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ABSTRACT

This paper investigates the combination of cepstral normalization
and cochlear implant-like speech processing for microphone array-
based speech recognition. Testing speech signals are recorded by
a circular microphone array and are subsequently processed with
superdirective beamforming and McCowan post-filtering. Training
speech signals, from the multichannel overlapping Number corpus
(MONC), are clean and not overlapping. Cochlear implant-like
speech processing, which is inspired from the speech processing
strategy in cochlear implants, is applied on the training and testing
speech signals. Cepstral normalization, including cepstral mean
and variance normalization (CMN and CVN), are applied on the
training and testing cepstra. Experiments show that implementing
either cepstral normalization or cochlear implant-like speech pro-
cessing helps in reducing the WERs of microphone array-based
speech recognition. Combining cepstral normalization and cochlear
implant-like speech processing reduces further the WERs, when
there is overlapping speech. Train/test mismatches are measured
using the Kullback-Leibler divergence (KLD), between the global
probability density functions (PDFs) of training and testing cepstral
vectors. This measure reveals a train/test mismatch reduction when
either cepstral normalization or cochlear implant-like speech pro-
cessing is used. It reveals also that combining these two processing
reduces further the train/test mismatches as well as the WERs.

Index Terms— Cepstral normalization, Cochlear implant-like
speech processing, Kullback-Leibler divergence, Microphone array
speech recognition, Overlapping speech

1. INTRODUCTION

Automatic speech recognition (ASR) in adverse environments is
difficult because of several variabilities, for instance environmental
noises, reverberations, etc. which affect the input speech signal.
Assume that the ASR systems use a hidden Markov model (HMM)
framework with short-term cepstral vectors; these variabilities would
create mismatches between training and testing of ASR. Train/test
mismatch can be measured in signal, feature, or model spaces
[1]. In [2], train/test mismatch was measured by calculating the
Kullback-Leibler divergence (KLD) between the global probability
density functions (PDFs), fTr(x) and fT (x), of cepstral vectors x
extracted from training and testing speech signals, respectively:

D(fTr(x), fT (x)) =

∫
fTr(x) log

fTr(x)

fT (x)
dx (1)

Improving speech feature vectors to reduce train/test mismatch
is one of the fundamentals to achieve noise robust ASR. In fact,
the train/test mismatch, in general, and the KLD between fTr(x)
and fT (x), in particular, could be reduced by several techniques

[1]. Cepstral normalization, including ceptral mean normalization
(CMN) [3] and cepstral variance normalization (CVN) [4], is such a
technique that processes cepstral vectors to reduce the train/test mis-
match and, therefore, improve ASR performance. CMN subtracts
means of the cepstral coefficients and, therefore, removes the effect
of transmission channel on the input speech. Meanwhile, CVN nor-
malizes and scales the variances of testing cepstral coefficients to
the variances of the training ones [4, 5]. Hence, it is straightforward
that the processing, performed by CMN and CVN, would reduce the
KLD between fTr(x) and fT (x).

In [2], it has been shown that noise robust ASR could be
achieved with a framework using cochlear implant-like processing
of speech signals. In this framework, the original training and testing
speech signals are processed by the cochlear implant-like signal pro-
cessing algorithm. Original training speech signals were clean and
original testing speech signals were noisy. The cochlear implant-like
signal processing algorithm synthesizes spectrally reduced speech
(SRS) from original training and testing speech signals. The noise
robustness of the ASR system using SRS, in both train and test, is
better than the baseline system, which uses original speech signals
for train and test. Measurements of train/test mismatches, using the
KLD between fTr(x) and fT (x), revealed that the train/test mis-
matches in the SRS-based ASR systems were smaller than those in
the baseline ASR systems. That is, the use of cochlear implant-like
processing of speech signals helps in reducing train/test mismatch,
measured via the KLD between fTr(x) and fT (x) [2].

In fact, the combination of cepstral normalization and cochlear
implant-like speech signal processing might reduce the train/test
mismatch, measured via the KLD between fTr(x) and fT (x), fur-
ther than using separately either cepstral normalization or cochlear
implant-like speech signal processing. The motivation is as follows.
Cochlear implant-like signal processing treats the speech signal in
the temporal domain (signal space) whereas cepstral normalization
techniques process cepstral vectors in the cepstral domain (feature
space). Therefore, the train/test mismatch reduction, performed by
the combination of the two techniques, could be complementary.

In this paper, we investigate the combination of cepstral normal-
ization techniques (CMN and CVN) and the cochlear implant-like
speech signal processing in order to improve the noise robustness of
ASR, more specifically, to improve speech recognition with a mi-
crophone array. Microphone arrays have been widely used to cap-
ture and pre-process speech signals, especially overlapping speech,
which happens in several real situations [6], as a first step to improve
speech signal quality for ASR. In our experiments, a microphone ar-
ray is used to capture speech signals for recognition. The cochlear
implant-like speech signal processing and the cepstral normalization
are performed afterwards.

The paper is organized as follows. Section 2 introduces the sig-
nal processing strategy, which is used to process overlapping speech
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captured by a circular microphone array. Section 3 describes the
cochlear implant-like speech signal processing algorithm. In sec-
tion 4, cepstral normalization techniques, as well as their imple-
mentation, are described. Section 5 presents the ASR experimental
setup, including the ASR system training on the MONC (multichan-
nel overlapping numbers corpus) speech database [7]. After that,
experimental results, including the WERs and train/test mismatch
measure using the KLDs, are introduced in section 6. Finally, sec-
tion 7 discusses and section 8 concludes the paper.

2. MICROPHONE ARRAY SIGNAL PROCESSING

Using a microphone array to capture speech signals is practical and
helpful in noise and reverberation reduction. This is the first step to
enhance the quality of an input speech signal. In fact, it has been
shown that using a microphone array is helpful to improve speech
recognition performance when there is overlapping speech, com-
pared to the performance of lapel microphone speech recognition
[6]. An enhancement-based approach [8] is widely used in micro-
phone array speech recognition. In this approach, either a fixed or
adaptive beamforming algorithm [9] is applied to the multi-channel
captured speech, and then, a post-filtering operation is applied on the
resulting output speech signal.

Assume that the microphone array captures K signals y1(n),
y2(n), . . . , yK(n); the purpose of a beamforming algorithm is to
form a beam and point it to a desired direction to extract the speech
of interest from theseK signals, which are often corrupted by noise,
reverberation, and competing sources. This formation is done by,
basically, delaying-and-weighting or, more generally, filtering each
microphone output yk(n), and then, summing the delayed-and-
weighted or the filtered signals together. In case of filter-and-sum
beamformers, which are flexible in controlling the beam pattern
as a function of frequency [10], the beamformers output ŷ(n) is
calculated as

ŷ(n) =

K−1∑
k=0

M−1∑
m=0

yk(n−m)hk(m) (2)

where the filters hk, k = 1, . . . ,K, can be either fixed or adaptively
determined. Without lost of generality, hk, k = 1, . . . ,K, can be
assumed to be FIR filters of length M . In the current paper, we
are interested only in fixed beamformers since the locations of the
speakers are known beforehand. On the other hand, an advantage
of fixed beamformers, for instance the superdirective beamformer, is
their low computational complexity and robustness with respect to
room reverberation and sensor mismatch, etc. [11]. Furthermore, in
terms of ASR performance improvement, fixed beamforming algo-
rithms are comparable to adaptive beamforming algorithms [8].

The directional discrimination time-space filtering of multi-
channel acquisition results in suppression of the interference sources
and thus improves the signal-to-noise ratio (SNR). Beamforming fil-
ters are designed based on requirements of the application. The
optimal beamforming for maximizing the array-gain is known as the
superdirective beamformer. The array-gain is defined as the SNR
improvement of the beamformer output with respect to the single
channel. Figure 1 illustrates the beam-pattern of a superdirective
beamformer in frequencies 250, 500, 1000 and 2246 Hz for a mi-
crophone array set-up of our recordings [7]. A speaker is located at
azimuth and elevation 135 and 25 degrees with respect to the array
center. As the figure shows, the beam pattern is adjusted towards the
desired speaker and it is kept the same for all recording scenarios.

The distance between the microphones is equal to the half of
the wavelength of the maximum frequency to suppress the majority
of the grating lobes. The average SNR of the recordings is 9 dB.

In fact, applying a post-filter on the beamformer output signal im-
proves the output signal quality as well as the performance of the
ASR system recognizing this signal [12]. In this work, the domi-
nated noise has diffuse characteristics so we use a microphone array
post-filter, which was introduced in [12], to improve the output sig-
nal of the superdirective beamformer [13]. This post-filter, known
as the McCowan post-filter, builds upon the existing Zelinski array
post-filter [14] by replacing the assumption of incoherent noise with
the assumption of a known noise field coherence function. Based on
the knowledge of the noise field coherence function, a more accurate
estimate of the signal power density is obtained by solving a set of
relevant equations [12]. The signal power density is then used in a
Wiener transfer function.
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Fig. 1. Beam patterns for a superdirective beamformer in frequen-
cies 250, 500, 1000 and 2246 Hz with a circular microphone array. A
speaker is located at azimuth and elevation 135 and 25 degrees with
respect to the array center. The beam pattern is adjusted towards the
speaking person and it is kept the same for all recording scenarios.

3. COCHLEAR IMPLANT-LIKE SPEECH SIGNAL
PROCESSING

It has been shown that processing, simultaneously, enhanced testing
speech and clean training speech signals, with the cochlear implant-
like speech processing algorithm, helps in improving ASR perfor-
mance compared to enhancing noisy speech alone [2]. This process-
ing, which results in the re-synthesis of cochlear implant-like spec-
trally reduced speech (SRS) from subband temporal envelopes of
the original speech signal, reduces the train/test mismatch measured
via the KLD, as in equation (1) [2]. In the following, we describe
the cochlear implant-like speech processing algorithm that has been
used to process testing speech, captured by the microphone array,
as well as clean training speech. This algorithm is similar to that in
[15, 16] and is inspired from the algorithm introduced in [17]. The
major difference between the algorithms used in [17] and in [15, 16]
lies in the type of carrier signals; subband temporal envelopes in
[17] were used to modulate white noise whereas in [15, 16], they
were used to modulate sinusoids.

A speech signal s(n) is first decomposed into S subband signals
si(n), i = 1, . . . , S by using a perceptually-motivated analysis fil-
terbank consisting of S bandpass filters. The filterbank consists of
nonuniform bandwidth bandpass filters which are linearly spaced on
the Bark scale in order to simulate the motion of the basilar mem-
brane [18]. In this paper, each bandpass filter in the filterbank is a
second-order elliptic bandpass filter having a minimum stopband at-
tenuation of 50 dB and a 2-dB peak-to-peak ripple in the passband.
The lower, upper, and central frequencies of the bandpass filters are
calculated as in [19]. Figure 2 shows an example of an analysis fil-
terbank consisting of 16 bandpass filters.
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Fig. 2. Frequency response of an analysis filterbank consisting of
16 second-order elliptic bandpass filters. The bandpass filters are
linearly spaced on the Bark scale.

The subband temporal envelopes ei(n) of the subband signals
si(n), i = 1, . . . , S are then extracted by, first, full-wave rectifi-
cation of the outputs of the bandpass filters and, subsequently, low-
pass filtering of the resulting signals. These envelopes have the same
sampling rate (8 kHz) as that of the subband signal. In this work, the
filter that was used to limit the bandwidth of the subband temporal
envelopes is a fourth-order elliptic lowpass filter with 2-dB of peak-
to-peak ripple and a minimum stop-band attenuation of 50-dB. The
subband temporal envelope ei(n) is then used to modulate a sinusoid
whose frequency fci equals the central frequency of the correspond-
ing analysis bandpass filter of that subband. The subband modulated
signal is then filtered again by the same bandpass filter used for the
original analysis subband [17]. Finally, all the processed subband
signals are summed to synthesize the SRS. The mathematical for-
mula of the SRS ŝ(n) can be expressed as follows:

ŝ(n) =

S∑
i=1

ei(n) cos (2πfcin) (3)

As reported in [2], using S = 16 subbands in the cochlear
implant-like processing of training and testing speech signals is rel-
evant to gain noise robust ASR. Indeed, 16 is the spectral resolution
from which the SRS signal contains sufficient spectral information
compared to the original speech signal [15, 16]. To this end, in
this paper, we use S = 16 subbands in the cochlear implant-like
speech processing algorithm. In addition, for the subband tempo-
ral envelopes extraction filter, a 50 Hz cut-off frequency has been
used since this cut-off frequency ensures reasonable subband tempo-
ral envelope bandwidths, henceforth denoted as W , for human and
machine speech recognition with short-term speech features [17, 15,
16].

4. CEPSTRAL NORMALIZATION

Cepstral normalization is a basic and efficient technique to normal-
ize cepstral vectors for gaining ASR noise robustness [5]. In this
section, we describe the implementation of cepstral normalization
techniques, including cepstral mean normalization (CMN) and cep-
stral variance normalization (CVN), in the front-end of our ASR sys-
tems.

Assume that X = [xT1 xT2 . . . xTN ] is a sequence of
cepstral vectors extracted from a speech utterance, where xi =
[x1i, x2i, . . . , xLi]

T is a L-dimensional cepstral vector extracted

from the i-th speech frame, the sequence of CMN vectors X̃M is
calculated as X̃M = [xT1 − µT xT2 − µT . . . xTN − µT ], where
µ = [µ1, µ2, . . . , µL]

T is a L-dimensional mean vector calcu-
lated from all the cepstral vectors extracted from the utterances. In
fact, the mean vector µ might be calculated on all the data from a
speaker to gain more noise robustness [20]. However, in the current
work, the mean vector µ was simply calculated from each speech
utterance.

To further normalize the CMN cepstral vectors sequence X̃M

with CVN, the variance of the cepstral coefficients are, first, normal-
ized to 1 based on the local variance σ = [σ1, σ2, . . . , σL]

T , and
then, scaled to the target variance σ̃ = [σ̃1, σ̃2, . . . , σ̃L]

T [4, 20].
The matrix form of the sequence of cepstral mean and variance nor-
malization vectors X̃M+V is as follows:

X̃M+V =


(x11−µ1)

σ1
σ̃1 · · · (x1i−µ1)

σ1
σ̃1 · · · (x1L−µ1)

σ1
σ̃1

...
...

...
(xL1−µL)

σL
σ̃L · · · (xLi−µL)

σL
σ̃L · · · (xLL−µL)

σL
σ̃L


where the local variance σ is calculated from the cesptral vectors ex-
tracted from the given utterance. In our implementation, the target
variance σ̃ is the global variance of all the cepstral vectors used in
training. Indeed, the variance of the individual cepstra in training
and testing are, first, normalized to 1, and then, scaled to the global
variance of the training cepstra. Therefore, the Kullback-Leibler di-
vergence (KLD), calculated as in (1), should be reduced.

5. SPEECH RECOGNITION EXPERIMENTS

5.1. Speech database

The multichannel overlapping Numbers corpus (MONC) database
[7, 6] was used for the experiments in this paper. The utterances in
the Number corpus (30-word vocabulary), which were collected
over telephone lines, include isolated digit strings, continuous
digit strings, and ordinal/cardinal numbers. To acquire the MONC
database, the utterances of the Numbers corpus were played back on
one or more loudspeakers, and the resulting sound field was recorded
with lapel microphones, a single tabletop microphone, and a tabletop
microphone array. The recordings were made in a moderately re-
verberant 8.2m× 3.6m×2.4m rectangular room. Background noise
was made mainly by the PC power supply fan. The loudspeakers
were positioned around a circular meeting room table to simulate
the presence of 3 competing speakers in the meeting room. The
angular spacing between them was 90o and the distance from table
surface to the centre of the main speaker element was 35cm. Lapel
microphones were attached to t-shirts hanging below each loud-
speaker. The microphone array includes 8 microphones, which were
distributed circularly on a 20-cm diameter circle, and was placed in
the centre of the table. An additional microphone was placed at the
centre of the array. A graphical description of the room arrangement
can be found in [7].

Speech signals captured by the microphone array, in three
recording scenarios, were used for speech recognition experiments.
The three recording scenarios included S1: there was one speaker
(no overlapping speech), S1,2: there was one desired speaker and
one competing speaker, and S1,2,3: there was one desired speaker
and two competing speakers. The clean training set was used
for training an ASR system. Cochlear implant-like speech sig-
nal processing and cepstral normalization were then applied in the
front-end, on the speech signals that were captured by the micro-
phone array and pre-processed with superdirective beamforming
and post-filtering.
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Fig. 3. Training and testing protocols for the microphone array-based speech recognition experiments. Clean speech signals were used for
training. In testing, microphone array speech signals were processed with superdirective beamforming and post-filtering. Cepstral normaliza-
tion techniques (CMN, CVN) were implemented separately or in combination with cochlear implant-like speech signal processing.

5.2. Experimental protocols

An ASR system was trained on the clean training set, including 6049
utterances, of the original Numbers corpus, using the HTK toolkit
[20]. The system consists of acoustic models that are tied-state tri-
phone hidden Markov models (HMMs). The triphone HMMs are
standard with 3 emitting states per triphone and 12 Gaussian mix-
tures per state. The system uses 39-dimensional (L = 39) speech
feature vectors, which consist of 13 Mel frequency cepstral coeffi-
cients (MFCCs) (including the 0-th coefficient) along with their delta
and acceleration coefficients. This system gave a word error rate
(WER) of 6.45% using the clean test set, including 2061 utterances,
from the original Numbers corpus.

We implemented cepstral normalization techniques (CMN,
CVN) separately or in combination with cochlear implant-like
speech signal processing, in the front-end of ASR system, to eval-
uate the effectiveness of their combination in reducing further the
WER of microphone array-based ASR. CMN can be implemented
independently or in combination with CVN and cochlear implant-
like speech processing. However, CVN was always implemented
with CMN or with both CMN and cochlear implant-like speech
processing. Testing speech signals were taken from the output of
the post-filtering, after the superdirective beamforming processing.
Otherwise, training speech signals were clean speech. If either
CMN, CVN, cochlear implant-like speech processing or their com-
binations had been implemented in training, they were implemented
in testing, and vice versa. The systems used 39-dimensional MFCCs
and HMM-based ASR architecture as mentioned previously (tied-
state triphone HMMs with 12 Gaussian mixtures per state). Figure
3 displays the training and testing protocols that were used in our
experiments.

5.3. Train/test mismatch measure

The Kullback-Leibler divergence (KLD) between the probability
density functions (PDFs), fTr(x) and fT (x), of cepstral vectors
x, extracted globally from training and testing speech, was used to
measure the train/test mismatch (see section 1). It should be also
noted that this is inherently a “coarse” measure since, in this case,
the PDFs are estimated from MFCC vectors that were extracted
globally from training and testing speech utterances. However, this

measure could partially reveal the behavior of an HMM-based ASR
system with a testing set whenever this set is modified [2]. To
this end, the KLDs were calculated between every pair of PDFs of
the MFCC vectors, extracted from the corresponding training and
testing speech. This measure was used to evaluate the train/test
mismatch reduction effect when combining cepstral normalization
techniques with the cochlear implant-like speech signal processing.

6. EXPERIMENTAL RESULTS

6.1. Word error rate (WER)

In the experiments, either cepstral normalization, cochlear implant-
like speech processing or their combinations were implemented in
the front-end. The effectiveness of combining cepstral normaliza-
tion and cochlear implant-like speech processing, in reducing the
WER of microphone array-based ASR, was evaluated. WERs ob-
tained from the speech recognition experiments are shown in figure
4. In all three recording scenarios, it can be observed from figure 4
that implementing only CMN or cochlear implant-like speech pro-
cessing, in the front-end, helps in reducing the WER of microphone
array-based ASR. The reduction gain obtained with CMN is better
than that obtained with cochlear implant-like speech processing.

On the other hand, combining CMN with cochlear implant-like
speech processing is better than using CMN alone, in terms of WER
reduction. Combination of CMN and CVN also helps in reduc-
ing the WER, compared to using CMN alone, but the reduction
gain is smaller than that obtained with the combination of CMN
and cochlear implant-like speech processing, in all three scenarios.
Furthermore, the combination of cepstral normalization (CMN and
CVN) with cochlear implant-like speech processing makes it possi-
ble to reduce further the WER, in all three scenarios, compared to
the combination of CMN and CVN.

6.2. Kullback-Leibler divergence (KLD)

Numerical values of the KLDs, calculated between the global PDFs
of training and testing cepstral vectors (MFCCs), are shown in figure
5. For each KLD calculation, the PDFs fTr(x) and fT (x), which
were 12-Gaussian mixtures, were estimated from the training and
testing cepstral vectors of the corresponding speech recognition test.
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CMN: cepstral mean normalization, CMVN: cepstral mean and vari-
ance normalization.
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Fig. 5. Numerical values of the Kullback-Leibler divergences
(KLDs), calculated between probability density functions (PDFs),
fTr(x) and fT (x), of cepstral vectors (MFCCs) x, extracted glob-
ally from training and testing speech utterances, respectively. The
KLDs, between fTr(x) and fT (x) which are 12-Gaussian mixtures,
were calculated by the Monte Carlo sampling method [21]. For each
KLD calculation, the PDFs were estimated from the training and test-
ing cepstral vectors of the corresponding speech recognition test (see
figure 4).

The KLDs between the Gaussian mixtures were calculated by using
the Monte Carlo sampling method [21]. In all three scenarios, it can
be observed that implementing either cochlear implant-like speech
processing, cepstral normalization (CMN and CVN) or their com-
binations helps in reducing the train/test mismatch, measured via
the KLD. Furthermore, combining cepstral normalization (CMN or
CMN+CVN) and cochlear implant-like speech processing reduces
further the train/test mismatch, compared to using only cepstral nor-
malization (see figures 5(b) and 5(c)). This train/test mismatch re-
duction is, therefore, consistent with the WER reduction, gained
when combining cepstral normalization (CMN or CMN+CVN) and
cochlear implant-like speech signal processing (see figure 4).

7. DISCUSSION

When combining CMN with cochlear implant-like speech process-
ing, the WER relative reductions achieved in three testing scenarios,
S1, S1,2 and S1,2,3, are 62.43%, 45.13% and 35.45%, respec-
tively, compared to using CMN only (see figure 4(b)). On the other
hand, the combination of cepstral normalization (CMN+CVN) with
cochlear implant-like speech processing makes it possible to reduce
relatively 22.76%, 20.85% and 22.26% of the WER, compared
to using CMN+CVN only, in three testing scenarios S1, S1,2 and
S1,2,3, respectively (see figure 4(c)). In three testing scenarios S1,
S1,2 and S1,2,3, the application of only cochlear implant-like speech
processing makes it possible to reduce relatively 38.16%, 10.81%
and 3.45% of the WER, respectively, compared to when there is
only the microphone array signal processing (see figure 4(a)).

The WERs achieved with the combination of cepstral normaliza-
tion (CMN+CVN) and cochlear implant-like speech processing, in
three scenarios S1, S1,2 and S1,2,3, are 7.16%, 17.16% and 23.29%,
respectively. In the S1,2 and S1,2,3 scenarios where there is overlap-
ping speech from 1 and 2 competing speakers, respectively, these
WERs are lower than the latest WERs, 19.37% and 26.64%, re-

ported on the same testing sets with the same training conditions,
but using maximum a posteriori (MAP) adaptation to compensate
noise [6]. When there is no overlapping speech in the scenario S1,
the 7.16% WER, achieved with the combination of CMN+CVN and
cochlear implant-like speech processing, is comparable with that ob-
tained with MAP adaptation, 7.00%, as reported in [6].

In fact, applying cochlear implant-like speech signal process-
ing, which operates in the temporal domain, in training and test-
ing, reduces the train/test mismatch, measured via the KLD between
fTr(x) and fT (x) [2]. On the other hand, cepstral normalization
techniques, which operate in the cepstral domain, could also reduce
the train/test mismatch, measured via the KLD. This reduction is
straightforward since the variances of testing cepstral vectors are
normalized and scaled to the variances of the training ones. As a con-
sequence, combining such temporal and cepstral domain processing
should have a complementary effect in terms of train/test mismatch
reduction as well as WER reduction. The experimental results, dis-
played in figures 4 and 5, confirm these hypotheses.

Cepstral normalization might be combined also with other tem-
poral domain speech processing that are different from cochlear
implant-like speech processing. It might also be useful to compare
the WER reduction gain, achieved by combining cepstral normaliza-
tion and cochlear implant-like speech processing, with that achieved
with the combination of cepstral normalization and other tempo-
ral domain processing, for instance the speech enhancement using
linear prediction residual [22], etc. Moreover, combining cepstral
normalization and cochlear implant-like speech processing might be
beneficial in real situations where there is overlapping speech, e.g.
in meeting speech recognition with a microphone array [23].

8. CONCLUSION

In this paper, we have investigated the combination of cepstral nor-
malization and cochlear implant-like speech signal processing for



microphone array-based speech recognition. Speech signals have
been recorded, in three scenarios, by a circular microphone array
and have been processed with superdirective beamforming and Mc-
Cowan post-filtering [12]. In testing, cochlear implant-like speech
processing has been applied on the output of the post-filtering and,
in training, this processing has been applied on clean training speech
of the MONC database [7]. Cepstral normalization, including CMN
and CVN, have been applied on the training and testing cepstral vec-
tors (MFCCs). The CMN has been performed using local mean vec-
tor, calculated from cepstral vectors extracted from each speech ut-
terance. In CVN, the variance of cepstral vectors has been normal-
ized and scaled to the global variance of training cepstral vectors.

Speech recognition experiments have shown that implement-
ing either cepstral normalization or cochlear implant-like speech
processing helps in reducing the WERs of microphone array-based
speech recognition. Furthermore, when there is overlapping speech,
combining cepstral normalization with cochlear implant-like speech
processing makes it possible to reduce further the WERs, lower
than the previously published WERs, obtained with MAP adapta-
tion, on the same training and testing data [6]. Train/test mismatch
measures, via the KLDs between the global PDFs of training and
testing cepstral vectors, have revealed that using either cepstral nor-
malization or cochlear implant-like speech processing, on speech
recognition with microphone array, helps in reducing the train/test
mismatch. Numerical results have also revealed that combining
these two processing, one in the cepstral domain and another in the
temporal domain, reduces further the train/test mismatches, measure
via the KLDs, as well as the WERs.
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