifier without concern
for the computational cost. Some applications, in particular in computer vision, may involve
millions of training examples and very large feature spaces. In such contexts, the training
time of off-the-shelf Boosting algorithms may become prohibitive. Several methods exist to
accelerate training, typically either by sampling the features or the examples used to train
the weak learners. Even if some of these methods provide a guaranteed speed improvement,
they offer no insurance of being more efficient than any other, given the same amount of
time.

The contributions of this paper are twofold: (1) a strategy to better deal with the
increasingly common case where features come from multiple sources (eg. color, shape,
texture, etc. in the case of images) and therefore can be partitioned into meaningful
subsets; (2) new algorithms which balance at every Boosting iteration the number of weak
learners and the number of training examples to look at in order to maximize the expected
loss reduction. Experiments in image classification and object recognition on four standard
computer vision data-sets show that the adaptive methods we propose outperform basic
sampling and state-of-the-art bandit methods.

Keywords: Boosting, large scale learning, feature selection

1. Introduction

Boosting is a simple and efficient machine learning algorithm which provides state-of-the-art
performance on many tasks. It consists of building a strong classifier as a linear combination
of weak learners, by adding them one after another in a greedy manner.

It has been repeatedly demonstrated that combining multiple kind of features addressing
different aspects of the signal is an extremely efficient strategy to improve performance
(Opelt et al., 2006; Gehler and Nowozin, 2009; Fleuret et al., 2011; Dubout and Fleuret,
2011a,b). As shown by our experimental results, vanilla Boosting of stumps over multiple
image features such as HOG, LBP, color histograms, etc., usually reaches close to state-of-
the-art performance. However, such techniques entails a considerable computational cost,
which increases with the number of features considered during training.

The critical operations contributing to the computational cost of a Boosting iteration
are the computations of the features and the selection of the weak learner. Both depend
on the number of features and the number of training examples taken into account. While

c©2013 Charles Dubout and François Fleuret.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148000578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dubout and Fleuret

textbook AdaBoost repeatedly selects each weak learner using all the features and all the
training examples for a predetermined number of rounds, one is not obligated to do so and
can instead choose to look only at a subset of both.

Since performance increases with both, one needs to balance the two to keep the compu-
tational cost under control. As Boosting progresses, the performance of the candidate weak
learners degrades, and they start to behave more and more similarly. While a small number
of training examples is initially sufficient to characterize the good ones, as the learning
problems become more and more difficult, optimal values for a fixed computational cost
tend to move towards smaller number of features and larger number of examples.

In this paper, we present three new families of algorithms to explicitly address these
issues: (1) Tasting (see § 4 on page 4) uses a small number of features sampled prior
to learning to adaptively bias the sampling towards promising subsets at every step; (2)
Maximum Adaptive Sampling (see § 5.3 on page 9) models the distribution of the weak
learners’ performance and the noise in order to determine the optimal trade-off between the
number of weak learners and the number of examples to look at; and (3) Laminating (see
§ 5.4 on page 10) iteratively refines the learner selection using more and more examples.

2. Related works

AdaBoost and similar Boosting algorithms estimate for each candidate weak learner a score
dubbed “edge”, which requires to loop through every training example and take into ac-
count its weight, which reflects its current importance in the loss reduction. Reducing this
computational cost is crucial to cope with high-dimensional feature spaces or very large
training sets. This can be achieved through two main strategies: sampling the training
examples, or the feature space, since there is a direct relation between features and weak
learners.

Sampling the training set was introduced historically to deal with weak learners which
cannot be trained with weighted examples (Freund and Schapire, 1996). This procedure
consists of sampling examples from the training set according to their Boosting weights,
and of approximating a weighted average over the full set by a non-weighted average over
the sampled subset. It is related to Bootstrapping as similarly the training algorithm
will sample harder and harder examples based on the performance of the previous weak
learners. See § 3 for formal details. Such a procedure has been re-introduced recently for
computational reasons (Bradley and Schapire, 2007; Duffield et al., 2007; Kalal et al., 2008;
Fleuret and Geman, 2008), since the number of sampled examples controls the trade-off
between statistical accuracy and computational cost.

Sampling the feature space is the central idea behind LazyBoost (Escudero et al., 2000),
and simply consists of replacing the brute-force exhaustive search over the full feature set
by an optimization over a subset produced by sampling uniformly a predefined number of
features. The natural redundancy of most type of features makes such a procedure generally
efficient. However, if a subset of important features is too small, it may be overlooked during
training.

Recently developed algorithms rely on multi-arms bandit methods to balance properly
the exploitation of features known to be informative, and the exploration of new features
(Busa-Fekete and Kegl, 2009, 2010). The idea behind those methods is to associate a bandit
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arm to every feature, and to see the loss reduction as a reward. Maximizing the overall
reduction is achieved with a standard bandit strategy such as UCB (Auer et al., 2002), or
Exp3.P (Auer et al., 2003).

These techniques suffer from two important drawbacks. First they make the assumption
that the quality of a feature – the expected loss reduction of a weak learner using it – is
stationary. This goes against the underpinning of Boosting, which is that at any iteration
the performance of the weak learners is relative to the Boosting weights, which evolve over
the training (Exp3.P does not make such an assumption explicitly, but still rely exclusively
on the history of past rewards). Second, without additional knowledge about the feature
space, the only structure they can exploit is the stationarity of individual features. Hence,
improvement over random selection can only be achieved by sampling again the exact same
features already seen in the past. In our experiments, we therefore only use those methods
in a context where features can be partitioned into subsets of different types. This allows
us to model the quality, and thus to bias the sampling, at a higher level than individual
features.

All those approaches exploit information about features to bias the sampling, hence
making it more efficient, and reducing the number of weak learners required to achieve the
same loss reduction. However, they do not explicitly aim at controlling the computational
cost. In particular, there is no notion of varying the number of examples used for the
estimation of the loss reduction.

3. Preliminaries

We first present in this section some analytical results to approximate a standard round of
AdaBoost – or other similar Boosting algorithms – by sampling both the training examples
and the features used to build the weak learners. We then precise more formally what we
mean by subset of features or weak learners.

3.1 Standard Boosting

Given a binary training set

(xn, yn) ∈ X × {−1, 1}, n = 1, . . . , N

where X is the space of the “visible” signal, and a set H of weak learners of the form
h : X → {−1, 1}, the standard Boosting procedure consists of building a strong classifier

f(x) =

T∑
t=1

αtht(x)

by choosing the terms αt ∈ R and ht ∈ H in a greedy manner so as to minimize a loss
(eg. the empirical exponential loss in the case of AdaBoost) estimated over the training
examples. At every iteration, choosing the optimal weak learner boils down to finding the
one with the largest edge ε, which is the derivative of the loss reduction w.r.t. the weak
learner weight α. The higher this value, the more the loss can be reduced locally, and thus
the better the weak learner. The edge is a linear function of the responses of the weak
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learner over the training examples

ε(h) =
N∑
n=1

ωnynh(xn)

where the weights ωn’s depend on the loss function (usually either the exponential or logistic
loss) and on the current responses of f over the xn’s. We consider without loss of generality
that they have been normalized such that

∑
n ωn = 1. We can therefore consider the weights

ωn’s as a distribution over the training examples and rewrite the edge as an expectation
over them,

ε(h) = EN∼ωn [yNh(xN )] (1)

where N ∼ ωn stands for P(N = n) = ωn. The idea of weighting-by-sampling (Fleuret and
Geman, 2008) consists of replacing the expectation in (1) with an approximation obtained by
sampling. Let N1, . . . , NS , be i.i.d. random variables distributed according to the discrete
probability density distribution defined by the ω’s, we define the approximated edge as

ε̂(h) =
1

S

S∑
s=1

yNsh(xNs) (2)

which follows a binomial distribution centered on the true edge, with a variance decreasing
with the number of sampled examples S. It is accurately modeled by the Gaussian

ε̂(h) ≈ N
(
ε(h),

1

S

)
(3)

as the approximation holds asymptotically and the magnitude of the weak learners’ edges
is typically small, such that (1 + ε(h))(1− ε(h)) ≈ 1.

3.2 Feature subsets

It frequently happens that the features making up the signal space X can be divided into
meaningful disjoint subsets Fk such that X = ∪Kk=1Fk. This division can for example be the
result of the features coming from different sources or some natural clustering of the feature
space. In such a case it makes sense to use this information during training, as features
coming from the same subset Fk can typically be expected to be more homogeneous than
features coming from different subsets.

4. Tasting

We describe here our approach called Tasting (Dubout and Fleuret, 2011a) which biases
the sampling toward promising subsets of features. Tasting in its current form is limited to
deal with weak learners looking at a single feature, such as decision stumps. Extending it
to deal efficiently with weak learners looking at multiple features is outside of the scope of
this work.
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4.1 Main algorithm

The core idea of Tasting is to sample a small number R of features from every subset before
starting the training per se and, at every Boosting step, in using these few features together
with the current Boosting weights to get an estimate of the best subset(s) Fk(s) to use.

We cannot stress enough that these R features are not the ones used to build the
classifier, they are only used to figure out what is/are the best subset(s) at any time during
training. As those sampled features are independent and identically distributed samples of
the feature response vectors, we can compute the empirical mean of any functional of the
said response vectors, in particular the expected loss reduction.

At any Boosting step, Tasting requires, for any feature subset, an estimate of the ex-
pectation of the edge of the best weak learner we would obtain by sampling uniformly Q
features from this subset and picking the best weak learner using one of them,

EF1,...,FQ∼U(Fk)

[
Q

max
q=1

max
h∈HFq

ε(h)

]
(4)

where Fk are the indices of the features belonging to the k-th subset and HF is the space
of weak learners looking solely at feature F . Hence maxh∈HFq ε(h) is the best weak learner

looking solely at feature Fq, and maxQq=1 maxh∈HFq ε(h) is the best weak learner looking
solely at one of the Q features F1, . . . , FQ.

We can build an approximation of this quantity using the R features we have stored.
Let ε1, . . . , εR be the edges of the best R weak learners built from these features. We
make the assumption without loss of generality that ε1 ≤ ε2 ≤ · · · ≤ εR. Let R1, . . . , RQ
be independent and identically distributed, uniform over {1, . . . , R}. We approximate the
quantity (4) with

E

[
Q

max
q=1

εRq

]
=

R∑
r=1

P

(
Q

max
q=1

Rq = r

)
εr

=

R∑
r=1

[
P

(
Q

max
q=1

Rq ≤ r
)
− P

(
Q

max
q=1

Rq ≤ r − 1

)]
εr

=
1

RQ

R∑
r=1

[
rQ − (r − 1)Q

]
εr. (5)

4.2 Tasting variants

We propose two versions of the Tasting procedure, which differ in the number of feature
subsets they visit at every iteration. Either one for Tasting 1.Q or up to Q for Tasting Q.1.

In Tasting 1.Q (Algorithm 1), the selection of the optimal subset k∗ from which to sample
the Q features is accomplished by estimating for every subset the expected maximum edge,
which is directly related to the expected loss reduction, if we were sampling from that subset
only. The computation is done over the R features saved before starting training, which
serve as a representation of the full set Fk.

In Tasting Q.1 (see Algorithm 2), it is not one but several feature subsets which can
be selected, as the algorithm picks the best subset k∗q for every one of the Q features to

5



Dubout and Fleuret

Algorithm 1 The Tasting 1.Q algorithm first samples uniformly R features from every
feature subset Fk. It uses these features at every Boosting step to find the optimal feature
subset k∗ from which to sample. After the selection of the Q features, the algorithm
continues like AdaBoost.

Input: F , Q,R, T
Initialize: ∀k ∈ {1, . . . ,K},∀r ∈ {1, . . . , R}, fkr ← sample(U(Fk))

for t = 1, . . . , T do

∀k ∈ {1, . . . ,K}, ∀r ∈ {1, . . . , R}, εkr ← max
h∈H

fkr

ε(h)

k∗ ← argmax
k

E

[
Q

max
q=1

εkRq

]
# Computed using equation (5)

∀q ∈ {1, . . . , Q}, Fq ← sample(U(Fk∗))

ht ← argmax
h∈∪qHFq

ε(h)

. . .

end for

Algorithm 2 The Tasting Q.1 algorithm first samples uniformly R features from every
feature subset Fk. It uses them to find the optimal subset k∗q for every one of the Q features
to sample at every Boosting step. After the selection of the Q features, the algorithm
continues like AdaBoost.

Input: F , Q,R, T
Initialize: ∀k ∈ {1, . . . ,K},∀r ∈ {1, . . . , R}, fkr ← sample(U(Fk))

for t = 1, . . . , T do

∀k ∈ {1, . . . ,K}, ∀r ∈ {1, . . . , R}, εkr ← max
h∈H

fkr

ε(h)

ε∗ ← 0

for q = 1, . . . , Q do

k∗q ← argmax
k

E
[
max

(
ε∗, εk

)]
Fq ← sample

(
U
(
Fk∗q

))
ε∗ ← max

(
ε∗, max

h∈HFq
ε(h)

)
end for

ht ← argmax
h∈∪qHFq

ε(h)

. . .

end for

6



Adaptive Sampling for Large Scale Boosting

sample, given the best edge ε∗ achieved so far. Again the computation is done only over
the R features saved before starting training.

4.3 Relation with Bandit methods

The main strength of Boosting is its ability to spot and combine complementary features.
If the loss has already been reduced in a certain “functional direction”, the scores of weak
learners in the same direction will be low, and they will be rejected. For instance, the firsts
learners for a face detector may use color-based features to exploit the skin color. After a
few Boosting steps using this modality, color would be exhausted as a source of information,
and only examples with a non-standard face color would have large weights. Other features,
for instance edge-based, would become more informative, and be picked.

Uniform sampling of features accounts poorly for such behavior since it simply discards
the Boosting weights, and hence has no information whatsoever about the directions which
have “already been exploited” and which should be avoided. In practice, this means that
the rejection of bad feature can only be done at the level of the Boosting itself, which may
end up with a majority of useless features.

Bandit methods (described in § 6.4) are slightly more adequate, as they model the
performance of every feature from previous iterations. However, this modeling takes into
account the Boosting weights very indirectly, as they make the assumption that the distri-
butions of loss reduction are stationary, while they are precisely not. Coming back to our
face-detector example, bandit methods would go on believing that color is informative since
it was in the previous iterations, even if the Boosting weights have specifically accumulated
on faces where color is now totally useless. While the estimate of loss reduction may asymp-
totically converge to an adequate model, it is a severe weakness while the Boosting weights
are still evolving.

Tasting addresses this weakness by keeping the ability to properly estimate the per-
formance of every feature subset, given the current Boosting weights, hence the ability to
discard feature subsets redundant with features already picked. In some sense, Tasting can
be seen as Boosting done at a the subset level.

5. Maximum Adaptive Sampling and Laminating

The algorithms in this section sample both the weak learners and the training examples at
every iteration in order to maximize the expectation of the loss reduction, under a strict
computational cost constraint.

5.1 Edge estimation

At every iteration they model the expectation of the edge of the selected weak learner.
Let ε1, . . . , εQ stand for the true edges of Q independently sampled weak learners. Let
∆1, . . . ,∆Q be a series of independent random variables standing for the noise in the es-
timation of the edges due to the sampling of only S training examples. Finally ∀q, let
ε̂q = εq + ∆q be the approximated edge. With these definitions, argmaxq ε̂q is the selected
weak learner. We define ε∗ as the true edge of the selected weak learner, that is the one
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with the highest approximated edge

ε∗ = εargmaxq ε̂q . (6)

This quantity is random due to both the sampling of the weak learners, and the sampling
of the training examples. The quantity we want to optimize is E[ε∗], the expectation of the
true edge of the selected learner over all weak learners and over all training examples, which
increases with both Q and S. A higher Q increases the number of terms in the maximization
of (6), while a higher S reduces the variance of the ∆’s, ensuring that ε∗ is closer to maxq εq.
In practice, if the variance of the ∆’s is of the order of, or higher than, the variance of the
ε’s, the maximization is close to a random selection, and looking at many weak learners is
useless. Assuming that the ε̂q’s are all different we have,

E[ε∗] = E
[
εargmaxq ε̂q

]
=

Q∑
q=1

E

εq∏
i 6=q

1{ε̂i<ε̂q}


=

Q∑
q=1

E

E

εq∏
i 6=q

1{ε̂i<ε̂q}

∣∣∣∣∣∣ ε̂q


=

Q∑
q=1

E

E[εq | ε̂q]
∏
i 6=q

E
[
1{ε̂i<ε̂q}

∣∣ ε̂q]


where the last equality follows from the independence of the weak learners.

5.2 Modeling the true edge

If the distributions of the εq’s and the ∆q’s are Gaussians or mixtures of Gaussians, we can
derive analytical expressions for both E[εq | ε̂q] and E

[
1{ε̂i<ε̂q}

∣∣ ε̂q], and compute the value of
E[ε∗] efficiently. In the case where weak learners can be partitioned into meaningful subsets,
it makes sense to model the distributions of the edges separately for each subset.

As an illustrative example, we consider here the case where the εq’s, the ∆q’s, and hence
also the ε̂q’s all follow Gaussian distributions. We take εq ∼ N (0, 1) and ∆q ∼ N (0, σ2) and
obtain,

E[ε∗] = Q E

E[ε1 | ε̂1]
∏
i 6=1

E
[
1{ε̂i<ε̂1}

∣∣ ε̂1]


= Q E

[
ε̂1

σ2 + 1
Φ

(
ε̂1√
σ2 + 1

)Q−1
]

=
Q√
σ2 + 1

E
[
ε1Φ(ε1)Q−1

]
=

1√
σ2 + 1

E

[
max

1≤q≤Q
εq

]
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Figure 1: Simulation of the expectation of ε∗ in the case where both the εq’s and the ∆q’s
follow Gaussian distributions. Top: εq ∼ N (0, 10−2). Bottom: εq ∼ N (0, 10−4).
In both simulations ∆q ∼ N (0, 1

S ). Left: expectation of ε∗ vs. the number of
sampled weak learners Q and the number of examples S. Right: same value as
a function of Q alone, for different fixed costs (product of Q and S). As these
graphs illustrate, the optimal value for Q is greater for larger variances of the
εq’s. In such a case the εq’s are more spread out, and identifying the largest one
can be done despite a large noise in the estimations, hence with a limited number
of training examples.

where Φ stands for the cumulative distribution function of the unit Gaussian, and σ2 is of
order 1

S . See figure 1 for an illustration of the behavior of E[ε∗] for two different variances
of the εq’s and a cost proportional to QS, the total number of features computed.

There is no reason to expect the distribution of the εq’s to be Gaussian, contrary to
the ∆q’s, as shown in (3), but this is not a problem as it can usually be approximated by
a mixture, for which we can still derive analytical expressions, even if the εq’s or the ∆q’s
have different distributions for different q’s.

5.3 M.A.S. variants

We created three algorithms modeling the distribution of the εq’s with a Gaussian mixture
model, and ∆q = ε̂q − εq as a Gaussian. The first one, M.A.S. naive, is described in
Algorithm 3, and fits the model to the edges estimated at the previous iteration.

The second one, M.A.S. 1.Q, takes into account the decomposition of the weak learners
into K subsets, associated to different kind of features. It models the distributions of the
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Algorithm 3 The M.A.S. naive algorithm models the current edge distribution with a
Gaussian mixture model fitted on the edges estimated at the previous iteration. It uses this
density model to compute the pair (Q∗, S∗) maximizing the expectation of the true edge of
the selected learner E[ε∗], and then samples the corresponding number of weak learners and
training examples, before keeping the weak learner with the highest approximated edge.
After the selection of the Q features, the algorithm continues like AdaBoost.

Input: gmm,Cost

for t = 1, . . . , T do

(Q∗, S∗)← argmax
cost(Q,S)≤Cost

Egmm[ε∗]

∀q ∈ {1, . . . , Q∗}, Hq ← sample(U(H))

∀s ∈ {1, . . . , S∗}, Ns ← sample(U({1, . . . , N}))

∀q ∈ {1, . . . , Q∗}, ε̂q ←
1

S∗

S∗∑
s=1

yNsHq(xNs) # Similar to equation (2)

ht ← Hargmaxq ε̂q

gmm← fit(ε̂1, . . . , ε̂Q∗)

. . .

end for

εq’s separately for each subset, estimating the distribution of each on a small number of
weak learners and examples sampled at the beginning of each Boosting iteration, chosen
so as to account for 10% of the total computational cost. From these models, it optimizes
Q, S, and the index k of the subset to sample from. Unlike M.A.S. naive, it has to draw
a small number of weak learners and examples in order to fit the model since the edges
estimated at the previous iterations came from a unique subset.

Finally M.A.S. Q.1 similarly models the distributions of the εq’s, but it optimizes Q1, . . . ,
QK greedily, starting from Q1 = 0, . . . , QK = 0, and iteratively incrementing one of the Qk
so as to maximize E[ε∗]. This greedy procedure is repeated for different values of S and
ultimately the Q1, . . . , QK , S leading to the maximum expectation are selected.

5.4 Laminating

The last algorithm we have developed tries to reduce the requirement for a density model
of the εq’s. At every Boosting iteration it iteratively reduces the number of considered weak
learners, and increases the number of examples taken into account.

Given fixed Q and S, at every Boosting iteration, the Laminating algorithm first samples
Q weak learners and S training examples. Then, it computes the approximated edges and
keeps the Q

2 best learners. If more than one remains, it samples 2S examples, and re-iterates.
The whole process is described in Algorithm 4. The number of iterations is bounded by
dlog2(Q)e.
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Algorithm 4 The Laminating algorithm starts by sampling Q weak learners and S exam-
ples at the beginning of every Boosting iteration, and refine those by successively halving
the number of learners and doubling the number of examples until only one learner remains.
After the selection of the Q features, the algorithm continues like AdaBoost.

Input: Q,S

for t = 1, . . . , T do

∀q ∈ {1, . . . , Q}, hq ← sample(U(H))

while Q > 1 do

∀s ∈ {1, . . . , S}, Ns ← sample(U({1, . . . , N}))

∀q ∈ {1, . . . , Q}, ε̂q ←
1

S

S∑
s=1

yNsHq(xNs) # Similar to equation (2)

sort(h1, . . . , hQ) s.t. ε̂1 ≥ · · · ≥ ε̂Q # Order the weak learners s.t.

Q← Q
2 # the best half comes first

S ← 2S

end while

. . .

end for

We have the following results on the accuracy of this Laminating procedure (the proof
is given in Appendix A):

Lemma 1 Let q? = argmaxq εq and δ > 0. The probability for an iteration of the Laminating
algorithm to retain only weak learners with edges below or equal to εq? − δ is

P

(∣∣∣∣{q : εq ≤ εq? − δ, ε̂q ≥ max
r:εr≥εq?−δ

ε̂r

}∣∣∣∣ ≥ Q

2

)
≤ 4 exp

(
−δ

2S

2

)
.

This holds regardless of the independence of the εq’s and/or the ∆q’s.

Since at each iteration the number of examples S doubles the lemma implies the following
theorem:

Theorem 1 The probability for the full Laminating procedure starting with Q weak learners
and S examples to end up with a learner with an edge below or equal to εq∗ − δ (the edge
of the optimal weak learner at the start of the procedure minus δ) is upper bounded by (the
proof is given in Appendix B)

4

1− exp
(
− δ2S

2dlog2(Q)e2

) − 4.

The theorem shows that when the number of samples grows and dominates dlog2(Q)e2,
the probability to retain a bad weak learner eventually goes down exponentially with
the number of training examples, as in this case the bound can be approximated by
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4 exp
(
− δ2S

2dlog2(Q)e2

)
. This confirms the usual relation between the number of examples

and the complexity of the space of predictors in learning theory.
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Figure 2: Difference between the maximum edge and the best edge found by 3 different
sampling strategies on the MNIST dataset using the original features. The algo-
rithm used is AdaBoost.MH using T = 100 decision stumps as weak learners, and
the results were averaged over 10 randomized runs. The first strategy samples
uniformly a small number of features Q and determines the best one using all
S = 60, 000 training examples. The second strategy samples all Q = 784 features
and determines the best one using a small number of training examples S. The
third strategy is Laminating, starting from all the features and a suitable number
of training examples chosen so as to have the same cost as the first two strategies.
The cost is the product of Q and S and is set to QS = 180, 000 for the left figure
and QS = 600, 000 for the right one.

In practice the difference between the maximum edge εq? and the edge of the final weak
learner selected by Laminating is typically smaller than the difference with the edge of
a learner selected by a strategy looking at a fixed number of weak learners and training
examples, as can be observed in figure 2.

6. Experiments

We demonstrate the effectiveness of our approaches on four standard image classification
and object detection data-sets, using 19 kinds of features (33 on Caltech 101) divided in
as many subsets. We used the AdaBoost.MH algorithm (Schapire and Singer, 1999) with
decision stumps as weak learners to be able to use all methods in the same conditions.

6.1 Features

The features used in our experiments with all but the Caltech 101 data-set can be divided
into three categories. (1) Image transforms: identity, grayscale conversion, Fourier and Haar
transforms, gradient image, local binary patterns (ILBP/LBP). (2) Intensity histograms:
sums of the intensities in random image patches, grayscale and color histograms of the entire
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image. (3) Gradient histograms: histograms of (oriented and non oriented) gradients, Haar-
like features.

The features from the first category typically have a large dimensionality, usually pro-
portional to the number of pixels in the image. Some of them do not pre-process the images
(identity, grayscale conversion, LBP, etc.) while some pre-transform them to another space,
prior to accessing any feature (typically the Fourier and Haar transforms).

Features from the second and third categories being histograms, they are usually much
smaller (containing typically of the order of a few hundreds to a few thousands coefficients),
but require some pre-processing to build the histograms.

For the Caltech 101 data-set we used the same features as (Gehler and Nowozin, 2009)
in their experiments. They used five type of features: PHOG shape descriptors, appearance
(SIFT) descriptors, region covariance, local binary patterns, and V1S+, which are normal-
ized Gabor filters. More details can be found in the referenced paper. Those features are
computed in a spatial pyramid, where each scale of the pyramid is considered as being
part of a different subset, leading to a total of 33 features. The number of features used
in our experiments (33) differ from (Gehler and Nowozin, 2009) as they also compute a
‘subwindow-kernel’ of SIFT features which we did not use.

6.2 Data-sets

Figure 3: Example images from the four data-sets used for the experimental validation.
Top left: first image of every digit taken from the MNIST database. Top right:
images from the INRIA Person data-set. Bottom left: random images from the
Caltech 101 data-set. Bottom right: some of the first images of the CIFAR-10
data-set.

The first data-set that we used is the MNIST handwritten digits database (LeCun et al.,
1998). It is composed of 10 classes and its training and testing sets consist respectively of
60,000 and 10,000 grayscale images of resolution 28×28 pixels (see the upper left part of
figure 3 for some examples). The total number of features on this data-set is 16,775.
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The second data-set that we used is the INRIA Person data-set (Dalal and Triggs, 2005).
It is composed of a training and a testing set respectively of 2,418 and 1,126 color images of
pedestrians of dimensions 64×128 pixels cropped from real-world photographs, along with
1,219 and 453 “background” images not containing any people (see the upper right part
of figure 3 for some examples). We extracted 10 negative samples from each one of the
background image, following the setup of (Dalal and Triggs, 2005). The total number of
features on this data-set is 230,503.

The third data-set that we used is Caltech 101 (Fei-Fei et al., 2004) due to its wide usage
and the availability of already computed features (Gehler and Nowozin, 2009). It consists
of color images of various dimensions organized in 101 object classes (see the bottom left
part of figure 3 for some examples). We sampled 15 training examples and 20 distinct test
examples from every class, as advised on the data-set website. The total number of features
on this data-set is 360,630.

The fourth and last data-set that we used is CIFAR-10 (Krizhevsky, 2009). It is a
labeled subset of the 80 tiny million images data-set. It is composed of 10 classes and its
training and testing sets consist respectively of 50,000 and 10,000 color images of size 32×32
pixels (see the bottom left part of figure 3 for some examples). The total number of features
on this data-set is 29,879.

6.3 Uniform sampling baselines

A naive sampling strategy would pick the Q features uniformly in ∪kFk. However, this does
not distribute the sampling properly among the Fk’s. In the extreme case, if one of the
Fk had a far greater cardinality than the others, all features would come from it. And in
most contexts, mixing features from the different Fk’s in an equilibrate manner is critical
to benefit from their complementarity. We propose the four following baselines to pick a
good feature at every Boosting step:

• Best subset picks Q features at random in a fixed subset, the one with the smallest
final Boosting loss.

• Uniform Naive picks Q features at random, uniformly in ∪kFq.

• Uniform 1.Q picks one of the feature subsets at random, and then samples the Q
features from that single subset.

• Uniform Q.1 picks at random, uniformly, Q subsets of features (with replacement if
Q > K), and then picks one feature uniformly in each subset.

The cost of running Best subset is K times higher than running the other three strategies
since the subset leading to the smallest final Boosting loss is not known a priori and requires
to redo the training K times. Also, since it makes use of one subset only we can expect its
final performance to be lower than the others. It was included for comparison only.

6.4 Bandit sampling baselines

The strategies of the previous section are purely random and do not exploit any kind
of information to bias their sampling. Smarter strategies to deal with the problem of
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exploration-exploitation trade-off were first introduced in (Busa-Fekete and Kegl, 2009),
and extended in (Busa-Fekete and Kegl, 2010). The driving idea of these papers is to
entrust a multi-armed bandits (MAB) algorithm (respectively UCB in Auer et al. (2002)
and Exp3.P in Auer et al. (2003)) with the mission to sample useful features.

The multi-armed bandits problem is defined as follows: there are M gambling machines
(i.e. the “arms” of the bandits), and at every time-step t the gambler chooses an arm jt,
pulls it, and receives a reward rtjt ∈ [0, 1]. The goal of the algorithm is to minimize the
weak-regret, that is the difference between the reward obtained by the gambler and the best
fixed arm, retrospectively.

The first weakness of these algorithms in the context of accelerating Boosting, that we
have identified in § 2, is the assumption of stationarity of the loss reduction, which cannot
be easily dealt with. Even though the Exp3.P algorithm does not make such an assumption
explicitly, it still ignores the Boosting weights, and thus can only rely on the history of past
rewards.

The second weakness, the application context, can be addressed in our setting by learn-
ing the usefulness of the subsets instead of individual features.

A third weakness is that in Boosting one aims at minimizing the loss (which translates
into maximizing the sum of the rewards for the bandit algorithm), and not at minimizing
the weak-regret.

Finally, another issue arises when trying to use those algorithms in practice. As they
use some kind of confidence intervals, the scale of the rewards matters greatly. For example,
if all the rewards obtained are very small (∀t, rt ≤ ε � 1), the algorithms will not learn
anything, as they expect rewards to make full use of the range [0, 1].

For this reason we set the bandit baselines’ meta-parameters to the ones leading to the
lowest loss a posteriori, as explained in § 6.5, and use a third multi-armed bandit algorithm
in our experiments, ε-greedy (Auer et al., 2002), which does not suffer from this problem.

Hence, we use in our experiments the three following baselines, using the same reward
as in (Busa-Fekete and Kegl, 2010):

• UCB picks Q features from the subset that maximizes r̄j +
√

(2 log n)/nj , where r̄j is

the current average reward of subset j, nj is the number of times subset j was chosen
so far, and n is the current Boosting round.

• Epx3.P maintains a distribution of weights over the feature subsets, and at every
round picks one subset accordingly, obtains a reward, and updates the distribution.
For the precise definition of the algorithm, see (Auer et al., 2003; Busa-Fekete and
Kegl, 2010).

• ε-greedy picks Q features from the subset with the highest current average reward
with probability 1− εn, or from a random subset with probability εn, where εn = cK

d2n
,

and c and d are parameters of the algorithm.

6.5 Results

We tested all the proposed methods of § 4, § 5.3, and § 5.4 against the baselines described
in § 6.3 and § 6.4 on the four benchmark data-sets described above in § 6.2 using the
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Table 1: Mean Boosting loss (log10) and test error (%) after various number of Boosting
steps on the MNIST data-set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.

MNIST

Methods

T (# Boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family? -0.43 36.48 -0.95 5.77 -1.84 1.47 -4.84 0.92

Uniform Naive -0.38 45.3 -0.85 7.79 -1.74 1.64 -5.37 0.93

Uniform 1.Q -0.36 49.4 -0.75 10.8 -1.51 2.18 -3.90 1.08

Uniform Q.1 -0.38 43.0 -0.86 7.40 -1.72 1.71 -5.06 0.97

UCB? -0.40 41.9 -0.79 9.67 -1.64 1.86 -5.54 0.94

Exp3.P? -0.36 47.9 -0.77 10.3 -1.66 1.79 -5.42 0.92

ε-greedy? -0.37 45.9 -0.88 7.04 -1.78 1.57 -5.45 0.88

Tasting 1.Q -0.43 36.1 -0.96 5.38 -1.91 1.41 -5.90 0.92

Tasting Q.1 -0.44 34.8 -0.97 5.31 -1.91 1.36 -5.91 0.94

M.A.S. Naive -0.51 26.3 -1.01 4.78 -1.80 1.54 -5.06 0.96

M.A.S. 1.Q -0.48 29.9 -0.98 5.21 -1.74 1.63 -4.15 1.04

M.A.S. Q.1 -0.43 35.7 -0.98 5.21 -1.78 1.68 -4.51 1.01

Laminating -0.55 21.9 -1.10 3.85 -2.00 1.35 -5.87 0.96
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Table 2: Mean Boosting loss (log10) and test error (%) after various number of Boosting
steps on the INRIA data-set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.

INRIA

Methods

T (# Boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family? -0.34 12.2 -0.93 3.29 -3.72 1.20 -26.9 1.00

Uniform Naive -0.31 13.4 -0.86 4.87 -3.92 1.27 -31.9 0.53

Uniform 1.Q -0.30 14.2 -0.95 3.99 -4.26 0.89 -34.3 0.37

Uniform Q.1 -0.30 14.0 -1.01 3.92 -4.86 0.69 -40.0 0.33

UCB? -0.35 12.1 -1.08 3.17 -5.47 0.61 -49.3 0.30

Exp3.P? -0.31 13.6 -0.91 4.09 -4.53 0.79 -44.7 0.32

ε-greedy? -0.34 12.9 -1.11 2.89 -5.92 0.54 -49.3 0.34

Tasting 1.Q -0.39 10.9 -1.30 2.14 -6.44 0.49 -54.1 0.30

Tasting Q.1 -0.40 11.2 -1.30 2.33 -6.54 0.57 -55.1 0.32

M.A.S. Naive -0.46 8.80 -1.50 1.66 -7.23 0.44 -60.4 0.27

M.A.S. 1.Q -0.41 10.1 -1.45 1.82 -6.87 0.50 -55.9 0.28

M.A.S. Q.1 -0.44 9.43 -1.51 1.65 -6.97 0.42 -57.1 0.27

Laminating -0.56 6.85 -2.05 1.12 -11.2 0.39 -99.8 0.30
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Table 3: Mean Boosting loss (log10) and test error (%) after various number of Boosting
steps on the Caltech 101 data-set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.

Caltech 101

Methods

T (# Boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family? -0.80 95.2 -1.44 79.4 -7.17 56.7 -65.5 41.9

Uniform Naive -0.79 95.8 -1.40 80.3 -6.81 55.6 -61.8 38.8

Uniform 1.Q -0.79 95.9 -1.36 79.0 -5.84 54.2 -49.6 40.8

Uniform Q.1 -0.81 94.2 -1.44 76.5 -6.74 51.8 -59.2 37.6

UCB? -0.81 94.2 -1.40 78.6 -6.46 52.6 -61.6 37.0

Exp3.P? -0.79 95.8 -1.34 80.3 -5.89 54.7 -54.4 40.6

ε-greedy? -0.81 94.8 -1.42 76.7 -7.26 50.6 -67.1 37.4

Tasting 1.Q -0.82 93.8 -1.50 74.2 -7.47 50.7 -68.1 35.3

Tasting Q.1 -0.82 93.9 -1.50 74.5 -7.46 50.5 -68.1 35.5

M.A.S. Naive -0.80 94.3 -1.43 76.2 -6.70 51.8 -59.1 37.9

M.A.S. 1.Q -0.78 96.4 -1.01 90.5 -2.04 85.9 -29.5 53.6

M.A.S. Q.1 -0.79 95.8 -1.21 85.6 -5.01 58.7 -42.7 44.5

Laminating -0.81 94.3 -1.43 77.0 -6.33 53.0 -54.4 38.4
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Table 4: Mean Boosting loss (log10) and test error (%) after various number of Boosting
steps on the CIFAR-10 data-set with all families of features. Methods highlighted
with a ? require the tuning of meta-parameters, which have been optimized by
training fully multiple times.

CIFAR-10

Methods

T (# Boosting steps)

10 100 1,000 10,000

loss
test
error

loss
test

error
loss

test

error
loss

test

error

Best family -0.27 73.6 -0.33 57.4 -0.43 44.8 -0.67 40.2

Uniform Naive -0.26 74.9 -0.34 55.9 -0.48 38.9 -0.93 32.2

Uniform 1.Q -0.26 76.6 -0.33 57.5 -0.47 39.9 -0.84 31.3

Uniform Q.1 -0.27 74.3 -0.34 53.8 -0.49 37.6 -0.91 30.9

UCB? -0.27 73.3 -0.34 56.2 -0.49 37.7 -0.90 30.6

Exp3.P? -0.26 77.2 -0.33 58.0 -0.47 38.9 -0.86 30.3

ε-greedy? -0.26 75.8 -0.35 53.4 -0.49 37.09 -0.88 30.0

Tasting 1.Q -0.28 72.6 -0.36 50.9 -0.50 36.2 -0.95 31.7

Tasting Q.1 -0.28 71.8 -0.36 50.9 -0.50 36.3 -0.95 31.5

M.A.S. Naive -0.28 71.9 -0.35 52.5 -0.49 37.5 -0.91 31.0

M.A.S. 1.Q -0.28 70.7 -0.35 53.3 -0.45 40.5 -0.63 33.8

M.A.S. Q.1 -0.28 71.4 -0.35 52.7 -0.45 40.4 -0.62 34.1

Laminating -0.29 67.8 -0.37 49.1 -0.50 36.8 -0.88 31.5
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standard train/test cuts and all the features of § 6.1. We report the results of doing up
to 10,000 Boosting rounds averaged through ten randomized runs in tables 1–4. We used
as cost for all the algorithms the number of evaluated features, that is for each Boosting
iteration QS, the number of sampled features times the number of sampled examples. For
the Laminating algorithm we multiplied this cost by the number of iterations dlog2(Q)e.
We set the maximum cost of all the algorithms to 10N , setting Q = 10 and S = N for the
baselines, as this configuration leads to the best results after 10,000 Boosting rounds.

The parameters of the baselines – namely the scale of the rewards for UCB and Exp3.P,
and the c/d2 ratio of ε-greedy – were optimized by trying all values of the form 2n, n =
{0, 1, ..., 11}, and keeping the one leading to the smallest final Boosting loss on the training
set, which is unfair to the uniform baselines as well as our methods. We set the values of
the parameters of Exp3.P to η = 0.3 and λ = 0.15 as recommended in (Busa-Fekete and
Kegl, 2010).

These results illustrate the efficiency of the proposed methods. Up to 1,000 Boosting
rounds, the Laminating algorithms is the clear winner on three out of the four data-sets.
Then come the M.A.S. and the Tasting procedures, still performing far better than the
baselines. On the Caltech 101 data-set the situation is different. Since it contains a much
smaller number of training examples compared to the other data-sets (1515 versus several
tens of thousands), there is no advantage in sampling examples. It even proves detrimental
as the M.A.S. and Laminating methods are beaten by the baselines after 1,000 iterations.

The performance of all the methods tends to get similar for 10,000 stumps, which is
unusually large. The Tasting algorithm appears to fare the best, sampling examples offering
no speed gain for such a large number of Boosting steps, except on the INRIA data-set.
On this data-set the Laminating algorithm still dominates, although its advantage in loss
reduction does not translate into a lower test error anymore.

7. Conclusion

We have improved Boosting by modeling the statistical behavior of the weak learners’ edges.
This allowed us to maximize the loss reduction under strict control of the computational
cost. Experiments demonstrate that the algorithms perform well on real-world pattern
recognition tasks.

Extensions of the proposed methods could be investigated along two axes. The first
one is to merge the best two methods by adding a Tasting component to the Laminating
procedure, in order to bias the sampling towards promising feature subsets. The second is
to add a bandit-like component to the methods by adding a variance term related to the
lack of samples, and their obsolescence in the Boosting process. This would account for the
degrading density estimation when subsets have not been sampled for a while, and induce
an exploratory sampling which may be missing in the current algorithms.
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Appendix A

Proof of Lemma 1:

Since

max
r:εr≥εq?−δ

ε̂r ≥ ε̂q? (7)

Defining Bq = 1{∆q−∆q?≥δ}, we have

P

(∣∣∣∣{q : εq ≤ εq? − δ, ε̂q ≥ max
r:εr≥εq?−δ

ε̂r

}∣∣∣∣ ≥ Q

2

)
≤P

(
|{q : εq ≤ εq? − δ, ε̂q ≥ ε̂q?}| ≥

Q

2

)
(8)

≤P

(
|{q : εq ≤ εq? − δ,∆q −∆q? ≥ δ}| ≥

Q

2

)
(9)

≤P

 ∑
q, εq≤εq?−δ

Bq ≥
Q

2

 (10)

≤P

(∑
q

Bq ≥
Q

2

)
(11)

≤P

(
2
∑

q Bq

Q
≥ 1

)
(12)

≤
2 E
[∑

q Bq

]
Q

(13)

≤2 E[Bq] (14)

≤2 E
[
1{(∆q≥ δ2 )∪(∆q?≤− δ2 )}

]
(15)

≤4 exp

(
−δ

2S

2

)
. (16)

Equation (7) is true since q? is among the {r : εr ≥ εq? − δ} and δ is positive. Equations
(8) to (12) are true since we relax conditions on the event. Equation (13) is true since
P(X ≥ 1) ≤ E(X) for X ≥ 0. Equations (14) and (15) are true analytically, and equation
(16) follows from Hœffding’s inequality.
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Appendix B

Proof of Theorem 1:

Since there are dlog2(Q)e iterations, each sampling twice as many training examples as the
previous one, the probability of interest is upper bounded by

4

dlog2(Q)e−1∑
k=0

exp

(
− δ2S 2k

2dlog2(Q)e2

)

≤4
∞∑
k=1

exp

(
− δ2Sk

2dlog2(Q)e2

)
(17)

≤4

 1

1− exp
(
− δ2S

2dlog2(Q)e2

) − 1

 (18)

Equation (17) is true analytically and equation (18) follows from the formula for geometric
series.
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