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1 Introduction

Fast ions, whether produced by fusion reactions, or by ionisation of neutral
beam, are expected to play a major role in the heating of burning plasmas.
Therefore, the study of the fast ion’s behaviour in tokamaks is important
for the future burning plasma experiments such as ITER.

Understanding the effect of neutral beam injection on the current profile
is also important for current profile control and for achieving steady state
scenarios where non-inductive current drive is necessary.

Several plasma discharges have been carried out in the MAST tokamak
to investigate to which extent the q-profile may be modified by neutral beam
current drive (NBCD) [1]. Transp simulations of the beam deposition [2]
during steady state experiments, with off-axis NBCD, have been carried
out. It has been found that an anomalous diffusion (with a diffusion coef-
ficient of roughly Db ∼ 0.5m2/s) of the fast ion is needed to explain the
significantly lower neutron rate measured than predicted by the Transp

code using an assumption of classical beam deposition and collisional ther-
malisation. Transp simulations show that this diffusion broadens the fast
ion deposition profile and may help to avoid harmful instabilities [1]. This
anomalous diffusion is suspected to be caused by fishbone instabilities, as
the time of the largest discrepancy between simulated and measured neutron
rates correlates well with the highest magnitude of fishbone activity.

The aim of this work is to investigate, with simulations of the Hagis

code [3], if the interaction between fast ion resulting from off-axis NBCD
and fishbone instabilities may be responsible for the fast ion anomalous
diffusion needed to explain the observed neutron rate.
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2 MAST Device

The Mega Ampere Spherical Tokamak (MAST) is a tight aspect ratio toka-
mak in operation at Culham Science Centre since 2000 (Table. 1). It is the
successor of START (Small Tight Aspect Ratio Tokamak) which achieved
record beta values of around 40% [4]. The cross section and the plasma cur-
rent of MAST is comparable to those of conventional aspect ratio tokamaks
such as DIII-D and ASDEX Upgrade.

The Mega Ampere Spherical Tokamak

Major radius, R (m) 0.85
Minor radius, a (m) 0.65
Elongation, κ 1.6-2.5
Aspect ratio, R/a ≥ 1.3
Plasma current, Ip (MA) < 1.5
Toroidal field, Bt (T) ≤ 0.62
NBI heating power, PNBI (MW) 5

Table 1 – Key parameters for MAST

[1, 4]

As the plasma current in tokamaks scales with the inverse aspect ratio
(Ip ∼ (aBt/q)/(R/a)), the advantage of spherical tokamaks (with small as-
pect ratio, R/a) is that, for a given plasma current Ip, a smaller toroidal
field is required to achieve the same safety factor q than with conventional
tokamaks. Thus, high plasma currents are more easily achieved in spheri-
cal tokamaks and they are convenient to test physics models under extreme
conditions.

The main heating in MAST is provided by two mid-plane co-injected
deuterium neutral beam with a total power up to 5 MW. The injected beams
have energies up to 70 keV and a tangency radius of 0.7 m and lead to a
driven current contribution up to ∼40 % [1].
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3 Theoretical Review

3.1 Transport in Magnetically Confined Plasmas

Determining the quality of the confinement of devices such as tokamaks,
transport study is of main importance. Two types of transport are distin-
guished : classical (and neoclassical) and anomalous transport.

3.1.1 Classical and Neoclassical Transport

The classical transport of energy and thermal particles across a homogeneous
magnetic field is due to Coulomb collisions. It can be seen as a random walk
with a step length of the electron Larmor radius, ρe and frequency of the
electron-ion collision frequency, 1/τe [5], for which the diffusion coefficient
is given by

Dclassical ∼
ρ2
e

τe
∼ 1.789 × 10−23 n

T
1/2
e B2

[m2/s] ,

where the electron temperature is in keV, the density is in m−3 and the
magnetic field in Tesla. For a typical MAST plasma with n = 3×1019 m−3,
B = 0.53 T and Te = 1.5 keV, the classical diffusion coefficient for thermal
particles is Dclassical ∼ 1.56 × 10−3 m2/s.

The neoclassical transport is also based on the Coulomb collisions but
takes into account the toroidal geometry of a tokamak. The effect of trapped
particles, having banana orbits, and convection due to the ∇B drift and the
E × B drift is to increase the value of the diffusivity which, now, depends
on the collisionality.

For low collisionality, the trapped particles dominate the transport. An
approximate expression for the diffusion coefficient can be derived consider-
ing a random walk with a step length of the banana orbit’s width and taking
into account only the fraction of trapped particles. The banana orbit’s width
being bigger than the Larmor radius, the found diffusion coefficient is bigger
than the classical ( by q2/ǫ3/2, where q is the safety factor and ǫ is the in-
verse aspect-ratio). An accurate calculation of this coefficient can be made
starting from the kinetic equation.

When the collisionality is high, Pfirsch-Schluter diffusion, which takes
the additional flux due to toridicity into consideration, dominates and gives
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a diffusion coefficient exceeding the classical one by 2q2η‖/η⊥, which is about
an order of magnitude greater [5].

3.1.2 Anomalous Transport

The measured experimental confinement times are regrettably much shorter
than the predicted ones with the neoclassical diffusion coefficient and don’t
even scale with the same parameters [4]. It indicates that the main process
governing transport in tokamak’s plasmas is not the Coulomb collisions.

It has been found that it is rather the transport resulting from the fluc-
tuating electric and magnetic fields, known as anomalous transport. In toka-
maks, a variety of waves can propagate in the plasma and become instable,
growing by extracting its energy. The free energy released by instabilities
leads to the establishment of an equilibrium fluctuation of the perturbed
quantities. The resulting fluctuating E × B drift velocity transports parti-
cles and energy radially.

The theoretical study of the associated transport requires an elaborate
nonlinear analysis and diffusion coefficient are often estimated experimen-
tally or numerically.

3.2 Instabilities

The first approach to study instabilities in magnetic plasmas is to begin
with the magnetohydrodynamic equations describing an equilibrium state
and to linearise them around this equilibrium in order to determine whether
it is stable or unstable to arbitrarily small perturbations. This analysis
is usually carried out using a variational form of the equations, called the
energy principle.
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3.2.1 Ideal MHD equations

The ideal MHD model describes a perfectly conducting fluid in magnetic
and electric fields. The ideal MHD equations are [6]

ρ
dv

dt
= ρ(

∂v

∂t
+ v · ∇) = −∇p+ J × B , (1)

J =
1

µ
∇ × B , (2)

∂B

∂t
= −∇ × E , (3)

E = −v × B , (4)

∂p

∂t
= −v · ∇p − Γp∇ · v , (5)

∂ρ

∂t
= −v · ∇ρ− ρ∇ · v , (6)

where v is the macroscopic fluid velocity, J is the current density, B is the
magnetic field, E is the electric field, p is the pressure, ρ is the mass density
and Γ = 5/3 is the ratio of specific heats for an ideal gas with three degrees
of freedom.

In this model, ions and electrons are included in one fluid. This assump-
tion is valid only if the relevant time scale, τ is longer than the longest time
scale of the two species, namely the ions. Therefore we must have τ ≫ Ω−1

i

where Ωi is the ion cyclotron frequency. As the gyro-motion of the particles
is neglected, the relevant space scale must be larger than the largest length
scale of the two species, the ion Larmor radius, L≫ ρi.

3.2.2 Linearised Equations

The next step in studying perturbations is to linearise the ideal MHD equa-
tions by considering an arbitrarily small perturbation from a stationary
equilibrium with no flow (v = 0), scalar pressure, and no body forces such
as gravity or neutral gas pressure [6], leading to
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ρ0 ∂v1

∂t
= −∇p1 + J0 × B1 + J1 × B0 , (7)

J1 =
1

µ
∇ × B1 , (8)

∂B1

∂t
= ∇ × (v1 × B0) , (9)

∂p1

∂t
= −v1 · ∇p0 − Γp0

∇ · v1 , (10)

where the superscript 0 denotes the equilibrium quantities and the super-
script 1 denotes the perturbed quantities. The equation for the perturbed
density is not needed because it doesn’t appear in the other equations.

By integrating equations (9) and (10) and writing them in terms of the
displacement vector ξ(x, t) ≡

∫ t
0 dt

′v1(x, t′) we can combine the linearised
equations into a single second order partial differential equation for the dis-
placement vector

ρ0∂
2ξ

∂t2
= F {ξ} , (11)

= ∇(ξ · ∇p0 + Γp0
∇ · ξ)

+
1

µ
(∇ × B0) ×

[
∇ × (ξ × B0)

]

+
1

µ
(∇ ×

[
∇ × (ξ × B0)

]
) × B0 ,

where F {ξ} is called the force-operator.

3.2.3 Energy Principle

The energy principle is derived by multiplying equation (11) by the time
derivative of the displacement vector and integrating over the volume of the
plasma. Using the self-adjointness of the force-operator [6], one can finally
find the energy principle

∂

∂t








∫

d3x
1

2
ρ0ξ̇2

︸ ︷︷ ︸

kinetic energy

−1

2

∫

d3xξ · F {ξ}
︸ ︷︷ ︸

potential energy








= 0 , (12)
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indicating that the total perturbed energy is constant in time. Therefore,
any perturbation decreasing the potential energy produces a corresponding
increase in the kinetic energy which indicates that the system is linearly
unstable. On the other hand, if all perturbations lead to an increase in the
potential energy, then the system is linearly stable to exponentially growing
modes.

The first manner of classifying instabilities is with regards to their sensi-
tivity to boundary conditions. When their existence doesn’t depend on the
presence of a vacuum layer between the plasma and the wall, they are called
internal instabilities. Otherwise, they are called external instabilities.

Generally, to study instabilities in a tokamak, a Fourier decomposition
in the toroidal geometry is used

ξ(r, θ, φ) =
∑

m,n

ξm,n(r)e
i(nφ−mθ−ωt) (13)

where m is the poloidal mode number and n is the toroidal mode number.
This transformation allows to study the problem as an eigenvalue problem.

3.2.4 Fishbone Instability

The fishbone instability often occurs when a high energy neutral beam in-
jection (NBI) system is used to heat the plasma and can lead to significant
losses of the NBI-produced energetic ions, thus reducing the efficiency of
plasma heating [7]. It is characterised by repetitive bursts (fig. 1) with the
mode frequency decreasing during each burst (fig. 2).

One distinguishes two branches of the fishbone mode [8]. The high-
frequency “precessional branch” results from the interaction between the
energetic trapped particles and the m = 1, n = 1 internal kink mode (fig.
3). The toroidal wave velocity of the instability resonates with the toroidal
drift of the trapped particles.

The low-frequency branch is the “diamagnetic branch” and arises from
the oscillation of the m = 1, n = 1 internal kink mode with the bulk ion
diamagnetic frequency, ω∗i [9]. In this case, the source of energy for the
instability is related to the pressure gradient of the plasma bulk [10].

Concerning the precessional fishbone mode, a dispersion relation can be
derived from the energy principle assuming a fixed conducting boundary

9



Figure 1 – Mirnov coil’s trace of a fishbone instability during MAST shot 18808.
One can easily figure out from where comes the instability’s name

Figure 2 – Mirnov coil’s RMS values spectrum during MAST shot 18808 showing
the decreasing of the mode frequency by about a factor of two.
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Figure 3 – Mirnov coil’s mode number analysis during MAST shot 18808 showing
that the mode has a toroidal mode number equal to one.

[11, 4], giving

− iω

ωA
+ δW̃p + ω

∫
φ(ω,v, r)

ωd − ω

∂fh
∂r

d3vd3r = 0

where ωA = (Bφ/R)/(µ0ρ)
1/2 is the Alfven frequency, ωd is the toroidal

precession frequency of the trapped particles, and δW̃p is the normalised
MHD potential energy change in the plasma. The first two terms represent
the ideal MHD results for the m = 1 internal kink and the last term is the
trapped fast particles contribution introducing a resonance at ω = ωd. The
∂fh

∂r term indicates that the instability is driven by the radial gradient in the
fast particle distribution function fh.
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4 Fast Particles Modelling

The code used to simulate the interaction between the fast ions and the elec-
tromagnetic perturbation is Hagis (HAmiltonian GuIding centre System)
[3]. This code follows the fast ions with a guiding centre Hamiltonian de-
scription in straight magnetic field line coordinates (Boozer coordinates) and
describes the electromagnetic field as an axisymetric equilibrium field plus a
spectrum of instabilities. It uses a 4th order adaptive step size Runge-Kutta
method to simultaneously evolve the fast ion distribution and the electro-
magnetic perturbation.

The fast ions distribution is represented as the sum of an analytical ini-
tial distribution, f0, and an ensemble of marker particles which represent
the change , δf . This separation of the fast ions distribution function is
called the δf method.

In order to reduce the number of particles that need to be followed, each
particle is uniformly weighted to represent several particles. These weighted
particles, named “markers”, follow the same dynamic as the real particles
and enable the representation of more particles than are actually followed.

4.1 Coordinate System

The straight field line coordinates chosen in Hagis [3] takes the poloidal flux
ψp as the radial coordinate, the angle θ as the poloidal angle coordinate and
deforms the toroidal angle coordinate ζ to obtain straight field lines (fig.4).
Due to this deformation, the coordinates are no longer orthogonal and their
Jacobian is no longer unitary. The Jacobian is given by :

J =
I + gq

B2

where I is the toroidal current, g the poloidal current, q the safety factor
and B the magnetic field.

In order to carry out integrals of the distribution function over velocity
and space, it is necessary to correctly express the corresponding physical
phase-space volume element.

dΓ(p) = d3vd3x = 2πv2dvdλ
︸ ︷︷ ︸

velocity element

J dψpdθdζ
︸ ︷︷ ︸

spatial element

12



Figure 4 – Overview of the Hagis coordinates (figure from [3])

where λ = v‖/v is the pitch angle and the 2πv2 term arises from the conser-
vation of the magnetic moment µ = mv2

⊥/2B.

Hagis solves the canonical equations of Hamilton to follow the fast ion
guiding centres. The canonical variables used are the three coordinates θ, ζ
and the gyro-phase ξ and the three corresponding canonical momenta, given
by

Pθ = ρ‖I + ψ + Ãθ (14)

Pζ = ρ‖g + ψp + Ãζ (15)

Pξ = µ (16)

where ρ‖ = v‖/ωci and Ã is the electromagnetic vector potential representing
the perturbation.

Hence, the canonical phase-space element is written as

dΓ(c) = dξdPξdθdPθdζdPζ = 2πdµdθdPθdζdPζ

13



where the integration over dξ also comes from the magnetic moment’s con-
servation.

Finally, the Hamiltonian is given by

H =
1

2
mv2

‖ + µB + eΦ

where Φ is the electric potential representing the perturbation.

4.2 Representation of the Fast Particles Distribution

In Hagis , the initial fast particles distribution, f0 may be specified in terms
of the unperturbed constants of the motion : the energy E , the canonical
toroidal angular momentum Pζ and the magnetic moment µ. To specify the
initial particles distribution in terms of these conserved quantities ensure
that the initial fast particles distribution will remain constant in the Hagis

coordinates system. This allow to efficiently separate the distribution func-
tion into a constant initial function f0 and a function δf representing only
the changes.

However, it isn’t very convenient to specify the f0 function in terms of
the canonical momentum Pζ . It is more natural to specify it in terms of the
radial flux function. But, specifying the distribution function through the
poloidal flux ψp would lead to a function that is not constant in time. So,
in order to keep the conservation of the distribution function, Hagis uses
an average of the poloidal flux, 〈ψp〉, based on the definition of Pζ (eq. 15),
which is defined as a function of the constants of the motion.

〈ψp〉 =







R0

√
2
m(E − µB0) − P

(0)
ζ , for E > µB0 (Co-passing)

−P (0)
ζ , for E < µB0 (Trapped)

−R0

√
2
m(E − µB0) − P

(0)
ζ . for E > µB0 (Counter-passing)

(17)
This reduces the statistical noise in the calculation arising from the use

of a finite number of simulation marker particles without quantitatively
affecting the result.
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5 Simulation

5.1 Equilibrium

The equilibrium has been created with the code Efit++ which solves the
Grad-Shafranov equation of force balance using experimental data. In our
case, the experimental constraints were the external magnetic and the ki-
netic measurements (fig. 5). The equilibrium has then been converted to a
straight field line equilibrium with the Helena code to be ready to be used
in Hagis (fig. 6 and 7).

Equilibrium

Radial position of the magnetic axis, Rmag 0.94 m
Vertical position of the magnetic axis, zmag -0.25 m
Magnetic field on axis, Bmag 0.53 T
Safety factor on axis, q0 0.98
ψp at the edge, ψedge 7.153 ×10−2 m2T

Table 2 – Equilibrium’s parameters

5.2 Perturbations

Hagis allows to specify the perturbation either analytically or from a linear
MHD stability code such as Mishka. The perturbation has been specified
analytically, based on the results of Mishka, to simplify scans in the pa-
rameters.

The eigenfunction used to represent the m = 1, n = 1 internal kink is
given by

φs(s) =
s

e(s−s(q=1))/∆s(q=1) + 1
,

where s =
√

ψ̂p =
√

ψp

ψp,edge
is the normalised radial coordinate used in

Hagis , s(q = 1) is the position of the q = 1 surface and ∆s(q = 1) repre-
sents the width of the step at the q = 1 surface (fig. 9).

The amplitude of the perturbation is varied during each burst according
to the following evolution

15



Figure 5 – Efit++ reconstruction of the MAST 18808 shot equilibrium at 282ms
showing the single null divertor down-shifted plasma.
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Figure 6 – Safety factor profile. Figure 7 – Pressure profile.

Figure 8 – Amplitude evolution of the
perturbation.

Figure 9 – Radial variation of the
n=1, m=1, harmonic of the
eigenfunction.
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Figure 10 – RMS values of the Mirnov coil’s signal for shot 18808 at 285ms. The
arrow represents the analytic frequency evolution used.

Anorm(t) =







(3tsat−2t)t2

t3sat

, for t < tsat (Growing)
(3(tperiod−tsat)−2(tperiod−t))(tperiod−t)

2

(tperiod−tsat)3
, for t ≥ tsat (Decaying)

where tperiod is the period of the bursts and tsat is the time when the ampli-
tude reaches its maximum within each period.

Its frequency is swept at a constant rate to match the observed data (fig.
10) taking into account a plasma rotation of 8 kHz (fig. 8 and 1) , giving a
time evolution as

φt(t) = Anorm(t)e−i(ω0t+
1
2
ωsweept2) ,

where ω0 is the initial frequency and ωsweep is the sweeping rate. The fre-
quency is therefore given by

ω0 + ωsweept .

A rough estimate of the perturbation’s amplitude is given by the soft X-
rays data. One can see that the perturbation is oscillating between two soft
X-ray channels of the horizontal camera. Given that the distance between
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two lines of sight at the magnetic axis is ∼ 5 cm (33 lines of sight spread over
∼ 1.6m) and that the plasma diameter, d, is about 1.5 m, an upper limit for
the magnetic amplitude of the perturbation is roughly δB/B ∼ ξ/d ∼ 0.01.

The different parameters used for this experiment are given in table 3.

Perturbation

Position of the q = 1 surface, s(q = 1) 0.46
Width of the step at the q = 1 surface, ∆s(q = 1) 0.02
Time of saturation, tsat 1.1 ms
Period of the bursts, tperiod 2.6 ms
Initial frequency in plasma frame, ω0 8 kHz
Sweeping rate, ωsweep -2.11 MHz/s
Upper limit of the amplitude, δB/B, 0.01

Table 3 – Perturbation’s parameters

5.3 Fast Ion Distribution

The initial fast ion distribution f0 has been derived from a Transp anal-
ysis. It has been assumed that the distribution was an isotropic separable
function of energy and radial position. Attempts to interpolate the fast ions’
distribution function from Transp were made. However, the data was too
noisy and the use of an analytic description was held to be the best. Details
of the raw Transp data are given in Appendix A.

The energetic distribution is a slowing down distribution resulting from
neutral beam injection and is given by [12]

f0,E(E) =
1

E3/2 + E
3/2
c

Erfc

(
E − E0

∆E

)

,

where the parameters Ec, E0 and ∆E have been fitted from the Transp

data (fig. 11) and are given in table 4.

The radial distribution of fast ion resulting from off-axis NBI heating
has been represented by the sum of three Gaussians.

f0,s(s) = e
−(

s−s0
∆s0

)2
+ e

−(
s+s0
∆s0

)2
+R · e−( s

∆s1
)2

,
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Figure 11 – Fit of the fast
ions’s energetic
distribution
from Transp

Figure 12 – The Transp radial dis-
tribution and the ana-
lytic distribution used in
Hagis

where the parameters, s0, ∆s0, ∆s1 are expressed in terms of the Hagis

coordinate s and are given in table 4.
Two symmetrically opposed Gaussians represent the off-axis contribu-

tion and a centered one represents the on-axis contribution. The use of
symmetric distribution ensure that the distribution is flat in its centre.

The initial fast ions’ distribution function is finally given by

f0(E, s) = C · f0,E(E) · f0,s(s) ,

where C is a constant adjusted to ensure that integration over the whole
phase space matches the total number of fast ions given by Transp (∼
1.5 × 1019).

5.4 Calculation of the Diffusion Coefficient

The diffusion coefficient is calculated from Fick’s law

Γ(x, t) = −D∇n(x, t) , (18)

where Γ(x, t) = nv is the particles flux and n is the density of particles. In
Hagis coordinates (ξ2 ≡ ψp, ξ

2 ≡ θ, ξ3 ≡ ζ), the velocity v is expressed as

20



Fast ions distribution

Energetic distribution

Injection energy, E0 65.3 keV
Width of the injection peak, ∆E 1.49 keV
Slowing down parameter, Ec 20.0 keV

Radial distribution

Injection tangency radius, s0 0.4
Width of the injection peak, ∆s0 0.25
Ratio of on-axis versus off-axis density, R 0.5
Width of the on-axis peak, ∆s1 0.25

Table 4 – Fast ions distribution’s parameters

v =
dx

dt
=

∂x

∂ψp

dψp
dt

+
∂x

∂θ

dθ

dt
+
∂x

∂ζ

dζ

dt
=

∂x

∂ψp
vψp +

∂x

∂θ
vθ +

∂x

∂ζ
vζ ,

where ∂x

∂ξi is the ith contravariant basis vector. The covariant radial velocity
is then given by

vψp
= v · ∂x

∂ψp
=

∂x

∂ψp

∂x

∂ξi
vi = gψpiv

i ∼= gψpψp
vψp = gψpψp

ψ̇ ,

with gψpζ ≡ 0 and gψpθ ≡ 0 for an orthogonal system, where gij = ∂x

∂ξi
∂x

∂ξj

is the Hagis covariant metric tensor.

Fick’s law in the radial direction can be written

Γψp
(ψp, t) = nvψp

= −Dr
∂n(ψp, t)

∂ψp
.

The radial diffusion coefficient is therefore given by

Dr = − Γψp

∂n/∂ψp
= −nψ̇p gψpψp

∂n/∂ψp
. (19)

To calculate the value of the density and the particle flux at the radial
position ψp, we used the average value over a small volume ∆V between two
flux surfaces located at ψp and ψp + ∆ψp.
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The density is given by

〈n(ψp, t)〉 = n0(ψp) + δn(ψp, t)

=

∫

∆V dx
3
∫
dv3f0

∫

∆V dx
3

+

∫

∆V dx
3
∫
dv3δf

∫

∆V dx
3

=

∫

∆V J dψpdθdζ
∫

2πv2dvdλf0
∫

∆V J dψpdθdζ
+

∫

∆V J dψpdθdζ
∫

2πv2dvdλδf
∫

∆V J dψpdθdζ

=

∫

∆V f0dΓ
(p)

∆V
+

∑

i δfi∆Γ
(p)
i

∆V
. (20)

where the index i labels quantities associated to the simulation markers par-
ticles within the volume ∆V .

Similarly, the radial flux is calculated as

〈Γψp
(ψp, t)〉 = 〈Γψp,0(ψp) + δΓψp

(ψp, t)〉

=

∫

∆V J dψpdθdζ
∫

2πv2dvdλδfψ̇p gψpψp
∫

∆V J dψpdθdζ

=

∑

i δfiψ̇pi gψpψp,i∆Γ
(p)
i

∆V
, (21)

because the initial radial flux, Γψp,0(ψp), is equal to zero.

In those two expressions (eq. 20 and 21) the value of ψp is taken as the
value calculated from the equilibrium constant of the motion (eq. 17). With
full ψp, n0 was noisier. And, therefore, ψ̇p is calculated as

〈ψ̇p〉 =







R0
Ė√

2m(E−µB0)
− Ṗζ , for E > µB0 (Co-passing)

−Ṗζ , for E < µB0 (Trapped)

−R0
Ė√

2m(E−µB0)
− Ṗζ , for E > µB0 (Counter-passing)

(22)

5.5 Numerical Parameters

The simulations were performed on 16 Pentium IV Xenon processors running
at 3.06 GHz in a typical run time of one hour per run. The numerical
parameters used are shown in table 5.
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Numerical Parameters

Integrator tolerance, δE/E 1 × 10−6

Initial step size 1 × 10−8 s
Simulated time, 2.6 × 10−3 s
Number of markers, 1,050,000

Table 5 – Numerical parameters
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6 Results

Computational simulations were performed to simulate the fast ions diffusion
coefficient arising in MAST shot 18808 at 285 ms as a results of fishbone
bursts. Results obtained with the parameters given in section 5 are displayed
in the following section.

6.1 Simulation of MAST Shot 18808

The effect of a diffusive type of transport is illustrated in figure 13 where
the fast ions’ radial distribution is broadened by the diffusion. The change
in the density profile due to only one fishbone being small compared to the
equilibrium density, we show (fig. 14) the change in the density profile, δn,
rather than the the evolution of the full density profile.

Figure 13 – Illustration of the broadening of the radial fast ions distribution due to
fast ion diffusion. The red line shows the initial distribution, the blue one shows the
distribution after the fast ions redistribution and the green line shows the change in
the distribution.
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Figure 14 – Change in fast ion radial density profile with time for a perturbation
amplitude of δB/B = 1× 10−4

Figure 14 shows the radial evolution of the change in the fast ion den-
sity, δn(s, t). It shows the broadening of the fast ion radial distribution
as the density reduces where the initial distribution has its peak value (at
s = 0.4, fig. 12) and increases on either side. The density evolution follows
the fishbone growing and the change persists when the fishbone decays away
completely.
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As the ensemble of the simulation markers is evolved, the radial flux
arising from their interaction with the fishbone perturbation is calculated in
accordance with equation 21 and shown in figure 15.

Figure 15 – Evolution of the radial fast ions flux profile for a perturbation amplitude
of δB/B = 1× 10−4

Figure 15 shows the evolution of the fast ions radial flux. It is negative
where the fast ions are moved inward and positive where they are moved
outward. It clearly indicates that the radial distribution is broadened by the
interaction with the fishbone as explained in figure 13. The flux increases
as the fishbone grows and then decreases with it until the next fishbone.
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Figure 16 – Evolution of the radial diffusion coefficient’s profile for a perturbation
amplitude of δB/B = 1× 10−4

The value of the diffusion coefficient for this simulation is given in figure
16. The values at s = 0.4 were removed because they correspond to the point
where the density profile is flat (fig. 12) and, therefore, its derivative equal
to zero. As the diffusion coefficient is calculated by dividing the particles
flux by the radial derivative of the density (eq. 19), these values are not
defined.

The amplitude of the perturbation used in this simulation was 1× 10−4

and the diffusion coefficient is about one order of magnitude smaller that
the one expected. With an amplitude of 7× 10−4 the peak values of the dif-
fusion coefficient reach the expected values (fig 17). As the statistical noise
increases with the perturbation amplitude, a boxcar average over 3 radial
points (∼ 4 cm) and 5 time points (0.05 ms) has been performed. This
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smoothing fills the removed values at s = 0.4 with a linear interpolation
from both sides of the gap.

Figure 17 – Evolution of the boxcar averaged diffusion coefficient’s radial profile for
a perturbation amplitude of δB/B = 7× 10−4.

This initial simulation has a diffusion coefficient comparable with that
required to explain the experimental observations [1]. The robustness of the
result to plausible change in the physical simulation is investigated in the
next sections.
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6.2 Varying Simulation’s Parameters

The diffusion coefficient profile has a singularity at s = 0.4 where the density
gradient is equal to zero. It is therefore important to choose representing
values that are not at the position of the singularity. The values used for
comparison were chosen where the density profile is the steepest, i.e. on both
sides of the density peak at s = 0.19 and s = 0.55. Taking the maximum
value of Dr at these positions gives a diffusion coefficient for the outward
transport, Dr,out, and a diffusion coefficient for the inward transport, Dr,in.

6.2.1 Variation of Diffusion Coefficient with Amplitude

Simulations were carried out with different perturbation amplitudes in order
to investigate the dependence of the diffusion coefficient on the latter.

Figure 18 – Outward transport diffusion coefficient, inward diffusion coefficient
and maximum value of the diffusion coefficient for different peak amplitudes of the
fishbone oscillation. The horizontal green line shows the value of the experimental
diffusion coefficient

Figure 18 shows that the values of the diffusion coefficient scale with
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the amplitude with an exponent α comprised between 1.56 and 1.87. This
shows the process is nonlinear, as expected, since, as the mode’s amplitude
increases by keeping the same period length, the growth rate also increases
as it now has to grow to a bigger amplitude within the same time period.

6.2.2 Effect of Mode Frequency Range upon Diffusion Coefficient

Changing the frequency over which the mode sweeps in the plasma frame
(i.e. corrected for plasma rotation as compared with the lab frame) may be
expected to change the region of particles in velocity space that are influ-
enced by the fishbones.

Figure 19 – Values of the diffusion coefficient for different initial frequencies and
amplitudes of the perturbation. a) shows the Dr values for the inward transport,
b) shows the values for outward transport and c) shows the corresponding frequency
evolutions. The values corresponding to the experimental parameter are shown in
green.
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Figure 19 shows the variation in the value of the inward and outward
diffusion coefficients for different mode frequency ranges at different mode
amplitudes. The dependence of the diffusion coefficient on the initial fre-
quency is found to be weak. The outward coefficient slightly increases as
the initial frequency increases and the inward coefficient doesn’t vary much.
The difference between the inward and outward diffusion coefficient may be
explained by the fact that the perturbation doesn’t interact with particles
that have the same type of orbits.

6.2.3 Effect of Frequency Sweeping Rate upon Diffusion Coeffi-

cient

The effect of the frequency sweeping rate upon the diffusion coefficient was
also investigated since this will change the wave-particle power transfer.
Particles interacting with the perturbation in a certain frequency range will
feel the perturbation during a time that depends on the frequency sweeping
rate. Changing the sweeping rate also changes the frequency at which the
mode amplitude reaches its maximum.

The dependence of the diffusion coefficient on the sweeping rate is shown
in figure 20. It is found that only a weak (nonlinear) dependence exits,
independently of the amplitude.
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Figure 20 – Values of the diffusion coefficient for different sweeping rates of the
perturbation’s frequency and different mode’s amplitudes. a) shows the Dr values
for the inward transport, b) shows the values for outward transport and c) shows the
corresponding frequency evolutions. The values corresponding to the experimental
parameter are shown in green.
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6.2.4 Effect of Saturation Time upon Diffusion Coefficient

Varying the saturation time of the mode changes the mode’s growth rate
and the frequency at which the mode amplitude has its maximum.

Figure 21 – Values of the diffusion coefficient for different saturation times and
amplitudes of the perturbation. a) shows the Dr values for the inward transport,
b) shows the values for outward transport and c) shows the corresponding mode
evolutions. The values corresponding to the experimental parameter are shown in
green.

Values of the diffusion coefficient for different saturation times and mode’s
amplitudes are shown in figure 21. It is found to be bigger when the satu-
ration time is smaller, but the values stay in the range of the exprimental
value.
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6.2.5 Effect of Step’s Width of the Eigenfunction upon Diffusion

Coefficient

The description of the fishbone eigenfunction used in the simulations is an
analytical approximation of the ideal MHD calculation. The inclusion of
non-ideal effects may change the eigenfunction and thus the effect of different
shapes of the eigenfunction has been investigated.

Figure 22 – Values of the diffusion coefficient for different width of the eigenfunc-
tion’s step and different mode amplitudes. a) shows the Dr values for the inward
transport, b) shows the values for outward transport and c) shows the corresponding
eigenfunction. The values corresponding to the experimental parameter are shown
in green.

Values of the diffusion coefficient for different step’s width of the eigen-
function and mode’s amplitudes are shown in figure 22. The diffusion coef-
ficient weakly increase with the step’s width of the eigenfunction.
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7 Conclusion

In this Master’s Thesis, simulations have been performed to quantify the
amount of fast ions diffusion that arises from fishbone oscillations in MAST.

This work was motivated by the need to understand the deficit in the
neutron rate that arose in Transp simulations of the MAST shot 18808.
These simulations showed that only by invoking a fast ion radial diffusion
coefficient of Dr ∼ 0.5 m2/s could the anomaly be explained.

The work presented here shows that a fast ion diffusion coefficient of
0.5 m2/s can be explained by the radial redistribution of fast ions by n =
1, m = 1 fishbone oscillations. This assumption has been shown to be
robust to variations of the fishbone’s mode structure and temporal evolution
(initial frequency, sweeping rate, saturation time and amplitude) where little
variation in Dr were observed, the strongest dependence being with the
mode amplitude.
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Appendix

A Determination of Fast Ion Distribution Func-

tion

Since the 6-D distribution of fast ions present in a neutral beam heated
MAST plasma is not directly measured, numerical simulations must be un-
dertaken to determine it. These simulations have to take into account the
source of fast ions from the neutral beam heating system, together with their
transport and potential loss from the plasma edge.

Transp is a transport analysis code which does time and space-dependent
analysis of current diffusion, energy and particle transport [13, 14]. It uses,
whenever possible, experimental data to calculate local transport coefficients
and features a sophisticated Monte Carlo beam treatment code, NuBeam

[2], which permits to calculate the fast ions distribution due to neutral beam
injection.

The Transp fast ion distribution is given as a function of energy, pitch
angle (λ = v‖/v) and position. The position is expressed as an index fol-
lowing the flux surfaces. We tried to interpolate this function in this both
Hagis coordinates (E , Pζ , µ), where it is irregularly gridded, and in the real
space coordinates (E , R, Z, µ), but our attempts were unsuccessful due to
the scattered state of the data and the complexity of three and four dimen-
sional interpolation of irregular data. We also tried to fit multidimensional
functions but again the data wasn’t smooth enough to get satisfying results.

It is only by intergrating over some dimensions and looking to one di-
mension at a time that it has been possible to suitably fit functions. We
therefore decided to treat the distribution as a separable function of its vari-
ables.

Slices of the Transp data are shown in figure 23 showing the scattered
state of the data. The distribution integrated over every energy and pitch
angle values is shown in figure 24.
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Figure 23 – Slices of the Transp fast ions distribution for different energies and
pitch angles showing the scattered state of the data.

Figure 24 – Transp fast ion distribution integrated over energy and pitch angle.
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