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Abstract
We propose a unified neural network architecture and learning algorithm that can be applied to var-
ious natural language processing tasks including part-of-speech tagging, chunking, named entity
recognition, and semantic role labeling. This versatilityis achieved by trying to avoid task-specific
engineering and therefore disregarding a lot of prior knowledge. Instead of exploiting man-made
input features carefully optimized for each task, our system learns internal representations on the
basis of vast amounts of mostly unlabeled training data. This work is then used as a basis for
building a freely available tagging system with good performance and minimal computational re-
quirements.
Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text into aprogrammer friendly
data structure that describes the meaning of the natural language text? Unfortunately, no consensus
has emerged about the form or the existence of such a data structure. Until such fundamental
Articial Intelligence problems are resolved, computer scientists must settle forthe reduced objective
of extracting simpler representations that describe limited aspects of the textual information.

These simpler representations are often motivated by specific applications (for instance, bag-
of-words variants for information retrieval), or by our belief that they capture something more gen-
eral about natural language. They can describe syntactic information (e.g., part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disambiguation, semantic role
labeling, named entity extraction, and anaphora resolution). Text corpora have been manually an-
notated with such data structures in order to compare the performance of various systems. The
availability of standard benchmarks has stimulated research in Natural Language Processing (NLP)
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and effective systems have been designed for all these tasks. Such systems are often viewed as
software components for constructing real-world NLP solutions.

The overwhelming majority of these state-of-the-art systems address their single benchmark
task by applying linear statistical models to ad-hoc features. In other words, the researchers them-
selves discover intermediate representations by engineering task-specific features. These features
are often derived from the output of preexisting systems, leading to complex runtime dependencies.
This approach is effective because researchers leverage a large body of linguistic knowledge. On
the other hand, there is a great temptation to optimize the performance of a system for a specific
benchmark. Although such performance improvements can be very useful in practice, they teach us
little about the means to progress toward the broader goals of natural language understanding and
the elusive goals of Artificial Intelligence.

In this contribution, we try to excel onmultiple benchmarkswhile avoiding task-specific engi-
neering. Instead we use asingle learning systemable to discover adequate internal representations.
In fact we view the benchmarks as indirect measurements of the relevanceof the internal represen-
tations discovered by the learning procedure, and we posit that these intermediate representations
are more general than any of the benchmarks. Our desire to avoid task-specific engineered features
prevented us from using a large body of linguistic knowledge. Instead wereach good performance
levels in most of the tasks by transferring intermediate representations discovered on large unlabeled
data sets. We call this approach “almost from scratch” to emphasize the reduced (but still important)
reliance on a priori NLP knowledge.

The paper is organized as follows. Section 2 describes the benchmark tasks of interest. Sec-
tion 3 describes the unified model and reports benchmark results obtained with supervised training.
Section 4 leverages large unlabeled data sets (∼ 852 million words) to train the model on a language
modeling task. Performance improvements are then demonstrated by transferring the unsupervised
internal representations into the supervised benchmark models. Section 5 investigates multitask
supervised training. Section 6 then evaluates how much further improvementcan be achieved by
incorporating standard NLP task-specific engineering into our systems. Drifting away from our ini-
tial goals gives us the opportunity to construct an all-purpose tagger thatis simultaneously accurate,
practical, and fast. We then conclude with a short discussion section.

2. The Benchmark Tasks

In this section, we briefly introduce four standard NLP tasks on which we will benchmark our
architectures within this paper: Part-Of-Speech tagging (POS), chunking (CHUNK), Named Entity
Recognition (NER) and Semantic Role Labeling (SRL). For each of them, we consider a standard
experimental setup and give an overview of state-of-the-art systems onthis setup. The experimental
setups are summarized in Table 1, while state-of-the-art systems are reported in Table 2.

2.1 Part-Of-Speech Tagging

POS aims at labeling each word with a unique tag that indicates itssyntactic role, for example, plural
noun, adverb, . . . A standard benchmark setup is described in detail byToutanova et al. (2003).
Sections 0–18 of Wall Street Journal (WSJ) data are used for training,while sections 19–21 are for
validation and sections 22–24 for testing.

The best POS classifiers are based on classifiers trained on windows oftext, which are then fed
to a bidirectional decoding algorithm during inference. Features include preceding and following
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Task Benchmark Data set Training set Test set
(#tokens) (#tokens) (#tags)

POS Toutanova et al. (2003) WSJ sections 0–18 sections 22–24 (45 )
( 912,344 ) ( 129,654 )

Chunking CoNLL 2000 WSJ sections 15–18 section 20 ( 42 )
( 211,727 ) ( 47,377 ) (IOBES)

NER CoNLL 2003 Reuters “eng.train” “eng.testb” ( 17 )
( 203,621 ) ( 46,435 ) (IOBES)

SRL CoNLL 2005 WSJ sections 2–21 section 23 ( 186 )
( 950,028 ) + 3 Brown sections (IOBES)

( 63,843 )

Table 1: Experimental setup: for each task, we report the standard benchmark we used, the data set
it relates to, as well as training and test information.

System Accuracy
Shen et al. (2007) 97.33%
Toutanova et al. (2003) 97.24%
Giménez and M̀arquez (2004) 97.16%

(a) POS

System F1
Shen and Sarkar (2005) 95.23%
Sha and Pereira (2003) 94.29%
Kudo and Matsumoto (2001) 93.91%

(b) CHUNK

System F1
Ando and Zhang (2005) 89.31%
Florian et al. (2003) 88.76%
Kudo and Matsumoto (2001) 88.31%

(c) NER

System F1
Koomen et al. (2005) 77.92%
Pradhan et al. (2005) 77.30%
Haghighi et al. (2005) 77.04%

(d) SRL

Table 2: State-of-the-art systems on four NLP tasks. Performance is reported in per-word accuracy
for POS, and F1 score for CHUNK, NER and SRL. Systems in bold will be referred as
benchmark systemsin the rest of the paper (see Section 2.6).

tag context as well as multiple words (bigrams, trigrams. . . ) context, and handcrafted features to
deal with unknown words. Toutanova et al. (2003), who use maximum entropy classifiers and
inference in a bidirectional dependency network (Heckerman et al., 2001), reach 97.24% per-word
accuracy. Giḿenez and M̀arquez (2004) proposed a SVM approach also trained on text windows,
with bidirectional inference achieved with two Viterbi decoders (left-to-right and right-to-left). They
obtained 97.16% per-word accuracy. More recently, Shen et al. (2007) pushedthe state-of-the-art up
to 97.33%, with a new learning algorithm they callguided learning, also for bidirectional sequence
classification.
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2.2 Chunking

Also called shallow parsing, chunking aims at labeling segments of a sentencewith syntactic con-
stituents such as noun or verb phrases (NP or VP). Each word is assigned only one unique tag, often
encoded as a begin-chunk (e.g., B-NP) or inside-chunk tag (e.g., I-NP). Chunking is often evaluated
using the CoNLL 2000 shared task.1 Sections 15–18 of WSJ data are used for training and section
20 for testing. Validation is achieved by splitting the training set.

Kudoh and Matsumoto (2000) won the CoNLL 2000 challenge on chunking with a F1-score
of 93.48%. Their system was based on Support Vector Machines (SVMs). Each SVM was trained
in a pairwise classification manner, and fed with a window around the word ofinterest containing
POS and words as features, as well as surrounding tags. They perform dynamic programming at
test time. Later, they improved their results up to 93.91% (Kudo and Matsumoto, 2001) using an
ensemble of classifiers trained with different tagging conventions (see Section 3.3.3).

Since then, a certain number of systems based on second-order randomfields were reported
(Sha and Pereira, 2003; McDonald et al., 2005; Sun et al., 2008), all reporting around 94.3% F1
score. These systems use features composed of words, POS tags, andtags.

More recently, Shen and Sarkar (2005) obtained 95.23% using a voting classifier scheme, where
each classifier is trained on different tag representations2 (IOB, IOE, . . . ). They use POS features
coming from an external tagger, as well carefully hand-craftedspecializationfeatures which again
change the data representation by concatenating some (carefully chosen) chunk tags or some words
with their POS representation. They then build trigrams over these features,which are finally passed
through a Viterbi decoder a test time.

2.3 Named Entity Recognition

NER labels atomic elements in the sentence into categories such as “PERSON” or“LOCATION”.
As in the chunking task, each word is assigned a tag prefixed by an indicator of the beginning or the
inside of an entity. The CoNLL 2003 setup3 is a NER benchmark data set based on Reuters data.
The contest provides training, validation and testing sets.

Florian et al. (2003) presented the best system at the NER CoNLL 2003 challenge, with 88.76%
F1 score. They used a combination of various machine-learning classifiers. Features they picked
included words, POS tags, CHUNK tags, prefixes and suffixes, a largegazetteer (not provided by
the challenge), as well as the output of two other NER classifiers trained onricher data sets. Chieu
(2003), the second best performer of CoNLL 2003 (88.31% F1), also used an external gazetteer
(their performance goes down to 86.84% with no gazetteer) and several hand-chosen features.

Later, Ando and Zhang (2005) reached 89.31% F1 with a semi-supervised approach. They
trained jointly a linear model on NER with a linear model on two auxiliary unsupervised tasks.
They also performed Viterbi decoding at test time. The unlabeled corpus was 27M words taken
from Reuters. Features included words, POS tags, suffixes and prefixes or CHUNK tags, but overall
were less specialized than CoNLL 2003 challengers.

1. Seehttp://www.cnts.ua.ac.be/conll2000/chunking .
2. See Table 3 for tagging scheme details.
3. Seehttp://www.cnts.ua.ac.be/conll2003/ner .
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2.4 Semantic Role Labeling

SRL aims at giving a semantic role to a syntactic constituent of a sentence. In the PropBank
(Palmer et al., 2005) formalism one assigns roles ARG0-5 to words that arearguments of a verb
(or more technically, apredicate) in the sentence, for example, the following sentence might be
tagged “[John]ARG0 [ate]REL [the apple]ARG1 ”, where “ate” is the predicate. The precise arguments
depend on a verb’sframeand if there are multiple verbs in a sentence some words might have multi-
ple tags. In addition to the ARG0-5 tags, there there are several modifier tags such as ARGM-LOC
(locational) and ARGM-TMP (temporal) that operate in a similar way for all verbs. We picked
CoNLL 20054 as our SRL benchmark. It takes sections 2–21 of WSJ data as training set,and sec-
tion 24 as validation set. A test set composed of section 23 of WSJ concatenated with 3 sections
from the Brown corpus is also provided by the challenge.

State-of-the-art SRL systems consist of several stages: producing aparse tree, identifying which
parse tree nodes represent the arguments of a given verb, and finallyclassifying these nodes to
compute the corresponding SRL tags. This entails extracting numerous basefeatures from the parse
tree and feeding them into statistical models. Feature categories commonly usedby these system
include (Gildea and Jurafsky, 2002; Pradhan et al., 2004):

• the parts of speech and syntactic labels of words and nodes in the tree;

• the node’s position (left or right) in relation to the verb;

• the syntactic path to the verb in the parse tree;

• whether a node in the parse tree is part of a noun or verb phrase;

• the voice of the sentence: active or passive;

• the node’s head word; and

• the verb sub-categorization.

Pradhan et al. (2004) take these base features and define additional features, notably the part-of-
speech tag of the head word, the predicted named entity class of the argument, features providing
word sense disambiguation for the verb (they add 25 variants of 12 new feature types overall). This
system is close to the state-of-the-art in performance. Pradhan et al. (2005) obtain 77.30% F1 with a
system based on SVM classifiers and simultaneously using the two parse trees provided for the SRL
task. In the same spirit, Haghighi et al. (2005) use log-linear models on each tree node, re-ranked
globally with a dynamic algorithm. Their system reaches 77.04% using the five top Charniak parse
trees.

Koomen et al. (2005) hold the state-of-the-art with Winnow-like (Littlestone,1988) classifiers,
followed by a decoding stage based on an integer program that enforces specific constraints on SRL
tags. They reach 77.92% F1 on CoNLL 2005, thanks to the five top parse trees produced by the
Charniak (2000) parser (only the first one was provided by the contest) as well as the Collins (1999)
parse tree.

4. Seehttp://www.lsi.upc.edu/ ˜ srlconll .
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2.5 Evaluation

In our experiments, we strictly followed the standard evaluation procedureof each CoNLL chal-
lenges for NER, CHUNK and SRL. In particular, we chose the hyper-parameters of our model
according to a simple validation procedure (see Remark 8 later in Section 3.5),performed over the
validation set available for each task (see Section 2). All these three tasksare evaluated by comput-
ing the F1 scores overchunksproduced by our models. The POS task is evaluated by computing
the per-wordaccuracy, as it is the case for the standard benchmark we refer to (Toutanova et al.,
2003). We used theconlleval script5 for evaluating POS,6 NER and CHUNK. For SRL, we used
thesrl-eval.pl script included in thesrlconll package.7

2.6 Discussion

When participating in an (open) challenge, it is legitimate to increase generalization by all means.
It is thus not surprising to see many top CoNLL systems usingexternal labeled data, like additional
NER classifiers for the NER architecture of Florian et al. (2003) or additional parse trees for SRL
systems (Koomen et al., 2005). Combining multiple systems or tweaking carefully features is also
a common approach, like in the chunking top system (Shen and Sarkar, 2005).

However, whencomparingsystems, we do not learn anything of the quality of each system if
they were trained withdifferent labeled data. For that reason, we will refer tobenchmark systems,
that is, top existing systems which avoid usage of external data and have been well-established in
the NLP field: Toutanova et al. (2003) for POS and Sha and Pereira (2003) for chunking. For NER
we consider Ando and Zhang (2005) as they were using additionalunlabeleddata only. We picked
Koomen et al. (2005) for SRL, keeping in mind they use 4 additional parse trees not provided by
the challenge. These benchmark systems will serve as baseline references in our experiments. We
marked them in bold in Table 2.

We note that for the four tasks we are considering in this work, it can be seen that for the
more complex tasks (with corresponding lower accuracies), the best systems proposed have more
engineered features relative to the best systems on the simpler tasks. Thatis, the POS task is one of
the simplest of our four tasks, and only has relatively few engineered features, whereas SRL is the
most complex, and many kinds of features have been designed for it. This clearly has implications
for as yet unsolved NLP tasks requiring more sophisticated semantic understanding than the ones
considered here.

3. The Networks

All the NLP tasks above can be seen as tasks assigning labels to words. The traditional NLP ap-
proach is: extract from the sentence a rich set of hand-designed features which are then fed to a
standard classification algorithm, for example, a Support Vector Machine (SVM), often with a lin-
ear kernel. The choice of features is a completely empirical process, mainly based first on linguistic
intuition, and then trial and error, and the feature selection is task dependent, implying additional
research for each new NLP task. Complex tasks like SRL then require a large number of possibly

5. Available athttp://www.cnts.ua.ac.be/conll2000/chunking/conllev al.txt .
6. We used the “-r ” option of theconlleval script to get the per-word accuracy, for POS only.
7. Available athttp://www.lsi.upc.es/ ˜ srlconll/srlconll-1.1.tgz .
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Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impact the computational cost which
might be important for large-scale applications or applications requiring real-time response.

Instead, we advocate a radically different approach: as input we will try to pre-process our
features as little as possible and then use a multilayer neural network (NN) architecture, trained in
an end-to-end fashion. The architecture takes the input sentence and learns several layers of feature
extraction that process the inputs. The features computed by the deep layers of the network are
automatically trained by backpropagation to be relevant to the task. We describe in this section a
general multilayer architecture suitable for all our NLP tasks, which is generalizable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layer extracts features for
each word. The second layer extracts features from a window of words or from the whole sentence,
treating it as asequencewith local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural networkfθ(·), with parametersθ. Any feed-forward neural network withL
layers, can be seen as a composition of functionsf l

θ(·), corresponding to each layerl :

fθ(·) = f L
θ ( f L−1

θ (. . . f 1
θ (·) . . .)) .

2467



COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

Input Sentence

Lookup Table

Convolution

Max Over Time

Linear

HardTanh

Linear

Text The cat sat on the mat

Feature 1 w
1

1
w

1

2 . . . w
1

N
...

Feature K w
K
1

w
K
2 . . . w

K

N

LTW 1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...

LTW Kxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
max(·)

M
2
× ·

M
3
× ·

d

P
a
d
d
in

g

P
a
d
d
in

g

n
1
hu

M
1
× ·xxxxxxxxxxxxxxxxxxxxn
1
huxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

n
2
huxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxn

3
hu

= #tags

Figure 2: Sentence approach network.

In the following, we will describe each layer we use in our networks shownin Figure 1 and Figure 2.
We adopt few notations. Given a matrixA we denote[A]i, j the coefficient at rowi and columnj

in the matrix. We also denote〈A〉dwin
i the vector obtained by concatenating thedwin column vectors

around theith column vector of matrixA∈ R
d1×d2:

[

〈A〉dwin
i

]T

=
(

[A]1, i−dwin/2 . . . [A]d1, i−dwin/2 , . . . , [A]1, i+dwin/2 . . . [A]d1, i+dwin/2

)

.
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As a special case,〈A〉1i represents theith column of matrixA. For a vectorv, we denote[v]i the
scalar at indexi in the vector. Finally, a sequence of element{x1, x2, . . . , xT} is written[x]T1 . Theith

element of the sequence is[x]i .

3.2 Transforming Words into Feature Vectors

One of the key points of our architecture is its ability to perform well with the useof (almost8)
raw words. The ability for our method to learn good word representations is thus crucial to our
approach. For efficiency, words are fed to our architecture as indices taken from a finite dictionary
D. Obviously, a simple index does not carry much useful information about the word. However,
the first layer of our network maps each of these word indices into a feature vector, by a lookup
table operation. Given a task of interest, a relevant representation of each word is then given by
the corresponding lookup table feature vector, which istrained by backpropagation, starting from
a random initialization.9 We will see in Section 4 that we can learn very good word representa-
tions from unlabeled corpora. Our architecture allow us to take advantageof better trained word
representations, by simply initializing the word lookup table with these representations (instead of
randomly).

More formally, for each wordw∈D, an internaldwrd-dimensional feature vector representation
is given by thelookup tablelayerLTW(·):

LTW(w) = 〈W〉1w ,

whereW ∈ R
dwrd×|D| is a matrix of parameters to be learned,〈W〉1w ∈ R

dwrd is thewth column ofW
anddwrd is the word vector size (a hyper-parameter to be chosen by the user). Given a sentence or
any sequence ofT words[w]T1 in D, the lookup table layer applies the same operation for each word
in the sequence, producing the following output matrix:

LTW([w]T1 ) =
(

〈W〉1[w]1
〈W〉1[w]2

. . . 〈W〉1[w]T

)

. (1)

This matrix can then be fed to further neural network layers, as we will seebelow.

3.2.1 EXTENDING TO ANY DISCRETEFEATURES

One might want to provide features other than words if one suspects that these features are helpful
for the task of interest. For example, for the NER task, one could provide afeature which says if a
word is in a gazetteer or not. Another common practice is to introduce some basicpre-processing,
such as word-stemming or dealing with upper and lower case. In this latter option, the word would
be then represented by three discrete features: its lower case stemmed root, its lower case ending,
and a capitalization feature.

Generally speaking, we can consider a word as represented byK discrete featuresw ∈ D1×
·· ·×DK , whereDk is the dictionary for thekth feature. We associate to each feature a lookup table
LTWk(·), with parametersWk ∈ R

dk
wrd×|D

k| wheredk
wrd ∈ N is a user-specified vector size. Given a

8. We did some pre-processing, namely lowercasing and encoding capitalization as another feature. With enough (un-
labeled) training data, presumably we could learn a model without this processing. Ideally, an even more raw input
would be to learn from letter sequences rather than words, however we felt that this was beyond the scope of this
work.

9. As any other neural network layer.
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word w, a feature vector of dimensiondwrd = ∑k dk
wrd is then obtained by concatenating all lookup

table outputs:

LTW1,...,WK (w) =






LTW1(w1)
...

LTWK (wK)




=






〈W1〉1w1
...

〈WK〉1wK




 .

The matrix output of the lookup table layer for a sequence of words[w]T1 is then similar to (1), but
where extra rows have been added for each discrete feature:

LTW1,...,WK ([w]T1 ) =






〈W1〉1[w1]1
. . . 〈W1〉1[w1]T

...
...

〈WK〉1[wK ]1
. . . 〈WK〉1[wK ]T




 . (2)

These vector features in the lookup table effectively learn features forwords in the dictionary. Now,
we want to use these trainable features as input to further layers of trainable feature extractors, that
can represent groups of words and then finally sentences.

3.3 Extracting Higher Level Features from Word Feature Vectors

Feature vectors produced by the lookup table layer need to be combined in subsequent layers of
the neural network to produce a tag decision for each word in the sentence. Producing tags for
each element in variable length sequences (here, a sentence is a sequence of words) is a standard
problem in machine-learning. We consider two common approaches which tagone word at the
time: a window approach, and a (convolutional) sentence approach.

3.3.1 WINDOW APPROACH

A window approach assumes the tag of a word depends mainly on its neighboring words. Given a
word to tag, we consider a fixed sizeksz (a hyper-parameter) window of words around this word.
Each word in the window is first passed through the lookup table layer (1) or (2), producing a matrix
of word features of fixed sizedwrd×ksz. This matrix can be viewed as adwrd ksz-dimensional vector
by concatenating each column vector, which can be fed to further neuralnetwork layers. More
formally, the word feature window given by the first network layer can bewritten as:

f 1
θ = 〈LTW([w]T1 )〉

dwin
t =












〈W〉1[w]t−dwin/2

...
〈W〉1[w]t

...
〈W〉1[w]t+dwin/2












. (3)

Linear Layer.The fixed size vectorf 1
θ can be fed to one or several standard neural network layers

which perform affine transformations over their inputs:

f l
θ =Wl f l−1

θ + bl , (4)

whereWl ∈ R
nl

hu×nl−1
hu andbl ∈ R

nl
hu are the parameters to betrained. The hyper-parameternl

hu is
usually called thenumber of hidden unitsof the l th layer.
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HardTanh Layer.Several linear layers are often stacked, interleaved with a non-linearity func-
tion, to extract highly non-linear features. If no non-linearity is introduced, our network would be a
simple linear model. We chose a “hard” version of the hyperbolic tangent asnon-linearity. It has the
advantage of being slightly cheaper to compute (compared to the exact hyperbolic tangent), while
leaving the generalization performance unchanged (Collobert, 2004). The corresponding layerl
applies a HardTanh over its input vector:

[

f l
θ

]

i
= HardTanh(

[

f l−1
θ

]

i
) ,

where

HardTanh(x) =







−1 if x<−1
x if −1<= x<= 1
1 if x> 1

. (5)

Scoring. Finally, the output size of the last layerL of our network is equal to the number
of possible tags for the task of interest. Each output can be then interpreted as ascoreof the
corresponding tag (given the input of the network), thanks to a carefully chosen cost function that
we will describe later in this section.

Remark 1 (Border Effects) The feature window (3) is not well defined for words near the begin-
ning or the end of a sentence. To circumvent this problem, we augment the sentence with a special
“PADDING” word replicated dwin/2 times at the beginning and the end. This is akin to the use of
“start” and “stop” symbols in sequence models.

3.3.2 SENTENCEAPPROACH

We will see in the experimental section that a window approach performs wellfor most natural
language processing tasks we are interested in. However this approachfails with SRL, where the tag
of a word depends on a verb (or, more correctly, predicate) chosen beforehand in the sentence. If the
verb falls outside the window, one cannot expect this word to be tagged correctly. In this particular
case, tagging a word requires the consideration of thewholesentence. When using neural networks,
the natural choice to tackle this problem becomes a convolutional approach, first introduced by
Waibel et al. (1989) and also called Time Delay Neural Networks (TDNNs)in the literature.

We describe in detail our convolutional network below. It successivelytakes the complete sen-
tence, passes it through the lookup table layer (1), produces local features around each word of the
sentence thanks to convolutional layers, combines these feature into a global feature vector which
can then be fed to standard affine layers (4). In the semantic role labeling case, this operation is
performed for each word in the sentence, and for each verb in the sentence. It is thus necessary to
encode in the network architecture which verb we are considering in the sentence, and which word
we want to tag. For that purpose, each word at positioni in the sentence is augmented with two
features in the way described in Section 3.2.1. These features encode therelative distancesi− posv
andi− posw with respect to the chosen verb at positionposv, and the word to tag at positionposw
respectively.

Convolutional Layer.A convolutional layer can be seen as a generalization of a window ap-
proach: given a sequence represented by columns in a matrixf l−1

θ (in our lookup table matrix (1)),
a matrix-vector operation as in (4) is applied to each window of successivewindows in the sequence.
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Figure 3: Number of features chosen at each word position by the Max layer. We consider a sen-
tence approach network (Figure 2) trained for SRL. The number of “local” features output
by the convolution layer is 300per word. By applying a Max over the sentence, we ob-
tain 300 features for thewhole sentence. It is interesting to see that the network catches
features mostly around the verb of interest (here “report”) and word of interest (“pro-
posed” (left) or “often” (right)).

Using previous notations, thetth output column of thel th layer can be computed as:

〈 f l
θ〉

1
t =Wl 〈 f l−1

θ 〉dwin
t +bl ∀t , (6)

where the weight matrixWl is the same across all windowst in the sequence. Convolutional layers
extract local features around each window of the given sequence. As for standard affine layers (4),
convolutional layers are often stacked to extract higher level features. In this case, each layer must
be followed by a non-linearity (5) or the network would be equivalent to one convolutional layer.

Max Layer. The size of the output (6) depends on the number of words in the sentencefed
to the network. Local feature vectors extracted by the convolutional layers have to be combined
to obtain a global feature vector, with a fixed size independent of the sentence length, in order to
apply subsequent standard affine layers. Traditional convolutional networks often apply an average
(possibly weighted) or a max operation over the “time”t of the sequence (6). (Here, “time” just
means the position in the sentence, this term stems from the use of convolutionallayers in, for
example, speech data where the sequence occurs over time.) The average operation does not make
much sense in our case, as in general most words in the sentence do not have any influence on the
semantic role of a given word to tag. Instead, we used a max approach, which forces the network to
capture the most useful local features produced by the convolutional layers (see Figure 3), for the
task at hand. Given amatrix fl−1

θ output by a convolutional layerl −1, the Max layerl outputs a
vector flθ:

[

f l
θ

]

i
= max

t

[

f l−1
θ

]

i, t
1≤ i ≤ nl−1

hu . (7)

This fixed sized global feature vector can be then fed to standard affinenetwork layers (4). As in
the window approach, we then finally produce one score per possible tagfor the given task.

Remark 2 The same border effects arise in the convolution operation (6) as in the window ap-
proach (3). We again work around this problem by padding the sentences with a special word.
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Scheme Begin Inside End Single Other
IOB B-X I-X I-X B-X O
IOE I-X I-X E-X E-X O
IOBES B-X I-X E-X S-X O

Table 3: Various tagging schemes. Each word in a segment labeled “X” is tagged with a prefixed
label, depending of the word position in the segment (begin, inside, end). Single word
segment labeling is also output. Words not in a labeled segment are labeled “O”. Variants
of the IOB (and IOE) scheme exist, where the prefix B (or E) is replaced by I for all
segments not contiguous with another segment having the same label “X”.

3.3.3 TAGGING SCHEMES

As explained earlier, the network output layers compute scores for all thepossible tags for the task of
interest. In the window approach, these tags apply to the word located in the center of the window.
In the (convolutional) sentence approach, these tags apply to the word designated by additional
markers in the network input.

The POS task indeed consists of marking the syntactic role of each word. However, the re-
maining three tasks associate labels with segments of a sentence. This is usuallyachieved by using
special tagging schemes to identify the segment boundaries, as shown in Table 3. Several such
schemes have been defined (IOB, IOE, IOBES, . . . ) without clear conclusion as to which scheme
is better in general. State-of-the-art performance is sometimes obtained by combining classifiers
trained with different tagging schemes (e.g., Kudo and Matsumoto, 2001).

The ground truth for the NER, CHUNK, and SRL tasks is provided using twodifferent tagging
schemes. In order to eliminate this additional source of variations, we have decided to use the most
expressive IOBES tagging scheme for all tasks. For instance, in the CHUNK task, we describe
noun phrases using four different tags. Tag “S-NP” is used to mark a noun phrase containing a
single word. Otherwise tags “B-NP”, “I-NP”, and “E-NP” are used to mark the first, intermediate
and last words of the noun phrase. An additional tag “O” marks words that are not members of a
chunk. During testing, these tags are then converted to the original IOB tagging scheme and fed to
the standard performance evaluation scripts mentioned in Section 2.5.

3.4 Training

All our neural networks are trained by maximizing a likelihood over the trainingdata, using stochas-
tic gradient ascent. If we denoteθ to be all the trainable parameters of the network, which are trained
using a training setT we want to maximize the following log-likelihood with respect toθ:

θ 7→ ∑
(x,y)∈T

logp(y|x, θ) , (8)

wherex corresponds to either a training word window or a sentence and its associated features, and
y represents the corresponding tag. The probabilityp(·) is computed from the outputs of the neural
network. We will see in this section two ways of interpreting neural network outputs as probabilities.
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3.4.1 WORD-LEVEL LOG-L IKELIHOOD

In this approach, each word in a sentence is considered independently.Given an input example
x, the network with parametersθ outputs a score

[
fθ(x)

]

i , for the ith tag with respect to the task of
interest. To simplify the notation, we dropx from now, and we write instead

[
fθ
]

i . This score can be
interpreted as a conditional tag probabilityp(i |x, θ) by applying a softmax (Bridle, 1990) operation
over all the tags:

p(i |x,θ) =
e[ fθ]i

∑ j e
[ fθ] j

. (9)

Defining the log-add operation as

logadd
i

zi = log(∑
i

ezi ) , (10)

we can express the log-likelihood for one training example(x,y) as follows:

logp(y|x, θ) = [ fθ]y− logadd
j

[ fθ] j . (11)

While this training criterion, often referred ascross-entropyis widely used for classification prob-
lems, it might not be ideal in our case, where there is often a correlation between the tag of a word
in a sentence and its neighboring tags. We now describe another common approach for neural
networks which enforces dependencies between the predicted tags in a sentence.

3.4.2 SENTENCE-LEVEL LOG-L IKELIHOOD

In tasks like chunking, NER or SRL we know that there are dependenciesbetween word tags in a
sentence: not only are tags organized in chunks, but some tags cannotfollow other tags. Training
using a word-level approach discards this kind of labeling information. Weconsider a training
scheme which takes into account the sentence structure: given the predictions of all tags by our
network forall words in a sentence, and given a score for going from one tag to another tag, we
want to encourage valid paths of tags during training, while discouraging all other paths.

We consider thematrix of scoresfθ([x]
T
1 ) output by the network. As before, we drop the input

[x]T1 for notation simplification. The element
[

fθ
]

i, t of the matrix is the score output by the network

with parametersθ, for the sentence[x]T1 and for theith tag, at thetth word. We introduce a transition
score[A]i, j for jumping fromi to j tags in successive words, and an initial score[A]i,0 for starting

from theith tag. As the transition scores are going to be trained (as are all network parametersθ),
we defineθ̃ = θ∪{[A]i, j ∀i, j}. The score of a sentence[x]T1 along a path of tags[i]T1 is then given
by the sum of transition scores and network scores:

s([x]T1 , [i]
T
1 , θ̃) =

T

∑
t=1

(

[A][i]t−1, [i]t
+[ fθ][i]t , t

)

. (12)

Exactly as for the word-level likelihood (11), where we were normalizing withrespect to alltags
using a softmax (9), we normalize this score over all possibletag paths[ j]T1 using a softmax, and
we interpret the resulting ratio as a conditionaltag pathprobability. Taking the log, the conditional
probability of the true path[y]T1 is therefore given by:

logp([y]T1 | [x]
T
1 , θ̃) = s([x]T1 , [y]

T
1 , θ̃)− logadd

∀[ j]T1

s([x]T1 , [ j]
T
1 , θ̃) . (13)
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While the number of terms in the logadd operation (11) was equal to the number of tags, it grows
exponentially with the length of the sentence in (13). Fortunately, one can compute it in linear
time with the following standard recursion overt (see Rabiner, 1989), taking advantage of the
associativity and distributivity on the semi-ring10 (R∪{−∞}, logadd,+):

δt(k)
∆
= logadd
{[ j]t1∩ [ j]t=k}

s([x]t1, [ j]
t
1, θ̃)

= logadd
i

logadd
{[ j]t1∩ [ j]t−1=i∩ [ j]t=k}

s([x]t1, [ j]
t−1
1 , θ̃)+ [A][ j]t−1,k

+[ fθ]k, t

= logadd
i

δt−1(i)+ [A]i,k+[ fθ]k, t

= [ fθ]k, t + logadd
i

(

δt−1(i)+ [A]i,k

)

∀k,

(14)

followed by the termination

logadd
∀[ j]T1

s([x]T1 , [ j]
T
1 , θ̃) = logadd

i
δT(i) . (15)

We can now maximize in (8) the log-likelihood (13) over all the training pairs([x]T1 , [y]
T
1 ).

At inference time, given a sentence[x]T1 to tag, we have to find the best tag path which minimizes
the sentence score (12). In other words, we must find

argmax
[ j]T1

s([x]T1 , [ j]
T
1 , θ̃) .

The Viterbi algorithm is the natural choice for this inference. It corresponds to performing the
recursion (14) and (15), but where the logadd is replaced by a max, and then tracking back the
optimal path through each max.

Remark 3 (Graph Transformer Networks) Our approach is a particular case of the discrimina-
tive forward training for graph transformer networks (GTNs) (Bottou et al.,1997; Le Cun et al.,
1998). The log-likelihood (13) can be viewed as the difference between the forward score con-
strained over the valid paths (in our case there is only the labeled path) and theunconstrained
forward score (15).

Remark 4 (Conditional Random Fields) An important feature of equation (12) is the absence of

normalization. Summing the exponentials e[ fθ]i, t over all possible tags does not necessarily yield
the unity. If this was the case, the scores could be viewed as the logarithms of conditional transition
probabilities, and our model would be subject to the label-bias problem thatmotivates Conditional
Random Fields (CRFs) (Lafferty et al., 2001). The denormalized scores should instead be likened to
the potential functions of a CRF. In fact, a CRF maximizes the same likelihood (13) using a linear
model instead of a nonlinear neural network. CRFs have been widely used in the NLP world, such
as for POS tagging (Lafferty et al., 2001), chunking (Sha and Pereira, 2003), NER (McCallum and
Li, 2003) or SRL (Cohn and Blunsom, 2005). Compared to such CRFs,we take advantage of the
nonlinear network to learn appropriate features for each task of interest.

10. In other words, read logadd as⊕ and+ as⊗.
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3.4.3 STOCHASTIC GRADIENT

Maximizing (8) with stochastic gradient (Bottou, 1991) is achieved by iteratively selecting a random
example(x, y) and making a gradient step:

θ←− θ+λ
∂ logp(y|x, θ)

∂θ
, (16)

whereλ is a chosen learning rate. Our neural networks described in Figure 1 and Figure 2 are a
succession of layers that correspond to successive composition of functions. The neural network
is finally composed with the word-level log-likelihood (11), or successively composed in the re-
cursion (14) if using the sentence-level log-likelihood (13). Thus, ananalytical formulation of the
derivative (16) can be computed, by applying the differentiation chain rule through the network, and
through the word-level log-likelihood (11) or through the recurrence (14).

Remark 5 (Differentiability) Our cost functions are differentiable almost everywhere.
Non-differentiable points arise because we use a “hard” transfer function(5) and because we use a
“max” layer (7) in the sentence approach network. Fortunately, stochastic gradient still converges
to a meaningful local minimum despite such minor differentiability problems (Bottou, 1991, 1998).
Stochastic gradient iterations that hit a non-differentiability are simply skipped.

Remark 6 (Modular Approach) The well known “back-propagation” algorithm (LeCun, 1985;
Rumelhart et al., 1986) computes gradients using the chain rule. The chain rule can also be used
in a modular implementation.11 Our modules correspond to the boxes in Figure 1 and Figure 2.
Given derivatives with respect to its outputs, each module can independentlycompute derivatives
with respect to its inputs and with respect to its trainable parameters, as proposed by Bottou and
Gallinari (1991). This allows us to easily build variants of our networks. For details about gradient
computations, see Appendix A.

Remark 7 (Tricks) Many tricks have been reported for training neural networks (LeCun etal.,
1998). Which ones to choose is often confusing. We employed only two of them: the initialization
and update of the parameters of each network layer were done according to the “fan-in” of the
layer, that is the number of inputs used to compute each output of this layer(Plaut and Hinton,
1987). The fan-in for the lookup table (1), the lth linear layer (4) and the convolution layer (6)
are respectively1, nl−1

hu and dwin×nl−1
hu . The initial parameters of the network were drawn from a

centered uniform distribution, with a variance equal to the inverse of the square-root of the fan-in.
The learning rate in (16) was divided by the fan-in, but stays fixed during the training.

3.5 Supervised Benchmark Results

For POS, chunking and NER tasks, we report results with the window architecture12 described
in Section 3.3.1. The SRL task was trained using the sentence approach (Section 3.3.2). Results
are reported in Table 4, in per-word accuracy (PWA) for POS, and F1score for all the other tasks.
We performed experiments both with the word-level log-likelihood (WLL) andwith the sentence-
level log-likelihood (SLL). The hyper-parameters of our networks arereported in Table 5. All our

11. Seehttp://torch5.sf.net .
12. We found that training these tasks with the more complex sentence approach was computationally expensive and

offered little performance benefits. Results discussed in Section 5 provide more insight about this decision.
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Approach POS Chunking NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99

Table 4: Comparison in generalization performance of benchmark NLP systems with a vanilla neu-
ral network (NN) approach, on POS, chunking, NER and SRL tasks. We report results with
both the word-level log-likelihood (WLL) and the sentence-level log-likelihood (SLL).
Generalization performance is reported in per-word accuracy rate (PWA) for POS and F1
score for other tasks. The NN results are behind the benchmark results,in Section 4 we
show how to improve these models using unlabeled data.

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS dwin = 5 d0 = 50 d1 = 5 n1
hu = 300 λ = 0.01

CHUNK ” ” ” ” ”

NER ” ” ” ” ”

SRL ” ” ”
n1

hu = 300

n2
hu = 500

”

Table 5: Hyper-parameters of our networks. They were chosen by a minimal validation (see Re-
mark 8), preferring identical parameters for most tasks. We report foreach task the window
size (or convolution size), word feature dimension, capital feature dimension, number of
hidden units and learning rate.

networks were fed with two raw text features: lower case words, and a capital letter feature. We
chose to consider lower case words to limit the number of words in the dictionary. However, to keep
some upper case information lost by this transformation, we added a “caps”feature which tells if
each word was in lowercase, was all uppercase, had first letter capital,or had at least one non-initial
capital letter. Additionally, all occurrences of sequences of numbers within a word are replaced with
the string “NUMBER”, so for example both the words “PS1” and “PS2” would map to the single
word “psNUMBER”. We used a dictionary containing the 100,000 most commonwords in WSJ
(case insensitive). Words outside this dictionary were replaced by a single special “RARE” word.

Results show that neural networks “out-of-the-box” are behind baseline benchmark systems.
Although the initial performance of our networks falls short from the performance of the CoNLL
challenge winners, it compares honorably with the performance of most competitors. The training
criterion which takes into account the sentence structure (SLL) seems to boost the performance for
the Chunking, NER and SRL tasks, with little advantage for POS. This result isin line with existing
NLP studies comparing sentence-level and word-level likelihoods (Lianget al., 2008). The capacity
of our network architectures lies mainly in the word lookup table, which contains 50× 100,000
parameters to train. In the WSJ data, 15% of the most common words appear about 90% of the time.
Many words appear only a few times. It is thus very difficult to train properly their corresponding
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FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS

454 1973 6909 11724 29869 87025
PERSUADE THICKETS DECADENT WIDESCREEN ODD PPA

FAW SAVARY DIVO ANTICA ANCHIETA UDDIN

BLACKSTOCK SYMPATHETIC VERUS SHABBY EMIGRATION BIOLOGICALLY

GIORGI JFK OXIDE AWE MARKING KAYAK

SHAHEED KHWARAZM URBINA THUD HEUER MCLARENS

RUMELIA STATIONERY EPOS OCCUPANT SAMBHAJI GLADWIN

PLANUM ILIAS EGLINTON REVISED WORSHIPPERS CENTRALLY

GOA’ ULD GSNUMBER EDGING LEAVENED RITSUKO INDONESIA

COLLATION OPERATOR FRG PANDIONIDAE LIFELESS MONEO

BACHA W.J. NAMSOS SHIRT MAHAN NILGIRIS

Table 6: Word embeddings in the word lookup table of a SRL neural networktrained from scratch,
with a dictionary of size 100,000. For each column the queried word is followed by its
index in the dictionary (higher means more rare) and its 10 nearest neighbors (arbitrarily
using the Euclidean metric).

50 dimensional feature vectors in the lookup table. Ideally, we would like semantically similar
words to be close in the embedding space represented by the word lookup table: by continuity of
the neural network function, tags produced on semantically similar sentences would be similar. We
show in Table 6 that it is not the case: neighboring words in the embedding space do not seem to be
semantically related.

We will focus in the next section on improving these word embeddings by leveraging unlabeled
data. We will see our approach results in a performance boost for all tasks.

Remark 8 (Architectures) In all our experiments in this paper, we tuned the hyper-parameters by
trying only a few different architectures by validation. In practice, the choice of hyperparameters
such as the number of hidden units, provided they are large enough, has a limited impact on the
generalization performance. In Figure 4, we report the F1 score for each task on the validation set,
with respect to the number of hidden units. Considering the variance related to the network initial-
ization, we chose the smallest network achieving “reasonable” performance, rather than picking
the network achieving the top performance obtained on a single run.

Remark 9 (Training Time) Training our network is quite computationally expensive. Chunking
and NER take about one hour to train, POS takes few hours, and SRL takesabout three days.
Training could be faster with a larger learning rate, but we preferred to stickto a small one which
works, rather than finding the optimal one for speed. Second order methods (LeCun et al., 1998)
could be another speedup technique.

4. Lots of Unlabeled Data

We would like to obtain word embeddings carrying more syntactic and semantic information than
shown in Table 6. Since most of the trainable parameters of our system are associated with the
word embeddings, these poor results suggest that we should use considerably more training data.
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Figure 4: F1 score on thevalidationset (y-axis) versus number of hidden units (x-axis) for different
tasks trained with the sentence-level likelihood (SLL), as in Table 4. For SRL, we vary in
this graph only the number of hidden units in the second layer. The scale is adapted for
each task. We show the standard deviation (obtained over 5 runs with different random
initialization), for the architecture we picked (300 hidden units for POS, CHUNK and
NER, 500 for SRL).

Following our NLPfrom scratchphilosophy, we now describe how to dramatically improve these
embeddings using large unlabeled data sets. We then use these improved embeddings to initialize
the word lookup tables of the networks described in Section 3.5.

4.1 Data Sets

Our first English corpus is the entire English Wikipedia.13 We have removed all paragraphs con-
taining non-roman characters and all MediaWiki markups. The resulting text was tokenized using
the Penn Treebank tokenizer script.14 The resulting data set contains about 631 million words. As
in our previous experiments, we use a dictionary containing the 100,000 mostcommon words in
WSJ, with the same processing of capitals and numbers. Again, words outside the dictionary were
replaced by the special “RARE” word.

Our second English corpus is composed by adding an extra 221 million wordsextracted from
the Reuters RCV1 (Lewis et al., 2004) data set.15 We also extended the dictionary to 130,000 words
by adding the 30,000 most common words in Reuters. This is useful in order to determine whether
improvements can be achieved by further increasing the unlabeled data setsize.

4.2 Ranking Criterion versus Entropy Criterion

We used these unlabeled data sets to trainlanguage modelsthat computescoresdescribing the
acceptability of a piece of text. These language models are again large neural networks using the
window approach described in Section 3.3.1 and in Figure 1. As in the previous section, most of the
trainable parameters are located in the lookup tables.

Similar language models were already proposed by Bengio and Ducharme (2001) and Schwenk
and Gauvain (2002). Their goal was to estimate theprobability of a word given the previous words
in a sentence. Estimating conditional probabilities suggests a cross-entropycriterion similar to those
described in Section 3.4.1. Because the dictionary size is large, computing thenormalization term

13. Available athttp://download.wikimedia.org . We took the November 2007 version.
14. Available athttp://www.cis.upenn.edu/ ˜ treebank/tokenization.html .
15. Now available athttp://trec.nist.gov/data/reuters/reuters.html .
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can be extremely demanding, and sophisticated approximations are required. More importantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language between0.6 and 1.3 bits per
character by asking human subjects to guess upcoming characters. Cover and King (1978) give
a lower bound of 1.25 bits per character using a subtle gambling approach.Meanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per character. Teahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variable length charactern-grams.
The human subjects rely of course on all their knowledge of the language and of the world. Can we
learn the grammatical structure of the English language and the nature of the world by leveraging
the 0.2 bits per character that separate human subjects from simple n-gram models? Since such tasks
certainly require high capacity models, obtaining sufficiently small confidenceintervals on the test
set entropy may require prohibitively large training sets.16 The entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frequentphrases. In order to
learn syntax, rare but legal phrases are no less significant than commonphrases.

It is therefore desirable to define alternative training criteria. We propose here to use apairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a higherscore when
given a legal phrase than when given an incorrect phrase. Because the ranking literature often deals
with information retrieval applications, many authors define complex ranking criteria that give more
weight to the ordering of the best ranking instances (see Burges et al., 2007; Cĺemençon and Vayatis,
2007). However, in our case, we do not want to emphasize the most commonphrase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider awindow approach network, as described in Section 3.3.1 and Figure 1, with
parametersθ which outputs a scorefθ(x) given a window of textx = [w]dwin

1 . We minimize the
ranking criterion with respect toθ:

θ 7→ ∑
x∈X

∑
w∈D

max
{

0, 1− fθ(x)+ fθ(x
(w))

}

, (17)

whereX is the set of all possible text windows withdwin words coming from our training corpus,D
is the dictionary of words, andx(w) denotes the text window obtained by replacing the central word
of text window[w]dwin

1 by the wordw.
Okanohara and Tsujii (2007) use a related approach to avoiding the entropy criteria using a

binary classification approach (correct/incorrect phrase). Their work focuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smith and Eisner (2005) also
propose a contrastive criterion which estimates the likelihood of the data conditioned to a “negative”
neighborhood. They consider various data neighborhoods, includingsentences of lengthdwin drawn
from Ddwin. Their goal was however to perform well on some tagging task on fully unsupervised
data, rather than obtaining generic word embeddings useful for other tasks.

4.3 Training Language Models

The language model network was trained by stochastic gradient minimization ofthe ranking crite-
rion (17), sampling a sentence-word pair(s, w) at each iteration.

16. However, Klein and Manning (2002) describe a rare example of realistic unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that is, by forcing the system to generate a hierarchical
representation.
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Since training times for such large scale systems are counted in weeks, it is not feasible to
try many combinations of hyperparameters. It also makes sense to speed upthe training time by
initializing new networks with the embeddings computed by earlier networks. In particular, we
found it expedient to train a succession of networks using increasingly large dictionaries, each
network being initialized with the embeddings of the previous network. Successive dictionary sizes
and switching times are chosen arbitrarily. Bengio et al. (2009) provides amore detailed discussion
of this, the (as yet, poorly understood) “curriculum” process.

For the purposes of model selection we use the process of “breeding”.The idea of breeding
is instead of trying a full grid search of possible values (which we did not have enough computing
power for) to search for the parameters in analogy to breeding biologicalcell lines. Within each line,
child networks are initialized with the embeddings of their parents and trained onincreasingly rich
data sets with sometimes different parameters. That is, suppose we havek processors, which is much
less than the possible set of parameters one would like to try. One choosesk initial parameter choices
from the large set, and trains these on thek processors. In our case, possible parameters to adjust
are: the learning rateλ, the word embedding dimensionsd, number of hidden unitsn1

hu and input
window sizedwin. One then trains each of these models in an online fashion for a certain amount
of time (i.e., a few days), and then selects the best ones using the validation set error rate. That is,
breeding decisions were made on the basis of the value of the ranking criterion (17) estimated on
a validation set composed of one million words held out from the Wikipedia corpus. In the next
breeding iteration, one then chooses another set ofk parameters from the possible grid of values
that permute slightly the most successful candidates from the previous round. As many of these
parameter choices can share weights, we can effectively continue onlinetraining retaining some of
the learning from the previous iterations.

Very long training times make such strategies necessary for the foreseeable future: if we had
been given computers ten times faster, we probably would have found uses for data sets ten times
bigger. However, we should say we believe that although we ended up witha particular choice of
parameters, many other choices are almost equally as good, although perhaps there are others that
are better as we could not do a full grid search.

In the following subsections, we report results obtained with two trained language models. The
results achieved by these two models are representative of those achieved by networks trained on
the full corpora.

• Language model LM1 has a window sizedwin = 11 and a hidden layer withn1
hu = 100 units.

The embedding layers were dimensioned like those of the supervised networks (Table 5).
Model LM1 was trained on our first English corpus (Wikipedia) using successive dictionaries
composed of the 5000, 10,000, 30,000, 50,000 and finally 100,000 most common WSJ
words. The total training time was about four weeks.

• Language model LM2 has the same dimensions. It was initialized with the embeddings of
LM1, and trained for an additional three weeks on our second English corpus
(Wikipedia+Reuters) using a dictionary size of 130,000 words.

4.4 Embeddings

Both networks produce much more appealing word embeddings than in Section3.5. Table 7 shows
the ten nearest neighbors of a few randomly chosen query words for the LM1 model. The syntactic
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FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS

454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS

BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S

ITALY SATAN IPOD PURPLISH POPPED BAUD

GREECE KALI SEGA BROWNISH CRIMPED CARATS

SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ

EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS

HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLPcan be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training setwith examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train modelssharing cer-
tain parameters. They train POS and NER models together with a language model(trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separatesthe lengthy training of the
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Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99
NN+WLL+LM1 97.05 91.91 85.68 58.18
NN+SLL+LM1 97.10 93.65 87.58 73.84
NN+WLL+LM2 97.14 92.04 86.96 58.34
NN+SLL+LM2 97.20 93.63 88.67 74.15

Table 8: Comparison in generalization performance of benchmark NLP systems with our (NN) ap-
proach on POS, chunking, NER and SRL tasks. We report results with both the word-level
log-likelihood (WLL) and the sentence-level log-likelihood (SLL). We report with (LMn)
performance of the networks trained from the language model embeddings(Table 7). Gen-
eralization performance is reported in per-word accuracy (PWA) for POS and F1 score for
other tasks.

language models from the relatively fast training of the supervised networks. Once the language
models are trained, we can perform multiple experiments on the supervised networks in a rela-
tively short time. Note that our procedure is clearly linked to the (semi-supervised) deep learning
procedures of Hinton et al. (2006), Bengio et al. (2007) and Weston et al. (2008).

Table 8 clearly shows that this simple initialization significantly boosts the generalization per-
formance of the supervised networks for each task. It is worth mentioningthe larger language
model led to even better performance. This suggests that we could still take advantage of even
bigger unlabeled data sets.

4.6 Ranking and Language

There is a large agreement in the NLP community that syntax is a necessary prerequisite for se-
mantic role labeling (Gildea and Palmer, 2002). This is why state-of-the-art semantic role labeling
systems thoroughly exploit multiple parse trees. The parsers themselves (Charniak, 2000; Collins,
1999) contain considerable prior information about syntax (one can think of this as a kind of in-
formed pre-processing).

Our system does not use such parse trees because we attempt to learn thisinformation from the
unlabeled data set. It is therefore legitimate to question whether our ranking criterion (17) has the
conceptual capability to capture such a rich hierarchical information. At first glance, the ranking
task appears unrelated to the induction of probabilistic grammars that underlystandard parsing
algorithms. The lack of hierarchical representation seems a fatal flaw (Chomsky, 1956).

However, ranking is closely related to an alternative description of the language structure:op-
erator grammars(Harris, 1968). Instead of directly studying the structure of a sentence, Harris
defines an algebraic structure on the space of all sentences. Starting from a couple of elementary
sentence forms, sentences are described by the successive application of sentence transformation
operators. The sentence structure is revealed as a side effect of the successive transformations.
Sentence transformations can also have a semantic interpretation.

2483



COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

In the spirit of structural linguistics, Harris describes procedures to discover sentence trans-
formation operators by leveraging the statistical regularities of the language. Such procedures are
obviously useful for machine learning approaches. In particular, he proposes a test to decide whether
two sentences forms are semantically related by a transformation operator. He first defines a ranking
criterion (Harris, 1968, Section 4.1):

“Starting for convenience with very short sentence forms, sayABC, we choose a
particular word choice for all the classes, sayBqCq, except one, in this caseA; for every
pair of membersAi , A j of that word class we ask how the sentence formed with one
of the members, that is,AiBqCq compares as to acceptability with the sentence formed
with the other member, that is,A jBqCq.”

Thesegradingsare then used to compare sentence forms:

“It now turns out that, given the gradedn-tuples of words for a particular sentence
form, we can find other sentences forms of the same word classes in which the same
n-tuples of words produce the same grading of sentences.”

This is an indication that these two sentence forms exploit common words with the same syntac-
tic function and possibly the same meaning. This observation forms the empiricalbasis for the
construction of operator grammars that describe real-world natural languages such as English.

Therefore there are solid reasons to believe that the ranking criterion (17) has the conceptual
potential to capture strong syntactic and semantic information. On the other hand, the structure
of our language models is probably too restrictive for such goals, and our current approach only
exploits the word embeddings discovered during training.

5. Multi-Task Learning

It is generally accepted that featurestrained for one task can be useful forrelated tasks. This idea
was already exploited in the previous section when certain language model features, namely the
word embeddings, were used to initialize the supervised networks.

Multi-task learning (MTL) leverages this idea in a more systematic way. Models for all tasks
of interests arejointly trained with an additional linkage between their trainable parameters in the
hope of improving the generalization error. This linkage can take the form of a regularization
term in the joint cost function that biases the models towards common representations. A much
simpler approach consists in having the modelsshare certain parametersdefined a priori. Multi-
task learning has a long history in machine learning and neural networks. Caruana (1997) gives a
good overview of these past efforts.

5.1 Joint Decoding versus Joint Training

Multitask approaches do not necessarily involve joint training. For instance, modern speech recog-
nition systems use Bayes rule to combine the outputs of an acoustic model trained on speech data
and a language model trained on phonetic or textual corpora (Jelinek, 1976). This joint decoding
approach has been successfully applied to structurally more complex NLP tasks. Sutton and McCal-
lum (2005b) obtain improved results by combining the predictions of independently trained CRF
models using a joint decoding process at test time that requires more sophisticated probabilistic
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inference techniques. On the other hand, Sutton and McCallum (2005a) obtain results somewhat
below the state-of-the-art using joint decoding for SRL and syntactic parsing. Musillo and Merlo
(2006) also describe a negative result at the same joint task.

Joint decoding invariably works by considering additional probabilistic dependency paths be-
tween the models. Therefore it defines an implicit supermodel that describes all the tasks in the
same probabilistic framework. Separately training a submodel only makes sense when the train-
ing data blocks these additional dependency paths (in the sense of d-separation, Pearl, 1988). This
implies that, without joint training, the additional dependency paths cannot directly involve unob-
served variables. Therefore, the natural idea of discovering common internal representations across
tasks requires joint training.

Joint training is relatively straightforward when the training sets for the individual tasks con-
tain the same patterns with different labels. It is then sufficient to train a modelthat computes
multiple outputs for each pattern (Suddarth and Holden, 1991). Using this scheme, Sutton et al.
(2007) demonstrate improvements on POS tagging and noun-phrase chunking using jointly trained
CRFs. However the joint labeling requirement is a limitation because such data isnot often avail-
able. Miller et al. (2000) achieves performance improvements by jointly training NER, parsing,
and relation extraction in a statistical parsing model. The joint labeling requirement problem was
weakened using a predictor to fill in the missing annotations.

Ando and Zhang (2005) propose a setup that works around the joint labeling requirements. They
define linear models of the formfi(x) = w⊤i Φ(x)+v⊤i ΘΨ(x) where fi is the classifier for thei-th
task with parameterswi andvi . NotationsΦ(x) andΨ(x) represent engineered features for the pat-
ternx. Matrix Θ maps theΨ(x) features into a low dimensional subspace common across all tasks.
Each task is trained using its own examples without a joint labeling requirement. The learning pro-
cedure alternates the optimization ofwi andvi for each task, and the optimization ofΘ to minimize
the average loss for all examples in all tasks. The authors also consider auxiliary unsupervised tasks
for predicting substructures. They report excellent results on several tasks, including POS and NER.

5.2 Multi-Task Benchmark Results

Table 9 reports results obtained by jointly trained models for the POS, CHUNK,NER and SRL tasks
using the same setup as Section 4.5. We trained jointly POS, CHUNK and NER using the window
approach network. As we mentioned earlier, SRL can be trained only with thesentence approach
network, due to long-range dependencies related to the verb predicate.We thus performed additional
experiments, where all four tasks were trained using the sentence approach network. In both cases,
all models share the lookup table parameters (2). The parameters of the first linear layers (4) were
shared in the window approach case (see Figure 5), and the first the convolution layer parameters (6)
were shared in the sentence approach networks.

For the window approach, best results were obtained by enlarging the first hidden layer size to
n1

hu = 500 (chosen by validation) in order to account for its shared responsibilities. We used the
same architecture as SRL for the sentence approach network. The wordembedding dimension was
kept constantd0 = 50 in order to reuse the language models of Section 4.5.

Training was achieved by minimizing the loss averaged across all tasks. Thisis easily achieved
with stochastic gradient by alternatively picking examples for each task andapplying (16) to all the
parameters of the corresponding model, including the shared parameters.Note that this gives each
task equal weight. Since each task uses the training sets described in Table1, it is worth noticing
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Figure 5: Example of multitasking with NN. Task 1 and Task 2 are two tasks trained with the
window approach architecture presented in Figure 1. Lookup tables as well as the first
hidden layer are shared. The last layer is task specific. The principle is the same with
more than two tasks.

that examples can come from quite different data sets. The generalization performance for each
task was measured using the traditional testing data specified in Table 1. Fortunately, none of the
training and test sets overlap across tasks.

It is worth mentioning that MTL can produce a singleunified networkthat performs well for
all these tasks using the sentence approach. However this unified network only leads to marginal
improvements over using a separate network for each task: the most important MTL task appears to
be the unsupervised learning of the word embeddings. As explained before, simple computational
considerations led us to train the POS, Chunking, and NER tasks using the window approach. The
baseline results in Table 9 also show that using the sentence approach forthe POS, Chunking, and
NER tasks yields no performance improvement (or degradation) over the window approach. The
next section shows we can leverage known correlations between tasks inmore direct manner.

6. The Temptation

Results so far have been obtained by staying (almost17) true to ourfrom scratchphilosophy. We
have so far avoided specializing our architecture for any task, disregarding a lot of usefula priori

17. We did some basic preprocessing of the raw input words as described in Section 3.5, hence the “almost” in the title of
this article. A completely from scratch approach would presumably not know anything about words at all and would
work from letters only (or, taken to a further extreme, from speech or optical character recognition, as humans do).
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Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
Window Approach

NN+SLL+LM2 97.20 93.63 88.67 –
NN+SLL+LM2+MTL 97.22 94.10 88.62 –

Sentence Approach
NN+SLL+LM2 97.12 93.37 88.78 74.15
NN+SLL+LM2+MTL 97.22 93.75 88.27 74.29

Table 9: Effect of multi-tasking on our neural architectures. We trained POS, CHUNK NER in a
MTL way, both for the window and sentence network approaches. SRL was only included
in the sentence approach joint training. As a baseline, we show previous results of our
window approach system, as well as additional results for our sentence approach system,
when trained separately on each task. Benchmark system performance is also given for
comparison.

Approach POS CHUNK NER SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+SLL+LM2 97.20 93.63 88.67 74.15
NN+SLL+LM2+Suffix2 97.29 – – –
NN+SLL+LM2+Gazetteer – – 89.59 –
NN+SLL+LM2+POS – 94.32 88.67 –
NN+SLL+LM2+CHUNK – – – 74.72

Table 10: Comparison in generalization performance of benchmark NLP systems with our neural
networks (NNs) using increasing task-specific engineering. We report results obtained
with a network trained without the extra task-specific features (Section 5) and with the
extra task-specific features described in Section 6. The POS network was trained with
two character word suffixes; the NER network was trained using the small CoNLL 2003
gazetteer; the CHUNK and NER networks were trained with additional POS features;
and finally, the SRL network was trained with additional CHUNK features.

NLP knowledge. We have shown that, thanks to large unlabeled data sets, our generic neural net-
works can still achieve close to state-of-the-art performance by discovering useful features. This
section explores what happens when we increase the level of task-specific engineering in our sys-
tems by incorporating some common techniques from the NLP literature. We oftenobtain further
improvements. These figures are useful to quantify how far we went by leveraging large data sets
instead of relying on a priori knowledge.
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6.1 Suffix Features

Word suffixes in many western languages are strong predictors of the syntactic function of the word
and therefore can benefit the POS system. For instance, Ratnaparkhi (1996) uses inputs representing
word suffixes and prefixes up to four characters. We achieve this in thePOS task by adding discrete
word features (Section 3.2.1) representing the last two characters of every word. The size of the
suffix dictionary was 455. This led to a small improvement of the POS performance (Table 10,
row NN+SLL+LM2+Suffix2). We also tried suffixes obtained with the Porter (1980) stemmer and
obtained the same performance as when using two character suffixes.

6.2 Gazetteers

State-of-the-art NER systems often use a large dictionary containing well known named entities
(e.g., Florian et al., 2003). We restricted ourselves to the gazetteer provided by the CoNLL chal-
lenge, containing 8,000 locations, person names, organizations, and miscellaneous entities. We
trained a NER network with 4 additional word features indicating (feature “on” or “off”) whether
the word is found in the gazetteer under one of these four categories. The gazetteer includes not
only words, but also chunks of words. If a sentence chunk is found inthe gazetteer, then all words in
the chunk have their corresponding gazetteer feature turned to “on”. The resulting system displays
a clear performance improvement (Table 10, rowNN+SLL+LM2+Gazetteer), slightly outperforming
the baseline. A plausible explanation of this large boost over the network using only the language
model is that gazetteers include word chunks, while we use only the word representation of our
language model. For example, “united” and “bicycle” seen separately arelikely to be non-entities,
while “united bicycle” might be an entity, but catching it would require higher level representations
of our language model.

6.3 Cascading

When one considers related tasks, it is reasonable to assume that tags obtained for one task can be
useful for taking decisions in the other tasks. Conventional NLP systems often use features obtained
from the output of other preexisting NLP systems. For instance, Shen andSarkar (2005) describe a
chunking system that uses POS tags as input; Florian et al. (2003) describes a NER system whose
inputs include POS and CHUNK tags, as well as the output of two other NER classifiers. State-of-
the-art SRL systems exploit parse trees (Gildea and Palmer, 2002; Punyakanok et al., 2005), related
to CHUNK tags, and built using POS tags (Charniak, 2000; Collins, 1999).

Table 10 reports results obtained for the CHUNK and NER tasks by adding discrete word fea-
tures (Section 3.2.1) representing the POS tags. In order to facilitate comparisons, instead of using
the more accurate tags from our POS network, we use for each task the POS tags provided by the
corresponding CoNLL challenge. We also report results obtained for the SRL task by adding word
features representing the CHUNK tags (also provided by the CoNLL challenge). We consistently
obtain moderate improvements.

6.4 Ensembles

Constructing ensembles of classifiers is a proven way to trade computationalefficiency for general-
ization performance (Bell et al., 2007). Therefore it is not surprising that many NLP systems achieve
state-of-the-art performance by combining the outputs of multiple classifiers. For instance, Kudo
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Approach POS CHUNK NER
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31
NN+SLL+LM2+POS worst 97.29 93.99 89.35
NN+SLL+LM2+POS mean 97.31 94.17 89.65
NN+SLL+LM2+POS best 97.35 94.32 89.86
NN+SLL+LM2+POS voting ensemble 97.37 94.34 89.70
NN+SLL+LM2+POS joined ensemble 97.30 94.35 89.67

Table 11: Comparison in generalization performance for POS, CHUNK andNER tasks of the net-
works obtained using by combining ten training runs with different initialization.

and Matsumoto (2001) use an ensemble of classifiers trained with differenttagging conventions (see
Section 3.3.3). Winning a challenge is of course a legitimate objective. Yet it is often difficult to
figure out which ideas are most responsible for the state-of-the-art performance of a large ensemble.

Because neural networks are nonconvex, training runs with different initial parameters usually
give different solutions. Table 11 reports results obtained for the CHUNK and NER task after ten
training runs with random initial parameters. Voting the ten network outputs on aper tag basis
(“voting ensemble”) leads to a small improvement over the average network performance. We
have also tried a more sophisticated ensemble approach: the ten network output scores (before
sentence-level likelihood) were combined with an additional linear layer (4)and then fed to a new
sentence-level likelihood (13). The parameters of the combining layers were then trained on the
existing training set, while keeping the ten networks fixed (“joined ensemble”). This approach did
not improve on simple voting.

These ensembles come of course at the expense of a ten fold increase ofthe running time. On
the other hand, multiple training times could be improved using smart sampling strategies (Neal,
1996).

We can also observe that the performance variability among the ten networksis not very large.
The local minima found by the training algorithm are usually good local minima, thanks to the
oversized parameter space and to the noise induced by the stochastic gradient procedure (LeCun
et al., 1998). In order to reduce the variance in our experimental results, we always use the same
initial parameters for networks trained on the same task (except of coursefor the results reported in
Table 11.)

6.5 Parsing

Gildea and Palmer (2002) and Punyakanok et al. (2005) offer several arguments suggesting that
syntactic parsing is a necessary prerequisite for the SRL task. The CoNLL 2005 SRL benchmark
task provides parse trees computed usingboth the Charniak (2000) and Collins (1999) parsers.
State-of-the-art systems often exploit additional parse trees such as thek top ranking parse trees
(Koomen et al., 2005; Haghighi et al., 2005).

In contrast our SRL networks so far do not use parse trees at all. They rely instead on internal
representations transferred from a language model trained with an objective function that captures
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Figure 6: Charniak parse tree for the sentence“The luxury auto maker last year sold 1,214 cars
in the U.S.”. Level 0 is the original tree. Levels 1 to 4 are obtained by successively
collapsing terminal tree branches. For each level, words receive tags describing the seg-
ment associated with the corresponding leaf. All words receive tag “O” at level 3 in this
example.

a lot of syntactic information (see Section 4.6). It is therefore legitimate to question whether this
approach is an acceptable lightweight replacement for parse trees.

We answer this question by providing parse tree information as additional input features to our
system.18 We have limited ourselves to the Charniak parse tree provided with the CoNLL 2005 data.
Considering that a node in a syntactic parse tree assigns a label to a segment of the parsed sentence,
we propose a way to feed (partially) this labeled segmentation to our network,through additional
lookup tables. Each of these lookup tables encodelabeledsegments of each parse tree level (up to
a certain depth). The labeled segments are fed to the network following a IOBES tagging scheme
(see Sections 3.3.3 and 3.2.1). As there are 40 different phrase labels inWSJ, each additional tree-
related lookup tables has 161 entries (40×4+1) corresponding to the IBES segment tags, plus the
extra O tag.

We call level 0 the information associated with the leaves of the original Charniak parse tree.
The lookup table for level 0 encodes the corresponding IOBES phrasetags for each words. We
obtain levels 1 to 4 by repeatedly trimming the leaves as shown in Figure 6. We labeled “O” words
belonging to the root node “S”, or all words of the sentence if the root itself has been trimmed.

Experiments were performed using the LM2 language model using the same network archi-
tectures (see Table 5) and using additional lookup tables of dimension 5 foreach parse tree level.
Table 12 reports the performance improvements obtained by providing increasing levels of parse

18. In a more recent work (Collobert, 2011), we propose an extension of this approach for the generation of full syntactic
parse trees, using a recurrent version of our architecture.
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Approach SRL
(valid) (test)

Benchmark System(six parse trees) 77.35 77.92
Benchmark System(top Charniak parse tree only) 74.76 –
NN+SLL+LM2 72.29 74.15
NN+SLL+LM2+Charniak (level 0 only) 74.44 75.65
NN+SLL+LM2+Charniak (levels 0 & 1) 74.50 75.81
NN+SLL+LM2+Charniak (levels 0 to 2) 75.09 76.05
NN+SLL+LM2+Charniak (levels 0 to 3) 75.12 75.89
NN+SLL+LM2+Charniak (levels 0 to 4) 75.42 76.06
NN+SLL+LM2+CHUNK – 74.72
NN+SLL+LM2+PT0 – 75.49

Table 12: Generalization performance on the SRL task of our NN architecture compared with the
benchmark system. We show performance of our system fed with different levels of depth
of the Charniak parse tree. We report previous results of our architecture with no parse
tree as a baseline. Koomen et al. (2005) report test and validation performance using six
parse trees, as well as validation performance using only the top Charniakparse tree. For
comparison purposes, we hence also report validation performance. Finally, we report
our performance with the CHUNK feature, and compare it against a level 0feature PT0
obtained by our network.

tree information. Level 0 alone increases the F1 score by almost 1.5%. Additional levels yield
diminishing returns. The top performance reaches 76.06% F1 score. This is not too far from the
state-of-the-art system which we note uses six parse trees instead of one. Koomen et al. (2005) also
report a 74.76% F1 score on the validation set using only the Charniak parse tree. Using the first
three parse tree levels, we reach this performance on the validation set. These results corroborate
findings in the NLP literature (Gildea and Palmer, 2002; Punyakanok et al., 2005) showing that
parsing is important for the SRL task.

We also reported in Table 12 our previous performance obtained with the CHUNK feature (see
Table 10). It is surprising to observe that adding chunking features intothe semantic role labeling
network performs significantly worse than adding features describing thelevel 0 of the Charniak
parse tree (Table 12). Indeed, if we ignore the label prefixes “BIES”defining the segmentation,
the parse tree leaves (at level 0) and the chunking have identical labeling. However, the parse trees
identify leaf sentence segments that are often smaller than those identified by the chunking tags,
as shown by Hollingshead et al. (2005).19 Instead of relying on Charniak parser, we chose to train
a second chunking network to identify the segments delimited by the leaves of thePenn Treebank
parse trees (level 0). Our network achieved 92.25% F1 score on this task (we call it PT0), while we
evaluated Charniak performance as 91.94% on the same task. As shown in Table 12, feeding our

19. As in Hollingshead et al. (2005), consider the sentence and chunk labels “(NP They) (VP are starting to buy) (NP
growth stocks)”. The parse tree can be written as “(S (NP They) (VP are (VP starting (S (VP to (VP buy (NP growth
stocks)))))))”. The tree leaves segmentation is thus given by “(NP They) (VP are) (VP starting) (VP to) (VP buy) (NP
growth stocks)”.

2491



COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

own PT0 prediction into the SRL system gives similar performance to using Charniak predictions,
and is consistently better than the CHUNK feature.

6.6 Word Representations

We have described how we induced useful word embeddings by applyingour architecture to a
language modeling task trained using a large amount of unlabeled text data. These embeddings
improve the generalization performance on all tasks (Section 4.) The literature describes other ways
to induce word representations. Mnih and Hinton (2007) proposed a related language model ap-
proach inspired from Restricted Boltzmann Machines. However, word representations are perhaps
more commonly inferred fromn-gram language modeling rather than purely continuous language
models. One popular approach is the Brown clustering algorithm (Brown etal., 1992a), which
builds hierarchical word clusters by maximizing the bigram’s mutual information.The induced
word representation has been used with success in a wide variety of NLP tasks, including POS
(Scḧutze, 1995), NER (Miller et al., 2004; Ratinov and Roth, 2009), or parsing (Koo et al., 2008).
Other related approaches exist, like phrase clustering (Lin and Wu, 2009) which has been shown to
work well for NER. Finally, Huang and Yates (2009) have recently proposed a smoothed language
modeling approach based on a Hidden Markov Model, with success on POSand Chunking tasks.

While a comparison of all these word representations is beyond the scope of this paper, it is
rather fair to question the quality of our word embeddings compared to a popular NLP approach.
In this section, we report a comparison of our word embeddings against Brown clusters, when used
as features into our neural network architecture. We report as baseline previous results where our
word embeddings arefine-tunedfor each task. We also report performance when our embeddings
are kept fixed during task-specific training. Sinceconvexmachine learning algorithms are common
practice in NLP, we finally report performances for the convex versionof our architecture.

For the convex experiments, we considered the linear version of our neural networks (instead of
having several linear layers interleaved with a non-linearity). While we always picked the sentence
approach for SRL, we had to consider the window approach in this particular convex setup, as the
sentence approach network (see Figure 2) includes a Max layer. Having only one linear layer in our
neural network is not enough to make our architecture convex: all lookup-tables (for each discrete
feature) must also befixed. The word-lookup table is simply fixed to the embeddings obtained from
our language model LM2. All other discrete feature lookup-tables (caps, POS, Brown Clusters...)
are fixed to a standardsparserepresentation. Using the notation introduced in Section 3.2.1, ifLTWk

is the lookup-table of thekth discrete feature, we haveWk ∈R
|Dk|×|Dk| and the representation of the

discrete inputw is obtained with:

LTWk(w) = 〈Wk〉1w =

(

0, · · ·0, 1
at indexw

, 0, · · · 0

)T

. (18)

Training our architecture in this convex setup with the sentence-level likelihood (13) corresponds
to training a CRF. In that respect, these convex experiments show the performance of our word
embeddings in a classical NLP framework.

Following the Ratinov and Roth (2009) and Koo et al. (2008) setups, we generated 1,000 Brown
clusters using the implementation20 from Liang (2005). To make the comparison fair, the clusters
were first induced on the concatenation of Wikipedia and Reuters data sets, as we did in Section 4

20. Available athttp://www.eecs.berkeley.edu/ ˜ pliang/software .
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Approach POS CHUNK NER SRL
(PWA) (F1) (F1) (F1)

Non-convex Approach
LM2 (non-linear NN) 97.29 94.32 89.59 76.06
LM2 (non-linear NN, fixed embeddings) 97.10 94.45 88.79 72.24
Brown Clusters (non-linear NN, 130K words) 96.92 94.35 87.15 72.09
Brown Clusters (non-linear NN, all words) 96.81 94.21 86.68 71.44

Convex Approach
LM2 (linear NN, fixed embeddings) 96.69 93.51 86.64 59.11
Brown Clusters (linear NN, 130K words) 96.56 94.20 86.46 51.54
Brown Clusters (linear NN, all words) 96.28 94.22 86.63 56.42

Table 13: Generalization performance of our neural network architecture trained with our language
model (LM2) word embeddings, and with the word representations derived from the
Brown Clusters. As before, all networks are fed with a capitalization feature. Addition-
ally, POS is using a word suffix of size 2 feature, CHUNK is fed with POS, NER uses
the CoNLL 2003 gazetteer, and SRL is fed with levels 1–5 of the Charniak parse tree, as
well as a verb position feature. We report performance with both convexand non-convex
architectures (300 hidden units for all tasks, with an additional 500 hiddenunits layer for
SRL). We also provide results for Brown Clusters induced with a 130K word dictionary,
as well as Brown Clusters induced with all words of the given tasks.

for training our largest language model LM2, using a 130K word dictionary. This dictionary covers
about 99% of the words in the training set of each task. To cover the last 1%, we augmented the
dictionary with the missing words (reaching about 140K words) and inducedBrown Clusters using
the concatenation of WSJ, Wikipedia, and Reuters.

The Brown clustering approach is hierarchical and generates a binarytree of clusters. Each
word in the vocabulary is assigned to a node in the tree. Features are extracted from this tree by
considering the path from the root to the node containing the word of interest. Following Ratinov &
Roth, we picked as features the path prefixes of size 4, 6, 10 and 20. Inthe non-convex experiments,
we fed these four Brown Cluster features to our architecture using fourdifferent lookup tables,
replacing our word lookup table. The size of the lookup tables was chosento be 12 by validation. In
the convex case, we used the classical sparse representation (18), as for any other discrete feature.

We first report in Table 13 generalization performance of our best non-convex networks trained
with our LM2 language model and with Brown Cluster features. Our embeddings perform at least
as well as Brown Clusters. Results are more mitigated in a convex setup. For most tasks, going
non-convex is better for both word representation types. In general, “fine-tuning” our embeddings
for each task also gives an extra boost. Finally, using a better word coverage with Brown Clusters
(“all words” instead of “130K words” in Table 13) did not help.

More complex features could be possibly combined instead of using a non-linear model. For
instance, Turian et al. (2010) performed a comparison of Brown Clusters and embeddings trained
in the same spirit as ours21, with additional features combining labels and tokens. We believe this

21. However they did not reach our embedding performance. Thereare several differences in how they trained their
models that might explain this. Firstly, they may have experienced difficulties because they train 50-dimensional
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Task Features
POS Suffix of size 2
CHUNK POS
NER CoNLL 2003 gazetteer
PT0 POS
SRL PT0, verb position

Table 14: Features used by SENNA implementation, for each task. In addition, all tasks use “low
caps word” and “caps” features.

Task Benchmark SENNA
Part of Speech (POS) (Accuracy) 97.24 % 97.29 %
Chunking (CHUNK) (F1) 94.29 % 94.32 %
Named Entity Recognition (NER) (F1) 89.31 % 89.59 %
Parse Tree level 0 (PT0) (F1) 91.94 % 92.25 %
Semantic Role Labeling (SRL) (F1) 77.92 % 75.49 %

Table 15: Performance of the engineered sweet spot (SENNA) on various tagging tasks. The PT0
task replicates the sentence segmentation of the parse tree leaves. The corresponding
benchmark score measures the quality of the Charniak parse tree leaves relative to the
Penn Treebank gold parse trees.

type of comparison should be taken with care, as combining a given featurewith different word
representations might not have the same effect on each word representation.

6.7 Engineering a Sweet Spot

We implemented a standalone version of our architecture, written in the C language. We gave
the name “SENNA” (Semantic/syntactic Extraction using a Neural Network Architecture) to the
resulting system. The parameters of each architecture are the ones described in Table 5. All the
networks were trained separately on each task using the sentence-levellikelihood (SLL). The word
embeddings were initialized to LM2 embeddings, and then fine-tuned for eachtask. We summarize
features used by our implementation in Table 14, and we report performanceachieved on each task
in Table 15. The runtime version22 contains about 2500 lines of C code, runs in less than 150MB
of memory, and needs less than a millisecond per word to compute all the tags. Table 16 compares
the tagging speeds for our system and for the few available state-of-the-art systems: the Toutanova
et al. (2003) POS tagger23, the Shen et al. (2007) POS tagger24 and the Koomen et al. (2005) SRL

embeddings for 269K distinct words using a comparatively small trainingset (RCV1, 37M words), unlikely to contain
enough instances of the rare words. Secondly, they predict the correctness of the final word of each window instead
of the center word (Turian et al., 2010), effectively restricting the model to unidirectional prediction. Finally, they do
not fine tune their embeddings after unsupervised training.

22. Available athttp://ml.nec-labs.com/senna .
23. Available athttp://nlp.stanford.edu/software/tagger.shtml . We picked the 3.0 version (May 2010).
24. Available athttp://www.cis.upenn.edu/ ˜ xtag/spinal .
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POS System RAM (MB) Time (s)
Toutanova et al. (2003) 800 64

Shen et al. (2007) 2200 833
SENNA 32 4

SRL System RAM (MB) Time (s)
Koomen et al. (2005) 3400 6253

SENNA 124 51

Table 16: Runtime speed and memory consumption comparison between state-of-the-art systems
and our approach (SENNA). We give the runtime in seconds for runningboth the POS
and SRL taggers on their respective testing sets. Memory usage is reported in megabytes.

system.25 All programs were run on a single 3GHz Intel core. The POS taggers were run with
Sun Java 1.6 with a large enough memory allocation to reach their top tagging speed. The beam
size of the Shen tagger was set to 3 as recommended in the paper. Regardless of implementation
differences, it is clear that our neural networks run considerably faster. They also require much less
memory. Our POS and SRL tagger runs in 32MB and 120MB of RAM respectively. The Shen
and Toutanova taggers slow down significantly when the Java machine is given less than 2.2GB and
800MB of RAM respectively, while the Koomen tagger requires at least 3GB of RAM.

We believe that a number of reasons explain the speed advantage of our system. First, our
system only uses rather simple input features and therefore avoids the nonnegligible computation
time associated with complex handcrafted features. Secondly, most networkcomputations aredense
matrix-vector operations. In contrast, systems that rely on a great numberof sparsefeatures experi-
ence memory latencies when traversing the sparse data structures. Finally,our compact implemen-
tation is self-contained. Since it does not rely on the outputs of disparate NLP system, it does not
suffer from communication latency issues.

7. Critical Discussion

Although we believe that this contribution represents a step towards the “NLPfrom scratch” objec-
tive, we are keenly aware that both our goal and our means can be criticized.

The main criticism of our goal can be summarized as follows. Over the years,the NLP com-
munity has developed a considerable expertise in engineering effective NLP features. Why should
they forget this painfully acquired expertise and instead painfully acquirethe skills required to train
large neural networks? As mentioned in our introduction, we observe thatno single NLP task really
covers the goals of NLP. Therefore we believe that task-specific engineering (i.e., that does not gen-
eralize to other tasks) is not desirable. But we also recognize how much our neural networks owe to
previous NLP task-specific research.

The main criticism of our means is easier to address. Why did we choose to relyon a twenty
year old technology, namely multilayer neural networks? We were simply attracted by their ability
to discover hidden representations using a stochastic learning algorithm that scales linearly with

25. Available athttp://l2r.cs.uiuc.edu/ ˜ cogcomp/asoftware.php?skey=SRL .
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the number of examples. Most of the neural network technology necessary for our work has been
described ten years ago (e.g., Le Cun et al., 1998). However, if we haddecided ten years ago to train
the language model network LM2 using a vintage computer, training would onlybe nearing com-
pletion today. Training algorithms that scale linearly are most able to benefit from such tremendous
progress in computer hardware.

8. Conclusion

We have presented a multilayer neural network architecture that can handle a number of NLP tasks
with both speed and accuracy. The design of this system was determined byour desire to avoid
task-specific engineering as much as possible. Instead we rely on large unlabeled data sets and let
the training algorithm discover internal representations that prove useful for all the tasks of interest.
Using this strong basis, we have engineered a fast and efficient “all purpose” NLP tagger that we
hope will prove useful to the community.

Acknowledgments

We acknowledge the persistent support of NEC for this research effort. We thank Yoshua Bengio,
Samy Bengio, Eric Cosatto, Vincent Etter, Hans-Peter Graf, Ralph Grishman, and Vladimir Vapnik
for their useful feedback and comments.

Appendix A. Neural Network Gradients

We consider a neural networkfθ(·), with parametersθ. We maximize the likelihood (8), or minimize
ranking criterion (17), with respect to the parametersθ, using stochastic gradient. By negating the
likelihood, we now assume it all corresponds to minimize a costC( fθ(·)), with respect toθ.

Following the classical “back-propagation” derivations (LeCun, 1985;Rumelhart et al., 1986)
and the modular approach shown in Bottou (1991), any feed-forward neural network withL layers,
like the ones shown in Figure 1 and Figure 2, can be seen as a composition of functions f l

θ(·),
corresponding to each layerl :

fθ(·) = f L
θ ( f L−1

θ (. . . f 1
θ (·) . . .))

Partitioning the parameters of the network with respect to each layers 1≤ l ≤ L, we write:

θ = (θ1, . . . , θl , . . . , θL) .

We are now interested in computing the gradients of the cost with respect to each θl . Applying the
chain rule (generalized to vectors) we obtain the classical backpropagation recursion:

∂C
∂θl =

∂ f l
θ

∂θl

∂C

∂ f l
θ

(19)

∂C

∂ f l−1
θ

=
∂ f l

θ

∂ f l−1
θ

∂C

∂ f l
θ
. (20)

In other words, we first initialize the recursion by computing the gradient ofthe cost with respect to
the last layer output∂C/∂ f L

θ . Then each layerl computes the gradient respect to its own parameters
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with (19), given the gradient coming from its output∂C/∂ f l
θ. To perform the backpropagation, it

also computes the gradient with respect to its own inputs, as shown in (20). We now derive the
gradients for each layer we used in this paper.

A.1 Lookup Table Layer

Given a matrix of parametersθ1 =W1 and word (or discrete feature) indices[w]T1 , the layer outputs
the matrix:

f l
θ([w]

T
l ) =

(

〈W〉1[w]1
〈W〉1[w]2

. . . 〈W〉1[w]T

)

.

The gradients of the weights〈W〉1i are given by:

∂C

∂〈W〉1i
= ∑
{1≤t≤T / [w]t=i}

〈
∂C

∂ f l
θ
〉1i

This sum equals zero if the indexi in the lookup table does not corresponds to a word in the se-
quence. In this case, theith column ofW does not need to be updated. As a Lookup Table Layer is
always the first layer, we do not need to compute its gradients with respectto the inputs.

A.2 Linear Layer

Given parametersθl = (Wl ,bl ), and an inputvector fl−1
θ the output is given by:

f l
θ =Wl f l−1

θ +bl . (21)

The gradients with respect to the parameters are then obtained with:

∂C
∂Wl =

[
∂C

∂ f l
θ

][

f l−1
θ

]T

and
∂C
∂bl =

∂C

∂ f l
θ
, (22)

and the gradients with respect to the inputs are computed with:

∂C

∂ f l−1
θ

=
[

Wl
]T ∂C

∂ f l
θ
. (23)

A.3 Convolution Layer

Given a inputmatrix fl−1
θ , a Convolution Layerf l

θ(·) applies a Linear Layer operation (21) suc-
cessively on each window〈 f l−1

θ 〉dwin
t (1 ≤ t ≤ T) of size dwin. Using (22), the gradients of the

parameters are thus given by summing over all windows:

∂C
∂Wl =

T

∑
t=1

[

〈
∂C

∂ f l
θ
〉1t

][

〈 f l−1
θ 〉dwin

t

]T

and
∂C
∂bl =

T

∑
t=1

〈
∂C

∂ f l
θ
〉1t .

After initializing the input gradients∂C/∂ f l−1
θ to zero, we iterate (23) over all windows for 1≤ t ≤

T, leading theaccumulation26:

〈
∂C

∂ f l−1
θ
〉dwin
t +=

[

Wl
]T

〈
∂C

∂ f l
θ
〉1t .

26. We denote “+=” any accumulation operation.
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A.4 Max Layer

Given amatrix fl−1
θ , the Max Layer computes

[

f l
θ

]

i
= max

t

[

〈 f l−1
θ 〉1t

]

i
andai = argmax

t

[

〈 f l−1
θ 〉1t

]

i
∀i ,

whereai stores the index of the largest value. We only need to compute the gradient with respect to
the inputs, as this layer has no parameters. The gradient is given by

[

〈
∂C

∂ f l−1
θ
〉1t

]

i

=

{ [

〈 ∂C
∂ f l

θ
〉1t

]

i
if t = ai

0 otherwise
.

A.5 HardTanh Layer

Given avector fl−1
θ , and the definition of the HardTanh (5) we get

[

∂C

∂ f l−1
θ

]

i

=







0 if
[

f l−1
θ

]

i
<−1

[
∂C
∂ f l

θ

]

i
if −1<=

[

f l−1
θ

]

i
<= 1

0 if
[

f l−1
θ

]

i
> 1

,

if we ignore non-differentiability points.

A.6 Word-Level Log-Likelihood

The network outputs a score[ fθ]i for each tag indexed byi. Following (11), ify is the true tag for a
given example, the stochastic score to minimize can be written as

C( fθ) = logadd
j

[ fθ] j − [ fθ]y

Considering the definition of the logadd (10), the gradient with respect tofθ is given by

∂C
∂ [ fθ]i

=
e[ fθ]i

∑k e[ fθ]k
−1i=y ∀i.

A.7 Sentence-Level Log-Likelihood

The network outputs a matrix where each element
[

fθ
]

i, t gives a score for tagi at wordt. Given a

tag sequence[y]T1 and a input sequence[x]T1 , we maximize the likelihood (13), which corresponds
to minimizing the score

C( fθ,A) = logadd
∀[ j]T1

s([x]T1 , [ j]
T
1 , θ̃)

︸ ︷︷ ︸

Clogadd

−s([x]T1 , [y]
T
1 , θ̃) ,

with

s([x]T1 , [y]
T
1 , θ̃) =

T

∑
t=1

(

[A][y]t−1, [y]t
+[ fθ][y]t , t

)

.
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We first initialize all gradients to zero

∂C

∂
[

fθ
]

i, t

= 0 ∀i, t and
∂C

∂ [A]i, j
= 0 ∀i, j .

We thenaccumulategradients over the second part of the cost−s([x]T1 , [y]
T
1 , θ̃), which gives:

∂C

∂
[

fθ
]

[y]t , t

+=1

∂C
∂ [A][y]t−1, [y]t

+=1
∀t .

We now need to accumulate the gradients over the first part of the cost, thatis Clogadd. We differen-
tiateClogadd by applying the chain rule through the recursion (14). First we initialize ourrecursion
with

∂Clogadd

∂δT(i)
=

eδT (i)

∑k eδT (k)
∀i .

We then compute iteratively:

∂Clogadd

∂δt−1(i)
= ∑

j

∂Clogadd

∂δt( j)
eδt−1(i)+[A]i, j

∑k eδt−1(k)+[A]k, j
,

where at each stept of the recursion we accumulate of the gradients with respect to the inputsfθ,
and the transition scores[A]i, j :

∂C

∂
[

fθ
]

i, t

+=
∂Clogadd

∂δt(i)
∂δt(i)

∂
[

fθ
]

i, t

=
∂Clogadd

∂δt(i)

∂C
∂ [A]i, j

+=
∂Clogadd

∂δt( j)
∂δt( j)
∂ [A]i, j

=
∂Clogadd

∂δt( j)
eδt−1(i)+[A]i, j

∑k eδt−1(k)+[A]k, j
.

A.8 Ranking Criterion

We use the ranking criterion (17) for training our language model. In this case, given a “positive”
examplex and a “negative” examplex(w), we want to minimize:

C( fθ(x), fθ(x
w)) = max

{

0, 1− fθ(x)+ fθ(x
(w))

}

.

Ignoring the non-differentiability ofmax(0, ·) in zero, the gradient is simply given by:

( ∂C
∂ fθ(x)

∂C
∂ fθ(xw)

)

=







(
−1

1

)

if 1− fθ(x)+ fθ(x(w))> 0
(

0

0

)

otherwise
.
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S. Cĺemençon and N. Vayatis. Ranking the best instances.Journal of Machine Learning Research
(JMLR), 8:2671–2699, 2007.

W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order things.Journal of Artificial Intelli-
gence Research (JAIR), 10:243–270, 1998.

T. Cohn and P. Blunsom. Semantic role labelling with tree conditional random fields. InConference
on Computational Natural Language (CoNLL), 2005.

M. Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, University
of Pennsylvania, 1999.

R. Collobert.Large Scale Machine Learning. PhD thesis, Université Paris VI, 2004.
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