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ABSTRACT

While our daily activities usually involve interactions with oth-
ers, the state-of-the-art methods on activity recognition do not ex-
ploit the relationship between social interactions and human activ-
ity. This paper addresses the problem of interpreting social activity
from human-human interactions captured by mobile sensing net-
works. Our first goal is to discover different social activities such as
chatting with friends from human-human interaction logs and then
characterize them by the set of people involved, time and location
of the occurring event. Our second goal is to perform automatic la-
beling of the discovered activities using predefined semantic labels
such as coffee breaks, weekly meetings, or random discussions.
Our analysis was conducted on interaction networks sensed with
Bluetooth and infrared sensors by about fifty subjects who carried
sociometric badges over 6 weeks. We show that the proposed sys-
tem reliably recognized coffee breaks with 99% accuracy, while
weekly meetings were recognized with 88% accuracy.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms

Human Factors
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1. INTRODUCTION

Most of our daily activities involve interactions with others as
humans are social by nature. Besides the relationship between hu-
man activity and location and time [24], movement and action [4],
it also relates to some form of interactions such as having lunch
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with colleagues, dining with friends, traveling with family. Yet,
the relationship between human activity and human-human inter-
actions has not been thoroughly explored.

The challenge of relating social interaction to activity comes
from the nature of collected interaction data. Online social, com-
munication, and webpage networks are examples of large-scale in-
teraction networks which have advanced the state of the art in social
network analysis [2, 16, 3]. However, the analysis on these data is
usually limited to static, aggregated patterns since these networks
do not correspond well to in-person interactions in daily life. In-
terestingly, the introduction of people-centric sensing [6] has open
the opportunity to collect and analyze daily social interaction, with
various sensing methods such as Bluetooth proximity or WiFi [13].

Bluetooth has been used as a platform for social interaction and
communication among groups of users [17]. By analyzing Blue-
tooth proximity network, a recently proposed instance of topic model,
called GroupUs, was able to discover multiple group activities from
timestamped social interaction links [11]. While the discovered ac-
tivity topics were reported to be relatively relevant and can be in-
terpreted by experts, the automatic transformation from discovered
activity topics to general semantic meanings (e.g., meeting, chat-
ting, eating) is still missing.

This work was inspired from the above seminal work and our
first goal is to generalize the idea to the case of multimodal interac-
tion data. Specifically, our study was conducted on data collected
with Bluetooth (BT) and infrared sensors (IR), where interaction
links were localized by their proximity to fixed stations. Our re-
search questions for this goal were then closely related to typical
multimodal research questions: (a) How to exploit multiple types
of interaction sensors, in particular BT and IR sensors?, (b) How to
use location data to enhance the social interaction patterns?, and (c)
How well does the method perform on this multimodal dataset?.

The second goal of this paper was to build a fully automatic sys-
tem which senses social interactions, discovers emerging activity
topics, then labels the discovered activity topics with a set of pre-
defined activity labels. We believe that such a system has poten-
tial applications in several fields such as context-aware applications
(e.g., change ringtone when the user enters a meeting) or individ-
ual and social behavior analysis (e.g., the dependency between so-
cial activity and mood). To achieve this, we proposed a supervised
learning framework where activity topics were represented as fea-
ture vectors and random forest was used to learn and predict if a
given activity topic corresponded to a specific activity label.

This paper makes three major contributions. First, we extended
an existing algorithm to handle spatio-temporal context of interac-
tions and allowed the model to work with both BT and IR data.
Second, we introduced an automatic labeling method for the set
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of discovered activity topics. This component allows us to have
a fully automatic framework for sensing and interpreting human-
human interaction. Finally, our paper presents a case study of social
interactions in a real organization, in which we provided detailed
analysis on sensing quality and how well actual activities could be
recognized.

The rest of the paper is organized as follows. Section 2 discusses
related work in the context of human activity and social interaction
analysis. Section 3 presents the corpus on which our analysis were
conducted. Then, the proposed extension of GroupUs algorithm is
presented in Section 4. Section 5 presents our findings on manual
interpretation and automatic labeling of discovered activity topics.
Finally, Section 6 provides concluding remarks.

2. RELATED WORK

Research on human activity has been focused on individual ac-
tivity inferred from a variety of data types such as video and audio,
accelerometer, and indoor location [25, 8, 19]. While the number
of sensors for capturing individual activity keeps increasing over
time, another direction is to exploit social media for studying hu-
man activity. For example, Noulas et al. collected check-in data
from Foursquare, a location-based social network which connects
online social networks with physical world, and show that human
activity varies withIn the course of a day and of a week [21]. Us-
ing data from Twitter, Golder and Macy revealed the dependencies
between mood and physical/social activities [14].

Our study on the relationship between human activity and so-
cial interactions was inspired from an emerging body of work that
is investigating the possibilities of analyzing human and social be-
havior using mobile sensors. At present, Bluetooth and Wi-Fi net-
works allow the collection of data on specific structural and tempo-
ral aspects of social interaction, offering ways to approximate so-
cial interaction as spatial proximity or as the co-location of wear-
able devices, e.g., by means of Bluetooth hits [20, 1, 12]. These
means, however, do not always yield good proxies to the social in-
teractions occurring between the individuals carrying the devices.
Mobile phone traces suffer the same problem: they can be used
to model human mobility [15] with the great advantage of eas-
ily scaling up to millions of individuals; they too, however, offer
only rough approximations to social interaction in terms of spatial
co-location. Cattuto et al. [7] proposed a framework for monitor-
ing social interactions that reconciles scalability and resolution by
means of a sensing tier consisting of inexpensive and unobtrusive
active RFID devices. The devices are capable of sensing face-to-
face interactions of individuals as well as spatial proximity over
different length scales down to one meter or less. Another strategy
for behavioral data collection is to resort to image and video pro-
cessing based on cameras placed in the environment [9]. This ap-
proach provides very rich datasets that are, in turn, computationally
very complex: they require line-of-sight access to the monitored
spaces and people, specific effort for equipping the relevant phys-
ical spaces and can hardly cope with large scales of data. By us-
ing sociometric badges, some previous studies revealed important
insights into organizational processes, such as the impact of elec-
tronic communications on the business performance of teams [23]
or the relationship between several behavioral features captured by
sociometric badges, employee self-perceptions (from surveys) and
productivity [22].

Finally, unsupervised learning approach has been used for hu-
man activity discovery in the past, both for individual activities and
social activities. Vahdatpour et al. [26] find recurrent patterns from
multidimensional time-series given by multiple wearable sensors.
In a few recent papers, we proposed several topic models for captur-

ing group interaction patterns from Bluetooth proximity networks
[10, 11]. While these previous studies focus on activity discovery,
this paper also considers the automatic labeling task for the discov-
ered activities.

3. SOCIOMETRIC BADGES CORPUS

The aim of our study is to investigate the behavioral patterns
within organizational environments. The SocioMetric Badges Cor-
pus [18], which is exploited in this work, is a multimodal corpus
which has been collected in a research institute for over a six week
consecutive period, involving a population of 54 subjects (46 sub-
jects that belong to four computer science research groups and 7
subjects of the IT department), during their working hours. The
Sociometric Badge sensors were employed for this study; these
sensors are equipped with accelerometers, microphones, bluetooth
and infrared sensors which capture: the body movements, prosodic
speech features, collocation and face-to-face interactions respec-
tively [23]. For the purposes of our study we have exploited the
data provided from the Infrared and Bluetooth sensors.

3.1 Data collection

Organizational Information. The subjects involved in the study
take part in two distinct categories of employees; the administrative
group and the research units. The population of the study consisted
of 54 subjects, males=90.8%, females=9.2% with a mean of 36.83
years of age and standard deviation of 8.61 years. Due to technical
issues, the Bluetooth data was missing for 5 subjects. This study is
then conducted on the data of 49 subjects.

Bluetooth Data. Bluetooth detections can be used as a coarse
indicator of proximity between devices. Radio signal strength in-
dicator (RSSI) is a measure of the signal strength between trans-
mitting and receiving devices. The range of RSSI values for the ra-
dio transceiver in the badge is (-128, 127). All sociometric badges
broadcast their ID every five seconds using a 2.4 GHz transceiver
(T'Ryqdio = 12 transmissions per minute). Figure 1(a) shows the
Bluetooth proximity network where nodes correspond to subjects
(colored by office number) and the strengths of ties correspond
to the number of Bluetooth hits. The sensed network is relatively
dense and highly affected by the locations of subjects’ office. This
finding is not surprising given that the physical range of Bluetooth
is around 10 meters (Class 2), meaning that a large proportion of
BT hits do not correspond to an actual face-to-face interaction.

Infrared data. Infrared transmissions are used to detect face-
to-face interactions between people. In order for a badge to be de-
tected through an IR sensor, two individuals must have a direct line
of sight and the receiving badge’s IR must be within the transmit-
ting badge’s IR signal cone of height ~ < 1 meter and a radius of
r < htanf, where § = +15° degrees. The infrared transmission
rate (T R;r) was set to 1Hz. The accumulated IR network is visual-
ized in Figure 1(c) in the same way as the one for the BT network.
Since IR hits corresponds well to face-to-face interactions, the IR
network is less influenced by desk locations. Its structure is then
more complex than the BT networks.

Localizing interaction data. Seventeen BT devices were used
as fixed stations at key locations in order to infer the location of
subjects and their interactions. These points were the restaurant,
the cafeteria and the coffee machines as well the meeting and sem-
inar rooms at the hosting organization. The BT devices used for
localization have been grouped in four broader categories meeting
rooms, admin meeting room, restaurant, and cafeteria. For each
BT or IR hit (interaction hit), we find the nearest BT hit between
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(a) Raw Bluetooth hits

(b) Strong Bluetooth hits

(c) Infrared hits

Figure 1: In-person interaction networks captured by Bluetooth and Infrared sensors. Nodes are colored by the office numbers.

the observer and one of the fixed stations (localization hit), then
added the found location to the interaction hit if the time difference
between two hits is less than one minute. At the end, the locations
of BT or IR hits among subjects belong to one of the four categories
above or a special category called others in case where there is no
BT hit to any fixed station during the interaction.

3.2 BT or IR for interaction sensing?

While IR hits imply actual interaction between two people, the
strict detection conditions (of a direct line of sight and angles) mean
that the device may fail to capture actual interaction in several situ-
ations such as group meeting (e.g., people sit around a big table) or
when two interlocutors look at the same object (e.g., screen, board).
In practice, we found that IR data is very sparse and its density is
about 2% of the BT data set.

As an alternative to IR, BT proximity can be used as a reliable
method to sense face-to-face interaction with low false negative
rate. When using Bluetooth proximity data, the challenge is how to
reduce its high false positive detection rate which comes from its
relatively long range compared to the face-to-face interaction.

With these discussions in mind, we chose to combine both IR
and BT data, for which we only keep BT hits with strong sig-
nal strength (high RSSI value). In our experiment, a RSSI value
greater or equal than —80 is considered as strong, which is gener-
ally produced when the distance of the two devices is less than 5
meters (which is sufficient to detect interactions among people in a
meeting room of medium size). Figure 2 shows the distributions of
RSSI values of BT hits when there is an IR hit (that is, when there
is a face-to-face interaction) and when there is not (i.e., we are not
sure if there is a real interaction). For the given threshold, the plot
shows that 88% of IR hits can be captured by strong BT hits, and
24% of BT hits were classified as strong. The accumulated network
constructing from strong BT hits is showed in Figure 1(b).

4. SOCIAL ACTIVITY DISCOVERY WITH
TOPIC MODEL

Topic models are widely used for text analysis to find different
topics from text corpora and to summarize documents based on the
set of addressed topics. For example, latent Dirichlet allocation
(LDA) takes as input a corpus of documents, represented as bags
of words, and outputs the set of discovered topics, characterized
by their most frequent words [5]. In LDA, each word is assumed
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Figure 2: BT signal strength distributions change significantly
depending on whether the face-to-face interaction is captured
by IR or not.

to be generated from a (latent) topic, and each document can be
summarized by a multinomial distribution over topics.

The LDA framework can be applied to human-human interaction
mining where a word is an interaction between two individuals and
a document consists of interactions captured within a time inter-
val, as in the GroupUs algorithm [11]. While this algorithm works
on BT links with temporal context, we extend it to handle spatio-
temporal links sensed with BT and IR.

Data representation. The recording period is divided into time
slice of W minutes, where W should be large enough so that face-
to-face interactions can be captured reliably by at least BT or IR.
Each link ¢ contains the following attributes:

- u;: the head of the link (observer)

- v;: the head of the link (observed person)

- d;: day-of-week when the link was observed.

- h;: time-of-day when the link was observed.

- 1;: the location where the link was observed.

- ¢;: the type of the link (BT or IR).

- s;: the identifier of the time slice that the link belongs to. s; €
{1..5} where S is the total number of time slices.

In the data, wehad d; € {Mon, ..., Fri} and h; € {8am..6pm}
according to the data collection setting. The location variable can
be one of the five location categories described in Section 3.

Probabilistic model. Our extended GroupUs model is illus-
trated in Figure 3 where shaded nodes correspond to observed vari-
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Figure 3: Graphical model of the extended GroupUs for han-
dling spatio-temporal context and other additional attributes of
interaction links.
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ables, latent variables ¢ correspond hidden activity topics of links,
and 0 and ¢ are model parameters. We use a plate representation
where each node corresponds to a set of random variables, whose
size is given by the capital letter in the corner. .S stands for the num-
ber of slices, L stands for the number of links in slice s, and 7" is
the number of activity topics. Compared to GroupUs, the proposed
model has similar structure but contains more observed variables
(location [ and data type q), its generative process is then similar to
the original algorithm:
Initialization:

Draw distribution 65 ~ Dirichlet(cx) for each slice s.

Draw distribution ¢, ~ Dirichlet(3) for each activity topic ¢.
For each link of the slice s:

Draw an activity topic t|s ~ Multinomial(s).

Draw a first person u|t ~ Multinomial(¢1¢).

Draw a second person v|t ~ Multinomial (¢at).

Draw a day of week d|t ~ Multinomial(¢s:).

Draw a time of day hlt ~ Multinomial(paz).

Draw a location |t ~ Multinomial(¢s:).

Draw a data type q|t ~ Binomial(¢et)-

The model parameter ¢ is key for the interpretation of activ-
ity topics as it encodes the conditional distributions of observation
given activity topics. ¢1¢ and ¢o; characterize who were active
members of the group activity corresponding to activity topic t. ¢s¢
and ¢4 reveal when the activity happened while ¢s; indicate where
the activity was usually observed. Finally, ¢¢: indicates which type
of link is usually observed in the activity topic ¢. The joint proba-
bility of observed and unobserved variables can be written by:

P(u’ v’ d? h7 17 q’ S7 t; a’ ﬁ)

= f9,¢> P(u,v,d,h,1,q,s,t,0, ¢; , 3)000¢

= [, P(t]6)P(6; )06 [, P(u,v,d, h,1,qlt, $) P(¢: 8)06

)]
where the integration over model parameters 6 and ¢ can be com-
puted efficiently since we use conjugate priors all link attributes.
The model can be learned by collapsed Gibb sampling which sam-
ples the posterior distribution P(t|u,v,d, h,1,q «,3) and pro-
vides estimates of 6 and ¢.

The output of extended GroupUs algorithm consists of the learned
parameters (@ and ¢) and the vector of topic assignment t. As
discussed earlier, each activity topic ¢ can be characterized by the
corresponding distributions over people (parameterized by ¢+ and
¢2t), time (¢3; and ¢a¢), locations (¢s¢), and link types (¢et).
However, the topic assignment t is also helpful for interpreting the
discovered activity topics. Basically, this vector t assigns each link
in the dataset to a discovered activity topic, so that we know exactly
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Figure 4: Log likelihood as a function of number of activity
topics. Dashed line segments connect results before and after
merging. The merging step reduce significantly the number of
topics while keeping likelihood value reasonable compared to
the original model.

the set links of a given activity topic t. Based on this, we can extract
additional information about the activity topic such as to visualize
the “activeness” of the activity topic over time, find who were in-
volved at a specific time, or to compute the duration of the activity
at a specific time.

Post-processing of discovered activity topics. One limitation
of GroupUs and topic models in general lies in the number of ac-
tivity topics T" which need to be specified. A too small value of
T results in topics which corresponds to multiple activities, and a
large value of 7" wil produce some topics with similar patterns.

We remark that while a person might have multiple activities
with another person, activities usually differ in sets of involved
people and locations. We thus propose a post-processing process
which merge similar activity topics based on who is involved in the
activity and where the observed interactions took place. Interest-
ingly, the GroupUs algorithm provided an efficient way to extract
the set of active members from the distribution over people, ¢1¢
and ¢2¢ [11]. For the location, we can simply use the most likely
location ¢s; to define the dominant location of the activity topic.

After the merging step based on active members and dominant
location, the model structure is unchanged but the number of topics
may be reduced. The sampled topic assignment t can be trans-
formed to the merged model based on the mapping from the set of
original topics to the set of merged topics. Then, the model param-
eter 0 and ¢ of the merged model can be estimated based on the
topic assignment according to the merged model.

S. RESULTS

We set the slice duration W to 5 minutes, resulting in 3670 non
empty slices for the 6 weeks of data. Overall, there are 160,000
dyadic links where the distribution links over 5 location categories
meeting rooms, admin meeting room, restaurant,cafeteria, and oth-
ers are 14.7%, 10.8%, 7.6%, 8.6%, and 58.2% respectively. We
tried multiple values for the number of topic 7, varying from 50
to 200, to study the behavior of the model with respect to this hy-
per parameter. For each value of T', the algorithm outputs a set of
original activity topics and a corresponding set of merged ones.

Figure 4 shows the log likelihood of the data as a function of
the number of topics 7". The dashed line segments connect results
before and after merging topic. As can be seen, the merging step
reduces significantly the number of activity topics while keeping
the likelihood at a reasonable level. Since the merging step is quite
efficient, we continue the study with merged activity topics instead
of the original ones. The main advantage is to reduce the number
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Figure 5: Example of activity topic visualization for the anno-
tation process. Various information such as time, location, and
duration are shown for activity topic 33 in set 3 of the experi-
ment.

of activity topics to be annotated.

The remaining part of this section is dedicated to the interpre-
tation of the discovered topic. In Subsection 5.1, we provide an
subjective validation of the set of discovered topics and highlight
our findings. In Subsection 5.2, we go further by studying the pos-
sibility of automatic interpretation of the set of discovered topics
into predefined categories, thus providing a fully automatic frame-
work for human-human interaction sensing.

5.1 Manual interpretation

The goal of manual interpretation is to validate if the discovered
activity topics are meaningful and to understand which kind of ac-
tivity can be captured by the extended GroupUs algorithm. We got
the annotation done for 6 sets of merged activity topics, which were
outputted by the extended GroupUs algorithm with various settings
of T'. The 6 sets consists of 40, 66, 86, 131, and 71 merged topics
and they were numbered from 3 to 8 respectively (Cf. Table 1).

Annotation process: Three people from the organization where
the data were collected had accepted to participate in the annotation
experiment. Therefore, these annotators are assumed to personally
know the subjects, their roles, relationships between them, and also
main activities in the organization.

The visualization of each activity topic is built from the outputs
of the extended GroupUs algorithm as in Figure 5. Each topic can

be described directly with the learned parameter ¢, which contains
the distribution of links over people, location, and time. We do not
include the distribution over link types (BT or IR) these distribution
usually is dominated by BT and the patterns are unclear. Besides
the plots coming from ¢, we also use the assignment of each inter-
action link to an activity topic (the vector t) for more complex vi-
sualization such as computing the number of interactions between
two given participants for a given activity topic. At the end, there
are six different plots for each activity topic ¢ which help the anno-
tator to recognize the activity(ies):

o Interaction network: The network of people for the considered
activity topic; active members are highlighted in a different color
(yellow). Nodes’ positions correspond to the actual desk locations
of subjects to simplify the identification of subject.

© Time: The distribution of links over the weekly calendar. While
this can be given by the learned parameter ¢ in an factorized form
(@3t ¢4tT), we decide to estimate the weekly calendar distribution
based on t to have a more accurate estimation.

¢ Location: The distribution of links over locations where they
were observed is given by ¢s:.

o Interaction over time: The distribution of links over 5-min time
slices. This plot is helpful to know the number of occurrences of
the activity and the number of links when the activity happened.

¢ Duration: The distribution of time slices where the activity topic
t happened over the duration of the activity.

© Number of involved people: Distribution of time slices where the
activity topic ¢ happened over the number of people who were in-
volved (having a link assigned to activity topic ¢ in the time slice).

For each discovered activity topic, the annotator gave a relevance
score from 1(not relevant) to 4 (very relevant). The relevance score
is a subjective assessment of the annotator about the discovered
activity topic, for which we do not have a specific definition for
assessing how well the algorithm did for each activity topic. We
gave some hints to the annotators by suggesting several dimension
to look at: is meaningful? is easy to interpret? corresponds to an
actual activity of people? is it a specific activity or it corresponds
to multiples activities?. If an activity topic is meaningful, easy to
interpret, and corresponds to an actual social activity then ideally
it should get the highest score of 4. If some dimensions is not sat-
isfied then the relevance score is lowered. Note that low relevance
score can come from sensing framework (proximity link does not
correspond to interaction) and/or the discovery method.

The annotator was also asked to assign each presented activity
topic to one or multiple predefined semantic labels. A collabora-
tive annotation session was done online by annotators and authors
to decide what are the labels for social activity. From this pilot
analysis, we agreed that the set of discovered activity topics can be
explained by seven labels:
¢ dailyNearbyOlffice: false positive face-to-face interactions from
people who sit very close to each other;

o randomChatWork: work related discussion between people who
work together;

o randomChatNonWork: non-work interaction (but not a coffee
break) between friends such as chatting, moving together, smok-
ing together;

© coffeeBreak: coffee breaks near a coffee machine or the cafeteria;
© restaurant: having lunch in the restaurant area;

o irregularMeeting: meeting of a group of people, which does not
always happens at the same time and the same day of the week.

o weeklyMeeting: happening every week at the same time and day.

Note that if the discovered activity topic seems to include multi-
ple activities (for example, randomChatNonWork and CoffeeBreak
together), then the annotator can stick multiple labels. All anno-



tations were done on a shared Google spreadsheet, each set corre-
sponds to one separate sheet. Each annotator was the responsible
person of one or multiple sets and need to finish the assigned sets.
Furthermore, other annotators can look at his/her annotations and
comment. The objective was to find an agreement between annota-
tors rather than averaging annotation from multiple annotators.

Discovered activity topics. Examples of discovered topics are
given in Table 1 for which we report the experience of the annota-
tor when she/he look at the visualization of the activity topic. The
“Code” field corresponds to the set and the number of the discov-
ered activity topic. The “Observation” field is our text description
for the activity topic in terms of who, when, and where. These
information can be easily extracted from the activity topic visual-
ization. The “Annotation” field corresponds to the annotated la-
bel(s) and relevance score. Finally, we report the annotator com-
ment about the discovered activity topic in italic.

We selected a number of activity topics to demonstrate what kind
of activities were discovered and report the justifications from the
annotators about their annotations. The topic 3 in set3 corresponds
to coffee break interactions of 13 people in several offices, its visu-
alization is shown in Figure 5. From the plots, we can extract easily
that there are this particular activity topic involved 13 people (yel-
low nodes in the network plot), could happen any time, and took
place at the coffee machine. The timeline slot in Figure 5(c) show
that this activity happened every working day of the week, and the
distributions in Figure 5(d) shows that the events of this activity are
usually short (lest than 15minutes) and that people usually come in
group of 2 or 3 people. These findings are summarized in Table 1
and they correspond to the comment from the annotator.

Due to space constraint, we put the visualization of other activity
topics in a separated supplementary document, and only report the
summarization of these activity topics in Table 1. The topic 30 of
set6 is an example of unreal interaction between four people com-
ing from a small office. The annotator can recognize this activity
topic as a dailyNearbyOffice since the interaction links occur al-
most everyday and lasts several hours. The topic 57 in set6 is an ex-
ample of interaction between friends and between colleagues. The
annotator thinks that it is a mix of randomChatWork and random-
ChatNonWork since these kind of social activity usually involve
only 2 or 3 people; and the durations of interaction are usually short
(quick chat) but can be relatively long (probably work related dis-
cussion). The activity topic 43 of set6 involve 7 people who works
together in several projects. Based on the duration and relationship
between these people, the annotator labeled it as randomChatWork.

In some case, the discovered activity topic does not correspond
to a single activity label. We found that randomChatNonWork is
usually confused with randomChatWork since their patterns about
number of people, time, and location are very similar. The main
difference between the two activity labels lies in the duration of
interaction of event and the relationship between people. These in-
formation, however, had not been exploited by the model so that
the discovered activity topics are not discriminative between the
two activity labels. The activity topic 5 of set6 is a typical example
of the confusion between randomChatWork and randomChatNon-
Work. These are interactions between two people from the same
room, which are relatively short but it is unclear if the discussion
is work-related. Similarly, the activity topic 57 of set6 is another
example of the confusion, but involve more people, and some of
them are friends.

The three remaining examples are dedicated to restaurant (set3-
29), irregularMeeting (set6-12), and weeklyMeeting (set4-18). While
the patterns of these two examples of restaurant and weeklyMeet-

Table 1: Examples of discovered activity topics, their annota-
tions, and comments from annotators.

Code |Observation Annotation

set4-33 | Who: 13 people coffeeBreak
(Fig. 5)| When: can be any time, most pop- | relevance: 4
ular around 10am and 4pm
Where: coffee machine

“This activity topic corresponds to interactions during coffee
breaks; people usually came in group of 2 or 3; lasted around 15
minutes, this activity topic is relevant and it reflects the actual ac-
tivity.”

set6-30| Who: 4 people dailyNearbyOffice
When: can be any time of the day |relevance: 1
Where: not available (no connec-
tion to any fixed station)

“Happened almost everyday from 10am to 7pm with a break at
lunch; this activity topic does not seem to correspond to real face-
to-face discussion since these 4 people came from a small office and
the activity happened almost everyday and lasts several hours. Not
a relevant activity.”

set6-43| Who: 7 people randomChatWork
When: any time, usually after|relevance: 4
lunch
Where: not available

“Two or three people discuss together; usually short but can be
long up to 2 hours; these people work together thus the topic is very
relevant; these seven people come from different offices.”

set6-5 | Who: two people randomChatWork,
When: can be any time of the day |randomChatNonWork
Where: not available relevance: 3

“Interaction between two colleagues from the same office; usually
last less than 15 minutes but it is not clear if the discussion is work-
related since these two people also work together.”

set6-57 | Who: 7 people randomChatWork,
When: can be any time of the day |randomChatNonWork
Where: not available relevance: 3

“Irregular interactions involving 2 or 3 people; interaction dura-
tions are usually less than 15 minutes but can be up to 2 hours; can
be a discussion about work or non-work chatting since some people
are friends; The seven people come from different offices.”

set3-29 | Who: 4 people restaurant
When: between 12:00 and 14:00 |relevance: 4
Where: restaurant area

“These 4 people (sitting in the same office) usually come together
to have lunch, lasts usually one hour”

set6-12 | Who: 8 people irregularMeeting
When: some Mondays and Tues- |relevance: 2
days, Spm-6pm

Where: usually at meeting rooms

“It is clear that this activity topic corresponds to one-hour meet-
ings; the 8 people actually work together; the number of attendees
vary from 5 to 10, make it hard to interpret the activity topic.”

set4-18| Who: 11 people weeklyMeeting
When: every Monday at 12pm- |relevance: 4
1pm
Where: not available

“Group meeting where members are supposed to participate every
week; lasting one hour; happened every Monday in the 6 week pe-
riod.”
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Figure 6: Relevance scores of activity topics in different cate-
gories of activity.

ing are clean (with the highest relevance score), the chosen activity
topics of irregularMeeting was not easy to interpret for the annota-
tor. More specifically, the activity topics correspond to meetings of
one hour, but the number (and the composition) of attendees varied
significantly from one meeting to another, making it hard to recog-
nize in which context these meetings were held (for which projects,
held by which group of people, etc.)

Subjective evaluation. In overall, 16% of the activity topics get
relevance score 1 (Not relevant), another 16% of them get score 2
(OK - but not so good), 25% with score 3 (Good), and the remain-
ing 44% of activity topics get score 4 (Very relevant). After a close
inspection, we found clear patterns on the dependencies between
relevance score and the activity label. On one hand, most activity
topics with low relevance score were annotated as dailyNearbyOf-
fice, corresponding to groups of people whose desks are very close.
While the captured interaction links did not correspond to real in-
teraction due to sensing method (proximity does not always mean
interaction), the model was able to regroup them in several activity
topics. We see in the next section that there is the possibility to rec-
ognize these "unreal" interactions automatically. On the other hand,
coffee breaks, lunch in the restaurant, and weekly meetings were
well discovered by the model which are relatively easy to interpret.
The relevance of the remaining activity topics were dominated by
score 3 and 2, corresponding to Good and OK, respectively. As
stated earlier in the description of the annotation process, low rel-
evance scores may come from sensing quality and/or the method.
Our results confirmed that low relevance scores come mainly from
the sensing part (false positive interaction links) while the activity
discovery algorithm performs relatively well.

5.2 Automatic labeling of topic

In the previous section, we show that many of the discovered ac-
tivity topics correspond to the actual group activity, and they can be
interpreted by people who know the organization well. As the next
step, it would be practical to have a system that uncovers multiple
activity topics and recognizes automatically their semantic mean-
ing such as weekly meetings or coffee breaks. We formalize the
recognition problem in a supervised learning framework where data
points correspond to discovered activity topics and the ground-truth
is a whether an activity topic correspond to a given label.

As location and social activity are closely related, one may in-
fer the social activity directly from the location of interaction (e.g.,
having coffee break at the coffee machine). However, location in-
formation is not always available, and people may have multiple
activities at the same location (e.g., irregular meeting or weekly
meeting at the meeting room). We propose to use random forest for
labeling discovered activity topics based on various information,

Table 2: Feature extraction for automatic labeling of discov-
ered activity topics.

Group |Description

Location | The distribution of links over locations.

Time The distributions over time-of-day and day-of-week.
People |Number of active members and distribution of time
slices over the number of involved people.

Duration | The distribution of time slices over durations.

Link The distribution of number of links per time slice.

including location or not. By studying two prediction systems with
and without location features, we can see whether it is possible to
infer the activity without the need of location data (e.g., for dataset
which does not contain location information or the semantic mean-
ing of location is unknown) and how much location information
can help improving the prediction performance.

Feature extraction. For the automatic labeling task, each dis-
covered activity topic ¢ is represented by a vector of 49 features
belonging to six groups as shown in Table 2. The set of location
features consists of the distribution over the file categories of loca-
tion, which is encoded by ¢s:. The entropy of these multinomial
distributions is also used as a feature. Time features come from the
distribution over day of the week, ¢3¢, and time of the day, ¢n, as
well as their entropy. People features are computed based on the
detected number of people involved in the activity topic. We used
the number of active members (given by GroupUs algorithm) and
the distribution over number of attendees (i.e., fraction of active
time slices in which there are exactly X people being involved in
activity topic ¢, with X varying from 2 to 49), as showed in Figure
5(d,right). Similarly, duration features are computed as the fraction
of active time slices of activity topic ¢ which are parts of an activity
lasting Y minutes (Figure 5(d,left)). Finally, for link features, we
compute the fraction of time slices of the activity topic ¢ which has
Z interaction links being assigned to the activity topic.

Automatic labeling performance. The labeling task is to pre-
dict if a discovered activity topic corresponds to an activity label.
Thus, for the seven activity labels, we have seven binary classifica-
tion tasks. We use random forest classifier with 1000 trees and all
results are obtained with a 10-fold cross-validation process on 492
annotated activity topics.

Table 3 reports automatic labeling accuracies for the seven pre-
defined activity labels. We use majority class predictor as a baseline
and compare its performances with two random forest systems: one
with location features and one without location features. As can be
seen, all activity labels are predictable to some degrees. coffee-
Break and restaurant can be reliably recognized by random forest
systems with and without location features. On the contrary, the
automatic recognition systems do not outperform the baseline per-
formance for randomChatNonWork. This issue may come from the
fact that it not easy to distinguish between randomChatNonWork
and randomChatWork without knowing the actual relationship be-
tween people (e.g., close friends, collaborators of same project).
This assumption is confirmed by the prediction results of the spe-
cial activity label randomChat which merges randomChatWork and
randomChatNonWork. The reduction in the number of errors (be-
tween RF and Baseline) for randomChatNonWork, randomChat-
Work, and randomChat are respectively 0%, 32% and 47%.

Comparing the two random forest systems with and without lo-
cation features, we found that their performances are comparable
for many activity labels except randomChat and coffeeBreak. To
verify if the location information is key to distinguish these two



Table 3: Automatic labeling accuracies of random forest sys-
tems with and without location features. Baseline performance
was computed based on majority class predictor.

Category Baseline | RF | RF w/o location
dailyNearbyOffice 0.86 0.90 | 0.89
randomChatWork 0.75 0.83 | 0.81
randomChatNonWork | 0.85 0.85 | 0.85
coffeeBreak 0.80 0.99 | 0.95
restaurant 0.99 0.99 | 0.98
irregularMeeting 0.88 0.89 | 0.88
weeklyMeeting 0.78 0.88 | 0.88
randomChat 0.70 0.84 | 0.79
randomChatCoffee 0.52 0.85 | 0.86

categories, we apply merging technique again to have a new label
called randomChatCoffee. Not surprisingly, the location informa-
tion is not helpful to distinguish activity topics of the merged cate-
gory randomChatCoffee and the rest. At the end, location informa-
tion is helpful to distinguish between randomChat and coffeeBreak,
while the prediction performance for other activity categories does
not depend significantly on location information.

6. CONCLUSION

This study contributes to the understanding of social activity and
opens the possibility to infer social activity from interaction be-
tween people. We have proposed a variant of topic model which
can discover various activity topics from timestamped, localized
social interactions being sensed by BT and IR sensors. We also
showed how to assign these discovered topics to common sense
activity label, thus enabling a fully automatic framework for sens-
ing and inferring social activity based on mobile sensor network.
The analysis was conducted on a real interaction data set in an
organization, and the method was validated by their people. The
subjective evaluation results suggest that many discovered activity
topic are highly relevant, while false positive interactions were not
filtered completely from the data set. Interestingly, these sensing
noise were regrouped in several activity topics, thus the noise may
be filtered by the proposed probabilistic method. Finally, our ex-
periment on the automatic labeling demonstrates that some social
activity can be recognized reliably by social interaction, even when
the location of the interaction is not available.

As future work, we are interested in applying the framework to
human behavior analysis to characterize the relationship between
social activity and personal state such as mood or job performance.
Our framework can be extended to incorporate more behavioral
features such as speech or body activity. While this study considers
social network sensed by multiple subjects, some of the ideas can
be applied to interaction data being sensed by a single individual.
Another direction that we want to investigate is to compare our
global network analysis with ego network analysis to understand
the advantages and shortcomings of each approach.
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