View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Journal of Machine Learning Research 12 (2011) 2461-2505 bmited 1/10; Revised 11/10; Published 8/11

Natural Language Processing (Almost) from Scratch

Ronan Collobert* RONAN@COLLOBERT.COM
Jason Weston JWESTON@GOOGLE.COM
L éon Bottou* LEON@BOTTOU.ORG
Michael Karlen MICHAEL .KARLEN @GMAIL .COM
Koray Kavukcuoglu$ KORAY @CS.NYU.EDU
Pavel Kuksal PKUKSA@CS.RUTGERSEDU

NEC Laboratories America
4 Independence Way
Princeton, NJ 08540

Editor: Michael Collins

Abstract

We propose a unified neural network architecture and legrigporithm that can be applied to var-

ious natural language processing tasks including paspetch tagging, chunking, named entity
recognition, and semantic role labeling. This versatibtgchieved by trying to avoid task-specific

engineering and therefore disregarding a lot of prior kealgk. Instead of exploiting man-made
input features carefully optimized for each task, our ayskearns internal representations on the
basis of vast amounts of mostly unlabeled training data.s Wurk is then used as a basis for
building a freely available tagging system with good perfance and minimal computational re-

quirements.

Keywords: natural language processing, neural networks

1. Introduction

Will a computer program ever be able to convert a piece of English text iptogtammer friendly
data structure that describes the meaning of the natural language text?udately, no consensus
has emerged about the form or the existence of such a data structuti¢.sug¢h fundamental
Articial Intelligence problems are resolved, computer scientists must settlefoeduced objective
of extracting simpler representations that describe limited aspects of thel iakbuaation.

These simpler representations are often motivated by specific applicdtorisstance, bag-
of-words variants for information retrieval), or by our belief that thegtaee something more gen-
eral about natural language. They can describe syntactic informatign part-of-speech tagging,
chunking, and parsing) or semantic information (e.g., word-sense disaatioig, semantic role
labeling, named entity extraction, and anaphora resolution). Text @hawe been manually an-
notated with such data structures in order to compare the performanceimisvaystems. The
availability of standard benchmarks has stimulated research in NaturalhgadProcessing (NLP)

x. Ronan Collobert is now with the Idiap Research Institute, Switzerland.
T. Jason Weston is now with Google, New York, NY.

f. Léon Bottou is now with Microsoft, Redmond, WA.

§. Koray Kavukcuoglu is also with New York University, New York, NY.

1. Pavel Kuksa is also with Rutgers University, New Brunswick, NJ.

(©2011 Ronan Collobert, Jason Westoiph Bottou, Michael Karlen, Koray Kavukcuoglu and Pavel gak

https://core.ac.uk/display/148000557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

and effective systems have been designed for all these tasks. Siemsyare often viewed as
software components for constructing real-world NLP solutions.

The overwhelming majority of these state-of-the-art systems address ithglieg benchmark
task by applying linear statistical models to ad-hoc features. In other wbilsesearchers them-
selves discover intermediate representations by engineering taskesfedtifires. These features
are often derived from the output of preexisting systems, leading to campiéme dependencies.
This approach is effective because researchers leverage a tatgeblinguistic knowledge. On
the other hand, there is a great temptation to optimize the performance of m $gsta specific
benchmark. Although such performance improvements can be very irspfactice, they teach us
little about the means to progress toward the broader goals of naturab@@gunderstanding and
the elusive goals of Artificial Intelligence.

In this contribution, we try to excel omultiple benchmarke/hile avoiding task-specific engi-
neering Instead we use single learning systerable to discover adequate internal representations.
In fact we view the benchmarks as indirect measurements of the relewhtieeinternal represen-
tations discovered by the learning procedure, and we posit that thesmedliate representations
are more general than any of the benchmarks. Our desire to avoidaasifisengineered features
prevented us from using a large body of linguistic knowledge. Insteagaeh good performance
levels in most of the tasks by transferring intermediate representationselisdmn large unlabeled
data sets. We call this approach “almost from scratch” to emphasize theaick¢but still important)
reliance on a priori NLP knowledge.

The paper is organized as follows. Section 2 describes the benchmiglofasterest. Sec-
tion 3 describes the unified model and reports benchmark results obtatheslypervised training.
Section 4 leverages large unlabeled data se852 million words) to train the model on a language
modeling task. Performance improvements are then demonstrated by tiagstfee unsupervised
internal representations into the supervised benchmark models. Sectivasfigates multitask
supervised training. Section 6 then evaluates how much further improvexaierite achieved by
incorporating standard NLP task-specific engineering into our systerfgn@®away from our ini-
tial goals gives us the opportunity to construct an all-purpose taggesthiatultaneously accurate,
practical, and fast. We then conclude with a short discussion section.

2. The Benchmark Tasks

In this section, we briefly introduce four standard NLP tasks on which vllebenchmark our
architectures within this paper: Part-Of-Speech tagging (POS), chmi(@HUNK), Named Entity
Recognition (NER) and Semantic Role Labeling (SRL). For each of thempwsider a standard
experimental setup and give an overview of state-of-the-art systethissetup. The experimental
setups are summarized in Table 1, while state-of-the-art systems artetkeporable 2.

2.1 Part-Of-Speech Tagging

POS aims at labeling each word with a unique tag that indicategrnts.ctic role for example, plural
noun, adverb, ...A standard benchmark setup is described in detabuignova et al. (2003).
Sections 0-18 of Wall Street Journal (WSJ) data are used for trainhity sections 19-21 are for
validation and sections 22—24 for testing.

The best POS classifiers are based on classifiers trained on windtews, afhich are then fed
to a bidirectional decoding algorithm during inference. Features incluetgeding and following

2462

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Task Benchmark Dataset Training set Test set
(#tokens) (#tokens) (#tags)
POS Toutanova et al. (2003) WSJ sections 0-18 sections 22-24 45) (
(912,344) (129,654)
Chunking CoNLL 2000 WSJ sections 15-18 section 20 (42)
(211,727) (47,377) (IOBES)
NER CoNLL 2003 Reuters “eng.train” “eng.testb” (17)
(203,621) (46,435) (IOBES)
SRL CoNLL 2005 WSJ sections 2-21 section 23 (186)
(950,028) + 3 Brown sections (IOBES)
(63,843)

Table 1: Experimental setup: for each task, we
it relates to, as well as training and test

report the standactitmenk we used, the data set
information.

System Accuracy System F1

Shen et al. (2007) 97.33% Shen and Sarkar (2005) 95.23%

Toutanova et al. (2003) 97.24% Sha and Pereira (2003) 94.29%

Giménez and Mirquez (2004) 97.16% Kudo and Matsumoto (2001) 93.91%
(a) POS (b) CHUNK

System F1 System F1

Ando and Zhang (2005) 89.31% Koomen et al. (2005) 77.92%

Florian et al. (2003) 88.76% Pradhan et al. (2005) 77.30%

Kudo and Matsumoto (2001) 88.31%
(c) NER

Haghighi et al. (2005) 77.04%
(d) SRL

Table 2: State-of-the-art systems on four NLP tasks. Performancedeged in per-word accuracy
for POS, and F1 score for CHUNK, NER and SRL. Systems in bold will bermed as
benchmark systens the rest of the paper (see Section 2.6).

tag context as well as multiple words (bigrams,

trigrams...) context, andcrefted features to

deal with unknown words. Toutanova et al. (2003), who use maximuno@nirlassifiers and
inference in a bidirectional dependency network (Heckerman et all)26fach 9724% per-word

accuracy. Giranez and Mrquez (2004) propose

d a SVM approach also trained on text windows

with bidirectional inference achieved with two Viterbi decoders (left-tdvand right-to-left). They
obtained 9716% per-word accuracy. More recently, Shen et al. (2007) puslecsstate-of-the-art up
to 97.33%, with a new learning algorithm they cglliided learningalso for bidirectional sequence

classification.

2463

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

2.2 Chunking

Also called shallow parsing, chunking aims at labeling segments of a semthcgyntactic con-
stituents such as noun or verb phrases (NP or VP). Each word is edsigly one unique tag, often
encoded as a begin-chunk (e.g., B-NP) or inside-chunk tag (e.g.). IBnking is often evaluated
using the CoNLL 2000 shared ta$iSections 15-18 of WSJ data are used for training and section
20 for testing. Validation is achieved by splitting the training set.

Kudoh and Matsumoto (2000) won the CoNLL 2000 challenge on chunkitigav-1-score
of 93.48%. Their system was based on Support Vector Machines (SVMsh £4M was trained
in a pairwise classification manner, and fed with a window around the wartteyest containing
POS and words as features, as well as surrounding tags. Theyrpaetymamic programming at
test time. Later, they improved their results up to¥346 (Kudo and Matsumoto, 2001) using an
ensemble of classifiers trained with different tagging conventions (Se#®66&.3.3).

Since then, a certain number of systems based on second-order réirtitnwere reported
(Sha and Pereira, 2003; McDonald et al., 2005; Sun et al., 2008 @tting around 98% F1
score. These systems use features composed of words, POS taiggisand

More recently, Shen and Sarkar (2005) obtaine@3% using a voting classifier scheme, where
each classifier is trained on different tag representatid@B, IOE, ...). They use POS features
coming from an external tagger, as well carefully hand-cradfmetializatiorfeatures which again
change the data representation by concatenating some (carefully xhbsehk tags or some words
with their POS representation. They then build trigrams over these feattie$, are finally passed
through a Viterbi decoder a test time.

2.3 Named Entity Recognition

NER labels atomic elements in the sentence into categories such as “PERSQ@ATION”.

As in the chunking task, each word is assigned a tag prefixed by an indidal® beginning or the
inside of an entity. The CoNLL 2003 setujs a NER benchmark data set based on Reuters data.
The contest provides training, validation and testing sets.

Florian et al. (2003) presented the best system at the NER CoNLL 2@0&ege, with 8876%
F1 score. They used a combination of various machine-learning classifieatures they picked
included words, POS tags, CHUNK tags, prefixes and suffixes, a tmpetteer (not provided by
the challenge), as well as the output of two other NER classifiers trainedhmar data sets. Chieu
(2003), the second best performer of CoNLL 2003.8386 F1), also used an external gazetteer
(their performance goes down t0.88% with no gazetteer) and several hand-chosen features.

Later, Ando and Zhang (2005) reached 836 F1 with a semi-supervised approach. They
trained jointly a linear model on NER with a linear model on two auxiliary unsupedvtasks.
They also performed Viterbi decoding at test time. The unlabeled corpgs2&M words taken
from Reuters. Features included words, POS tags, suffixes ankiggrefiCHUNK tags, but overall
were less specialized than CoNLL 2003 challengers.

1. Seéehttp://www.cnts.ua.ac.be/conli2000/chunking
2. See Table 3 for tagging scheme details.
3. Seéhttp:/iwww.cnts.ua.ac.be/conli2003/ner

2464

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

2.4 Semantic Role Labeling

SRL aims at giving a semantic role to a syntactic constituent of a sentence.e RProipBank
(Palmer et al., 2005) formalism one assigns roles ARGO-5 to words thatrguenents of a verb
(or more technically, gredicatg in the sentence, for example, the following sentence might be
tagged “[Johrndra [atekreL [the applelral 7, Where “ate” is the predicate. The precise arguments
depend on a verbameand if there are multiple verbs in a sentence some words might have multi-
ple tags. In addition to the ARGO-5 tags, there there are several modifeestiag as ARGM-LOC
(locational) and ARGM-TMP (temporal) that operate in a similar way for albgerWe picked
CoNLL 2005 as our SRL benchmark. It takes sections 2—21 of WSJ data as trainirmdetec-
tion 24 as validation set. A test set composed of section 23 of WSJ conizatemish 3 sections
from the Brown corpus is also provided by the challenge.

State-of-the-art SRL systems consist of several stages: produpargatree, identifying which
parse tree nodes represent the arguments of a given verb, and @ilaayjfying these nodes to
compute the corresponding SRL tags. This entails extracting numeroutebages from the parse
tree and feeding them into statistical models. Feature categories commonligyuezse system
include (Gildea and Jurafsky, 2002; Pradhan et al., 2004):

¢ the parts of speech and syntactic labels of words and nodes in the tree;

the node’s position (left or right) in relation to the verb;

the syntactic path to the verb in the parse tree;

whether a node in the parse tree is part of a noun or verb phrase;

the voice of the sentence: active or passive;

the node’s head word; and
e the verb sub-categorization.

Pradhan et al. (2004) take these base features and define addemioatt, notably the part-of-
speech tag of the head word, the predicted named entity class of the atgteatures providing
word sense disambiguation for the verb (they add 25 variants of 12 rméuréetypes overall). This
system is close to the state-of-the-art in performance. Pradhan ed@b)@btain 7730% F1 with a
system based on SVM classifiers and simultaneously using the two passpriveigled for the SRL
task. In the same spirit, Haghighi et al. (2005) use log-linear models dntesenode, re-ranked
globally with a dynamic algorithm. Their system reache$94% using the five top Charniak parse
trees.

Koomen et al. (2005) hold the state-of-the-art with Winnow-like (Littlestdr888) classifiers,
followed by a decoding stage based on an integer program that em&peeific constraints on SRL
tags. They reach 792% F1 on CoNLL 2005, thanks to the five top parse trees produced by the
Charniak (2000) parser (only the first one was provided by the cymiesvell as the Collins (1999)
parse tree.

4. Seehttp:/lwww.Isi.upc.edu/ ~srlconll

2465

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

2.5 Evaluation

In our experiments, we strictly followed the standard evaluation procesfueach CoNLL chal-
lenges for NER, CHUNK and SRL. In particular, we chose the hypearpaters of our model
according to a simple validation procedure (see Remark 8 later in Sectiop8r)med over the
validation set available for each task (see Section 2). All these threedmsksaluated by comput-
ing the F1 scores ovahunksproduced by our models. The POS task is evaluated by computing
the per-wordaccuracy, as it is the case for the standard benchmark we refer ttafitea et al.,
2003). We used theonlleval scripf for evaluating POS,NER and CHUNK. For SRL, we used
thesrl-eval.pl script included in therlconll packagé.

2.6 Discussion

When participating in an (open) challenge, it is legitimate to increase gendiralizy all means.
It is thus not surprising to see many top CoNLL systems uskigrnal labeled datdike additional
NER classifiers for the NER architecture of Florian et al. (2003) or additiparse trees for SRL
systems (Koomen et al., 2005). Combining multiple systems or tweaking carefatiyrés is also
a common approach, like in the chunking top system (Shen and Sarké&il), 200

However, whercomparingsystems, we do not learn anything of the quality of each system if
they were trained witldifferentlabeled data. For that reason, we will refefsenchmark systems
that is, top existing systems which avoid usage of external data and hemnened-established in
the NLP field: Toutanova et al. (2003) for POS and Sha and Perei@8)20r chunking. For NER
we consider Ando and Zhang (2005) as they were using additioiabeleddata only. We picked
Koomen et al. (2005) for SRL, keeping in mind they use 4 additional paess tmot provided by
the challenge. These benchmark systems will serve as baseline retenemar experiments. We
marked them in bold in Table 2.

We note that for the four tasks we are considering in this work, it can be 8wt for the
more complex tasks (with corresponding lower accuracies), the bdastrsyyproposed have more
engineered features relative to the best systems on the simpler tasks, TP OS task is one of
the simplest of our four tasks, and only has relatively few engineesddres, whereas SRL is the
most complex, and many kinds of features have been designed for it. [€aib/chas implications
for as yet unsolved NLP tasks requiring more sophisticated semanticstai@ing than the ones
considered here.

3. The Networks

All the NLP tasks above can be seen as tasks assigning labels to worelsrad@tional NLP ap-
proach is: extract from the sentence a rich set of hand-designeddeavhich are then fed to a
standard classification algorithm, for example, a Support Vector MacBiiBI}, often with a lin-
ear kernel. The choice of features is a completely empirical process, mawdyl ffirst on linguistic
intuition, and then trial and error, and the feature selection is task depierglying additional
research for each new NLP task. Complex tasks like SRL then requirgeaamber of possibly

5. Available athttp://www.cnts.ua.ac.be/conll2000/chunking/conllev al.txt
6. We used the-t " option of theconlleval script to get the per-word accuracy, for POS only.
7. Available athttp://www.Isi.upc.es/ ~stlconll/sriconll-1.1.tgz

2466

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Input Window

word of interest

Text cat sat on the mat
1 1 1
Feature 1 wy wy ... W
K K K
Feature K wy wy ... wN

Lookup Table

LTWIMDUUUU

LTWK’WDDDDD

concat

Llnear(b_/ V]
M xo A~ \ \

1
"hu

N
HardTanh v
-/ N~

N
Linear v

M? xo "~ [T

ni ., #tag

Figure 1: Window approach network.

complex features (e.g., extracted from a parse tree) which can impadrtimitational cost which
might be important for large-scale applications or applications requiriginea response.

Instead, we advocate a radically different approach: as input we wiliotppre-process our
features as little as possible and then use a multilayer neural network (SiNdegture, trained in
an end-to-end fashion. The architecture takes the input sentenceaamsldeveral layers of feature
extraction that process the inputs. The features computed by the deep dhybe network are
automatically trained by backpropagation to be relevant to the task. Wakiesgtithis section a
general multilayer architecture suitable for all our NLP tasks, which isrgdinable to other NLP
tasks as well.

Our architecture is summarized in Figure 1 and Figure 2. The first layeactstfeatures for
each word. The second layer extracts features from a window ofsimrfitom the whole sentence,
treating it as aequencevith local and global structure (i.e., it is not treated like a bag of words).
The following layers are standard NN layers.

3.1 Notations

We consider a neural networfig(-), with parameter®. Any feed-forward neural network with
layers, can be seen as a composition of functitél(us), corresponding to each layler

fol) = 5 (F (.. 13()...).

2467

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

Input Sentence

Text The cat sat on the mat
1 1 1
Feature 1 ;U wy Wy ... W ;U
5 <% QU
: Ry Ry
=) K K K
Feature K & Wy Wy wy &

<4

= TIITT0N
mx a2 BB BB B E

Convolution

‘ \
Max Over Time - v
max(’) AN (T
ﬁ—}
"hu
--------- " .
Linear -~ Y
M2 xd AN~
hu .
HardTanh v
-/ N\
. 9
BT T —— . M
M3 xb& AN~

Figure 2: Sentence approach network.

In the following, we will describe each layer we use in our networks shovagure 1 and Figure 2.
We adopt few notations. Given a matrixwe denotgA]; ; the coefficient at row and column;

in the matrix. We also denol{ev!\)idwin the vector obtained by concatenating thg column vectors
around the'" column vector of matrix € R%*d:

[<A>idwm}T - ([A]l,ifdwin/z o Ay i dyin/20 o AL dyny2 - [A]dLHdwin/Z) '

2468

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

As a special casgA)! represents thé" column of matrixA. For a vecton, we denotgv]; the
scalar at indexin the vector. Finally, a sequence of eleméxt, X, ..., x7 } is written[x]] . Theit"
element of the sequencelis;.

3.2 Transforming Words into Feature Vectors

One of the key points of our architecture is its ability to perform well with the afs@lmost)
raw words The ability for our method to learn good word representations is thus trtocgur
approach. For efficiency, words are fed to our architecture as mthéen from a finite dictionary
D. Obviously, a simple index does not carry much useful information abeutvtrd. However,
the first layer of our network maps each of these word indices into a &esaator, by a lookup
table operation. Given a task of interest, a relevant representatiorclofvesd is then given by
the corresponding lookup table feature vector, whictrdged by backpropagation, starting from
a random initializatiorf. We will see in Section 4 that we can learn very good word representa-
tions from unlabeled corpora. Our architecture allow us to take advaofdgetter trained word
representations, by simply initializing the word lookup table with these repta#mms (instead of
randomly).

More formally, for each wordv € D, an internalbl,,q-dimensional feature vector representation
is given by thdookup tablelayerLTy(-):

LTw (W) = (W)g,

whereW € R%*|?l js a matrix of parameters to be learnéd])L € R% is thew'" column ofW
andd,,q is the word vector size (a hyper-parameter to be chosen by the useen &sentence or
any sequence af words[w]] in D, the lookup table layer applies the same operation for each word
in the sequence, producing the following output matrix:

LTw(WiD) = (Wk, WRy, - Wy). (1)
This matrix can then be fed to further neural network layers, as we wilhsksv.

3.2.1 EXTENDING TO ANY DISCRETEFEATURES

One might want to provide features other than words if one suspects #sat fisatures are helpful
for the task of interest. For example, for the NER task, one could providatare which says if a
word is in a gazetteer or not. Another common practice is to introduce somegagicocessing,
such as word-stemming or dealing with upper and lower case. In this lattenpteoword would
be then represented by three discrete features: its lower case stemmaéts$ tower case ending,
and a capitalization feature.

Generally speaking, we can consider a word as represent&ddiscrete featurew € D! x
... x DX, whereDK is the dictionary for thé&" feature. We associate to each feature a lookup table
LTy (-), with parameter§Vk e R%wax|2"| whered , € N is a user-specified vector size. Given a

8. We did some pre-processing, namely lowercasing and encodiitglizgion as another feature. With enough (un-
labeled) training data, presumably we could learn a model without thi€psowy. Ideally, an even more raw input
would be to learn from letter sequences rather than words, howeveglinbdt this was beyond the scope of this
work.

9. As any other neural network layer.

2469

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

wordw, a feature vector of dimensial,q = de\‘,f,rd is then obtained by concatenating all lookup
table outputs:
LTz (W) (WhH,
LTwa,.. e (W) = : = :
LT (Wic) (W)
The matrix output of the lookup table layer for a sequence of wiwglsis then similar to (1), but
where extra rows have been added for each discrete feature:

WhHE Wil

[wa]y [waly
LT, we (W) = : : : ()
K\1 K\y1
W, WD ey

These vector features in the lookup table effectively learn featuresdiars in the dictionary. Now,
we want to use these trainable features as input to further layers oftti@ifieature extractors, that
can represent groups of words and then finally sentences.

3.3 Extracting Higher Level Features from Word Feature Vectors

Feature vectors produced by the lookup table layer need to be combinaldsegeient layers of
the neural network to produce a tag decision for each word in the sentdroducing tags for
each element in variable length sequences (here, a sentence is acsegfuaords) is a standard
problem in machine-learning. We consider two common approaches whidn&aword at the

time a window approach, and a (convolutional) sentence approach.

3.3.1 WINDOW APPROACH

A window approach assumes the tag of a word depends mainly on its ndigiplards. Given a
word to tag, we consider a fixed sikg, (a hyper-parameter) window of words around this word.
Each word in the window is first passed through the lookup table layer (2) goroducing a matrix

of word features of fixed sizé,q x ksz This matrix can be viewed asiyq ks-dimensional vector
by concatenating each column vector, which can be fed to further neerabrk layers. More
formally, the word feature window given by the first network layer camhieien as:

(W)

[W]t*dwin/z

o= | W, | @3)

[w);

. :
<W> [W]t+dwin/2

Linear Layer. The fixed size vectofg can be fed to one or several standard neural network layers
which perform affine transformations over their inputs:

fo =W fy 1+ 10, (4)

whereW' € R ™' andb! € R™u are the parameters to beined The hyper-paramete is
usually called theumber of hidden unitsf thel™" layer.

2470

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

HardTanh Layer.Several linear layers are often stacked, interleaved with a non-linearity f
tion, to extract highly non-linear features. If no non-linearity is introdljcair network would be a
simple linear model. We chose a “hard” version of the hyperbolic tangerdradinearity. It has the
advantage of being slightly cheaper to compute (compared to the exacbblpéangent), while
leaving the generalization performance unchanged (Collobert, 20049. cdrresponding laydr
applies a HardTanh over its input vector:

[fé}i = HardTantf [fé‘l]),

where
-1 ifx<-1
HardTanfix) = X if —1l<=x<=1 . (5)
1 ifx>1

Scoring. Finally, the output size of the last layérof our network is equal to the number
of possible tags for the task of interest. Each output can be then intet@stascore of the
corresponding tag (given the input of the network), thanks to a dyetiosen cost function that
we will describe later in this section.

Remark 1 (Border Effects) The feature window (3) is not well defined for words near the begin-
ning or the end of a sentence. To circumvent this problem, we augneesetiience with a special
“PADDING” word replicated dyin/2 times at the beginning and the end. This is akin to the use of
“start” and “stop” symbols in sequence models.

3.3.2 ENTENCEAPPROACH

We will see in the experimental section that a window approach performsfevethost natural
language processing tasks we are interested in. However this apfadsabith SRL, where the tag
of a word depends on a verb (or, more correctly, predicate) chaferenand in the sentence. If the
verb falls outside the window, one cannot expect this word to be taggeecty. In this particular
case, tagging a word requires the consideration oin@lesentence. When using neural networks,
the natural choice to tackle this problem becomes a convolutional appriiesthintroduced by
Waibel et al. (1989) and also called Time Delay Neural Networks (TDNiN#)e literature.

We describe in detail our convolutional network below. It successtaigs the complete sen-
tence, passes it through the lookup table layer (1), produces lotatdsaround each word of the
sentence thanks to convolutional layers, combines these feature intoah fglature vector which
can then be fed to standard affine layers (4). In the semantic role labelkigg this operation is
performed for each word in the sentence, and for each verb in thensentk is thus necessary to
encode in the network architecture which verb we are considering in therse, and which word
we want to tag. For that purpose, each word at positimnthe sentence is augmented with two
features in the way described in Section 3.2.1. These features encodéative distances— pos,
andi — posy with respect to the chosen verb at positjpos,, and the word to tag at positiquosy
respectively.

Convolutional Layer.A convolutional layer can be seen as a generalization of a window ap-
proach: given a sequence represented by columns in a rriéTFiXin our lookup table matrix (1)),

a matrix-vector operation as in (4) is applied to each window of successi®ws in the sequence.

2471

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

70 = 70 -

60 |- E 60 - V1A
50 [4 50 | 4
40 L] 40 [i
30 L 4 30 L 4
= . - ﬁ oo
0 e 7l e 1 ol Aenr Do

)36;0/0,006 /)(?«O%O///O:‘I—@o,b ﬁ%oq%’fojf %f/‘ Q’@ (?OO' G‘%\ /‘%’);5 ,O, 0/5 $/ @ $// +@ E: o@+ > %’}{?/»@oo/&‘g‘d‘o};@o
e, @@ Y % % e, i O’d‘ K

Figure 3: Number of features chosen at each word position by the Max laye consider a sen-
tence approach network (Figure 2) trained for SRL. The number célldeatures output
by the convolution layer is 30per word By applying a Max over the sentence, we ob-
tain 300 features for therhole sentencelt is interesting to see that the network catches
features mostly around the verb of interest (here “report”) and wbidterest (“pro-
posed” (left) or “often” (right)).

Using previous notations, th& output column of thét" layer can be computed as:
() =W (FYyin bl vt (6)

where the weight matri¥V' is the same across all window# the sequence. Convolutional layers
extract local features around each window of the given sequerctorAtandard affine layers (4),
convolutional layers are often stacked to extract higher level featlrakis case, each layer must
be followed by a non-linearity (5) or the network would be equivalent #® ammvolutional layer.

Max Layer. The size of the output (6) depends on the number of words in the serfthce
to the network. Local feature vectors extracted by the convolutionatddyave to be combined
to obtain a global feature vector, with a fixed size independent of thersentength, in order to
apply subsequent standard affine layers. Traditional convoluti@tadonks often apply an average
(possibly weighted) or a max operation over the “timeadf the sequence (6). (Here, “time” just
means the position in the sentence, this term stems from the use of convollgiperal in, for
example, speech data where the sequence occurs over time.) Theeameeaation does not make
much sense in our case, as in general most words in the sentence dwaainly influence on the
semantic role of a given word to tag. Instead, we used a max approaich, fotces the network to
capture the most useful local features produced by the convolutioreaklésee Figure 3), for the
task at hand. Given matrix fé*1 output by a convolutional laydr— 1, the Max layel outputs a
vector f:

[fé}i — max|] L lsisnt (7)

This fixed sized global feature vector can be then fed to standard affimork layers (4). As in
the window approach, we then finally produce one score per possibiiertdge given task.

Remark 2 The same border effects arise in the convolution operation (6) as in theowiiag-
proach (3). We again work around this problem by padding the sengemitke a special word.

2472

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Scheme| Begin Inside End Single Other
IOB B-X -X | I-X | B-X O

IOE I-X I-X |E-X | E-X @]
IOBES | B-X I-X | E-X| S-X @)

Table 3: Various tagging schemes. Each word in a segment labeled “X"gedagith a prefixed
label, depending of the word position in the segment (begin, inside, endyleSvord
segment labeling is also output. Words not in a labeled segment are labélééatants
of the OB (and IOE) scheme exist, where the prefix B (or E) is replagetfor all
segments not contiguous with another segment having the same label “X".

3.3.3 TAGGING SCHEMES

As explained earlier, the network output layers compute scores for gbgsble tags for the task of
interest. In the window approach, these tags apply to the word located ierher of the window.
In the (convolutional) sentence approach, these tags apply to the wsighdied by additional
markers in the network input.

The POS task indeed consists of marking the syntactic role of each wondeuvdn the re-
maining three tasks associate labels with segments of a sentence. This is ashiayed by using
special tagging schemes to identify the segment boundaries, as showhlén3TaSeveral such
schemes have been defined (I0B, IOE, IOBES, ...) without cleaslgsion as to which scheme
is better in general. State-of-the-art performance is sometimes obtainemriyning classifiers
trained with different tagging schemes (e.g., Kudo and Matsumoto, 2001).

The ground truth for the NER, CHUNK, and SRL tasks is provided usingdifferent tagging
schemes. In order to eliminate this additional source of variations, we leaiged to use the most
expressive IOBES tagging scheme for all tasks. For instance, in theNBHusk, we describe
noun phrases using four different tags. Tag “S-NP” is used to mardua phrase containing a
single word. Otherwise tags “B-NP”, “I-NP”, and “E-NP” are used torknthe first, intermediate
and last words of the noun phrase. An additional tag “O” marks wordsatieanot members of a
chunk. During testing, these tags are then converted to the original I@Btagcheme and fed to
the standard performance evaluation scripts mentioned in Section 2.5.

3.4 Training

All our neural networks are trained by maximizing a likelihood over the traidetg, using stochas-
tic gradient ascent. If we dendddo be all the trainable parameters of the network, which are trained
using a training sef’ we want to maximize the following log-likelihood with respecto

6— % logp(y|x,6), (8)
(x,y)eT

wherex corresponds to either a training word window or a sentence and its assbigatures, and
y represents the corresponding tag. The probahiity is computed from the outputs of the neural
network. We will see in this section two ways of interpreting neural netwaotguts as probabilities.

2473

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

3.4.1 WORD-LEVEL LOG-LIKELIHOOD

In this approach, each word in a sentence is considered independ@&itn an input example
X, the network with parametesoutputs a scorgfy(x)] . for theit" tag with respect to the task of
interest. To simplify the notation, we dragrom now, and we write insteap‘e] . This score can be
interpreted as a conditional tag probabilgi | X, 6) by applying a softmax (Bridle, 1990) operation
over all the tags:

. e[fe]i
p(l ‘X, e) = [f] . (9)
e
Defining the log-add operation as
logaddz = Iog(z), (10)
!]
we can express the log-likelihood for one training exaniglg) as follows:
logp(y|x, 6) = [fg], — logadd fg]; . (11)
j

While this training criterion, often referred asoss-entropys widely used for classification prob-
lems, it might not be ideal in our case, where there is often a correlatiorebetthe tag of a word
in a sentence and its neighboring tags. We now describe another commmaaapfor neural
networks which enforces dependencies between the predicted tagsriteace.

3.4.2 ENTENCELEVEL LOG-LIKELIHOOD

In tasks like chunking, NER or SRL we know that there are dependebetggen word tags in a
sentence: not only are tags organized in chunks, but some tags dalflmetother tags. Training
using a word-level approach discards this kind of labeling information. c@vesider a training
scheme which takes into account the sentence structure: given thetipregiaf all tags by our
network forall wordsin a sentence, and given a score for going from one tag to another ¢ag, w
want to encourage valid paths of tags during training, while discouradjinthar paths.

We consider thenatrix of scoresfy([x|]) output by the network. As before, we drop the input
[X]I for notation simplification. The eIemenﬁtG] it of the matrix is the score output by the network
with parameter$, for the sentencp|] and for the'" tag, at the'" word. We introduce a transition
score[A]H for jumping fromi to j tags in successive words, and an initial scée, for starting
from theit" tag. As the transition scores are going to be trained (as are all netwarnptars),
we defined = 6U {[A]; j Vi,j}. The score of a sentengd] along a path of tagg|! is then given
by the sum of transition scores and network scores:

T

s(¥1, [i)1,8) = tzl ([A][i]t,l, i, + [fe][i]t,t) - (12)

Exactly as for the word-level likelihood (11), where we were normalizing watpect to altags
using a softmax (9), we normalize this score over all posségepaths|j]] using a softmax, and
we interpret the resulting ratio as a conditioted pathprobability. Taking the log, the conditional
probability of the true patfy]] is therefore given by:

logp([y1 | X1, 8) = s(IX1, [¥i1, 6) - |0v£??TdOB([XH’ [i11,8). (13)
11

2474

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

While the number of terms in the logadd operation (11) was equal to the nuhtaayso it grows
exponentially with the length of the sentence in (13). Fortunately, one cawpwte it in linear
time with the following standard recursion ove(see Rabiner, 1989), taking advantage of the
associativity and distributivity on the semi-riffgy R U { -0}, logadd +):

&(k) 2 logadd (X}, [jl, 8)
{liliNile=k}
t

= logadd logadd (3, 1155 0) + [Aljj, .k [felict
b ANl =inlil=k} (14)

— |OgiadC5t71(i) + [Ai k+ ol e

= [feli +logadd(3 (i) + [Al;) ¥k,
|
followed by the termination

logadds([x]{, [j]1, 8) = logadddr (i). (15)
vIilT i

We can now maximize in (8) the log-likelihood (13) over all the training péidg , [y]]).
Atinference time, given a sentenpg] to tag, we have to find the best tag path which minimizes
the sentence score (12). In other words, we must find

argmass([X|1, [j1, 6).
[il1
The Viterbi algorithm is the natural choice for this inference. It coroesis to performing the
recursion (14) and (15), but where the logadd is replaced by a maxtham tracking back the
optimal path through each max.

Remark 3 (Graph Transformer Networks) Our approach is a particular case of the discrimina-
tive forward training for graph transformer networks (GTNs) (Bottou et H997; Le Cun et al.,
1998). The log-likelihood (13) can be viewed as the difference betweefortlvard score con-
strained over the valid paths (in our case there is only the labeled path) andnbenstrained
forward score (15).

Remark 4 (Conditional Random Fields) An important feature of equation (12) is the absence of

normalization. Summing the exponentiag‘a]et over all possible tags does not necessarily yield
the unity. If this was the case, the scores could be viewed as the logaritlwmsditional transition
probabilities, and our model would be subject to the label-bias problemrmtingitvates Conditional
Random Fields (CRFs) (Lafferty et al., 2001). The denormalized ssbi@uld instead be likened to
the potential functions of a CRF. In fact, a CRF maximizes the same likelih@digihg a linear
model instead of a nonlinear neural network. CRFs have been widetyindhe NLP world, such
as for POS tagging (Lafferty et al., 2001), chunking (Sha and Pere@@3® NER (McCallum and
Li, 2003) or SRL (Cohn and Blunsom, 2005). Compared to such CRE-take advantage of the
nonlinear network to learn appropriate features for each task of interest.

10. In other words, read logadd @sand+ as®.

2475

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

3.4.3 SOCHASTIC GRADIENT

Maximizing (8) with stochastic gradient (Bottou, 1991) is achieved by itezbtselecting a random
example(x, y) and making a gradient step:

dlogp(y|x, 0)
00 ’

whereA is a chosen learning rate. Our neural networks described in Figurd Eigare 2 are a
succession of layers that correspond to successive compositionatioins. The neural network
is finally composed with the word-level log-likelihood (11), or succesgigemposed in the re-
cursion (14) if using the sentence-level log-likelihood (13). Thusaralyticalformulation of the
derivative (16) can be computed, by applying the differentiation chdértihuough the network, and
through the word-level log-likelihood (11) or through the recurrerie.(

B B+A (16)

Remark 5 (Differentiability) Our cost functions are differentiable almost everywhere.
Non-differentiable points arise because we use a “hard” transfer fundigmnd because we use a
“max” layer (7) in the sentence approach network. Fortunately, stetisagradient still converges
to a meaningful local minimum despite such minor differentiability problemi&dB01991, 1998).
Stochastic gradient iterations that hit a non-differentiability are simply skippe

Remark 6 (Modular Approach) The well known “back-propagation” algorithm (LeCun, 1985;
Rumelhart et al., 1986) computes gradients using the chain rule. Thie aila can also be used

in a modular implementatioht Our modules correspond to the boxes in Figure 1 and Figure 2.
Given derivatives with respect to its outputs, each module can independentpute derivatives
with respect to its inputs and with respect to its trainable parameters, apeatpby Bottou and
Gallinari (1991). This allows us to easily build variants of our networks. details about gradient
computations, see Appendix A.

Remark 7 (Tricks) Many tricks have been reported for training neural networks (LeCual.et
1998). Which ones to choose is often confusing. We employed only twonofttteeinitialization
and update of the parameters of each network layer were done donga the “fan-in” of the
layer, that is the number of inputs used to compute each output of this (Blart and Hinton,
1987). The fan-in for the lookup table (1), tH8 linear layer (4) and the convolution layer (6)
are respectivelyl, .. and dyin x nj; ;1. The initial parameters of the network were drawn from a
centered uniform distribution, with a variance equal to the inverse of tharsguwot of the fan-in.
The learning rate in (16) was divided by the fan-in, but stays fixed duriadgréining.

3.5 Supervised Benchmark Results

For POS, chunking and NER tasks, we report results with the windowtectlre? described

in Section 3.3.1. The SRL task was trained using the sentence approatior{Se3.2). Results
are reported in Table 4, in per-word accuracy (PWA) for POS, ansicbie for all the other tasks.
We performed experiments both with the word-level log-likelihood (WLL) aritth the sentence-
level log-likelihood (SLL). The hyper-parameters of our networksreported in Table 5. All our

11. Seéhttp:/itorch5.sf.net
12. We found that training these tasks with the more complex sentenceaappivas computationally expensive and
offered little performance benefits. Results discussed in Section 5 prowade insight about this decision.

2476

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Approach POS | Chunking | NER | SRL
(PWA) (F1) (F1) | (F1)
Benchmark Systems| 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 79.53 55.40
NN+SLL 96.37 90.33 81.47 70.99

Table 4: Comparison in generalization performance of benchmark Nlt€rsgswith a vanilla neu-
ral network (NN) approach, on POS, chunking, NER and SRL tasks:eybrt results with
both the word-level log-likelihood (WLL) and the sentence-level log-likediti (SLL).
Generalization performance is reported in per-word accuracy ratd)RMPOS and F1
score for other tasks. The NN results are behind the benchmark résusction 4 we
show how to improve these models using unlabeled data.

Task Window/Conv. size Word dim. Caps dim. Hidden units Learning rate

POS dwin =5 d°=50 d'=5 nt, = 300 A =0.01
CHUNK ” ” ” ” ”
NER ” ” ” ” ”
1 _
SRL , , , ngu =300 ,

Table 5: Hyper-parameters of our networks. They were chosen by imalimalidation (see Re-
mark 8), preferring identical parameters for most tasks. We repagtiti task the window
size (or convolution size), word feature dimension, capital feature dimensumber of
hidden units and learning rate.

networks were fed with two raw text features: lower case words, arapiat letter feature. We
chose to consider lower case words to limit the number of words in the dicgiddawever, to keep
some upper case information lost by this transformation, we added a “fegisite which tells if
each word was in lowercase, was all uppercase, had first letter capitald at least one non-initial
capital letter. Additionally, all occurrences of sequences of numbergwveitivord are replaced with
the string “NUMBER”, so for example both the words “PS1” and “PS2” Womap to the single
word “psNUMBER”. We used a dictionary containing the 100,000 most comwumals in WSJ
(case insensitive). Words outside this dictionary were replaced by k sipgcial “RARE” word.
Results show that neural networks “out-of-the-box” are behindlim@sbenchmark systems.
Although the initial performance of our networks falls short from the grenfince of the CoNLL
challenge winners, it compares honorably with the performance of mogtetitors. The training
criterion which takes into account the sentence structure (SLL) seemssbthe performance for
the Chunking, NER and SRL tasks, with little advantage for POS. This resalliige with existing
NLP studies comparing sentence-level and word-level likelihoods (Leéaag, 2008). The capacity
of our network architectures lies mainly in the word lookup table, which costaihx 100,000
parameters to train. In the WSJ data, 15% of the most common words appaa®@ of the time.
Many words appear only a few times. It is thus very difficult to train priyptreir corresponding

2477

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
PERSUADE THICKETS DECADENT WIDESCREEN oDD PPA
FAW SAVARY DIVO ANTICA ANCHIETA UDDIN
BLACKSTOCK SYMPATHETIC VERUS SHABBY EMIGRATION BIOLOGICALY
GIORGI JFK OXIDE AWE MARKING KAYAK
SHAHEED KHWARAZM URBINA THUD HEUER MCLARENS
RUMELIA STATIONERY EPOS OCCUPANT SAMBHAJI GLADWIN
PLANUM ILIAS EGLINTON REVISED WORSHIPPERS CENTRALLY
GOA ULD GSNUMBER EDGING LEAVENED RITSUKO INDONESIA
COLLATION OPERATOR FRG PANDIONIDAE LIFELESS MONEO
BACHA W.J. NAMSOS SHIRT MAHAN NILGIRIS

Table 6: Word embeddings in the word lookup table of a SRL neural nettrairied from scratch,
with a dictionary of size 10@00. For each column the queried word is followed by its
index in the dictionary (higher means more rare) and its 10 nearest nesgfebitrarily
using the Euclidean metric).

50 dimensional feature vectors in the lookup table. Ideally, we would like steady similar
words to be close in the embedding space represented by the word loblkerplta continuity of
the neural network function, tags produced on semantically similar sestermegd be similar. We
show in Table 6 that it is not the case: neighboring words in the embeddiog dpaiot seem to be
semantically related.

We will focus in the next section on improving these word embeddings bydgirey unlabeled
data. We will see our approach results in a performance boost forladl tas

Remark 8 (Architectures) In all our experiments in this paper, we tuned the hyper-parameters by
trying only a few different architectures by validation. In practice, the ch@thyperparameters
such as the number of hidden units, provided they are large enougha limited impact on the
generalization performance. In Figure 4, we report the F1 score fohdask on the validation set,
with respect to the number of hidden units. Considering the variance defatihe network initial-
ization, we chose the smallest network achieving “reasonable” perfoomarather than picking
the network achieving the top performance obtained on a single run.

Remark 9 (Training Time) Training our network is quite computationally expensive. Chunking
and NER take about one hour to train, POS takes few hours, and SRL&bkes three days.
Training could be faster with a larger learning rate, but we preferred to dtick small one which
works, rather than finding the optimal one for speed. Second orderotteitheCun et al., 1998)
could be another speedup technique.

4. Lots of Unlabeled Data

We would like to obtain word embeddings carrying more syntactic and semardreafion than
shown in Table 6. Since most of the trainable parameters of our systenssoeiated with the
word embeddings, these poor results suggest that we should useerahbidnore training data.

2478

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

96.5 T T T 915 T T T 86.5

91 - 1 86 -
96 - 1
90.5 1 855 |

! ! ! ! ! ! ! ! !

5.5 90 85 67 L L L
100 300 500 700 900 100 300 500 700 900 100 300 500 700 900 100 300 500 700 900

(a) POS (b) CHUNK (c) NER (d) SRL

Figure 4: F1 score on thalidationset (y-axis) versus number of hidden units (x-axis) for different
tasks trained with the sentence-level likelihood (SLL), as in Table 4. Far @B vary in
this graph only the number of hidden units in the second layer. The scalapsealdfor
each task. We show the standard deviation (obtained over 5 runs witredifi@ndom
initialization), for the architecture we picked (300 hidden units for POS, ®@Kund
NER, 500 for SRL).

Following our NLPfrom scratchphilosophy, we now describe how to dramatically improve these
embeddings using large unlabeled data sets. We then use these improvediegd initialize
the word lookup tables of the networks described in Section 3.5.

4.1 Data Sets

Our first English corpus is the entire English Wikipeffawe have removed all paragraphs con-
taining non-roman characters and all MediaWiki markups. The resultingvex tokenized using
the Penn Treebank tokenizer scriptThe resulting data set contains about 631 million words. As
in our previous experiments, we use a dictionary containing the 100,000cmimshon words in
WSJ, with the same processing of capitals and numbers. Again, wordseptitsidictionary were
replaced by the special “RARE” word.

Our second English corpus is composed by adding an extra 221 million wrndgted from
the Reuters RCV1 (Lewis et al., 2004) data'SeiVe also extended the dictionary to 1800 words
by adding the 3M00 most common words in Reuters. This is useful in order to determine whethe
improvements can be achieved by further increasing the unlabeled datzeset

4.2 Ranking Criterion versus Entropy Criterion

We used these unlabeled data sets to tlanguage modelshat computescoresdescribing the
acceptability of a piece of text. These language models are again largd networks using the
window approach described in Section 3.3.1 and in Figure 1. As in the pies@xtion, most of the
trainable parameters are located in the lookup tables.

Similar language models were already proposed by Bengio and Duchadf1e ¢ghd Schwenk
and Gauvain (2002). Their goal was to estimatepiodability of a word given the previous words
in a sentence. Estimating conditional probabilities suggests a cross-eatitepipn similar to those
described in Section 3.4.1. Because the dictionary size is large, computingrthalization term

13. Available ahttp://download.wikimedia.org . We took the November 2007 version.
14. Available ahttp://www.cis.upenn.edu/ ~ treebank/tokenization.html
15. Now available altttp://trec.nist.gov/data/reuters/reuters.html

2479

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

can be extremely demanding, and sophisticated approximations are reddedimportantly for
us, neither work leads to significant word embeddings being reported.

Shannon (1951) has estimated the entropy of the English language b&weserd 1.3 bits per
character by asking human subjects to guess upcoming characters: aDdviing (1978) give
a lower bound of 1.25 bits per character using a subtle gambling apprdéeanwhile, using a
simple word trigram model, Brown et al. (1992b) reach 1.75 bits per ctearalkeahan and Cleary
(1996) obtain entropies as low as 1.46 bits per character using variagté lemaracten-grams.
The human subjects rely of course on all their knowledge of the languebefdhe world. Can we
learn the grammatical structure of the English language and the nature obtltkby leveraging
the 0.2 bits per character that separate human subjects from simple n-gdatsPh8ince such tasks
certainly require high capacity models, obtaining sufficiently small confideaneevals on the test
set entropy may require prohibitively large training sétsThe entropy criterion lacks dynamical
range because its numerical value is largely determined by the most frgguases. In order to
learn syntax, rare but legal phrases are no less significant than cophrases.

It is therefore desirable to define alternative training criteria. We ppese to use pairwise
ranking approach (Cohen et al., 1998). We seek a network that computes a bkigirerwhen
given a legal phrase than when given an incorrect phrase. Betaisanking literature often deals
with information retrieval applications, many authors define complex rankitegia that give more
weight to the ordering of the best ranking instances (see Burges €@, 2Emencon and Vayatis,
2007). However, in our case, we do not want to emphasize the most coptmase over the rare
but legal phrases. Therefore we use a simple pairwise criterion.

We consider avindow approach network, as described in Section 3.3.1 and Figure 1, with
parameter® which outputs a scordy(x) given a window of texix = [w]‘l’w"‘. We minimize the
ranking criterion with respect t6:

-y 3 max{o, 1- fe(x)+f9(x(w))}, 17)

XeXweD

whereX is the set of all possible text windows witly;, words coming from our training corpu®)
is the dictionary of words, and") denotes the text window obtained by replacing the central word
of text window |[w] ‘fw‘” by the wordw.

Okanohara and Tsuijii (2007) use a related approach to avoiding thepgrdriteria using a
binary classification approach (correct/incorrect phrase). Theik figzuses on using a kernel
classifier, and not on learning word embeddings as we do here. Smithisimer £2005) also
propose a contrastive criterion which estimates the likelihood of the dat#icord to a “negative”
neighborhood. They consider various data neighborhoods, inclsdimgnces of lengtl,i, drawn
from D%, Their goal was however to perform well on some tagging task on fullypewised
data, rather than obtaining generic word embeddings useful for ottt tas

4.3 Training Language Models

The language model network was trained by stochastic gradient minimizattbe cdinking crite-
rion (17), sampling a sentence-word p@rw) at each iteration.

16. However, Klein and Manning (2002) describe a rare exampleatistie unsupervised grammar induction using a
cross-entropy approach on binary-branching parsing trees, that fercing the system to generate a hierarchical
representation.

2480

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Since training times for such large scale systems are counted in weeks, itfisasible to
try many combinations of hyperparameters. It also makes sense to spéweel tugining time by
initializing new networks with the embeddings computed by earlier networks.aiticplar, we
found it expedient to train a succession of networks using increasingjg lictionaries, each
network being initialized with the embeddings of the previous network. Semeedictionary sizes
and switching times are chosen arbitrarily. Bengio et al. (2009) provideszra detailed discussion
of this, the (as yet, poorly understood) “curriculum” process.

For the purposes of model selection we use the process of “breediing’.idea of breeding
is instead of trying a full grid search of possible values (which we did agelenough computing
power for) to search for the parameters in analogy to breeding biolaggttdihes. Within each line,
child networks are initialized with the embeddings of their parents and trainettasingly rich
data sets with sometimes different parameters. Thatis, suppose wepgraeessors, which is much
less than the possible set of parameters one would like to try. One chdoged parameter choices
from the large set, and trains these on khfgrocessors. In our case, possible parameters to adjust
are: the learning ratk, the word embedding dimensiods number of hidden unite%u and input
window sizedyin. One then trains each of these models in an online fashion for a certain fmoun
of time (i.e., a few days), and then selects the best ones using the validdtemoseate. That is,
breeding decisions were made on the basis of the value of the rankingocri(¢7) estimated on
a validation set composed of one million words held out from the Wikipedia sorfruthe next
breeding iteration, one then chooses another s&tpHrameters from the possible grid of values
that permute slightly the most successful candidates from the previond.rédAs many of these
parameter choices can share weights, we can effectively continue tmalime@g retaining some of
the learning from the previous iterations.

Very long training times make such strategies necessary for the forésdetlre: if we had
been given computers ten times faster, we probably would have fousdarsgata sets ten times
bigger. However, we should say we believe that although we ended ug\piinticular choice of
parameters, many other choices are almost equally as good, althouglpspérare are others that
are better as we could not do a full grid search.

In the following subsections, we report results obtained with two trainedieggymodels. The
results achieved by these two models are representative of those achyemetworks trained on
the full corpora.

e Language model LM1 has a window sidg, = 11 and a hidden layer with , = 100 units.
The embedding layers were dimensioned like those of the supervised ket{@able 5).
Model LM1 was trained on our first English corpus (Wikipedia) usingsssive dictionaries
composed of the 5000, 1@00, 30000, 50000 and finally 100000 most common WSJ
words. The total training time was about four weeks.

e Language model LM2 has the same dimensions. It was initialized with the emisdufin
LM1, and trained for an additional three weeks on our second Engligipuso
(Wikipedia+Reuters) using a dictionary size of 130,000 words.

4.4 Embeddings

Both networks produce much more appealing word embeddings than in Sé&iorable 7 shows
the ten nearest neighbors of a few randomly chosen query wordssfaMt model. The syntactic

2481

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BITS
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PNUMBER GREYISH SCRAPED KBITS
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBITS
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language modedlmeatwork LM1
trained with a dictionary of size 10000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearestoesgy(using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those ofi¢he \gord. These
results are far more satisfactory than those reported in Table 7 for emisdibtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during teviagears (see
Chapelle et al., 2006). Previous semi-supervised approaches foc&lLBe roughly categorized as
follows:

e Ad-hoc approaches such as Rosenfeld and Feldman (2007) for netati@ction.

e Self-training approaches, such as Ueffing et al. (2007) for machanslation, and McClosky
et al. (2006) for parsing. These methods augment the labeled traininlsetxamples from
the unlabeled data set using the labels predicted by the model itself. Tetimedpproaches,
such as Joachims (1999) for text classification can be viewed as ar&fineof self-training.

e Parameter sharing approaches such as Ando and Zhang (2005kj &ndusozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train msilaisg cer-
tain parameters. They train POS and NER models together with a language(treidet on
15 million words) consisting of predicting words given the surroundingriekéSuzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a ©RP®S, Chunking
and NER. The generative model is trained on one billion words. Theseagpes should
be seen as a linear counterpart of our work. Using multilayer models vagibnds the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the sigsel networks
with the embeddings computed by the language models. Supervised training Eetifiermed as
in Section 3.5. In particular the supervised training stage is free to modify tkepotables. This
sequential approach is computationally convenient because it sep@ateagthy training of the

2482

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1) | (F1)
Benchmark Systems| 97.24 94.29 89.31 77.92
NN+WLL 96.31 89.13 | 79.53 55.40
NN+SLL 96.37 90.33 | 81.47 70.99
NN+WLL+LM1 97.05 9191 | 85.68 58.18
NN+SLL+LM1 97.10 93.65 | 87.58 73.84
NN+WLL+LM2 97.14 92.04 | 86.96 58.34
NN+SLL+LM2 97.20 93.63 | 88.67 74.15

Table 8: Comparison in generalization performance of benchmark NLtBrsgsvith our (NN) ap-
proach on POS, chunking, NER and SRL tasks. We report results whtttmword-level
log-likelihood (WLL) and the sentence-level log-likelihood (SLL). Weagpwith (LMn)
performance of the networks trained from the language model embeddadge 7). Gen-
eralization performance is reported in per-word accuracy (PWA) @B Bnd F1 score for
other tasks.

language models from the relatively fast training of the supervised nieggwd@nce the language
models are trained, we can perform multiple experiments on the supervisgdrke in a rela-
tively short time. Note that our procedure is clearly linked to the (semi-sigezl) deep learning
procedures of Hinton et al. (2006), Bengio et al. (2007) and Westah €008).

Table 8 clearly shows that this simple initialization significantly boosts the geretiatizper-
formance of the supervised networks for each task. It is worth mentighimdarger language
model led to even better performance. This suggests that we could still daketage of even
bigger unlabeled data sets.

4.6 Ranking and Language

There is a large agreement in the NLP community that syntax is a necessegyguyisite for se-
mantic role labeling (Gildea and Palmer, 2002). This is why state-of-thesamdustic role labeling
systems thoroughly exploit multiple parse trees. The parsers themseha®ighh 2000; Collins,
1999) contain considerable prior information about syntax (one can tHittisoas a kind of in-
formed pre-processing).

Our system does not use such parse trees because we attempt to ldafarthition from the
unlabeled data set. It is therefore legitimate to question whether our rarfiegon (17) has the
conceptual capability to capture such a rich hierarchical information. réttdiance, the ranking
task appears unrelated to the induction of probabilistic grammars that uredengard parsing
algorithms. The lack of hierarchical representation seems a fatal flann{§ky, 1956).

However, ranking is closely related to an alternative description of theutegegstructureop-
erator grammarg(Harris, 1968). Instead of directly studying the structure of a senjdfagis
defines an algebraic structure on the space of all sentences. Staotim@ ftouple of elementary
sentence forms, sentences are described by the successive applifa#mtence transformation
operators. The sentence structure is revealed as a side effect afctessive transformations.
Sentence transformations can also have a semantic interpretation.

2483

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

In the spirit of structural linguistics, Harris describes procedures toodés sentence trans-
formation operators by leveraging the statistical regularities of the languagsh procedures are
obviously useful for machine learning approaches. In particulandgoses a test to decide whether
two sentences forms are semantically related by a transformation operatinsttdefines a ranking
criterion (Harris, 1968, Section 4.1):

“Starting for convenience with very short sentence forms, B¢, we choose a
particular word choice for all the classes, &fq, except one, in this cagg for every
pair of members\;, A; of that word class we ask how the sentence formed with one
of the members, that i$y B4Cq compares as to acceptability with the sentence formed
with the other member, that i8,;B,Cq.”

Thesegradingsare then used to compare sentence forms:

“It now turns out that, given the gradedtuples of words for a particular sentence
form, we can find other sentences forms of the same word classes in whishrite
n-tuples of words produce the same grading of sentences.”

This is an indication that these two sentence forms exploit common words witlathe syntac-
tic function and possibly the same meaning. This observation forms the empiasil for the
construction of operator grammars that describe real-world naturaldaeg such as English.

Therefore there are solid reasons to believe that the ranking criterfdrhék the conceptual
potential to capture strong syntactic and semantic information. On the othéy thenstructure
of our language models is probably too restrictive for such goals, anduwtent approach only
exploits the word embeddings discovered during training.

5. Multi-Task Learning

It is generally accepted that featutegined for one task can be useful foelated tasks This idea
was already exploited in the previous section when certain language madigief®, namely the
word embeddings, were used to initialize the supervised networks.

Multi-task learning (MTL) leverages this idea in a more systematic way. Modelalf tasks
of interests argointly trained with an additional linkage between their trainable parameters in the
hope of improving the generalization error. This linkage can take the fdre regularization
term in the joint cost function that biases the models towards common refagses. A much
simpler approach consists in having the modglare certain parametemefined a priori. Multi-
task learning has a long history in machine learning and neural netwogdsiaa (1997) gives a
good overview of these past efforts.

5.1 Joint Decoding versus Joint Training

Multitask approaches do not necessarily involve joint training. For instanodern speech recog-
nition systems use Bayes rule to combine the outputs of an acoustic model traispdexh data
and a language model trained on phonetic or textual corpora (Jelinég).1%his joint decoding
approach has been successfully applied to structurally more complex sks? Button and McCal-
lum (2005b) obtain improved results by combining the predictions of indegghydtrained CRF
models using a joint decoding process at test time that requires more s@ibstorobabilistic

2484

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

inference techniques. On the other hand, Sutton and McCallum (200&sih sesults somewhat
below the state-of-the-art using joint decoding for SRL and syntact&inar Musillo and Merlo
(2006) also describe a negative result at the same joint task.

Joint decoding invariably works by considering additional probabilistigedelency paths be-
tween the models. Therefore it defines an implicit supermodel that des@ibtine tasks in the
same probabilistic framework. Separately training a submodel only makes séten the train-
ing data blocks these additional dependency paths (in the sense dddisam, Pearl, 1988). This
implies that, without joint training, the additional dependency paths canretthjirinvolve unob-
served variables. Therefore, the natural idea of discovering comrtemah representations across
tasks requires joint training.

Joint training is relatively straightforward when the training sets for theviddal tasks con-
tain the same patterns with different labels. It is then sufficient to train a ntbdelcomputes
multiple outputs for each pattern (Suddarth and Holden, 1991). Using tiésrs; Sutton et al.
(2007) demonstrate improvements on POS tagging and noun-phrasénghusiag jointly trained
CRFs. However the joint labeling requirement is a limitation because such daiaafien avail-
able. Miller et al. (2000) achieves performance improvements by jointly t@iNBR, parsing,
and relation extraction in a statistical parsing model. The joint labeling requirgpneblem was
weakened using a predictor to fill in the missing annotations.

Ando and Zhang (2005) propose a setup that works around the joatirglequirements. They
define linear models of the forrfi(x) = w" ®(x) +v" @W(x) wheref; is the classifier for thé-th
task with parametens; andv;. Notations®(x) andW(x) represent engineered features for the pat-
ternx. Matrix © maps the¥d(x) features into a low dimensional subspace common across all tasks.
Each task is trained using its own examples without a joint labeling requiremieaie@rning pro-
cedure alternates the optimizationvgfandy; for each task, and the optimization ®fto minimize
the average loss for all examples in all tasks. The authors also considiéarg unsupervised tasks
for predicting substructures. They report excellent results onakasks, including POS and NER.

5.2 Multi-Task Benchmark Results

Table 9 reports results obtained by jointly trained models for the POS, CHNER, and SRL tasks
using the same setup as Section 4.5. We trained jointly POS, CHUNK and NERthsiwindow
approach network. As we mentioned earlier, SRL can be trained only witbetiience approach
network, due to long-range dependencies related to the verb predMatbus performed additional
experiments, where all four tasks were trained using the sentenceaagppretwork. In both cases,
all models share the lookup table parameters (2). The parameters of thiadis layers (4) were
shared in the window approach case (see Figure 5), and the firstrthawiion layer parameters (6)
were shared in the sentence approach networks.

For the window approach, best results were obtained by enlarging sheifiden layer size to
nﬁu = 500 (chosen by validation) in order to account for its shared respbtisth We used the
same architecture as SRL for the sentence approach network. Thembetiding dimension was
kept constantl® = 50 in order to reuse the language models of Section 4.5.

Training was achieved by minimizing the loss averaged across all taskssHaisily achieved
with stochastic gradient by alternatively picking examples for each taskppiging (16) to all the
parameters of the corresponding model, including the shared paranidtéesthat this gives each
task equal weight. Since each task uses the training sets described irl Talb$eworth noticing

2485

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

Lookup Table Lookup Table

DD HT s L

v v
Linear v Linear v
\ RaVaVaVaVaVa V3T ERNEaVAVAVAVAV, 3 \
‘ nk., ' ~ L
y v
HardTanh v HardTanh v
- | -/ |
M v
Linear v Linear v
2 3
Mty X0 A I Mz X6 ~p [T
’;.7)’” (1) preags ‘ ”./Zzu (t2) tags
Task 1 Task

Figure 5: Example of multitasking with NN. Task 1 and Task 2 are two tasks trainth the
window approach architecture presented in Figure 1. Lookup tableglaasthe first
hidden layer are shared. The last layer is task specific. The principle satine with
more than two tasks.

that examples can come from quite different data sets. The generalizatifumnpance for each
task was measured using the traditional testing data specified in Table 1ndtehlyinone of the
training and test sets overlap across tasks.

It is worth mentioning that MTL can produce a singlrified networkhat performs well for
all these tasks using the sentence approach. However this unified ketmgrieads to marginal
improvements over using a separate network for each task: the most impdithamtask appears to
be the unsupervised learning of the word embeddings. As explainecebsiimple computational
considerations led us to train the POS, Chunking, and NER tasks using ttiewmapproach. The
baseline results in Table 9 also show that using the sentence approdoh R®S, Chunking, and
NER tasks yields no performance improvement (or degradation) overititow approach. The
next section shows we can leverage known correlations between tasksardirect manner.

6. The Temptation

Results so far have been obtained by staying (alfpsue to ourfrom scratchphilosophy. We
have so far avoided specializing our architecture for any task, disliegea lot of useful priori

17. We did some basic preprocessing of the raw input words as degani$ection 3.5, hence the “almost” in the title of
this article. A completely from scratch approach would presumably mawkanything about words at all and would
work from letters only (or, taken to a further extreme, from speeciptical character recognition, as humans do).

2486

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1) | (F1)
Benchmark Systems | 97.24 94.29 89.31 77.92

Window Approach
NN+SLL+LM2 97.20 93.63 | 88.6 -
NN+SLL+LM2+MTL | 97.22 94.10 | 88.6 -

Sentence Approach
NN+SLL+LM2 97.12 93.37 | 88.78 74.15
NN+SLL+LM2+MTL | 97.22 93.75 | 88.27 74.29

Table 9: Effect of multi-tasking on our neural architectures. We trai@8,FCHUNK NER in a
MTL way, both for the window and sentence network approaches. S&lonly included
in the sentence approach joint training. As a baseline, we show prewasulisr of our
window approach system, as well as additional results for our sentppeceagh system,
when trained separately on each task. Benchmark system performanse ggvan for

comparison.
Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1)

Benchmark Systems 97.24 94.29 89.31 77.92
NN+SLL+LM2 97.20 93.63 88.67 74.15
NN+SLL+LM2+Suffix2 97.29 - - -
NN+SLL+LM2+Gazetteer - — 89.59 -
NN+SLL+LM2+POS - 94.32 88.67 -
NN+SLL+LM2+CHUNK - - - 74.72

Table 10: Comparison in generalization performance of benchmark N&terag with our neural
networks (NNs) using increasing task-specific engineering. We trepsults obtained
with a network trained without the extra task-specific features (Sectiondbéh the
extra task-specific features described in Section 6. The POS netwarkaiaed with
two character word suffixes; the NER network was trained using the sraBILC 2003
gazetteer; the CHUNK and NER networks were trained with additional P@iarks;
and finally, the SRL network was trained with additional CHUNK features.

NLP knowledge. We have shown that, thanks to large unlabeled data seggreric neural net-
works can still achieve close to state-of-the-art performance by disicmvuseful features. This
section explores what happens when we increase the level of tasifiespagineering in our sys-
tems by incorporating some common techniques from the NLP literature. Weatftaim further
improvements. These figures are useful to quantify how far we wentieydging large data sets
instead of relying on a priori knowledge.

2487

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

6.1 Suffix Features

Word suffixes in many western languages are strong predictors of titescsig function of the word
and therefore can benefit the POS system. For instance, Ratnad@8&) (ises inputs representing
word suffixes and prefixes up to four characters. We achieve this ir@&task by adding discrete
word features (Section 3.2.1) representing the last two characteregfwerd. The size of the
suffix dictionary was 455. This led to a small improvement of the POS perfuzenélable 10,
row NN+SLL+LM2+Suffix2). We also tried suffixes obtained with the Porter (1980) stemmer and
obtained the same performance as when using two character suffixes.

6.2 Gazetteers

State-of-the-art NER systems often use a large dictionary containing m@Nrk named entities
(e.g., Florian et al., 2003). We restricted ourselves to the gazetteer gdobidthe CoNLL chal-
lenge, containing 00 locations, person names, organizations, and miscellaneous entities. We
trained a NER network with 4 additional word features indicating (featuré to “off”) whether
the word is found in the gazetteer under one of these four categoriesgazetteer includes not
only words, but also chunks of words. If a sentence chunk is foutitkigazetteer, then all words in
the chunk have their corresponding gazetteer feature turned to “&w’'résulting system displays
a clear performance improvement (Table 10, NMa+SLL+LM2+Gazette€), slightly outperforming
the baseline. A plausible explanation of this large boost over the netwirl asly the language
model is that gazetteers include word chunks, while we use only the wprdsentation of our
language model. For example, “united” and “bicycle” seen separatelikahg to be non-entities,
while “united bicycle” might be an entity, but catching it would require higheeleepresentations
of our language model.

6.3 Cascading

When one considers related tasks, it is reasonable to assume that tagedfitaone task can be
useful for taking decisions in the other tasks. Conventional NLP systéersuse features obtained
from the output of other preexisting NLP systems. For instance, SheSakdr (2005) describe a
chunking system that uses POS tags as input; Florian et al. (2003)b#ssarNER system whose
inputs include POS and CHUNK tags, as well as the output of two other NERifitas. State-of-
the-art SRL systems exploit parse trees (Gildea and Palmer, 2002;Kamakeet al., 2005), related
to CHUNK tags, and built using POS tags (Charniak, 2000; Collins, 1999).

Table 10 reports results obtained for the CHUNK and NER tasks by adiiogete word fea-
tures (Section 3.2.1) representing the POS tags. In order to facilitate dsonmrinstead of using
the more accurate tags from our POS network, we use for each task weaB®provided by the
corresponding CoNLL challenge. We also report results obtained éd8R1 task by adding word
features representing the CHUNK tags (also provided by the CoNLL cigad)e We consistently
obtain moderate improvements.

6.4 Ensembles

Constructing ensembles of classifiers is a proven way to trade computafbaiaincy for general-
ization performance (Bell et al., 2007). Therefore it is not surprisiagrrany NLP systems achieve
state-of-the-art performance by combining the outputs of multiple classiftfensinstance, Kudo

2488

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Approach POS | CHUNK | NER
(PWA) (F1) (F1)
Benchmark Systems 97.24 94.29 89.31
NN+SLL+LM2+POS worst 97.29 93.99| 89.35
NN+SLL+LM2+POS mean 97.31 94.17 89.65
NN+SLL+LM2+POS best 97.35 94.32 89.86
NN+SLL+LM2+POS voting ensemble 97.37 94.34 89.70
NN+SLL+LM2+POS joined ensemble 97.30 9435 89.67

Table 11: Comparison in generalization performance for POS, CHUNK\#EI tasks of the net-
works obtained using by combining ten training runs with different initialization.

and Matsumoto (2001) use an ensemble of classifiers trained with diffaggihg conventions (see
Section 3.3.3). Winning a challenge is of course a legitimate objective. Yetftdn difficult to
figure out which ideas are most responsible for the state-of-the+dorp@nce of a large ensemble.

Because neural networks are nonconvex, training runs with ditféngial parameters usually
give different solutions. Table 11 reports results obtained for the CKIdhd NER task after ten
training runs with random initial parameters. \oting the ten network outputs jper dag basis
(“voting ensemble”) leads to a small improvement over the average netvesfermance. We
have also tried a more sophisticated ensemble approach: the ten netwark sndgpes (before
sentence-level likelihood) were combined with an additional linear layear{d)then fed to a new
sentence-level likelihood (13). The parameters of the combining layes tiven trained on the
existing training set, while keeping the ten networks fixed (“joined ensembléiis approach did
not improve on simple voting.

These ensembles come of course at the expense of a ten fold increasewining time. On
the other hand, multiple training times could be improved using smart sampling ssa(bigal,
1996).

We can also observe that the performance variability among the ten netiwaortisvery large.
The local minima found by the training algorithm are usually good local minima kthémthe
oversized parameter space and to the noise induced by the stochastnigpadcedure (LeCun
et al., 1998). In order to reduce the variance in our experimental resdtalways use the same
initial parameters for networks trained on the same task (except of clmurtbe results reported in
Table 11.)

6.5 Parsing

Gildea and Palmer (2002) and Punyakanok et al. (2005) offer deagnaments suggesting that
syntactic parsing is a necessary prerequisite for the SRL task. ThelCRB05 SRL benchmark
task provides parse trees computed udioth the Charniak (2000) and Collins (1999) parsers.
State-of-the-art systems often exploit additional parse trees such &gdpeanking parse trees
(Koomen et al., 2005; Haghighi et al., 2005).

In contrast our SRL networks so far do not use parse trees at al. réheinstead on internal
representations transferred from a language model trained with artiebjemction that captures

2489

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

/\

NP NP VP
yZ | — N T——
The 1 ! 1 1d NP P
LEVEL 0 1e luxury auto maker ast year solc N
B-NP I-NP I-NP E-NP B-NP E-NP S-VP | / NP
1,214 cars in ‘
B-NP E-NP S-PP .
the U.S.
B-NP E-NP
VP
The luxury auto maker last year / \
LEVEL 1 ¢ o o ©°o 0o 0 sold 1,214 cars PP

B-VP I-VP E-VP ‘
in the U.S.
B-PP I-PP E-PP

\

. — VP

LEVEL 2 ['he luxury auto maker last year |
o o o o o o0 sold 1,214 cars in the U.S.
B-VP I-VP I-VP I-VP [-VP E-VP

Figure 6: Charniak parse tree for the sentefidee luxury auto maker last year sold 1,214 cars
in the U.S” Level 0 is the original tree. Levels 1 to 4 are obtained by successively
collapsing terminal tree branches. For each level, words receive ¢agsiliing the seg-
ment associated with the corresponding leaf. All words receive tag t@vel 3 in this
example.

a lot of syntactic information (see Section 4.6). It is therefore legitimate totigneshether this
approach is an acceptable lightweight replacement for parse trees.

We answer this question by providing parse tree information as additionalfiegtures to our
systemt® We have limited ourselves to the Charniak parse tree provided with the CoB% @ata.
Considering that a node in a syntactic parse tree assigns a label to a seftherparsed sentence,
we propose a way to feed (partially) this labeled segmentation to our netthookigh additional
lookup tables. Each of these lookup tables endatieledsegments of each parse tree level (up to
a certain depth). The labeled segments are fed to the network following BS@&8yging scheme
(see Sections 3.3.3 and 3.2.1). As there are 40 different phrase labé&Jineach additional tree-
related lookup tables has 161 entries {40+ 1) corresponding to the IBES segment tags, plus the
extra O tag.

We call level 0 the information associated with the leaves of the original Gllaparse tree.
The lookup table for level 0 encodes the corresponding IOBES phagsefor each words. We
obtain levels 1 to 4 by repeatedly trimming the leaves as shown in Figure 6. Wed&¥ words
belonging to the root node “S”, or all words of the sentence if the rodf iiss been trimmed.

Experiments were performed using the LM2 language model using the samerkearchi-
tectures (see Table 5) and using additional lookup tables of dimensioneadbrparse tree level.
Table 12 reports the performance improvements obtained by providingagiogelevels of parse

18. In a more recent work (Collobert, 2011), we propose an extesithis approach for the generation of full syntactic
parse trees, using a recurrent version of our architecture.

2490

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Approach SRL

(valid) (test)
Benchmark System(six parse trees) 7735 77.92
Benchmark System(top Charniak parse tree only) 74.76 -
NN+SLL+LM2 72.29 74.15
NN+SLL+LM2+Charniak (level O only) 74.44 75.65
NN+SLL+LM2+Charniak (levels 0 & 1) 7450 75.81
NN+SLL+LM2+Charniak (levels 0 to 2) 75.09 76.05
NN+SLL+LM2+Charniak (levels 0 to 3) 75.12 75.89
NN+SLL+LM2+Charniak (levels 0 to 4) 75.42 76.06
NN+SLL+LM2+CHUNK - 74.72
NN+SLL+LM2+PT0 - 75.49

Table 12: Generalization performance on the SRL task of our NN archigectumpared with the
benchmark system. We show performance of our system fed with diffiexests of depth
of the Charniak parse tree. We report previous results of our artlniéewith no parse
tree as a baseline. Koomen et al. (2005) report test and validatiorrarioe using six
parse trees, as well as validation performance using only the top Chaarisdtree. For
comparison purposes, we hence also report validation performamualyFwe report
our performance with the CHUNK feature, and compare it against a lefeztQre PTO
obtained by our network.

tree information. Level O alone increases the F1 score by almb%t.1 Additional levels yield
diminishing returns. The top performance reache®6% F1 score. This is not too far from the
state-of-the-art system which we note uses six parse trees insteagel d¢@mymen et al. (2005) also
report a 7476% F1 score on the validation set using only the Charniak parse treeg thsirirst
three parse tree levels, we reach this performance on the validation sste fiésults corroborate
findings in the NLP literature (Gildea and Palmer, 2002; Punyakanok et(fl5)Zhowing that
parsing is important for the SRL task.

We also reported in Table 12 our previous performance obtained with thiNBHeature (see
Table 10). It is surprising to observe that adding chunking featuregtietsemantic role labeling
network performs significantly worse than adding features describingptleé O of the Charniak
parse tree (Table 12). Indeed, if we ignore the label prefixes “Bl#Sihing the segmentation,
the parse tree leaves (at level 0) and the chunking have identical lablimgever, the parse trees
identify leaf sentence segments that are often smaller than those identified bluuhking tags,
as shown by Hollingshead et al. (2008)Instead of relying on Charniak parser, we chose to train
a second chunking network to identify the segments delimited by the leaves BétimeTreebank
parse trees (level 0). Our network achieved?826 F1 score on this task (we call it PTO), while we
evaluated Charniak performance as®®6 on the same task. As shown in Table 12, feeding our

19. As in Hollingshead et al. (2005), consider the sentence and chibels [{NP They) (VP are starting to buy) (NP
growth stocks)”. The parse tree can be written as “(S (NP They) (€R\&? starting (S (VP to (VP buy (NP growth

stocks)))))))”. The tree leaves segmentation is thus given by “(N&/I{VP are) (VP starting) (VP to) (VP buy) (NP
growth stocks)”.

2491

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

own PTO prediction into the SRL system gives similar performance to usingh@kapredictions,
and is consistently better than the CHUNK feature.

6.6 Word Representations

We have described how we induced useful word embeddings by appdyingrchitecture to a
language modeling task trained using a large amount of unlabeled text da¢se €mbeddings
improve the generalization performance on all tasks (Section 4.) The liteidgscribes other ways
to induce word representations. Mnih and Hinton (2007) proposed tddenguage model ap-
proach inspired from Restricted Boltzmann Machines. However, wgnesentations are perhaps
more commonly inferred from-gram language modeling rather than purely continuous language
models. One popular approach is the Brown clustering algorithm (Brovah.,e1992a), which
builds hierarchical word clusters by maximizing the bigram’s mutual informatidne induced
word representation has been used with success in a wide variety of Nk& tacluding POS
(Schitze, 1995), NER (Miller et al., 2004; Ratinov and Roth, 2009), or pgréfmo et al., 2008).
Other related approaches exist, like phrase clustering (Lin and Wu) 200€&h has been shown to
work well for NER. Finally, Huang and Yates (2009) have recently psggl a smoothed language
modeling approach based on a Hidden Markov Model, with success oraR@®Shunking tasks.

While a comparison of all these word representations is beyond the s€dpis paper, it is
rather fair to question the quality of our word embeddings compared to dgrdguP approach.

In this section, we report a comparison of our word embeddings agaiostRlusters, when used

as features into our neural network architecture. We report as bagetrious results where our
word embeddings arne-tunedfor each task. We also report performance when our embeddings
are kept fixed during task-specific training. Sirogavexmachine learning algorithms are common
practice in NLP, we finally report performances for the convex versfayur architecture.

For the convex experiments, we considered the linear version of otalmeiworks (instead of
having several linear layers interleaved with a non-linearity). While wadwpicked the sentence
approach for SRL, we had to consider the window approach in this particonvex setup, as the
sentence approach network (see Figure 2) includes a Max layer. dHaniy one linear layer in our
neural network is not enough to make our architecture convex: all fptdoles (for each discrete
feature) must also biixed The word-lookup table is simply fixed to the embeddings obtained from
our language model LM2. All other discrete feature lookup-tables (®PS, Brown Clusters...)
are fixed to a standasparserepresentation. Using the notation introduced in Section 3.2 Tyjf
is the lookup-table of theth discrete feature, we havigk € RIZ1XI2" and the representation of the
discrete inputv is obtained with:

;
LTk (W) = (WX)3, = <0,-~0, U SRPLUSE 0) . (18)

Training our architecture in this convex setup with the sentence-level lilailid3) corresponds
to training a CRF. In that respect, these convex experiments show tharparfce of our word
embeddings in a classical NLP framework.

Following the Ratinov and Roth (2009) and Koo et al. (2008) setups, wergeed 1000 Brown
clusters using the implementatfSrfrom Liang (2005). To make the comparison fair, the clusters
were first induced on the concatenation of Wikipedia and Reuters datasete did in Section 4

20. Available atittp://www.eecs.berkeley.edu/ ~ pliang/software

2492

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

Approach POS | CHUNK | NER | SRL
(PWA) (F1) (F1) | (F1)
Non-convex Approach
LM2 (non-linear NN) 97.29 94.32 89.59 76.06
LM2 (non-linear NN, fixed embeddings) 97.1 94.4 88(79 72.24

Brown Clusters (non-linear NN, 130K words) 96.92 94.3 87.15 72.09
Brown Clusters (non-linear NN, all words) 96.81 94.2 86,68 71.44

Convex Approach
LM2 (linear NN, fixed embeddings) 96.6 93.5 86.64 59.11
Brown Clusters (linear NN, 130K words) 96.5 94.2 86/46 51.54
Brown Clusters (linear NN, all words) 96.2 94.2 86.63 56.42

Table 13: Generalization performance of our neural network architetrained with our language
model (LM2) word embeddings, and with the word representations defieen the
Brown Clusters. As before, all networks are fed with a capitalization featddition-
ally, POS is using a word suffix of size 2 feature, CHUNK is fed with POSRNEes
the CoNLL 2003 gazetteer, and SRL is fed with levels 1-5 of the Charniae fieee, as
well as a verb position feature. We report performance with both caawexon-convex
architectures (300 hidden units for all tasks, with an additional 500 hiddes layer for
SRL). We also provide results for Brown Clusters induced with a 130Kdwdaztionary,
as well as Brown Clusters induced with all words of the given tasks.

for training our largest language model LM2, using a 130K word dictipriBnis dictionary covers
about 99% of the words in the training set of each task. To cover the%swé augmented the
dictionary with the missing words (reaching about 140K words) and indBeedn Clusters using
the concatenation of WSJ, Wikipedia, and Reuters.

The Brown clustering approach is hierarchical and generates a Hirgrf clusters. Each
word in the vocabulary is assigned to a node in the tree. Features aretectfiaom this tree by
considering the path from the root to the node containing the word of inté@sowing Ratinov &
Roth, we picked as features the path prefixes of size 4, 6, 10 and & hon-convex experiments,
we fed these four Brown Cluster features to our architecture usingdiffierent lookup tables,
replacing our word lookup table. The size of the lookup tables was cliogen12 by validation. In
the convex case, we used the classical sparse representatiors(ft)aay other discrete feature.

We first report in Table 13 generalization performance of our bestoorex networks trained
with our LM2 language model and with Brown Cluster features. Our embgddiarform at least
as well as Brown Clusters. Results are more mitigated in a convex setup. Bbtasks, going
non-convex is better for both word representation types. In gendiraé;tuning” our embeddings
for each task also gives an extra boost. Finally, using a better wordagevevith Brown Clusters
(“all words” instead of “130K words” in Table 13) did not help.

More complex features could be possibly combined instead of using a remr-linodel. For
instance, Turian et al. (2010) performed a comparison of Brown Chiatett embeddings trained
in the same spirit as oW with additional features combining labels and tokens. We believe this

21. However they did not reach our embedding performance. Tdrerseveral differences in how they trained their
models that might explain this. Firstly, they may have experienced diffisutezause they train 50-dimensional

2493

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

Task Features

POS Suffix of size 2
CHUNK | POS

NER CoNLL 2003 gazetteer
PTO POS

SRL PTO, verb position

Table 14: Features used by SENNA implementation, for each task. In additidasks use “low
caps word” and “caps” features.

Task Benchmark | SENNA
Part of Speech (POS) (Accuracy) 97.24 % 97.29 %
Chunking (CHUNK) (F1) 94.29 % 94.32 %
Named Entity Recognition (NER) (F1) 89.31 % 89.59 %
Parse Tree level 0 (PTO) (F1) 91.94 % 92.25%
Semantic Role Labeling (SRL) (F1) 77.92 % 75.49 %

Table 15: Performance of the engineered sweet spot (SENNA) dvusaagging tasks. The PTO
task replicates the sentence segmentation of the parse tree leaves. rHspammting

benchmark score measures the quality of the Charniak parse tree lekate® rto the
Penn Treebank gold parse trees.

type of comparison should be taken with care, as combining a given feattraifferent word
representations might not have the same effect on each word refatasen

6.7 Engineering a Sweet Spot

We implemented a standalone version of our architecture, written in the C gagudle gave
the name “"SENNA" (Semantic/syntactic Extraction using a Neural Networkifacture) to the
resulting system. The parameters of each architecture are the onabetbstrTable 5. All the
networks were trained separately on each task using the sentenckkkdirgbod (SLL). The word
embeddings were initialized to LM2 embeddings, and then fine-tuned fotagichWe summarize
features used by our implementation in Table 14, and we report perforraahsved on each task

in Table 15. The runtime versiéfcontains about 2500 lines of C code, runs in less than 150MB
of memory, and needs less than a millisecond per word to compute all the téds 1Bacompares
the tagging speeds for our system and for the few available state-afttbgstems: the Toutanova
et al. (2003) POS tagg®t the Shen et al. (2007) POS tagtfeaind the Koomen et al. (2005) SRL

embeddings for 269K distinct words using a comparatively small trasén¢RCV1, 37M words), unlikely to contain
enough instances of the rare words. Secondly, they predict thectroess of the final word of each window instead

of the center word (Turian et al., 2010), effectively restricting the ehtmlunidirectional prediction. Finally, they do
not fine tune their embeddings after unsupervised training.

22. Available atittp://ml.nec-labs.com/senna

23. Available atittp://nlp.stanford.edu/software/tagger.shtml . We picked the 3.0 version (May 2010).
24. Available atttp://www.cis.upenn.edu/ ~ xtag/spinal

2494

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

POS System RAM (MB) Time (s)
Toutanova et al. (2003 800 64
Shen et al. (2007) 2200 833

SENNA 32 4

SRL System RAM (MB) Time (s)
Koomen et al. (2005) 3400 6253

SENNA 124 51

Table 16: Runtime speed and memory consumption comparison between dfateadf systems
and our approach (SENNA). We give the runtime in seconds for runmirtiyg the POS
and SRL taggers on their respective testing sets. Memory usage is tejpartegabytes.

system?® All programs were run on a single 3GHz Intel core. The POS taggers wr with
Sun Java 1.6 with a large enough memory allocation to reach their top taggied. spkee beam
size of the Shen tagger was set to 3 as recommended in the paper. Reggafdieplementation
differences, it is clear that our neural networks run considerabtgrfaThey also require much less
memory. Our POS and SRL tagger runs in 32MB and 120MB of RAM resmdyti The Shen
and Toutanova taggers slow down significantly when the Java machinerslgss than 2.2GB and
800MB of RAM respectively, while the Koomen tagger requires at leag& 8{RAM.

We believe that a number of reasons explain the speed advantage ofstems First, our
system only uses rather simple input features and therefore avoidsrhegtigible computation
time associated with complex handcrafted features. Secondly, most nemvogutations ardense
matrix-vector operations. In contrast, systems that rely on a great nuwhfearsefeatures experi-
ence memory latencies when traversing the sparse data structures. Bunatlgmpact implemen-
tation is self-contained. Since it does not rely on the outputs of dispara®eshpétem, it does not
suffer from communication latency issues.

7. Critical Discussion

Although we believe that this contribution represents a step towards the fildhPscratch” objec-
tive, we are keenly aware that both our goal and our means can be edticiz

The main criticism of our goal can be summarized as follows. Over the yib@r$JLP com-
munity has developed a considerable expertise in engineering effedtRdadtures. Why should
they forget this painfully acquired expertise and instead painfully actjuérekills required to train
large neural networks? As mentioned in our introduction, we observadhgibgle NLP task really
covers the goals of NLP. Therefore we believe that task-specific eagiry (i.e., that does not gen-
eralize to other tasks) is not desirable. But we also recognize how mucteoral networks owe to
previous NLP task-specific research.

The main criticism of our means is easier to address. Why did we choose torrelywenty
year old technology, namely multilayer neural networks? We were simply tttt&y their ability
to discover hidden representations using a stochastic learning algorithrectias linearly with

25. Available atttp:/I2r.cs.uiuc.edu/ ~ cogcomp/asoftware.php?skey=SRL

2495

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

the number of examples. Most of the neural network technology neagdssaur work has been
described ten years ago (e.g., Le Cun et al., 1998). However, if wadtdied ten years ago to train
the language model network LM2 using a vintage computer, training wouldbentyearing com-
pletion today. Training algorithms that scale linearly are most able to bermfitduch tremendous
progress in computer hardware.

8. Conclusion

We have presented a multilayer neural network architecture that catetandmber of NLP tasks
with both speed and accuracy. The design of this system was determirad dgsire to avoid
task-specific engineering as much as possible. Instead we rely on ldeieled data sets and let
the training algorithm discover internal representations that proveldsefll the tasks of interest.
Using this strong basis, we have engineered a fast and efficient ‘fglbpe” NLP tagger that we
hope will prove useful to the community.

Acknowledgments

We acknowledge the persistent support of NEC for this researcti.e¥fi@@ thank Yoshua Bengio,
Samy Bengio, Eric Cosatto, Vincent Etter, Hans-Peter Graf, Ralph Grishemd Vladimir Vapnik
for their useful feedback and comments.

Appendix A. Neural Network Gradients

We consider a neural netwoflk(-), with parameter8. We maximize the likelihood (8), or minimize
ranking criterion (17), with respect to the parame&rasing stochastic gradient. By negating the
likelihood, we now assume it all corresponds to minimize a €3$§(-)), with respect t®.

Following the classical “back-propagation” derivations (LeCun, 1%&melhart et al., 1986)
and the modular approach shown in Bottou (1991), any feed-forweuthhnetwork with_ layers,
like the ones shown in Figure 1 and Figure 2, can be seen as a compositionctbhs fé(-),
corresponding to each layer

fo() = fa(fg (... f8()...))
Partitioning the parameters of the network with respect to each layeids<l L, we write:
o= (0',....0",...,08Y.

We are now interested in computing the gradients of the cost with respeath®'eapplying the
chain rule (generalized to vectors) we obtain the classical backprigagecursion:

aC ofy oC
oc ofy oC (20)

af) 1 ot~ af)

In other words, we first initialize the recursion by computing the gradietiteo€ost with respect to
the last layer outpuf!C/afeL. Then each laydrcomputes the gradient respect to its own parameters

2496

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

with (19), given the gradient coming from its outpd@/of). To perform the backpropagation, it
also computes the gradient with respect to its own inputs, as shown in (20noW derive the
gradients for each layer we used in this paper.

A.1 Lookup Table Layer

Given a matrix of parametefd = W?* and word (or discrete feature) indickg], the layer outputs
the matrix:

WD = (W, Wy, - Wy,).
The gradients of the weightsv)! are given by:
_oC <a£>.1
- I
OW)E (1t Ty 08

This sum equals zero if the indéxn the lookup table does not corresponds to a word in the se-
quence. In this case, th® column ofW does not need to be updated. As a Lookup Table Layer is
always the first layer, we do not need to compute its gradients with refspine inputs.

A.2 Linear Layer
Given parameter8 = (W' b'), and an inpuvector f,~* the output is given by:
fo=Wfy 1. (21)

The gradients with respect to the parameters are then obtained with:

oC [aC _1]7 oC aC
avv'[afé] 7] and G =5 (22)
and the gradients with respect to the inputs are computed with:
= w] % (23)
dfy 0fg

A.3 Convolution Layer

Given a inputmatrix fé‘l, a Convolution Layerfé(~) applies a Linear Layer operation (21) suc-
cessively on each WindOer'fl)tdWi" (1<t <T) of sizedwin. Using (22), the gradients of the
parameters are thus given by summing over all windows:

0C & [,0C 111 el-1idun]” oC &, 0C,,
W—t; |:<afé>t:| [<fe)t] and @_t;<ﬂ>t‘

After initializing the input gradientéC/afé*1 to zero, we iterate (23) over all windows folt <
T, leading theaccumulatior®:

oC Awin s hasd 1T oC 1
Grote= W] Gt

26. We denote “+=" any accumulation operation.

2497

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

A.4 Max Layer

Given amatrix féfl, the Max Layer computes
1] _ I-1\1 . I-1\1] s
[fe]_ = max[(fe)t] andag; = argmax[(fe)t] vi,
i t i t i

whereg; stores the index of the largest value. We only need to compute the gradilemespect to
the inputs, as this layer has no parameters. The gradient is given by

aC Lt ift=a
[<afel)l>t1 i:{ [<afe>t}i Tt=a

0 otherwise '

A.5 HardTanh Layer

Given avector ﬂfl, and the definition of the HardTanh (5) we get

0 if [fgfl]i <-1
- [%L if —1<= [féfl}i <=1
0o if [fg-l]i >1

)

if we ignore non-differentiability points.

A.6 Word-Level Log-Likelihood

The network outputs a scof&; for each tag indexed by Following (11), ify is the true tag for a
given example, the stochastic score to minimize can be written as

C(fg) = Iogjadc{fe]j — [fe]y

Considering the definition of the logadd (10), the gradient with respefgtisogiven by

oC e[fe]i
Offoli 3yl

A.7 Sentence-Level Log-Likelihood

The network outputs a matrix where each elen[ef@}i . gives a score for tagat wordt. Given a

tag sequency|] and a input sequendg]], we maximize the likelihood (13), which corresponds
to minimizing the score

C(fe,A) = |0v§[1_?TdOB([X]L [i11,8) —s([¥1, V1, 8),
11

CIoge\dd
with
(V-1 [y]t][y}ht) .

;Q
ZIVH

2498

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

We first initialize all gradients to zero

oC
0o

We thenaccumulategradients over the second part of the cost[x]], [y]1, 8), which gives:

oc
=0Vi,t and ——— =0 Vi,j.
o[A];

© .,
0 [fe] Vit vt
© ‘

O [Aly, ..

We now need to accumulate the gradients over the first part of the coss @ghqa. We differen-
tiate Ciogadd By applying the chain rule through the recursion (14). First we initializerecursion
with _

ac:Iogadd o eBTm

05r(i) yyer® "

We then compute iteratively:

d-1()+A)i 5
35 1() 2 O5() g WAL

aCIogadd . Z aCIogadd

where at each stepof the recursion we accumulate of the gradients with respect to the ifiguts
and the transition scorg4); ;:

oC +:aCIogadd 05 (i) _ 0Ciogadd
offeli, 0&() a[fg];, 0% (i)

0C . _Ciogada 93:() _ Ciogada >+ AL
O[A; 0&(j) oA 0& () 3 e+l

A.8 Ranking Criterion

We use the ranking criterion (17) for training our language model. In tlEs,agiven a “positive”
examplex and a “negative” exampbe™), we want to minimize:

C(fo(x), fo(x")) = max{ 0, 1— fo(x)+ fo(x™) } .
Ignoring the non-differentiability ofnax0, -) in zero, the gradient is simply given by:

-1 .
d — (w)
(afe((:x)): ()) if 1 — fo(x) + fo(x'")) > 0

ac 0 .
< o > otherwise

0fg(x")
2499

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

References

R. K. Ando and T. Zhang. A framework for learning predictive struesuirom multiple tasks and
unlabeled dataJournal of Machine Learning Research (JML.B)1817-1953, 2005.

R. M. Bell, Y. Koren, and C. Volinsky. The BellKor solution to the Netflix Prizeechnical report,
AT&T Labs, 2007 .http://www.research.att.com/ ~volinsky/netflix

Y. Bengio and R. Ducharme. A neural probabilistic language modeAdirances in Neural Infor-
mation Processing Systems (NIPS,2)01.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layerewrigining of deep networks.
In Advances in Neural Information Processing Systems (NIP3209Y.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculummiegr InInternational Con-
ference on Machine Learning (ICML3009.

L. Bottou. Stochastic gradient learning in neural networksPioceedings of Neuroiies EC2,
1991.

L. Bottou. Online algorithms and stochastic approximations. In David Saddr,&dnline Learning
and Neural NetworksCambridge University Press, Cambridge, UK, 1998.

L. Bottou and P. Gallinari. A framework for the cooperation of learning mllgms. InAdvances in
Neural Information Processing Systems (NIPSL3P1.

L. Bottou, Y. LeCun, and Yoshua Bengio. Global training of documeat@ssing systems using
graph transformer networks. @onference on Computer Vision and Pattern Recognition (CVPR)
pages 489-493, 1997.

J. S. Bridle. Probabilistic interpretation of feedforward classification agwutputs, with rela-
tionships to statistical pattern recognition. In F. Fogelman $oatid J. Krault, editorsNeu-
rocomputing: Algorithms, Architectures and Applicatippages 227-236. NATO ASI Series,
1990.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and JaC. Class-based n-gram models
of natural languageComputational Linguisticsl8(4):467—-479, 1992a.

P. F. Brown, V. J. Della Pietra, R. L. Mercer, S. A. Della Pietra, and.Ld An estimate of an
upper bound for the entropy of englisBomputational Linguisticsl8(1):31-41, 1992b.

C. J. C. Burges, R. Ragno, and Quoc Viet Le. Learning to rank witlsmaoth cost functions. In
Advances in Neural Information Processing Systems (NIPSpages 193-200. 2007.

R. Caruana. Multitask Learnindgdachine Learning28(1):41-75, 1997.

O. Chapelle, B. Schlkopf, and A. ZienSemi-Supervised LearningAdaptive computation and
machine learning. MIT Press, Cambridge, Mass., USA, September 2006.

E. Charniak. A maximum-entropy-inspired parserClonference of the North American Chapter of
the Association for Computational Linguistics & Human Language Techresd¢i/AACL-HLT)
pages 132-139, 2000.

2500

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

H. L. Chieu. Named entity recognition with a maximum entropy approachCdnference on
Natural Language Learning (CoNLLpages 160-163, 2003.

N. Chomsky. Three models for the description of langua¢feRE Transactions on Information
Theory 2(3):113-124, September 1956.

S. Cemencon and N. Vayatis. Ranking the best instandesrnal of Machine Learning Research
(JMLR), 8:2671-2699, 2007.

W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order thidgstnal of Artificial Intelli-
gence Research (JAIR)0:243-270, 1998.

T. Cohn and P. Blunsom. Semantic role labelling with tree conditional randddts.fim Conference
on Computational Natural Language (CoNL.2005.

M. Collins. Head-Driven Statistical Models for Natural Language ParsifD thesis, University
of Pennsylvania, 1999.

R. Collobert.Large Scale Machine Learning?hD thesis, UniversitParis VI, 2004.

R. Collobert. Deep learning for efficient discriminative parsing.Iriternational Conference on
Artificial Intelligence and Statistics (AISTATSP11.

T. Cover and R. King. A convergent gambling estimate of the entropy diskn¢EEE Transactions
on Information Theory24(4):413-421, July 1978.

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang. Named entity recognitiwaugh classifier
combination. INConference of the North American Chapter of the Association for Compuigtio
Linguistics & Human Language Technologies (NAACL-HIpBges 168-171, 2003.

D. Gildea and D. Jurafsky. Automatic labeling of semantic ro&smputational Linguistic28(3):
245-288, 2002.

D. Gildea and M. Palmer. The necessity of parsing for predicate arguesgmition.Meeting of
the Association for Computational Linguistics (AChages 239-246, 2002.

J. Giménez and L. Mrquez. SVMTool: A general POS tagger generator based on sugmbor
machines. IrConference on Language Resources and Evaluation (LREXDY.

A. Haghighi, K. Toutanova, and C. D. Manning. A joint model for semanie dabeling. In
Conference on Computational Natural Language Learning (CoNline 2005.

Z. S. Harris.Mathematical Structures of Languag#&ohn Wiley & Sons Inc., 1968.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kad&pendency networks
for inference, collaborative filtering, and data visualizatidleurnal of Machine Learning Re-
search (JMLR)1:49-75, 2001.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm feepibelief netsNeural
Computation18(7):1527-1554, July 2006.

2501

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

K. Hollingshead, S. Fisher, and B. Roark. Comparing and combining fitdte-and context-free
parsers. InConference on Human Language Technology and Empirical Methodstunral
Language Processing (HLT-EMNLR)ages 787—794, 2005.

F. Huang and A. Yates. Distributional representations for handlingipan supervised sequence-
labeling. InMeeting of the Association for Computational Linguistics (AGigges 495-503,
2009.

F. Jelinek. Continuous speech recognition by statistical metheageedings of the IEEEB4(4):
532-556, 1976.

T. Joachims. Transductive inference for text classification usingstigpctor machines. Imter-
national Conference on Machine learning (ICMILPR99.

D. Klein and C. D. Manning. Natural language grammar induction using atitoent-context
model. InAdvances in Neural Information Processing Systems (NIPSadpes 35-42. 2002.

T. Koo, X. Carreras, and M. Collins. Simple semi-supervised depegdmarsing. InMeeting of
the Association for Computational Linguistics (AChages 595-603, 2008.

P. Koomen, V. Punyakanok, D. Roth, and W. Yih. Generalized inferevith multiple semantic
role labeling systems (shared task paper).Cbnference on Computational Natural Language
Learning (CoNLL) pages 181-184, 2005.

T. Kudo and Y. Matsumoto. Chunking with support vector machinesCdnference of the North
American Chapter of the Association for Computational Linguistics & Humeamgluage Tech-
nologies (NAACL-HLT)pages 1-8, 2001.

T. Kudoh and Y. Matsumoto. Use of support vector learning for chuehtification. InConference
on Natural Language Learning (CoNLL) and Second Learning Laggun Logic Workshop
(LLL), pages 142-144, 2000.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fieldsibBbilistic models for seg-
menting and labeling sequence datalnternational Conference on Machine Learning (ICML)
2001.

Y. Le Cun, L. Bottou, Y. Bengio, and P. Haffner. Gradient basedniegrapplied to document
recognition.Proceedings of IEEEB6(11):2278-2324, 1998.

Y. LeCun. A learning scheme for asymmetric threshold networksProteedings of Cognitiva
pages 599-604, Paris, France, 1985.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Mler. Efficient backprop. In G.B. Orr and K.-R.Mer,
editors,Neural Networks: Tricks of the Tragdpages 9-50. Springer, 1998.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcvl: A new benchmallection for text categoriza-
tion researchJournal of Machine Learning Research (JML.RB)361-397, 2004.

P. Liang. Semi-supervised learning for natural language. Mastesstiassachusetts Institute of
Technology, 2005.

2502

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

P. Liang, H. Daurg, Ill, and D. Klein. Structure compilation: trading structure for featurks
International Conference on Machine learning (ICMpages 592-599, 2008.

D. Lin and X. Wu. Phrase clustering for discriminative learningMeeting of the Association for
Computational Linguistics (AClLpages 1030-1038, 2009.

N. Littlestone. Learning quickly when irrelevant attributes abound: A neealirthreshold algo-
rithm. In Machine Learningpages 285-318, 1988.

A. McCallum and Wei Li. Early results for named entity recognition with condaloandom fields,
feature induction and web-enhanced lexiconsCamference of the North American Chapter of
the Association for Computational Linguistics & Human Language TechieddAACL-HLT)
pages 188-191, 2003.

D. McClosky, E. Charniak, and M. Johnson. Effective self-trainimgdarsing.Conference of the
North American Chapter of the Association for Computational Linguistics &bl Language
Technologies (NAACL-HLT2006.

R. McDonald, K. Crammer, and F. Pereira. Flexible text segmentation witbtstad multilabel
classification. IrConference on Human Language Technology and Empirical Methodsturall
Language Processing (HLT-EMNLR)ages 987-994, 2005.

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel. A novel use of statigtgasing to extract
information from text.Applied Natural Language Processing Conference (ANRBDO.

S. Miller, J. Guinness, and A. Zamanian. Name tagging with word clustersi@aedminative
training. InConference of the North American Chapter of the Association for Compuétio
Linguistics & Human Language Technologies (NAACL-HIpBEges 337-342, 2004.

A Mnih and G. E. Hinton. Three new graphical models for statistical languagdelling. In
International Conference on Machine Learning (ICMpages 641-648, 2007.

G. Musillo and P. Merlo. Robust Parsing of the Proposition B&®MAND 2006: Robust Methods
in Analysis of Natural language Dat2006.

R. M. Neal. Bayesian Learning for Neural Network&lumber 118 in Lecture Notes in Statistics.
Springer-Verlag, New York, 1996.

D. Okanohara and J. Tsuijii. A discriminative language model with pseedative samplesMeet-
ing of the Association for Computational Linguistics (AChages 73—-80, 2007.

M. Palmer, D. Gildea, and P. Kingsbury. The proposition bank: An amedteorpus of semantic
roles. Computational Linguistics31(1):71-106, 2005.

J. Pearl.Probabilistic Reasoning in Intelligent SystenMorgan Kaufman, San Mateo, 1988.

D. C. Plaut and G. E. Hinton. Learning sets of filters using back-praiiay Computer Speech
and Languagge?2:35-61, 1987.

M. F. Porter. An algorithm for suffix stripping?rogram 14(3):130-137, 1980.

2503

COLLOBERT, WESTON, BoTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

S. Pradhan, W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky. Shwaslemantic parsing using
support vector machinesConference of the North American Chapter of the Association for
Computational Linguistics & Human Language Technologies (NAACL}HJDA4.

S. Pradhan, K. Hacioglu, W. Ward, J. H. Martin, and D. Jurafskgn&wic role chunking combining
complementary syntactic views. Ronference on Computational Natural Language Learning
(CoNLL), pages 217-220, 2005.

V. Punyakanok, D. Roth, and W. Yih. The necessity of syntactic pafsingemantic role labeling.
In International Joint Conference on Artificial Intelligence (IJCApages 1117-1123, 2005.

L. R. Rabiner. A tutorial on hidden Markov models and selected applicatisgyeiech recognition.
Proceedings of the IEEE7(2):257-286, 1989.

L. Ratinov and D. Roth. Design challenges and misconceptions in named entignition. InCon-
ference on Computational Natural Language Learning (CoNphapes 147-155. Assaociation for
Computational Linguistics, 2009.

A. Ratnaparkhi. A maximum entropy model for part-of-speech tagginGolmference on Empirical
Methods in Natural Language Processing (EMNLPages 133-142, 1996.

B. Rosenfeld and R. Feldman. Using Corpus Statistics on Entities to Improaesbeervised
Relation Extraction from the WebMeeting of the Association for Computational Linguistics
(ACL), pages 600-607, 2007.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal reptesiens by back-
propagating errors. In D.E. Rumelhart and J. L. McClelland, edifeasallel Distributed Pro-
cessing: Explorations in the Microstructure of Cognitimolume 1, pages 318-362. MIT Press,
1986.

H. Schutze. Distributional part-of-speech tagging.Neeting of the Association for Computational
Linguistics (ACL) pages 141-148, 1995.

H. Schwenk and J. L. Gauvain. Connectionist language modeling far larcabulary continuous
speech recognition. Imternational Conference on Acoustics, Speech, and Signal Piagess
(ICASSP)pages 765-768, 2002.

F. Sha and F. Pereira. Shallow parsing with conditional random fieldSohfierence of the North
American Chapter of the Association for Computational Linguistics & Hunemglage Tech-
nologies (NAACL-HLT)pages 134-141, 2003.

C. E. Shannon. Prediction and entropy of printed engliBlell Systems Technical Journ&o:
50-64, 1951.

H. Shen and A. Sarkar. Voting between multiple data representations tarhenking. Advances
in Artificial Intelligence pages 389—400, 2005.

L. Shen, G. Satta, and A. K. Joshi. Guided learning for bidirectionaliesgce classification. In
Meeting of the Association for Computational Linguistics (AQQQ7.

2504

NATURAL LANGUAGE PROCESSING(ALMOST) FROM SCRATCH

N. A. Smith and J. Eisner. Contrastive estimation: Training log-linear modelslabeled data. In
Meeting of the Association for Computational Linguistics (AQiages 354-362, 2005.

S. C. Suddarth and A. D. C. Holden. Symbolic-neural systems and thef hssts for developing
complex systemdnternational Journal of Man-Machine Studieg5(3):291-311, 1991.

X. Sun, L.-P. Morency, D. Okanohara, and J. Tsujii. Modeling latemtaglyic in shallow parsing: a
latent conditional model with improved inference Iiternational Conference on Computational
Linguistics (COLING)pages 841-848, 2008.

C. Sutton and A. McCallum. Joint parsing and semantic role labelinGolmference on Computa-
tional Natural Language (CoNLL pages 225-228, 2005a.

C. Sutton and A. McCallum. Composition of conditional random fields for feasarning.Confer-
ence on Human Language Technology and Empirical Methods in Ndtarajuage Processing
(HLT-EMNLP) pages 748-754, 2005b.

C. Sutton, A. McCallum, and K. Rohanimanesh. Dynamic Conditional Randelus- Factorized
Probabilistic Models for Labeling and Segmenting Sequence Datanal of Machine Learning
Research (JMLR)B:693-723, 2007.

J. Suzuki and H. Isozaki. Semi-supervised sequential labeling amdesggtion using giga-word
scale unlabeled data. onference of the North American Chapter of the Association for Com-
putational Linguistics & Human Language Technologies (NAACL-Hpayes 665—-673, 2008.

W. J. Teahan and J. G. Cleary. The entropy of english using ppm-basaels. InData Compres-
sion Conference (DCCpages 53-62. IEEE Computer Society Press, 1996.

K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-ricti-phspeech tagging with a
cyclic dependency network. l@onference of the North American Chapter of the Association for
Computational Linguistics & Human Language Technologies (NAACL}HJD3.

J. Turian, L. Ratinov, and Y. Bengio. Word representations: A simpleganéral method for semi-
supervised learning. IMeeting of the Association for Computational Linguistics (AGlages
384-392, 2010.

N. Ueffing, G. Haffari, and A. Sarkar. Transductive learning fatistical machine translation. In
Meeting of the Association for Computational Linguistics (AQiages 25-32, 2007.

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phormecmgnition using time-
delay neural networkslEEE Transactions on Acoustics, Speech, and Signal Proces¥ii(8):
328-339, 1989.

J. Weston, F. Ratle, and R. Collobert. Deep learning via semi-supervisieedeling. Ininterna-
tional Conference on Machine learning (ICMlpages 1168-1175, 2008.

2505

