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Abstract—This report addresses the problem of speech enhancement employing the Minimum 

Mean-Square Error (MMSE) of β-order Short Time Spectral Amplitude (STSA). We present an 

analytical solution for β-order MMSE estimator where Discrete Fourier Transform (DFT) 

coefficients of (clean) speech are modeled by Laplacian distributions. Using some approximations 

for the joint probability density function and the Bessel function, we also present a closed-form 

version of the estimator (called β-order LapMMSE). The performance of the proposed estimator is 

compared to the state-of-the–art spectral amplitude estimators that assume Gaussian priors for 

clean DFT coefficients. Comparative results demonstrate the superiority of the proposed estimator 

in terms of speech enhancement/ noise reduction measures. 

Index Terms— Laplacian speech modeling; spectral amplitude estimation; speech enhancement. 
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I. INTRODUCTION 

In increasing number of speech processing applications, noise reduction is becoming an essential pre-

processing component to improve system performance. The main objective of speech enhancement is to 

reduce the corrupting noise component from a noisy speech signal with minimum distortion of clean 

signal. In the past three decades, Minimum Mean Square Error (MMSE)-based single-channel speech 

enhancement algorithms have received a lot of attention. In [1], Ephraim and Malah proposed a basic 

estimator for the Short Time Spectral Amplitude (STSA) of clean speech signal. Their work was then 

extended to a Log Spectral Amplitude (LSA) estimator in [2]. Considering speech presence uncertainty, 

Cohen [3] proposed the Optimally Modified-LSA (OM-LSA) estimator. Furthermore, as a good trade-off 

between noise reduction and minimum speech distortion, You et al. [4] proposed the β-order MMSE 

approach for estimating the STSA of a speech signal. In their work [4], You et al. investigated the 

effectiveness of range of fixed-β values in estimating STSA based on the MMSE criterion, and discussed 

how the β value could be adopted using the frame signal-to-noise ratio (SNR). Moreover, they showed 

that their approach could achieve a more significant noise reduction and a better spectral estimation of 

weak speech spectral component from a noisy signal as compared to many existing speech enhancement 

algorithms.  

However, most of the previous works (including those in [1]-[4]) depend on the fundamental 

assumption that the real and imaginary parts of Discrete Fourier Transform (DFT) coefficients of clean 

speech signal are modeled by Gaussian distributions. More recently, researchers have searched for 

adopting a more appropriate statistical model for the speech signal to improve the speech estimators. In 

this case, non-Gaussian distributions have been used to model the DFT coefficients of the clean speech 

signals. Generally, Gamma or Laplacian distribution can be used to model real and imaginary parts of the 

clean DFT coefficients [5]-[10]. In [11], Chen and Loizou proposed an MMSE estimator (named 

LapMMSE) of the STSA based on Laplacian model for speech probability density function (pdf). The 

authors followed that work in [13], where an improved version of LapMMSE (called ImpLapMMSE) 



 3 

was presented.  

In the present paper, starting with a formulation similar to that of [11], we derive β-order MMSE 

estimator when the clean speech DFT coefficients are modeled by a Laplacian distribution. However, the 

derived analytical solution is highly non-linear, computationally complex and very time-consuming for 

implementation. Hence, we apply here some approximations for the Bessel function as well as for the pdf 

of the magnitude spectrum of the clean speech, to reduce the complexity of the estimator. This is shown 

to result in a closed form of the estimator, namely β-order LapMMSE. 

Simulation results demonstrate that the proposed method reduces the corrupting noise component in a 

better way, which results in less residual noise compared to many existing methods (with either 

Laplacian or Gaussian assumption).  

The rest of the paper is organized as follows. In Section II, we explain our formulation and derivation 

of the proposed estimator. In Section III, a closed form expression is derived as β-order LapMMSE 

estimator. In Section IV, we explain our evaluation process and discuss the resulting performance. 

Finally, Section V concludes the paper.  

II. BETA-ORDER LAPMMSE ESTIMATOR  

Suppose that )()()( ndnxny += , where )(ny , )(nx  and )(nd  respectively denote noisy signal, clean 

speech signal, and additive noise. Taking the DFT of )(ny , we get: 

( ) ( ) ( )y x d
j k j k j k

k k k
Y e X e D e

θ θ θ= + , (1) 

where 
( )yj k

k
Y e

θ
, 

( )xj k

k
X e

θ
, and 

( )dj k

k
D e

θ
 ( 1...,,2,1,0 −= Nk ) are the kth spectral component of noisy 

signal, clean speech signal, and additive noise, respectively, and N is the frame length. We are looking 

for 
k

X̂ , the estimate of kX . In [4], You et al. considered })ˆ{( 2ββ
kk

XXJ −= Ε  as a cost function that 

minimizes the mean-square error between the β-order clean speech spectral amplitude and the β-order 

estimated spectral amplitude. By minimizing the cost function with respect to 
k

X̂ , we get [4]: 
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where kx  denotes the sample value of kX , {}⋅Ε  is the expectation operator, and )(k
xk

θθ =  for 

convenience; also, ( , )k kf x θ  is the joint pdf of the magnitude and phase spectra, and ( , )k k kf Y X θ  is 

given by [1]: 

21 1
( , ) exp

( ) ( )
k k k k k

d d

f Y X Y X
k k

θ
πλ λ

 
= − − 

 
, (3) 

where ( )d kλ  denotes the variance of the kth DFT coefficient of the noise. 

Following the procedure in [12], it is easy to show that for the Laplacian distribution, the joint pdf 

( , )k kf x θ  is given by [11]: 

( )( , ) exp cos sin
2 ( ) ( )

k k

k k k k

x x

x x
f x

k k
θ θ θ

λ λ

  
= − + 

  
, (4) 

where ( )x kλ  is the variance of the kth clean DFT coefficient. Let 
( )

( )

x
k

d

k
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=  and 
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( )

k
k

d

Y
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γ
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=  

respectively denote the a priori and a posteriori SNR [1]. Substituting (3) and (4) into (2), yields the 

following form of estimator: 
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. (5) 

The above equation gives the β-order Laplacian MMSE estimator of the spectral magnitude. We will 

refer to this estimator as the β-order Laplacian MMSE estimator (or briefly, β-order LapMMSE). To the 

knowledge of the authors, (5) has no closed form solution. In [11], by applying some approximations, 

Chen et al. derived a closed form solution for the standard ( 1β = ) LapMMSE estimator. Using similar 
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formulation, we generalize the estimator and derive the β-order LapMMSE as: 
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and ( )Γ ⋅ is the Gamma function and ( , ; ; )F a b c d  is the Gaussian hypergeometric function. As shown in 

(6-a)-(6-d), the derived β-order LapMMSE estimator is highly non-linear and computationally complex. 

In Section III, we apply some approximations in (2), which will result in a computationally-feasible 

estimator. 

III. DERIVATION OF CLOSED FORM APPROXIMATION FOR BETA-ORDER LAPMMSE ESTIMATOR 

a) Approximation of Joint pdf 

Chen et al. [11] have already shown that the magnitude and phase of the complex DFT coefficients of 

the clean speech signals are statistically independent and also derived ( , )
k k

f x θ  [11]. Substituting this 

approximation into (2) results in the β-order LapMMSE estimator of (6). As stated above, (6) is highly 

complex and nonlinear. To solve this problem, we exploit here some approximations of ( , )k kf x θ  and 

the Bessel function.  
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Using the Tailor series expansion, authors have already shown in [13] that ( , )k kf x θ  can be 

approximated as: 

2
( , ) exp( ), 0k

k k k k

x x

x
f x x xθ

πλ λ
≈ − ≥ ; (7) 

Substituting (7) into (2) yields:  
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Since there is no closed form solution for these integrals (nominator and denominator of (8)), we 

suggest the following approximations for the Bessel function to reach a closed-form low-complexity 

estimator. 

b) Approximation of the Bessel Function 

To reach a closed form solution for (8), we first propose the use of Tailor series expansion of 0 (.)I  

around 0x = , i.e. 
1 2 2

0 0
( ; ) ( / 2) (1/ !)

M m

m
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−
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≈∑ . Considering this expansion and using [14] and [15, 

Thm.3.462.1], we get: 

1

1
2

(2 2)2
0

1
2

(2 2)2
0

1 2
( ) ( ) (2 2) ( )

( !)1ˆ

2 1 2
( ) ( ) (2 2) ( )

( !)

M
m mk k

m

m k k k

k kM
m mk k k

m

m k k k

m D T
Y m Y

X Y

m D T
Y m Y

β

β

γ γ
β

ξ

γ γ γ

ξ

−
−

− + +
=

−
−

− +
=

 
Γ + + 

 =
 

Γ + 
  

∑

∑
. (9) 

where kT γ=  and ( )D zγ  is parabolic cylinder function. Increasing the number of summation terms 

(M), (9) presents a good approximation of (8) [13], However, the resulting estimator is still 

computationally demanding. 

As another solution, we consider the well-known approximation of the Bessel function, 

0 ( ) (1 2 )exp( )I x x xπ≈ . Again, using [14] and [15, Thm.3.462.1], this results in: 
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where 
1

2 k

k

P γ
ξ

 
= −  
 

. 

Equation (10) now presents a closed-from low-complexity version of the proposed estimator (which is 

referred to as the β-order LapMMSE). Finally, the clean speech component is obtained using the inverse 

STFT and the weighted overlap-add method. 

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION  

To evaluate the performance of the proposed estimator (β-order LapMMSE), we have compared its 

performance with those for MMSE-STSA [1], LSA [2], OM-LSA [3], β-order MMSE [4], and our 

recently proposed one, ImpLapMMSE [13]. Unlike the first four reference methods [1-4] that consider 

Gaussian pdf for speech, ImpLapMMSE (and β-order LapMMSE) assumes Laplacian priors. In this 

experiment, we considered 0.4β = . This was done after many trails on different values of β  and 

evaluating output quality. 

For simulation, eight (clean) speech signals (sampled at 16 kHz) were selected from the TIMIT 

database. We corrupted these signals with white Gaussian noise, covering a wide range of input 

SegSNRs (-10 dB, -7 dB, -2 dB, -5 dB, 0 dB, 2 dB, 5 dB, and 10 dB). To evaluate the performance of the 

estimators in speech enhancement task, we have used two basic measures: SegSNR, and PESQ. The 

reported values are the averages over eight input signals. 

The results have been listed in Tables I and II for SegSNR and PESQ, respectively, showing that for 

both high and low input SNRs, the proposed method yields excellent performance, demonstrating the 

superiority of Laplacian assumption for speech priors. The comparative results have also been validated 

through some informal listening tests. These tests show that the β-order LapMMSE produces lower 

residual noise than state-of-the-art estimators.  
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Furthermore, we have examined the effect of order parameter (β) in the performance of the proposed 

estimator. Figure 1 shows the SegNSRs of β-order LapMMSE output versus different values for β 

(0<β<4). The evaluation has been repeated for a wide range of input SegSNRs (-10 dB, -7 dB, -2 dB, -5 

dB, 0 dB, 2 dB, 5dB, and 10 dB). Roughly speaking, the speech enhancement performance is decreased 

when the considered order of STSA (β) is increased from 0 to 4. Motivated by previous experiences with 

β-order estimators [4, 16], we are continuing this research to propose an adaptive procedure for 

calculating optimum value of β in each frame.  

V. SUMMARY AND CONCLUSION 

In this paper, we focus on speech enhancement using β-order STSA MMSE estimation where the clean 

speech DFT coefficients are modeled by a Laplacian prior. The resulting analytical solution is highly 

complex. So, considering some approximations for joint pdf as well as the Bessel function, we derive β-

order LapMMSE estimator. Comparing the proposed method with alternative state-of-the-art approaches 

shows that the proposed estimator is much more effective in reducing the additive noise. Also, similar to 

what is done in [9], this method has less residual noise, less distortion speech signal and finally better 

performance in results.  
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TABLE I 

COMPARATIVE PERFORMANCE, IN TERMS OF SEGMENTAL SNR, OF THE GAUSSIAN-BASED MMSE-STSA, 

LSA, OM-LSA, BETA-ORDER MMSE, AND LAPLACIAN-BASED IMPLAPMMSE, AND BETA-ORDER 

LAPMMSE ESTIMATORS (FOR BETA=0.4).  

Input SegSNR 
Estimator 

-10 dB -7 dB -5 dB -2 dB 0 dB 2 dB 5 dB 10 dB 

MMSE-STSA -4.8 -3.7 -3.0 -1.8 -1.1 -0.8 0.5 2.2 

LSA -4.2 -3.0 -2.4 -1.4 -0.6 0.4 1.1 2.9 

OM-LSA -2.6 -2.1 -1.6 -0.7 0.2 1.0 3.2 5.1 

β-order MMSE -4.2 -3.3 -2.6 -1.6 -0.8 -0.5 0.1 1.2 

ImpLapMMSE -3.8 -2.7 -2.0 -0.8 -0.1 0.2 1.7 3.8 

β-order LapMMSE -2.5 -1.8 -1.2 -0.3 0.6 1.2 3.5 5.3 

 
 

TABLE II 

COMPARATIVE PERFORMANCE, IN TERMS OF PESQ OF THE GAUSSIAN-BASED MMSE-STSA, LSA, OM-

LSA, BETA-ORDER MMSE, AND LAPLACIAN-BASED IMPLAPMMSE, AND BETA-ORDER LAPMMSE 

ESTIMATORS (FOR BETA=0.4). 

Input SegSNR 
Estimator 

-10 dB -7 dB -5 dB -2 dB 0 dB 2 dB 5 dB 10 dB 

MMSE-STSA 0.8 1.1 1.3 1.6 1.8 2.0 2.2 2.5 

LSA 0.9 1.2 1.5 1.8 2.0 2.2 2.4 2.6 

OM-LSA 1.1 1.3 1.6 1.8 2.1 2.3 2.5 2.7 

β-order MMSE 0.9 1.2 1.3 1.4 1.6 1.7 1.8 2.1 

ImpLapMMSE 1.1 1.4 1.6 1.9 2.1 2.5 2.5 2.7 

β-order LapMMSE 1.2 1.5 1.7 2.0 2.2 2.4 2.6 2.8 

 

 

Fig. 1. Output SegSNR values of β–order LapMMSE estimator for 0< β <4 and wide range of input 

SegSNRs (-10 dB, -7 dB, -5 dB, -2 dB, 0 dB, 2 db, 5 dB, and 0 dB). 


