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Abstract

The automatic analysis and understanding of behavior
and interactions is a crucial task in the design of socially in-
telligent video surveillance systems. Such an analysis often
relies on the extraction of people behavioral cues, amongst
which body pose and head pose are probably the most im-
portant ones. In this paper, we propose an approach that
jointly estimates these two cues from surveillance video.
Given a human track, our algorithm works in two steps.
First, a per-frame analysis is conducted, in which the head
is localized, head and body features are extracted, and their
likelihoods under different poses is evaluated. These likeli-
hoods are then fused within a temporal filtering framework
that jointly estimate the body position, body pose and head
pose by taking advantage of the soft couplings between body
position (movement direction), body pose and head pose.
Quantitative as well as qualitative experiments show the
benefit of several aspects of our approach and in particular
the benefit of the joint estimation framework for tracking the
behavior cues. Further analysis of behavior and interaction
could then be conducted based on the output of our system.

1. Introduction
In surveillance systems, detecting and tracking people

is probably the most important task. There has thus been

extensive work on tracking the location of single person

[4, 17] or multiple persons [5, 3, 1]. This enables location-

or trajectory- based analysis of people activities, for in-

stance people counting, scene structure understanding and

trajectory abnormality detection, and even some social situ-

ation understanding like the identification of groups [9] and

social networks [18].

However, to make the surveillance system really “intelli-

gent“, we want to know not only “where the people are”, but
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Figure 1. Behavior cues such as body pose and head pose are very

informative for behavior and interaction analysis.

also “what they are doing”. In other words, position and tra-

jectory are not enough if we want to make the system aware

of the ongoing behaviors and interactions. To move beyond

this location-based understanding, our aim in this paper is

to propose and study an algorithm for the extraction of be-

havioral cues, namely body and head poses (orientations),

which characterise people’s activity and interactions more

precisely. Indeed, when observing a single person, his body

and head poses indicate which part of the space he is facing

and looking at, which could be useful for instance to assess

if he his paying attention to his (dropped) luggage. Also,

a large discrepancy between his movement direction, body

pose, or head pose might indicate an interesting attentional

behavior. This can be due either to an intentional pose shift

towards an object or region of interest, or to a distraction by

something in the scene, which could be useful for abnormal-

ity detection. When considering multiple persons, body and

head pose would be particularly useful in group/interaction

analysis since they provide direct evidence of interaction:

people tend to face to and look at each other when they are

interacting [8], as illustrated in Figure 1.

The workflow of our approach is summarised in Fig. 2.

First, we employ a multi-person tracker to generate con-

tinuous tracks, where each track contains a noisy bound-

ing box sequence in the image for a person identity. Then,

for each bounding box, we perform some static analysis,

namely body pose feature extraction, head localization and



Figure 2. Workflow of our approach.

head pose feature extraction, along with the body and head

pose likelihood evaluation for all potential (discrete) poses.

This analysis generates noisy observations on body pose

and head pose. Finally, based on the observations, we per-

form a joint estimation of all the cues in a particle filter-

ing framework. The joint estimation takes into account the

smoothness of cues over time (which is ensured by the tem-

poral filtering itself), and the dependency between the cues.

More precisely, we propose to use soft coupling between

body position (movement), body pose and head pose. The

coupling is also dependent on the speed: when the person

is moving fast, the body orientation is more sharply aligned

to the movement direction, and vice versa).

Note that we rely on a separate stage to localise the head

in the human bounding box. This ensures that correct head

patches are used for pose classification, and is clearly better

than some other works like [16] assuming a fixed top-center

position on the body as head region, as head pose classifi-

cation is known to be very sensitive to alignment errors.

Several works have addressed body pose or head pose

estimation in surveillance videos [2, 11]. However, despite

the obvious link between those two cues, they were mostly

treated as completely separate cues. For example, [14] esti-

mated the body pose of tracked people in videos (discretized

in eight directions), but the dependency between pose and

velocity is not exploited. [13] perform face detection and

head pose estimation using a network of far-field cameras,

without exploiting the dependency between different cues.

The authors in [7] uses 3D distance and head pose to clas-

sify pairwise interactions in a work environment, but the 3D

position tracking and the head pose classification are com-

pletely separate, probably because in their setting, people

are static most of the time and there is no coupling between

position and head orientation (but coupling between body

and head pose exists). A similar approach is used in [8].

The coupling between 3D position and body/head pose

has been exploited in previous work [16, 12], but the prob-

lem when people are static or with slow speed is not solved.

For example, in [16], the coupling between head pose and

body movement is constant regardless of the magnitute

of speed. This has problems when the person is moving

slowly, as the speed direction is highly noisy in this cases.

[12] exploited a loose coupling at low speed, but they did

not have an explicite observation model for body pose es-

timation, resulting in a similar problem when the person is

moving slowly. To our knowledge, our work is the first to

address both body pose and head pose, as well as the inter-

cue dependency, and it works fine when the person is mov-

ing fast, slowly or is static.

This work is based on and extends the previous work [6],

which only deals with body pose. In the current paper, we

make two contributions:

• a head localization method which reliably localizes

the head of a person from a human detection bound-

ing box, and a head pose classifier estimating the head

pose from the localization output;

• a framework for the joint estimation of body position,

body pose and head pose, relying on the soft coupling

between these cues.

The remaining of the paper is organized as follows. Sec-

tion 2 introduces the per-frame analysis: body pose feature

and likelihood models, head localization and head pose fea-

ture and likelihood model. In Section 3 we present the joint

estimation by temporal filtering. Experiments are shown in

Section 4 and conclusions are given in Section 5.

2. Head and Body Pose Representation
As shown in Fig. 2, for each frame of a human track, we

extract several features characterizing the body pose and the

head pose. In this Section, we describe these features, along

with the head detector that is used to localize the head, and

the likelihood models associated with the pose features.

2.1. Body pose representation

For this step, we rely on the previous work described in

[6], which is summarized here. The body pose angle (the

orientation of the torso) in the image plane is discretized

into eight directions (N, NE, E, SE, S, SW, W, NW). Given

the human detection output, a multi-level HoG (Histogram

of Oriented Gradients) feature is extracted from the image,

and corresponds to our body pose observations zb. This

feature vector is then decomposed into a linear combination

of the training samples using a sparse representation tech-

nique. The (normalized) sum of the weights of the samples

belonging to a pose angle class k is then used to defined the

likelihood pb(zb|k) of the observation for each pose class.

2.2. Head localization

Prior to extracting head pose observations, we first esti-

mate the head localization and size from the human body

bounding box. Here, routines such as face detection or



skin color detection can not be exploited since they will fail

when the head is not faced towards the camera. To design

a robust pose-independent head localization algorithm, we

rely on a HoG based feature and Adaboost classifier.

Features: A given head patches is evenly divided into a

6 × 6 grid. The features are then defined on the multi-

size rectangular blocks associated with the grid boundaries.

On each potential block, we extrcated a HoG feature vec-

tor. More specifically, the gradient orientation of the pixels

within the block are quantized into 9 unsigned bins, and

each pixel votes to the corresponding directions using the

(cropped) gradient magnitude as the weight.

Given the initial grid, there are 441 possible blocks rang-

ing from size 1 × 1 to 6 × 6, and each block is associated

with a 9-dimensional feature vector. One possibility would

be to concatenate all these sub-features to get a 441 × 9
dimensional holistic feature vector. However, we note that

for head detection, not all sub-features are of the same im-

portance. For example, due to the variation of head pose,

the inner texture in the head patch can be quite different

and thus not very discriminative. On the other hand, the

gradients near the contour of the head remains roughly un-

changed (they resemble the overall ellipse shape of the head

regardless of the head pose). This inspires us to use boost-

ing technique to select the relevent features.

Weak classifier: Following [10], a first possibility is to de-

fine weak classifiers on a block basis, using a 9d to 1d trans-

formation trained in a discriminant fashion (e.g. use Fisher

Linear Discriminant - FLD) on the feature vectors [10], and

use Adaboost to select relevant weak classifers from the 441

candidates. In this paper we take a different approach, keep-

ing the block approach, but using the primitive HoG differ-

ential classifiers as weak classifiers, defined as follows

hl,d1,d2,σ (p) = sign
(
fd1

l (p)− fd2

l (p)− σ
)

(1)

where p is an image patch, l ∈ {1, ..., 441} is a block index,

fd
l (p) is the dth dimension of the feature vector in the lth

block of image patch p, and σ is a threshold. In other words,

a weak classifier h first selects a block l, and then com-

pare two gradient directions in that block against a thresh-

old. Compared to [10], the idea is to have a more sparse

weak classifier by comparing only two directions in a block,

rather than to learn a full FLD between all directions. When

the amount of data is not huge, we expect such weak classi-

fier to be more robust and lead to a better generalization. For

example, at the top center of the head patch, we will expect

the predominant gradient direction to be somewhat vertical.

Due to data variability and noise, the learned FLD relation

involving the vertical direction and all the other directions

might not be very accurate, and non zero values might lead

to noisy classifier values at test time. On the other hand,

simply requiring that the vertical gradient direction should

be stronger than the horizontal direction might be a looser

but more noise-robust choice. This is confirmed by our ex-

periments reported in Section 4.

Training. Our strong classifier is trained using Adaboost

on a training dataset {(pi, yi)}, where yi ∈ {+1,−1} is

the label for positive (head) or negative (non-head) samples.

Adaboost learns a strong classifier H by selecting T weak

classifiers (and optimizing for the variance parameter):

H (p) = sign

⎛
⎝ T∑

j=1

αjht (p)

⎞
⎠ , (2)

where αj are the learned weights associated to the weak

classifiers.

Testing and Head localization. Given the human body

bounding box, we test possible head localization configu-

rations (with different locations, sizes and aspect ratios of

the head bounding box). However, if we directly use the

binary classifier of Eq. (2), we might get many hits around

the true head location. Instead, we use the real-valued score

of the detector (i.e. H without the sign function) to build a

confidence map on the possible head locations, and perform

non-maximum supression to find local maxima as localized

heads. The detector score of those local maxima is used

to accept or reject the detection, but we always assume the

presence of at least one head. Finally, to select the single

head location used for further processing, we apply a sepa-

rate and simple temporal filtering on the head location can-

didates by enforcing a head location smoothness over time.

2.3. Head pose estimation

We represent head pose as pan α̃ and tilt β̃ angles in the

image plane1. Considering the resolution of surveillance

video, we discretize the pan into 12 angles with 30◦ interval
2, and we discretize tilt angle into 3 classes: up (β̃ > 30◦),

middle (−30◦ < β̃ < 30◦) and down (β̃ < −30◦). There-

fore, overall there is a set of 36 pose (α̃m, β̃m).

Defining the head pose feature zh. We use both texture

and color features for head pose estimation. As texture fea-

ture, we use again a multi-level HoG descriptor. The head

patch is divided into non-overlapping blocks at two levels:

2 × 2 and 4 × 4 blocks. Each block in turn consists of 4

cells. The gradient orientation is quantized into 9 unsigned

bins, and the 4 × 9 entries of a block are normalized to

1. In this way, for each head patch we end up with a 720

dimensional feature vector. For color feature, we use the

histogram-based skin color detector proposed in [15] to de-

tect the skin region in the head patch. Then, the head patch

1That is, the pose is defined with respect to the viewing direction, which

means that (α̃, β̃) = (0, 0) corresponds to a person looking straight at the

camera, whatever his image position.
2Unlike some work where the head pose is only estimated in frontal

and profile views, we allow the 360◦ full pan range to include back view.



is resized into a 20×20 binary skin mask as our 400 dimen-

sional color feature.

Head pose likelihood model ph. Learning the likelihood is

conducted assuming training data with known head poses.

For each class m, we calculate the mean texture feature rtext
m

and mean color feature vectors rcol
m . Then, the likelihood of

a head patch observation zh =
(
ztext, zcol

)
for a given pose

class m is expressed as:

ph
(
zh|m)

= ptext
(
ztext|m)

pcol
(
zcol|m)

(3)

where each component likelihood is in turn expressed as:

pF
(
zF |m)

= exp
(−λF dF

(
zF , rFm

))
, (4)

where F = {text, col} is the feature type, λF is a parameter,

and dF () is the distance between the observed feature and

the mean feature. For the texture feature, we use the L2
distance. For the color feature, we use the L1 distance.

2.4. Summary

Given the human detection bounding box output associ-

ated with a human track at time t, we have the following

observations:

• zloc
t = [ut, vt], which denotes the bottom-center posi-

tion of the body in the image plane;

• zb
t , the body pose feature described in Section 2.1;

• zh
t , the feature described in Section 2.3.

In addition, we have defined pb () and ph (), the functions

providing the likelihood of the corresponding observed fea-

tures for a given body pose class k or head pose class m.

Note that the body and head pose classes are defined in the

image plane.

3. Joint Estimation of Behavior Cues

Up to now, for each human detection output, we have

extracted 2D location, body and head pose features. Us-

ing the defined likelihood models, for each frame, we could

estimate the body and head pose cues. However, such esti-

mates would be quite noisy. For example, the bounding box

jumps in the image due to the uncertainty of the human de-

tector, and the body/head pose estimation can be wrong due

to poorly localized bounding boxes or partial occlusion.

In this section, we perform the estimation over time and

in the 3D space of all the behavior cues. To improve the

accuracy, we use temporal filtering to exploit the intra-

cue temporal smoothness, and the estimation is conducted

jointly to also exploit the inter-cue dependencies.

Particle filtering framework. Our estimation problem is

formulated in a Bayesian framework, where the objective

is to recursively estimate the filtering distribution p(st|z1:t)
where st is the state at time t and z1:t denotes the set of

Figure 3. Dynamical model. State variables are shaded, and obser-

vation variables are unshaded.

measurements from time 1 to time t. Under standard as-

sumptions, the recursion is given by:

p(st|z1:t) ∝ p(zt|st)
∫

p(st|st−1)p(st−1|z1:t−1)dst−1. (5)

In non-linear non-Gaussian cases, it can be solved using

sampling approaches, also known as particle filters (PF).

The idea behind PF consists of representing the filtering

distribution using a set of weighted samples (particles)

{snt , wn
t , n = 1, ..., N} and updating this representation

when new data arrives. Given the particle set of the previous

time step, configurations of the current step are drawn from

a proposal distribution st ∼ q(s|snt−1, zt). The weights are

then computed as wt ∝ wn
t−1

p(zt|st)p(st|snt−1)

q(st|snt−1,zt)
.

In this work, we use the Boostrap filter, in which the dy-

namics is used as proposal. Then, three terms which are

defined below are important to define our filter: the state

model defining our abstract representation of our object, the

dynamical model p(st|st−1) governing the temporal evolu-

tion of the state, and the likelihood p(zt|st) measuring the

adequacy of the observations given our state configuration.

Fig. 3 provides the graphical model of our approach, high-

lighting the dependency assumptions between variables.

State space: The state vector is defined as st =
[xt, ẋt, θt, αt]

T
, where xt = [xt, yt] is the body position

in the 3D world coordinate frame, ẋt = [ẋt, ẏt] is the ve-

locity, θt(0
◦ ≤ θt < 360◦) is the body orientation angle

on the ground plane, αt(0
◦ ≤ αt < 360◦) is the 3D head

pan angle. Note that all the elements in the state vector are

defined with regard to the 3D world coordinate frame.

Dynamical model: We use a first-order dynamical model

which, given adequate conditional independence assump-

tions, decomposes as follows:

p (st|st−1) = p (xt, ẋt|xt−1, ẋt−1)

× p (θt|θt−1, ẋt) p (αt|αt−1, θt) . (6)

Location dynamics: The first term of Eq. (6) describes the



position and velocity evolution, and for this we use a linear

dynamical model:

p (xt, ẋt|xt−1, ẋt−1) = N (x̃t;Hx̃t−1,Qt) , (7)

where N (x;μ,Σ) is the Gaussian probability distribution

function (pdf) with mean μ and variance Σ, x̃t = [xt, ẋt]
T

is the composite of position and velocity, H is the 4×4 tran-

sition matrix corresponding to xt = xt−1+ ẋt−1δt (with δt
the time interval between successive frames), and Qt is the

system variance.

Body pose dynamics and coupling with motion direction:
The second term of Eq. (6) describes the evolution of body

pose over time. It is in turn decomposed as:

p (θt|θt−1, ẋt) = V (θt; θt−1, κ0)V (θt; ang (ẋt) , κẋt) ,
(8)

where ang() is the angle of the velocity vector (in ground

plane), κ0 is the system concentration parameter for body

pose, and V(θ;μ, κ) ∝ expκ cos(θ−μ) denotes the pdf func-

tion of the von Mises distribution parameterized by mean

orientation μ and concentration parameter κ.

The Eq. (8) sets two constraints on the dynamics of body

pose. The first term expresses that the new body pose at

time t should be distributed around the pose at previous time

t − 1. The second term imposes that the body orientation

should be somewhat aligned with the moving direction of

the body. The body pose dependency concentration, κẋt , is

dependent on the magnitude of velocity and is defined as:

κẋt =

{
0, if ‖ẋt‖<τ

κ1 (‖ẋt‖ − τ)
2
, otherwise

. (9)

This means that if the speed is below some threshold τ , then

the person is treated as static and the prior on body pose

from velocity is completely flat. When the speed is above

τ , however, a larger speed introduces a tighter coupling of

the body pose around the moving direction.

Head pose dynamics and coupling with body pose: The

third term of Eq. (6) describes the evolution of the head

pose over time. It is decomposed as:

p (αt|αt−1, θt) = V (αt;αt−1, κ1)V (αt; θt, κ2) (10)

Similarly to Eq. (8), the Eq. (10) sets two constraints on the

dynamics of head pose. The first term ensures the temporal

smoothness of the head pan evolution, wheras the second

term models the soft coupling between the head and body

orientations. However, in this case, the concentration pa-

rameter κ2 is constant (and lower than κ1 since the coup-

pling is looser than between the body orientation and mo-

tion direction).

Observation model: Recalling Section 2.4, at each time

t the observation feature is defined as zt =
(
zloc
t , zb

t , z
h
t

)
.

Under observation conditionnal independence assumptions,

the observation likelihood is given by:

p (zt|st) = p
(
zloc
t |st

)
p
(
zb
t |st

)
p
(
zh
t |st

)
(11)

where each term is defined as follows. The position likeli-

hood is calculated as:

p
(
zloc
t |st

)
= N ([ut, vt];C (xt) ,Σloc) (12)

where C is the homography from ground plane to image

plane, and Σloc is the uncertainty of the detected location

(in pixels) in the image plane. This term simply expresses

that the detected location should be close to the (projected)

estimated state.

For the pose observations, we can rely on the likeli-

hood models introduced in Section 2. Since these likeli-

hood models are defined for pose values expressed in the

local image frame coordinate system, we first transform the

body pose angle θt and head pose angle αt from the 3D

world coordinate frame to the local image coordinate (note

that this depends on the person’s position). Then, body and

head observation likelihoods are simply defined as the data

likelihood given the closest body or head pose class, i.e.:

p
(
zh
t |st

)
= ph

(
zh
t |mclo(st)

)
and (13)

p
(
zb
t |st

)
= pb

(
zb
t |kclo(st)

)
(14)

where mclo(st) returns the head pose class label whose ori-

entation angle is the closest to the (transformed) state orien-

tation st (and similarly for kclo(st)), and ph() and pb() are

the head and body likelihoods defined in Section 2.

4. Experiments
In this section, we present quantitative evaluation on

head localization and headpose estimation, as well as qual-

itative results of the joint tracking on surveillance videos.

4.1. Head localization task

To collect ground-truth head localization, we manually

labeled the head bounding boxes from 1000 positive hu-

man detection outputs obtained on a dataset of metro sta-

tion surveillance videos. The labeled head boxes are used

as positive head patches. The negative patches were derived

by automatically generating patches inside the body bound-

ing boxes and avoiding the true head locations. We trained

a classifier as described in Section 2.2, using 500 weak clas-

sifier to construct the strong one.

Evaluation. To quantitatively test the performance, we also

annotated head locations on some other human detection

outputs to be used as testing data (we used another videos

recorded at another time from the same place but a different

camera view). We use the IOU (Intersection over Union)



IOU top IOU all n candidates

Our method 0.60 0.64 ≈ 2.3
HoG FLD [10] 0.58 0.65 ≈ 3.0

Table 1. Evaluation of head localization.

Figure 4. Head localization results. Dashed blue box is the human

detection output. Solid red box is the head localization outputs

(first candidate). Failures are shown in the last row

between the ground-truth head box rgt and the detected head

box r as performance measure:

IOU (rgt, r) =
area (rgt

⋂
r)

area (rgt

⋃
r)
. (15)

Note that the IOU measure is symmetric and relatively

strict. For example, if the common part of two rectangles

occupies 80% of each rectangle, the IOU is just 66.7%.

The evaluation result is shown in Table 1. Remember

that as described in Section 2.2, for each human bounding

box we may get multiple local maxima and hence multi-

ple head location candidates. Table 1 shows the mean IOU

measure when using only the first candidate (ranked by the

classifier’s score) and when using all candidates (in this

case, only the best IOU from all candidates is kept as re-

sult), as well as the average number of candidates per hu-

man detection output. We also compare our method (HoG

differential feature) with the HoG FLD feature [10]. It can

be seen that our method generates better results by achiev-

ing comparable accuracy with fewer numbers of candidates

(i.e. better efficiency). Fig. 4 shows some examples. Our

method succesfully localizes most heads, but fails on some

examples as illustrated in the last row of Fig. 4. Failures

are usually due to poorly localized human bounding box, or

head-like textures.

Figure 5. Legend for the illustration.

4.2. Joint tracking: qualitative results

We tested our joint tracking approach on surveillance

videos acquired in a metro station (with head pose models

learned from the CHIL data, see Section 4.3). Fig. 5 is the

legend of the illustration, and Figs. 6-8 show the results on

two clips. To save space, the images are cropped and only

the region around the active person is shown. We show the

human detection bounding boxes as dash rectangles, and the

head localization outputs as small solid rectangles. To pro-

vide a 3D perception sense, we display two 3D horizontal

circles of radius 50cm centered on the bottom-center of the

person and the head position, respectively. The body poses

and head poses (in 3D space) are shown using radial lines

within the circles. More precisely, the body/head poses esti-

mated directly from the feature are shown using radial lines

without arrows3, and the body/head poses returned by the

temporal filtering are shown using thicker lines and arrows.

Fig. 6 shows the result on a clip with interaction between

two persons. The two persons walk, meet, discuss and then

separate. We show the results separately for the woman and

the man in the two rows in Fig. 6. At t = 20, 220, 300 there

is no result for the man either because he is outside the cam-

era view range or the tracking is lost due to occlusion. Note

how our joint filtering approach successfully manages to ex-

tract accurate body and head poses from noisy observations,

even when people are almost static.

Fig. 7 illustrates the same video clip as Fig. 6 in a top-

down bird view. Here, the 3D body and head poses can

be more easily interpreted and their importance for inter-

action analysis becomes obvious. Each person is repre-

sented by two circles and three arrows. The arrows indicate

(from outer to inner) the tracked body speed, body pose,

and head pose. Four representative frames are shown. At

t = 60, both persons are walking with a notable speed,

and according to our model, the speed direction provides

a good prior for the body pose (and head pose indirectly).

At t = 140, the persons are talking, with body and head ori-

ented towards each other. In this case, the speed magnitude

3The body/head pose classes with the highest likelihood are shown.



Figure 6. Results on a metro station surveillance video with human interaction. Image resolution is 486×363.

Figure 7. Top-down view illustration (same clip as in Fig. 6).

is very small, resulting in a noisy speed direction which is

ignored by our method for the body and pose estimation.

At t = 200, although the distance between the persons are

close, we can still infer that the interaction just stopped be-

cause they are not facing each other. At t = 230, the two

persons have separated.

Fig. 8 shows the result on another clip. In this case, a

woman is walking and turning around near a luggage (suit-

case) on the ground. Although the person alternates static

and slow motion with frequent and fast orientation changes,

our method succesfully estimates the body pose and head

pose, from which we can easily tell whether the person is

attending the luggage or not. Note that in this example, at

around t = 150, our head localization output is incorrect,

but it is automatically corrected shortly after.

4.3. Joint tracking: quantitative evaluation

We use the CHIL dataset of CLEAR 2007 head pose es-

timation contest. It contains annotated data for 10 persons

(id 6-15) where people in the videos are turning their body

and head orientation. For each frame, the ground-truth head

poses are provided by a magnetic field location and ori-

entation tracker. We used the person id 6-11 for training

the head pose model, and 12-15 for testing. For body pose

evaluation, we manually labeled the body orientation of 100

randomly selected frames using a 3D interface.

As performance measure, we use pose accuracy de-

fined as the average error angle between the predicted and

ground-truth pose angles in the 3D space. To evaluate the

effectiveness of our joint tracking approach, we compare

our method with the results obtained on a per-frame basis

(’observation’), and with a baseline where body and head

observation separate filtering joint filtering

body pose 41.7 32.9 21.9

head pose 30.3 25.8 17.6

Table 2. Evaluation on the joint tracking approach. All numbers

are in degree.

pose are filtered separately without exploiting the soft cou-

pling between them (i.e. we have κ2 = 0 in Eq. (10)). The

comparison is dipicted in Table 2. It can be seen that our

joint filtering method significantly outperforms the separate

filtering approach, and that the accuracy is quite high given

that only one camera is used.

Fig. 9 illustrates the results on a sample test clip. Here it

is straightforward to see the advantage of our approach. By

exploiting the soft coupling between body pose and head

pose, we can get better accuracy for both. For example, at

t = 600 and t = 1200, the incorrectly estimated head pose

is corrected by the body pose. At t = 1000, t = 2000 and

t = 2600, the body pose is corrected by the head pose. On

the other hand, our soft coupling remains loose enough to

still allows some discrepency between body pose and head

pose, which is useful when the head is turning away from

the body orientation (e.g. t = 1400 and t = 2600).

5. Conclusions

We have presented a approach for the joint tracking of

pose behavioral cues in surveillance videos. Given the

tracks generated by a multi-person tracker, we first local-

ize the head and extract body and head pose features. These

features are used to jointly estimate the body position, body

pose and head pose in 3D space using a particle filtering ap-



Figure 8. Results on a metro station surveillance video with luggage attendence. Image resolution is 486×363.

Figure 9. Comparison on a CHIL sequence. Image resolution is 640×480. First row: without soft coupling. Second row: our approach.

proach that exploits the conditional coupling between body

position (movement direction) and body pose, and the soft

coupling between body pose and head pose. Qualitative and

quantitative experiments are provided.

In the future, we would like to investigate the issues

of wrong estimates due to occlusion (in particular for the

body), and exploit multi-camera environments to resolve

ambiguities. We will also investigate the modeling of hu-

man interaction based on the output of our methods.
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