
Scientific Annals of Computer Science vol. 21, 2011, pp. 1–36

UC and EUC Weak Bit-Commitments Using
Seal-Once Tamper-Evidence

Ioana Boureanu1 Serge Vaudenay2

Abstract

Based on tamper-evident devices, i.e., a type of distinguishable,
sealed envelopes, we put forward weak bit-commitment protocols which
are UC-secure. These commitments are weak in that it is legitimate
that a party could cheat. Unlike in several similar lines of work, in our
case, the party is not obliged to cheat, but he has ability to cheat if and
when needed. The empowered party is the sender, i.e., the protocols
are also sender-strong.

We motivate the construction of such primitives at both theoretical
and practical levels. Such protocols complete the picture of existent
receiver-strong weak bit-commitments based on tamper-evidence.

We also show that existent receiver-strong protocols of the kind are
not EUC-secure, i.e., they are only UC-secure. Further, we put forward
a second formalisation of tamper-evident distinguishable envelopes
which renders those protocols and the protocols herein EUC-secure.

We finally draw most implication-relations between the tamper-
evident devices, our weak sender-strong commitments, the existent
weak receiver-strong commitments, as well as standard commitments.

The mechanisms at the foundation of these primitives are lightweight
and the protocols yielded are end-to-end humanly verifiable.
Keywords: universal composability, tamper-evidence, commitment ...

1 Introduction

Why Tamper-Evidence and UC? A way to ensure strong security
guarantees of a primitive is to show that it is secure in the UC (universal
composability) framework [7, 9]. In this formalism, the security proven in
one single session is inherited when the protocol is executed over multiple

1HEIG-VD, Switzerland, email: ioana.carlson@heig-vd.ch
2EPFL, Switzerland, email: serge.vaudenay@epfl.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148000438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Ioana Boureanu, Serge Vaudenay

parallel or sequential sessions. If only a minority of the participants are
corrupted in a polynomial-time multi-party computation, then the corre-
sponding functionality can be UC-realized. Another way to achieve such a
strong ideal emulation is to give access to all participants to an extra helping
functionality called setup [7]. The latter empowering of parties yields the
so-called UC hybrid models. (The reader can consult Appendix A, for a
short summary of the UC frameworks and of the techniques in a UC proof.)

UC hybrid models, with setups of tamper-evident (TE), tamper-resistant
(TR) devices and other means of restricted/isolated communication/computation,
have been employed to UC-realize bit-commitments, oblivious transfers, coin
flipping, polling schemes [17, 19, 16, 20, 21, 23, 22, 4], etc. For example,
in [17], Katz opens for the creation and exchange of stateful tamper-proof
hardware tokens used in a commitment protocol, which is UC-secure under
the DDH assumption. In [10], two-party computation can also be UC-realized,
using only stateless tokens and assuming the existence of oblivious transfer.
Mateus and Vaudenay [19] allow a more permissive flow of hardware TR
devices from creators to users and backwards than the one in [10], yet they
obtain very similar results in their trusted agent model [19]. Similar protocols
are constructed by Moran and Naor, in [23], using tamper-resistant hardware
tokens that can be passed in one direction only.

We note that the distinction of having UC-commitments which place
the strength on the sender or, on the contrary, place their strength on
the receiver has been underlined [23] within this context of using tamper-
resistant hardware as UC-setup. Based on sealed envelopes and sealed locks,
i.e., simpler, not tamper-resistant, but just tamper-evident devices, Moran
and Naor designed UC-secure protocols [22, 20, 21]. All their constructions
empowered the protocol-receiver with cheating powers, i.e., the sender was
“weak”. In that line, the tamper-evident devices were created by the receiver
of the commitments; we will refer to this as receiver-strong.

Moran and Naor proved that a type of distinguishable envelopes were
the least complex tamper-evident devices that would entail UC-secure weak
bit-commitments (WBC) [22] (i.e., they put forward a hierarchy of simple
tamper-evident devices, of which some were not sufficient for WBC).

In this paper, we will work in the UC framework as it was introduced
in [7], i.e., the communication channels are assumed to be secure. Another
possibility would be to work in the UC model as it was refined in later
years [9], where the channels are insecure but authentication-of-origin needs
to be assumed on top: enforced via an extra setup (which is most often
the case), or built-in into the protocols. Like in the case of similar works
reminded above, our results hold in the first mentioned UC model [7], and



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 3

modification would be needed to operate in the second [9].

Why Sender-strength (SS)? Why weak bit-commitments (WBC)?
Why SS WBC? “Is it preferable to trust Vic or Peggy? We do not know,
but it sure is nice to have the choice. [5]”; this statement by Brassard, Chaum
and Crépeau, enunciated in their seminal work on commitments, is still
standing today. In fact, Moran and Naor in [22] formulate the open question
of finding such lightweight, UC-secure (weak) bit-commitment protocols that
in turn place their strength on the sender’s side, i.e, sender-strong.

In fact, there are several practical and theoretical reasons that motivate
the existence of weak bit-commitments and also specific ones calling for
their sender-strong version. Sender-strong weak bit-commitments are firstly
interesting in traditional theoretical lines (i.e., outside of the UC-framework),
where they are easier to construct (see Section 3.5).

• In trapdoor commitments [15], the output of the commitment-phase
conceals the committed value from an informational theoretical point of
view. But, the sender is only computationally bound to this committed
value and, when given a trapdoor, he can in fact open a commitment
in any possible way. Such primitive are sufficient [15] (i.e., no perfectly
binding commitment is needed) to build more interesting cryptographic
protocols in traditional lines. From this set of protocols, we mention
concurrently secure and resettable identification schemes [2], and de-
niable authentication protocols [13, 15]. The above protocols have at
their basis the construction of specialized ZK proofs. In our case, we
move from the knowledge of a trapdoor to empowering the sender via
a convenient transcript. Not surprising, this sort of commitments are
also used to build special kinds of ZK proofs. This is detailed in the
point presented below.

• In a different setting, in [5] Brassard et al. showed that “chameleon” bit-
commitments3 would imply, in traditional cryptography, zero-knowledge
(ZK) proofs of knowledge where the verifier sends independent bits.
For these ZK proofs of knowledge (PoK) to be provable secure against
adaptive adversaries, content-equivocable bit commitments are further
needed [1] (i.e., in order to equivocate, the sender has at hand only
a transcript of the communication between him and the receiver and
nothing else).

3These are commitments where the sender could cheat at the decommitment phase if
given extra information.



4 Ioana Boureanu, Serge Vaudenay

Practice also imposes situations of sender-strength. For instance, con-
sider the cases where the sender/committer should not have to trust the
receiver in any way (e.g., it should only be the sender/committer who is
required to create and seal the envelopes used in an envelope-based commit-
ment scheme). This may be the case if the receiver is thought to have access
to side-channels attacks (i.e., the receiving voting authority uses some special
techniques to change the values hidden inside envelopes without resealing).
Or, further, take the example of anonymous auctioning protocols [11, 18, 14],
where the receiver/auctioning-house and the sender/auctioneer mutually
ignore their identities throughout most phases of the protocol. Hence, the
receiver Bob should not start by sending to some committer Alice the en-
velopes to be used in her commitment (as Bob ignores Alice’s existence), but
Alice should in turn commit to the maximum bid that she intends to place
by possibly using self-made, tamper-evident “envelopes”.

Contributions & Further Motivation. In this paper, we pursue the
following directions. Primarily, we create sender-strong UC-secure WBC, i.e.,
weak bit-commitments that place the (adversarial) strength on the committer
side and that are UC-secure. For this, we use UC setup slightly different
to that of [22]. I.e., for reasons to be discussed, we firstly needed to put
forward a new formalisation of distinguishable envelopes. In Section 2.2, we
also describe a hierarchy of ideal functionalities for sender-strong weak bit-
commitments and then we UC-realize them. In this fashion, we can relate the
WBCs UC-realized herein both with traditional weak bit-commitments [1]
of theoretical importance (e.g., see our Fq−WBC

LearnAtOpening), and with weak bit-
commitments UC-created in [22] with distinguishable envelopes (see our
Fq−WBC
EscapeThenMayCheat). The differences between these target-functionalities lie

mainly in learning that equivocation is possible (yet not obligatory) at the
commitment phase (Fq−WBC

LearnAtCommitment) or the opening phase (Fq−WBC
LearnAtOpening)

vs. cheating only when the committer has not yet been caught abusing the
protocol (Fq−WBC

EscapeThenMayCheat).

We present two functionalities of distinguishable envelopes, differing in
that the second one models envelopes created for a designated recipient. We
now motivate the choices made with respect to this. There are many ways to
formalise tamper-evident containers [22], reflecting the different requirements
of the possible physical implementations of such devices. Moran and Naor
model distinguishable envelopes which allow for creator-forgeability (i.e, the
creator of the envelope can re-seal it without breaking the tamper-evidence).
We argue however that sender-strong (weak) commitments only make sense



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 5

if they are computationally hiding and somewhat binding, i.e., the receiver
has no special abilities and the sender could equivocate his openings, if and
when needed. Hence, the amplified partially hiding and partially binding
weak commitments in [22] would not serve well the sender-strong setting.
Moreover, we conjecture that it is not possible to construct UC-secure, hiding
sender-strong bit-commitment protocols, using the TE envelopes in [22].
Thus, herein, we do not allow the resealing of envelopes by their creator. I.e.,
we model seal-once distinguishable tamper-evident envelopes (or, envelope
allowing one-seal only), and [22] formalises a multi-seal TE envelope.
Note: It may seem easy to construct commitments using this formalisation,
but –in the UC framework– this is not trivial at all. We also show eventually
that many of these formalisation “collapse” in one another. Please see
Section 3.5 and Section 4 for details.

We noted that the protocols built with envelopes à la Moran and
Naor [22] were not EUC-secure, i.e., only UC-secure. We concluded that if we
further allowed for purported destinator of envelopes, then the corresponding
DE-based protocols obtained both here and in [22] lead to protocol which are
EUC-secure and not only UC-secure. Our second distinguishable envelope
functionality (FpurpotedDE

OneSeal ) serves this very purpose.

We finally draw several implication-relations between the following: our
first functionality of distinguishable envelopes (FDE

OneSeal), the standard UC-
functionality of bit-commitment (FBC) and those of WBC (already existing
and newly introduced herein).

Note: Part of this material was present in [3]. Notably, none of the
proofs or the extended explanations on the protocols or functionalities were
included in that version; these are introduced for the first time in here.
Also, the OpenEnablesCheat in the current manuscript protocol differs from
in [3].

2 Setup and Target UC Functionalities

We begin by formalising tamper-evident distinguishable envelope through
an ideal UC functionality, which is similar to the one formalised in [22]. To
relate more closely to Moran and Naor’s work [22], we then introduce a weak
bit-commitment functionality Fq−WBC

EscapeThenMayCheat, q ∈ (0, 1), which is similar
to that of [20, 22]. In this functionality, a sender decides whether to cheat at
the very beginning (i.e., in a protocol, at the phase of envelope sealing) and
the probability of potential cheating is controlled by the fact that the sender
can be caught in certain cases (i.e., in a protocol, due to certain choices by the



6 Ioana Boureanu, Serge Vaudenay

receiver). Then, we give functionalities Fq−WBC
LearnAtCommitment and Fq−WBC

LearnAtOpening,

which are different from Fq−WBC
EscapeThenMayCheat (i.e., a sender can decide to

equivocate his commitment only at some point during the commitment
phase or at some point during the opening phase, respectively). These
Fq−WBC
LearnAtCommitment and Fq−WBC

LearnAtOpening functionalities are closer to standard
weak bit-commitments [12, 1] and are better suited to both the theoretical
and practical motivations mentioned in the introduction (e.g., the sender
only decides to cheat in his commitments within an auctioning protocol once
the receiver has already proven to be untrustworthy).

2.1 UC-Setup Functionalities Modelling Tamper-Evident En-
velopes

The FDE
OneSeal Functionality for Tamper-Evident Distinguishable Sealed

Envelopes

The functionality FDE
OneSeal models a tamper-evident “envelope”, distin-

guishable by some obvious mark (e.g., barcode, serial number, colour, etc.).
Protocol parties can simply open such containers, but any such opening will
be obvious to other parties who receive the “torn” envelope.

The functionality stores a table of the form (id, value, holder, state),
indexed by id. For one fixed identifier id, the corresponding values are
denoted as follows: valueid, holderid and stateid. In the presence of parties
P1, . . . , Pn and an ideal adversary I, a run of the FDE

OneSeal ideal functionality
is described as follows.

Seal(id , value). Let this command be received from party Pi. It creates
and seals an envelope. If this is the first Seal message with id id, the
functionality stores the tuple (id, value, Pi, sealed) in the table. If this is
not the first command of type Seal for envelope id, then the functionality
halts.

Send(id , Pj ). Let this command be received from party Pi. This
command encodes the sending of an envelope held by Pi to a party Pj . Upon
receiving this command from party Pi, the functionality verifies that there
is an entry in its table which is indexed by id and has holderid = Pi. If so,
it outputs (Receipt, id, Pi, Pj) to Pj and I and replaces the entry in the
table with (id, valueid, Pj , stateid).

Open id . Let this command be received from party Pi. This command
encodes an envelope being opened by the party that currently holds it.
Upon receiving this command, the functionality verifies that an entry for
container id appears in the table and that holderid = Pi. If so, it sends
(Opened, id, valueid) to Pi and I. It also replaces the entry in the table



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 7

with (id, valueid, holderid, broken).

Verify id . Let this command be received from party Pi. This command
denotes Pi’s verification of whether or not the seal on an envelope has been
broken. The functionality verifies that an entry indexed by id appears in the
table and that holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

One difference from the corresponding functionality presented in [22]
is that the creator of an envelope cannot re-seal it, i.e., he cannot forge
the value stored initially inside the envelope. Hence, the wording “OneSeal”
refers the above functionality and the expression “MultiSeal” denotes the
TE envelopes in [22]. (For consistency, in Appendix B, the reader can find
the tamper-evident envelope functionality corresponding to [22]. We denote
it FDE

MultiSeal.)

Based only on creator-forgeable/multi-seal tamper-evident envelopes,
we were not able so far to UC-realize sender-strong weak bit-commitments
as we wanted them, i.e., UC-simulatable somewhat binding and not partially
hiding, but computationally hiding bit commitment. We have not yet refuted
the existence of such a construction either.

Our change from FDE
MultiSeal to FDE

OneSeal brings the latter functionality
closer to regular commitment than the tamper-evident functionality in [22]
was. It is relatively easy to see that regular bit-commitments can be im-
mediately constructed using one distinguishable tamper-evident envelope
(see Section C of the Appendix, for the FBC UC-functionality of regular
bit-commitments). The relation with the regular commitment functionality
is however not symmetric, as Section 4 will detail (i.e., if FDE

OneSeal implies
BC, it is not necessarily the case that FBC

OneSeal implies DE). But, as we said
in the introduction, it is of stand-alone theoretical importance to be able
to construct “error-tolerant” bit-commitments which are sender-strong, i.e.,
q-weak bit-commitments.

Another, less significant difference from the corresponding functionality
presented in [22] is that the FDE introduced above does not output tuples
containing the creator’s identity. This would have been of no interest for the
protocols constructed in the following and would hinder EUC-security proofs
given later.

2.2 Target UC Functionalities of Bit-Commitment

We now describe our target functionalities Fq−WBC
? that respectively model

different weak bit-commitment (WBC) protocols, where we have
? ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening}. In this
fashion, we can relate the WBCs UC-realized herein both with traditional



8 Ioana Boureanu, Serge Vaudenay

weak bit-commitments [1] of theoretical importance (e.g., see our Fq−WBC
LearnAtOpening),

and with weak bit-commitments UC-created in [22] with distinguishable
envelopes (see our Fq−WBC

EscapeThenMayCheat). The differences between these target-
functionalities lie mainly in learning that equivocation is possible (yet not
obligatory) at the commitment phase (Fq−WBC

LearnAtCommitment) or the opening

phase (Fq−WBC
LearnAtOpening) vs. cheating only when the committer has not yet

been caught abusing the protocol (Fq−WBC
EscapeThenMayCheat).

The Fq−WBC
EscapeThenMayCheat functionality idealising q-weak bit-commitment.

Let q ∈ (0, 1). The functionality maintains a variable bit, where bit
ranges over {0, 1,�}.

Commit b. When the Commit b command (b ∈ {0, 1}) is sent to
the functionality by a sender S, the value b is recorded in the variable bit.
The Fq−WBC

EscapeThenMayCheat functionality outputs Committed to the receiver R
and to the ideal adversary I. Further commands of this type or of type
EquivocatoryCommit below are ignored by the functionality.

EquivocatoryCommit. When the EquivocatoryCommit command
is sent to the functionality, the Fq−WBC

EscapeThenMayCheat functionality replies to the
sender and the ideal adversary with a ⊥ message, with probability 1 − q.
With probability q, the functionality sets the variable bit to the value �,
outputs Committed to the sender, the receiver and to the ideal adversary.
Further commands of this type or of type Commit above are ignored by
the functionality.

AbortCommit. When the AbortCommit command is sent to the
functionality, the Fq−WBC

EscapeThenMayCheat functionality replies to the sender, to the
receiver, and to the ideal adversary with a ⊥ message (denoting an abnormal
end of the execution). Further commands are ignored.

Open. Upon receiving the command Open from the sender, the func-
tionality verifies that the sender has already sent the Commit b command.
Then, the Fq−WBC

EscapeThenMayCheat functionality outputs (Opened, bit) to the re-
ceiver and to the ideal adversary. Further commands are ignored by the
functionality.

EquivocatoryOpen c. Upon receiving the EquivocatoryOpen c
command from the sender, with c ∈ {0, 1}, the functionality verifies that
bit = �. Then, the functionality Fq−WBC

EscapeThenMayCheat outputs (Opened, c) to
the receiver and to the ideal adversary. Further commands are ignored by
the functionality.

In this functionality, the binding property of commitments can be defied.
It corresponds to the weak bit-commitment functionality used by Moran and



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 9

Naor [22], but it applies to the sender-strong case. In that sense, a dishonest
player decides to try and open his commitment to any value even from the
very beginning of the protocol and he can be successful in doing so with a
probability of q ∈ (0, 1), once he has not been caught red-handed.

Note that the WBC functionality presented above and the ones to be
presented further model single bit commitments. Yet, they can easily be
extended to respective functionalities for multiple commitments: i.e., each
Commit b command sent by a sender S aimed at a receiver R would become
Commit(id , b,R) and each corresponding functionality would store a tuple
(id, sender, receiver, value) for each commitment, doing the respective checks.

The Fq−WBC
LearnAtCommitment functionality idealising q-weak bit-commitment.

Let q ∈ (0, 1). The functionality maintains a tuple (bit, equiv), where
bit ranges over {0, 1} and equiv ranges over {“Yes”, “No”}.

Commit b. When the Commit b command (b ∈ {0, 1}) is sent to the
functionality, the value b is recorded in the variable bit. With probability q
the value “Yes” is stored in equiv or, with probability 1− q the value “No” is
stored in equiv. The Fq−WBC

LearnAtCommitment functionality outputs Committed to

the receiver and to the ideal adversary. The Fq−WBC
LearnAtCommitment functionality

outputs the updated value of equiv to the sender and to the ideal adversary.
Further commands of this type are ignored by the functionality.

Open. Upon receiving this command, the functionality verifies that the
sender has already sent the Commit b command. Then, the Fq−WBC

LearnAtCommitment

functionality outputs (Opened, bit) to the receiver and to the ideal adversary.
Further commands are ignored by the functionality.

EquivocatoryOpen. Upon receiving this command, the functionality
verifies that the sender has already sent the Commit b command. Then,
the functionality checks the value of equiv. If the value is “Yes”, then
Fq−WBC
LearnAtCommitment outputs (Opened, bit) to the receiver and to the ideal ad-

versary. If the value is “No”, then Fq−WBC
LearnAtCommitment halts. Further commands

are ignored by the functionality.

The Fq−WBC
LearnAtCommitment functionality mirrors a protocol which allows the

sender to cheat by breaking the binding property of the protocol. Note
that this cheating possibility is “decided” at the commitment phase, i.e., it
is at some point during the commitment phase that the potential cheater
learns about his opportunity. Also, note that while the cheating is allowed,
it does not necessarily need to happen (i.e., there are two distinct opening
commands).



10 Ioana Boureanu, Serge Vaudenay

In the next functionality equivocation becomes clear only at the opening
phase.

The Fq−WBC
LearnAtOpening functionality idealising q-weak bit-commitment.

Let q ∈ (0, 1).

The functionality maintains a variable bit, ranging over {0, 1}.
Commit. When the Commit b command (b ∈ {0, 1}) is sent to the

functionality, the value b is recorded in the variable bit. The Fq−WBC
LearnAtOpening

functionality outputs Committed to the receiver and to the ideal adversary.
Further commands of this type are ignored by the functionality.

Open. Upon receiving this command, the functionality verifies that the
sender has already sent the Commit b command. Then, the Fq−WBC

LearnAtOpening

functionality outputs (Opened, bit) to the receiver and to the ideal adversary.
Further commands are ignored by the functionality.

EquivocatoryOpen. Upon receiving this command, the functionality
verifies that the sender has already sent the Commit b command. With
probability q, the Fq−WBC

LearnAtOpening outputs (Opened, bit) to the receiver and

to the ideal adversary. With probability 1− q, the Fq−WBC
LearnAtOpening sends ⊥ to

the sender S and the ideal adversary I. Further commands of this type are
ignored by the functionality (but commands of type Open are still allowed).

The Fq−WBC
LearnAtOpening functionality mirrors a protocol which allows the

sender to cheat by breaking the binding property of the protocol, knowingly
at some point during the opening phase, i.e., it is at some point during
the opening phase that the potential cheater learns about his opportunity,
similarly to traditional lines in [1]. As aforementioned, note that while the
cheating is allowed, it does not necessarily need to happen.

Sender-strong (amplifiable) weak bit-commitments protocols with dis-
tinguishable, tamper-evident envelopes that allow only partial hiding are of
course easier to UC-construct than those that require perfect hiding (see
Section 3.5). As aforementioned, we believe however that sender-strength
brings with it the need for more than just partially hiding primitives, hence
the “computationally hiding” UC functionalities advanced above. We seek to
UC-realize just protocols, which proves to be non-trivial.

3 UC (Sender-Strong) Bit-Commitments

Driven by the theoretical and practical motivations presented in the intro-
duction, we now give WBC protocols which are UC-secure, sender-strong



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 11

S R

seal the bits b1, b2, b3, b4,
in env-pairs P1 = (E1, E2),
P2 = (E3, E4) s. t. the contents give
the ordered tuple (x, x, 0, 1)
or (x, x, y, y), with x, y ∈ {0, 1}

E1 from P1, E3 from P2-
remember ids 1, 3, i.e., W = {1, 3}

{E1, E3}�

continue if {E1, E3}
have not been tampered

E2 from P1, E4 from P2-

check ids 2, 4 /∈ {1, 3}, rmb. ids {2, 4}
open E2

(note that E2 and E1 to-be-requested form

the P1 pair)

E4, 1�

check E4 for tamper

(after sending E1 below,

S will be left with pair P2)

let d be b⊕ bl,
l ∈ {3, 4} -E1, d

check 1 ∈ {1, 3}; open E1, if b1 6= b2, abort

FOR Commit:

let d ∈ {0, 1}
-E1, d

check 1 ∈ {1, 3}; open E1, if b1 6= b2, abort

FOR EquivocatorialCommit:

(denote by A the pair of envs. on this side)

FOR Open/EquivocatorialOpen:

let Ek ∈ A be

one of the envs. on this side -Ek
check if k is an index for what should now

be on S’s side; if passed, open Ek and

set b′ to d⊕ bk;

if not passed, halt

Fig.1: The Pass&MayCheat Protocol

and use TE distinguishable envelopes as setups.

We will present the protocols Pass&MayCheat, CommitEnablesCheat

and OpenEnablesCheat which respectively UC-realize F
1
2
−WBC

EscapeThenMayCheat.

F
2
3
−WBC

LearnAtCommitment and F
2
3
−WBC

LearnAtOpening, using FDE
OneSeal. We then present am-

plification techniques of such weak BC protocols. The techniques maintain
the lightweight character of the constructions. We conclude the section
by a strengthening of the FDE

OneSeal functionality such that we attain EUC-
security [9], i.e., not only UC-security.

3.1 Pass&MayCheat — a SS-WBC protocol à la Moran and
Naor [22]

The Pass&MayCheat Protocol (see Fig.1):

The illustration of the protocol in Fig. 1 is given in a symmetric way
(i.e., E1 and E2 could be interchanged in their appearances, etc.).



12 Ioana Boureanu, Serge Vaudenay

The Phase of Commitment and/or EquivocatoryCommitment.
A sender S seals four envelopes and creates two pairs out of them

such that each pair contains the set {x, x} of values, for a randomly fixed
x ∈ {0, 1}. For a never-cheating sender, each pair “contains” its own value x.
For a sender who may equivocate later, one pair contains the set {x, x} of
values, for a randomly fixed x ∈ {0, 1} and the other pair contains the values
{0, 1}. The senders sends two envelopes, one from each pair, to the receiver
R. (E.g., The pairs are: 1st pair P1 = (E1, E2), 2nd pair P2 = (E3, E4) and
S sends, e.g., E1, E3 to R). Then, the receiver R stores the identifiers of
the envelopes in a register W . (I.e., it stores (1, 3), given the illustrated
execution by S in Fig.1.). Then, R sends them back without opening them.

At this step, the sender S verifies that the recently returned envelopes
have the seals unbroken. If this is not so, he halts. Otherwise, he sends the
two envelopes not sent before. (I.e., If seals are unbroken, then S sends the
remaining E2, E4 as per Fig.1 .)

At step four, the receiver verifies that the envelopes received do not
have the ids stored already. If their ids have been already stored, he halts.
Otherwise, he opens one of these envelopes, sends back the other one without
opening it, together with the value of an id stored already in W . The latter
is in sign of requesting back the envelope with that id. The receiver also
stores the ids of the envelopes seen this time round. (I.e., R opens, e.g., E2,
sends back E4 and the id, e.g., 1, as 1 ∈ W . Thus, R would request back
envelope E1.)
Given the steps of the protocol so far, note that the envelope opened last
together with the one requested last form an initial pair, which will now be
found at R’s end. Also, once the sender has sent this lastly requested envelope,
the sender will be left with the other of the initial pairs at his end.

The sender S verifies that the recently returned envelope has the seal
unbroken. If this is not so, he halts. Otherwise, he sends the one requested
envelope to R. The non-equivocating sender sends the value d=b⊕ bl, where
b is the bit he is committing to and bl is the bit hidden inside each envelope
in the pair to be found at his side. (I.e., If the seal is unbroken, then S sends
the requested E1, d=b⊕bl, where bl is in E3 and/or in E4). The equivocating
sender just sends a bit-value d.

Finally, the receiver R opens the last envelope received and checks if
the values at its side are equal. If not, he aborts. (I.e., If E1 and E2 do not
contain the same value, then R aborts).

Let A denote the pair of envelopes to be found at this stage on the
sender side.
The Phase of Opening and/or EquivocatoryOpening.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 13

The never-cheating sender S sends one envelope Ek in the remaining
pair A, i.e., Ek ∈ A or k ∈ {i, j}. In turn, an equivocatorial open goes as
follows: the sender S sends from the remaining pair A the envelope Ek that
contains the bit d⊕ c, where c is the bit that the sender wants to open to.

Then, the receiver R checks that Ek is in the set A (by checking the ids).
If this is the case, then R opens the envelope Ek and he assigns d⊕ bk to the
commitment-bit b′, where bk is the value that R finds inside Ek. Otherwise,
the receiver halts.

Explanations on the Pass&MayCheat protocol.

Consider that the sender S would not like to equivocate, i.e., his en-
velopes contains the set {x, x} of values per pair. Firstly, consider that
his value d is calculated as if no equivocation is to take place. In such
circumstances, at the opening phase, this sender is obliged to open correctly,
i.e., to the initially committed bit. Secondly, consider now that S does not
form d as it is required, but that the receiver R were to follow the protocol.
In this case, S may not be able to open.

Assume now that the sender S may want to equivocate, i.e., S’s pairs
of envelopes contain the set {x, x} and {0, 1}, respectively. In this case,
it is down to the choices of R whether this sender is able to continue the
protocol; obviously, S may be caught and the protocol halts in half of the
cases (the possibility that a randomly chosen bit x is equal either to 0 or to
1, depending which was the opening of R). In the other cases, S will clearly
be able to open the value d to any bit-value, since the pair A of envelopes
left at his end will contain x and x.

The fact that receiver-forgeability is noticeable and the fact that the
protocol is designed in a staggered way mean that R can neither open
envelopes that he is not supposed to open nor open too many envelopes (i.e.,
if he wanted to break the hiding property).

The seal-once character of the envelopes prevents the sender S from
changing a value x once it is stored inside the envelopes. I.e., Say that S
reaches step 4 of the commitment phase and realizes that he will be caught
by R, then S cannot act and change such a value x to prevent being caught.

Theorem 3.1 In a hybrid UC-model, where the setup is the FDE
OneSeal func-

tionality, the Pass&MayCheat protocol UC-realizes the F
1
2
−WBC

EscapeThenMayCheat func-
tionality.

Proof: We technically need to prove that any attack that happens in the

real world can be simulated in the ideal world where the F
1
2
−WBC

EscapeThenMayCheat is



14 Ioana Boureanu, Serge Vaudenay

running. We divide this in two (logical) parts: A corrupts the sender (Alice)
and A corrupts the receiver (Bob). Other cases are trivial.

A corrupts the sender (Alice).

The commitment phase. I simulates A(Alice), its interaction with
FDE
OneSeal and the protocol on Bob’s side. We distinguish three cases.

I. A creates two pairs of envelopes, each containing the values {x, x}, for
some x ∈ {0, 1}.
I’s simulation of Bob will receive envelopes and send them back as per
the protocol.

If A checks that the envelopes returned by Bob are indeed sealed, then
I simulates a (Verified, id, ok) reply sent by FDE

OneSeal.

I continues any simulation until A(Alice) sends a bit d to Bob.

I chooses a bit b′′ such that b′′=d⊕ x, where x is the value inside the
envelopes left on the side of the A(Alice). The ideal adversary I sends

Commit b′′ to the F
1
2
−WBC

EscapeThenMayCheat functionality.

II. A creates two pairs of envelopes, one containing the values {x, x} and
the values {0, 1}, for some x ∈ {0, 1}.

The ideal adversary I sends EquivocatoryCommit to the F
1
2
−WBC

EscapeThenMayCheat

functionality. If the functionality answers ⊥, then the ideal adversary I
simulates Bob opening such that he is eventually seeing the {0, 1}-pair,
and he is then halting to A. Otherwise, he simulates Bob sending, in
stage, the pair containing {0, 1} back to A.

If A checks that the envelopes returned by Bob are indeed sealed, then
I simulates a (Verified, id, ok) reply sent by FDE

OneSeal.

I continues any simulation until A(Alice) sends a bit d to Bob.

III. A creates two pairs of envelopes, each containing the values {0, 1}. In
this case, I sends AbortCommit to the functionality and simulates
Bob halting in front of A.

The opening phase.
I awaits for Bob to be sent an envelope Ek from A. The simulation

now depends on what A did at the commitment phase (i.e., recall that I
distinguished two cases based on the values sealed by A, which he knew).



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 15

If it was case I above, then I sends Open to the F
1
2
−WBC

EscapeThenMayCheat

functionality.
If it was case II above, then I sends EquivocatoryOpen c to the

F
1
2
−WBC

EscapeThenMayCheat functionality, where c is calculated as d⊕ bk with bk the
value hidden inside envelope Ek.

Lemma 3.1 For any environment machine Z and any real adversary A that
corrupts only the sender, the output of Z when communicating with A in the
real world is identically distributed to the output of Z when communicating
with I in the ideal world.

The proof of the above lemma follows from the detailed simulation
above.

A corrupts the receiver (Bob).

In this case, I simulates the real-world interaction of Alice with A(Bob)
and with FDE

OneSeal and I corrupts dummy-Bob in the ideal-world.
Note that, in all this, I does not need to “commit” to the contents of

the simulated envelopes but at the time of the opening.
We begin with the simulation of the commitment phase. The ideal

adversary I waits for Committed or ⊥ to be sent by the functionality

F
1
2
−WBC

EscapeThenMayCheat. (No matter what command EquivocatoryCommit or

Commit was sent to F
1
2
−WBC

EscapeThenMayCheat by dummy-Alice, F
1
2
−WBC

EscapeThenMayCheat

will send just Committed or ⊥).

If ⊥ was sent by F
1
2
−WBC

EscapeThenMayCheat, then I creates four simulated
envelopes, each pair containing {0, 1}. No matter what opening A(Bob)
makes, I will simulate an abort from the commitment phase (i.e., send

AbortCommit to F
1
2
−WBC

EscapeThenMayCheat).

Now consider the case that Committed was sent by F
1
2
−WBC

EscapeThenMayCheat.
Then, I prepares four simulated envelopes for A(Bob), the content of which
is not determined at this stage (as we anticipated above): if A(Bob) opens
two envelopes from one initially formed pair, then I gives results (simulating
FDE
OneSeal) consistent with Alice not trying to equivocate or passing the

equivocation.
Equivalently, for the first envelope to open from an arbitrarily fixed

pair, I makes it open to a random value; for the second envelope from such



16 Ioana Boureanu, Serge Vaudenay

the same pair, I makes it looks as if it had the same value. Namely, when
A(Bob) opens two envelopes, their content is set to the same random bit and
the two remaining envelopes are set to two different random bits. Again, this
simulates a successful equivocatorial commitment: i.e., the ideal adversary I
needs to choose a permutation π ∈ S4 such that π=(x, x, 0, 1), to place in
the simulated envelopes in a delayed way. (As expected, I will eventually
see the value of the bit committed by dummy-Alice and, with this strategy,
I will be able to equivocatorially open to that bit.)

If A(Bob) opened an envelope that he should not have opened (i.e.,
both in one packet of two sent in step 2), then I sends Halt to the

F
1
2
−WBC

EscapeThenMayCheat functionality. If I got to this point, then he sends d ∈
{0, 1} to A(Bob).

We continue with the simulation of the opening phase. As antici-
pated above, the ideal adversary I waits for (Opened, b) to be sent by the

F
1
2
−WBC

EscapeThenMayCheat functionality.

It is now that I needs to send A(Bob) an envelope Ek containing a
bit bk such that Ek is consistent with the alleged permutation π ∈ S4 that
I used in the commitment phase (bk appears in the permutation), Ek is
consistent (w.r.t. ids) with A(Bob)’s opening, and bk = d⊕b. Note that these
constraints can always be satisfied giving the simulation in the commitment
phase by I. So, I sends this envelope Ek to A(Bob), which will “accept” the
opening.

From the simulation above, together with the lemma within, it follows
that the PMC protocol is UC-secure, realizing the 1

2 -weak bit-commitment

functionality F
1
2
−WBC

EscapeThenMayCheat. �

3.2 The CommitEnablesCheat and OpenEnablesCheat Protocols

In Fig.2 we present the CommitEnablesCheat protocol and in Fig.3 we give
the OpenEnablesCheat protocol. The detailed explanations on these follow
hereafter.

The CommitEnablesCheat Protocol (see Fig. 2): The Commit-
ment Phase. The sender wants to commit to a bit b and proceeds as it
follows.

First, the sender S creates 3 sealed envelopes denoted E1, E2, E3

respectively containing the bits denoted b1, b2, b3, such that not all bits are
equal. The sender sends the envelopes over to the receiver R.

Then, the receiver memorises the ids of the envelopes in the set {E1, E2, E3}
and sends them back to the sender.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 17

S R
-pick b1, b2, b3, not all equal

seal bi in Ei, i ∈ {1, 2, 3}
E1, E2, E3

remember {E1, E2 E3}

�E1, E2, E3check E1, E2, E3 for tamper
take m= MAJ(b1, b2, b3)
let d be b⊕m -d

pick i in {1, 2, 3}� idispose of Ei

Opening:

honest S -Ek with bk=m test: Ek is in {E1, E2 E3} \ {Ei}
if passed, open Ek;
set b′ to d⊕ bk
if not passed, halt

equivocatory S
-Ek with bk=m test: Ek is in {E1, E2 E3} \ {Ei}

if passed, open Ek;
set b′ to d⊕ bk
if not passed, halt

Fig.2: The CommitEnablesCheat Protocol

S R
-pick b1, b2, b3, not all equal

seal bi in Ei, i ∈ {1, 2, 3}
E1, E2, E3

remember the ids in {E1, E2 E3}

�E1, E2, E3check E1, E2, E3 for tamper
take m= MAJ(b1, b2, b3)
let d be b⊕m -d

pick i in {1, 2, 3}

Opening:
honest S -

∼
b= m

equivocatory S
-

∼
b= m

set b′ := d⊕
∼
b� iany S

dispose of Ei

honest S -Ek with bk=m test: Ek is in {E1, E2 E3} \ {Ei}
if passed, open Ek and

test
∼
b= bk;

if not passed, haltequivocatory S

-Ek with bk=m test: Ek is in {E1, E2 E3} \ {Ei}
if passed, open Ek and

test
∼
b= bk;

if not passed, halt

Fig.3: The OpenEnablesCheat Protocol



18 Ioana Boureanu, Serge Vaudenay

The sender now verifies that the envelopes sent back are untampered
with. Then, he computes m as the majority of the bits sealed inside, i.e.,
m=MAJ(b1, b2, b3). The sender wants to commit to a bit b. He calculates
d=b⊕m. Then, the sender sends d to the receiver.

At this step, the receiver sends the identifier i of an envelope that the
sender should dispose of, i.e., i ∈ {1, 2, 3}. (This means that the content of
envelope i will not count further in the protocol.) Let the set A={E1, E2, E3}\
{Ei} denote the set of remaining envelopes.

Finally, the sender disposes of envelope i. (Note that after this the
sender can equivocate if the remaining envelopes contain different bits.)

The equiv value is 2
3 .

The Opening Phase.

The non-equivocating sender sends an envelope Ek such that bk=m.

The equivocating sender sends an envelope Ek such that bk=m.

Then, the receiver tests that Ek ∈ A and if so, he sets b′, the commitment
bit, as follows: b′=d⊕ bk. If the test fails, the receiver halts.

Note that by being asked to discard4 an envelope at the opening phase
instead of in step 4 of the commitment phase, the idea behind protocol Com-
mitEnablesCheat can be shaped to obtain a protocol where the equivocation
becomes clear only at the opening time. The protocol obtained in this way
is hereby denoted OpenEnablesCheat. The protocols CommitEnablesCheat

and OpenEnablesCheat are graphically represented in Fig. 2 and Fig. 3,
respectively.

The OpenEnablesCheat protocol is very similar to the other protocol,
CommitEnablesCheat, as we said. We will hereby only state the main differ-
ences between the two. In the OpenEnablesCheat protocol, the discarding
of the envelope is made at the opening phase. In a sense, the sender first

“announces” how he will open his commitment by sending
∼
b (i.e., if it is an

equivocal opening the sender will send inside
∼
b the negation of m, otherwise

he sends m). Then, the receiver finally asks for the discarding of the one
the envelopes that is at the end of the sender. After this discarding, the
sender has to send Ek, i.e., the envelope with the k identifier. Depending
which discarding was called for, the sender may or may not be able to send

over one envelope Ek that contains the same bk as it was announced via
∼
b .

Clearly, these steps are emulating the FLearnAtOpening functionality.

Once again, observe that—unlike in the Pass&MayCheat protocol— the
committer of the CommitEnablesCheat and OpenEnablesCheat protocols

4A possible way of implementing discarding is sending the emptied envelope back to
the receiver.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 19

can cheat with some probability (i.e., 2
3), and this possibility is down to a

mere choice of the receiver and it is not influenced by receiver being caught
cheating.

These requirements sound similar to looking for a means in which Alice
would commit to a bit b using a BSC (binary symmetric channel) with noise
level q [6]. However, all previous constructions [6, 12, 24] addressing this are
not sender-strong, but receiver-strong. Moreover, they are designed within
traditional lines, i.e., are not UC-secure. On a different note, those classical
solutions are based error-correction codes (ECC) and/or pseudo-random
generators (PRNG). In our case, PRNGs and ECCs are out of scope: we
intend cryptographically lightweight primitives. And, CommitEnablesCheat
and OpenEnablesCheat above deliver sender-strong, UC-secure, simple and
human operable primitives.

Explanations on the CommitEnablesCheat and OpenEnablesCheat

protocols.
We detail only on the CommitEnablesCheat protocol above, counting

on that the explanations on OpenEnablesCheat would very similar. We will
now show that the protocol CommitEnablesCheat is complete. Assume that
the parties adhere to the rules the protocol. In step 3, we would surely have
m=x, if S had followed step 2 and S had produced the envelopes correctly
(i.e., a permutation of {x, x, x}, x ∈U {0, 1} is sealed inside them). In this
case, in the remaining set A there would always be an envelope Ek containing
the value x that opens the commitment correctly. This is irrespective of
the value bi (be it x or x). There is a probability of 2

3 for S to be able to
open his commitment to the flipped bit (i.e., point 2 in the opening phase).
Namely, this is in the cases where an envelope with value x is present in the
remaining set A. Also, it is clear that S gains no benefit from not playing by
the rules. Theorem 3.2 present these more formally, within the UC setting.

Theorem 3.2 In a hybrid UC-model, where the setup is the FDE
OneSeal func-

tionality, the CommitEnablesCheat and OpenEnablesCheat protocols UC-

realize the F
2
3
−WBC

LearnAtCommitment and the F
2
3
−WBC

LearnAtOpening functionalities, respec-
tively.

Due to heavy similarities between the case of CommitEnablesCheat and the
case of OpenEnablesCheat, the proof of Theorem 3.2 is given in the for
CommitEnablesCheat only.
Proof: We technically need to prove that any attack that happens in the

real world can be simulated in the ideal world where the F
2
3
−WBC

LearnAtCommit is
running. We divide this in two (logical) parts: A corrupts the sender (Alice)



20 Ioana Boureanu, Serge Vaudenay

and A corrupts the receiver (Bob). The same sort of respective simulations
by I as in the previous proof are in place.

A corrupts the sender (Alice). Hence, it is A who creates and sends
the 3 envelopes, i.e., interacts with the FDE

OneSeal functionality. Note that I
intercepts the communication between A and the FDE

OneSeal functionality. So,
I knows when A is cheating.

The commitment phase.

I A has sent a valid pack of envelopes and the contents of the envelopes
are an arbitrary but fixed permutation of (x, x, x), where x ∈U {0, 1}
(i.e., b1=x, b2=x and b3=x, up to a permutation).

Bob will receive the envelopes and send them back.

If A checks that the envelopes returned by Bob are indeed sealed, then
I simulates a (Verified, id, ok) reply sent by FDE

OneSeal.

I continues any simulation until A(Alice) sends a bit d to Bob.

I picks mI=MAJ(b1, b2, b3) (i.e., on this input, mI=x). I chooses a bit
b′′ such that b′′=d⊕mI . The ideal adversary I sends Commit b′′ to

the F
2
3
−WBC

LearnAtCommit functionality. The functionality replies with a value
for equiv, which is “yes” with probability 2

3 and “no” with probability
1
3 . If equiv is “yes”, I picks i ∈ {1, 2, 3} such that bi=x and otherwise
he picks i such that bi=x. I simulates Bob in sending i to A.

II A has sent an invalid pack of envelopes, with all value inside equal to
x, where x ∈U {0, 1}.
I acts as in the case I above, but he sets equiv always to “no”.

The opening phase.
I awaits for Bob to be sent an envelope Ek from A to see how A wants

to open. The simulation now depends on what A did at the commitment
phase (i.e., recall that I distinguished two cases based on the envelopes
sealed by A, which he knew).

If it was case I of the commitment phase and bk=mI , then I will send

an Open command to the F
2
3
−WBC

LearnAtCommit.

If it was case I of the commitment phase and bk=mI , then I will send an

EquivocatoryOpen command to the F
2
3
−WBC

LearnAtCommit . (Note that because
of the simulated i in the last step of the commitment, the ideal adversary is



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 21

able to open the bit b′′ in the same way that the adversary would open his
d.)

If it was case II of the commitment phase, then bk=mI and I will send

an Open command to the F
2
3
−WBC

LearnAtCommit.

Lemma 3.2 For any environment machine Z and any real adversary A
that corrupts only the sender, the output of Z when communicating with A in
the real world is identically distributed to the output of Z when communicating
with I in the ideal world.

The proof of the above lemma follows from the detailed simulation
above.

A corrupts the receiver (Bob)

In this case, I will have to create and send simulated envelopes for
A(Bob). Note that the ideal adversary does not need to commit to the
contents of containers from the beginning, since they influence the view of
the environment only when they are actually open.

The commitment phase.

I sends 3 simulated envelopes to A.

I continues the simulation until A sends the envelopes back. If A does
not send the envelopes back or they are tampered with, I assigns {x, x, x}
values to the envelopes at random and continues the simulation in the opening.
A will be stuck in the protocol, eventually.

The simulation through I continues until it receives Committed from

F
2
3
−WBC

LearnAtCommit .

I chooses d at random and sends this value d to A(Bob).

Consider that, at the end of this phase, I will identify the simulated,
remaining envelopes by the set {1, 2, 3} \ {i}, where i is picked at random.
(There is no better strategy for A to pick i without opening envelopes.).

The opening phase.

I waits until it receives (Opened, b′) from F
2
3
−WBC

LearnAtCommit .

Let bIk be d⊕ b′.
The ideal adversary I will send an envelope k ∈ {1, 2, 3} \ {i} simulated

and containing bIk .



22 Ioana Boureanu, Serge Vaudenay

Lemma 3.3 For any environment machine Z and any real adversary A that
corrupts only the receiver, the output of Z when communicating with A in the
real world is identically distributed to the output of Z when communicating
with I in the ideal world.

The proof of the above lemma follows from the detailed simulation above.

From the simulation above, together with the two lemmas within, it follows
that the CommitEnablesCheat protocol is UC-secure, realizing the 2

3 -weak

bit-commitment functionality F
2
3
−WBC

LearnAtCommit . �

3.3 Amplifying q-WBC Sender-Strong Protocols

Let z∈ {Pass&MayCheat, CommitEnablesCheat, OpenEnablesCheat}. Let
? ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening}.

By using k instances of a q-weak sender-strong protocol of the z-kind of
protocols, we can obtain a protocol Amplified_z protocol that UC-realizes

Fqk−WBC
? . Hence, for a conveniently large k, we can attain regular bit-

commitments. See the formalisations below.
The Amplified_Pass&MayCheat Protocol:

(Equivocatory) Commitment Phase.

The sender commits, all equivocally or all normally, to a bit bj in

k sequential rounds, each time using the Fq−WBC
EscapeThenMayCheat functionality,

j ∈ {1, . . . , k}. The j-th such functionality is denoted Fq−WBC
EscapeThenMayCheat; j .

Each functionality Fq−WBC
EscapeThenMayCheat; j to which EquivocatoryCommit

was sent, outputs to its sender Committed, with probability q and ⊥ otherwise.
If ⊥ is sent, then the receiver aborts.

(Equivocatory) Opening Phase.

The sender opens all commitments, equivocally or not, using the
Fq−WBC
EscapeThenMayCheat; j functionalities. The receiver halts if the openings are

not all the same.

Theorem 3.3 Let q ∈ (0, 1) and λ be a security parameter. By using
k=Ω(λ) instances of an Fq−WBC

? functionality, we can construct a protocol
Amplified_z that UC-realizes the FBC functionality, where we have
? ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening} and z∈
{Pass&MayCheat, CommitEnablesCheat, OpenEnablesCheat}.

In particular, the protocol Amplified_Pass&MayCheat UC-realizes the

Fqk−WBC
EscapeThenMayCheat functionality.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 23

For the regular BC functionality, FBC , section C of the Appendix.
The Amplified_Pass&MayCheat BC protocol is trivially following out of
Amplified_Pass&MayCheat, i.e., where equivocation is not possible. By
letting k= log ε

log q in Theorem 3.3, we make Amplified_Pass&MayCheat a ε-
weak bit-commitment, with ε arbitrarily close to 0. However, for protocol
Amplified_Pass&MayCheat to UC-realize FBC , we need a k to be of linear-
size in the security parameter λ. Proofs that weak bit-commitment protocols
in the above sense can be amplified to regular bit-commitments exist already,
e.g., [24]. The proofs therein follow long-established lines, i.e., not the
UC framework 5. Also, they often refer to receiver-strong protocols and
generally use more convoluted primitives, e.g., pseudo-random generators,
error-correcting codes, outside our lightweight interests. Our proof is done
in the UC framework and, as we can see, the protocol respects the sender-
strong aspects sought-after herein. For simplicity, the proof is split between
the three different cases: for the case of Amplified_Pass&MayCheat, see
first lemma below; for the case of Amplified_CommitEnablesCheat, see the
second lemma below; the Amplified_OpenEnablesCheat protocol is similar
to Amplified_CommitEnablesCheat .

Lemma 3.4 The protocol Amplified_Pass&MayCheat UC-realizes the

Fqk−WBC
EscapeThenMayCheat functionality.

A corrupts the receiver. Note that the receiver cannot cheat using the
functionalities provided. Hence, there is no attack in the real world to be
simulated in the ideal world.

A corrupts the sender.

Commitment Phase.

Let the bits used byA be denoted b1, . . . , bk. Moreover, let I ⊆ {1, . . . , k}
denote the indices of those bits sent through the command Commit and
J ⊆ {1, . . . , k} denote the indices of those bits sent through the com-
mand EquivocatoryCommit to different instances Fq−WBC

EscapeThenMayCheat; `,
` ∈ {1, . . . , k}. Also, let equivj be the answer that I simulates for A to re-

ceive from each functionality Fq−WBC
0; j , j ∈ J (recall that equivj=Committed

with probability q and equivj=⊥, otherwise).

5Similar proofs of amplifications may exist in the UC framework, however they would
not be with respect to the Fq−WBC

i functionalities as introduced in Section 2.



24 Ioana Boureanu, Serge Vaudenay

The ideal adversary I, upon seeing these commands, replies nothing
to the ones of the Commit type and replies equivj=Committed to the
commands of type EquivocatoryCommit, for all j ∈ J .

In the case that there is some j ∈ J such that equivj = ⊥, then I sends

AbortCommit to Fqk−WBC
EscapeThenMayCheat.

There are two cases completely describing the corrupt adversary’s be-
haviour:

I. card(I) 6= 0, i.e., A has sent some Commit commands6;

II. card(I)=0, i.e., A has only sent EquivocatoryCommit commands.

Case I above is completely described by the following sub-cases, depend-
ing on whether A could ever possibly open his commitments to the same
bit:

I.1. In this case, there are two bits bi and bi′ of different values both
sent through Commit commands, i.e., the set I of indices is non-empty and

∃i, i′ ∈ I, i 6= i′ such that bi 6= bi′ . I sends Commit(0) to Fqk−WBC
EscapeThenMayCheat

and stores that this was a special case.

I.2. In this case, all bits indexed in the set I have the same value. Let
us denote this value bi, i ∈ I. However, the ideal adversary I knows that
equivj=Committed for A, for all j ∈ J . I sends Commit(bi) to the ideal

functionality Fqk−WBC
EscapeThenMayCheat.

In case II above, the ideal adversary I sends EquivocatoryCommit

to the Fqk−WBC
EscapeThenMayCheat functionality. I gets an equiv answer back from

the Fqk−WBC
EscapeThenMayCheat functionality. If the equiv reply is negative, then I

halts (advising the real-world receiver to halt by an abort message as from
an Fq−WBC

0; j functionality, j ∈ J).

Opening Phase.

The opening phase follows on from the distinct cases discussed in the
commitment phase.

If it was case I.1 and I has not halted in the commitment phase, then
I halts now. Note that this models the real-world scenario, as —in this case–
A will never be able to open to the same bit as he has sent two different,
un-flippable bits, i.e., sent under Commit commands. I.e., the real-world
receiver will halt also at most at the end of the k openings.

6The notation card(S) denotes the cardinality of a set S.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 25

If it was case I.2 and I has not halted in the commitment phase, then

I sends Open to the Fqk−WBC
EscapeThenMayCheat functionality. Note that in this case,

the opening will have the same bi value as in the real world.

If it was case II and I has got a positive equiv back, then upon the

opening c of A, I sends EquivocatoryOpen (c) to the Fqk−WBC
EscapeThenMayCheat

functionality.

Lemma 3.5 In the case above, the following holds. For any environment
machine Z and any real adversary A that corrupts only the sender, the output
of Z when communicating with A in the real world is identically distributed
to the output of Z when communicating with I in the ideal world.

The proof of the above lemma follows immediately from the detailed
simulation above. �

Lemma 3.6 In a hybrid UC-model, where a linear number of k instances
of the Fq−WBC

LearnAtCommitment are available as setup, the FBC can be UC-realized,
where q ∈ (0, 1).

Proof: Note that the receiver cannot cheat using the functionalities provided.
Hence, there is no attack in the real world to be simulated in the ideal world.

A corrupts the sender.

Commitment Phase.

Let the bits used by A be denoted b1, . . . , bk in respective (Commit, bl)
commands sent to the instances Fq−WBC

LearnAtCommitment; `, ` ∈ {1, . . . , k}.
I flips coins such that for each Fq−WBC

LearnAtCommitment; l, it simulates an equiv`
reply being “yes” with probability q and “no” otherwise, for ` ∈ {1, . . . , k}.

Then, having the bits bl and the values equivl, the ideal adversary I
looks at the cases that A can be in:

I. A could only open to the bit 0 (b` = 0 whenever equiv`=“no” and there
may be other equiv`′ equal to “no”);

II. A could only open to the bit 1 (b` = 1 whenever equiv`=“no” and there
may be other equiv`′ equal to “no”);

III. A could only open to any (this is the case if all equiv`=“yes”);



26 Ioana Boureanu, Serge Vaudenay

IV. A cannot open to a consistent bit (this is the case if some equiv`=“no”
with b` = 0 and equiv`′=“no” with b`′ = 1).

Note that for k as in the current lemma, the challenge protocol for the
UC-environment is a game that is indistinguishable for the game where case
III never arises. Using the difference lemma [25], we conclude that we can
ignore the simulation by I in this case.

In case I and II above, I sends (Commit, b) to the FBC functionality,
b=0 in the first case and and b=1 in the second case.

In case IV above, I sends (Commit, b) to the FBC functionality, where
b is a bit picked at random.

Opening Phase.
If it was case I or case II of the commitment phase, then I simply sends

Open to the FBC functionality (and this will reflect exactly the bit opened
in the real-world).

If it was case IV of the commitment phase, then I sends a halting
message to the receiver (that presumably the protocol to realize contains).

Lemma 3.7 In the case above, the following holds. For any environment
machine Z and any real adversary A that corrupts only the sender, the output
of Z when communicating with A in the real world is identically distributed
to the output of Z when communicating with I in the ideal world.

The proof of the above lemma follows immediately from the detailed
simulation above. �

3.4 EUC-Insecurity of the CommitEnablesCheat Protocol in
the FDE

OneSeal-hybrid model

Lemma 3.8 In a hybrid EUC-model, where the setup is the FDE
OneSeal func-

tionality, the protocol CommitEnablesCheat does not EUC-realizes the

F
2
3
−WBC

LearnAtCommitment functionality.

Proof: We will show that for a certain environment Z and a certain adversary
A, there is no ideal adversary I that perfectly simulates the protocol run by
A to the environment Z.

In an EUC FDE
OneSeal-hybrid model where the adversary corrupts the

sender in the EUC real world, assume the following commitment phase
execution.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 27

The environment Z runs the Commit b protocol with b selected at ran-
dom and A just relays messages and envelopes between Z and the receiver R.
After the environment Z learns that R has actually received the Committed
message, Z runs the Open protocol and compares the bit at R’s end to the
actual chosen bit b. Clearly, I cannot guess the bit b and cannot simulate
perfectly the opening to b (i.e., decommit to b with probability 1). �

A version of Lemma 3.8 can be given for the rest of our WBC protocols
and those in [22], i.e., the DE functionality as it is brings EUC-insecurity to
the other WBCs too.

3.5 (Stronger) Universally Composable Security

In obtaining the UC-simulatability proof, details as small as the order of
the messages in the commitment-phase of the weak protocol CommitEn-

ablesCheat above and/or the amount of randomness given to the sender
have huge impacts. To give but an example, imagine a protocol like the Com-

mitEnablesCheat protocol where step 3 of the commitment phase becomes
step 4 and vice-versa. This minute change in the CommitEnablesCheat proto-

col makes it lose its UC-security (i.e., the UC-realizability of F
2
3
−WBC

LearnAtCommitment

is lost), while it keeps the protocol perfectly hiding and binding with proba-
bility 2

3 in the classical sense.
So, while it may seem easy to manipulate DEs to get weak BCs, it is the

case that sender-strength and UC-security together are not trivially attained.
(It is indeed easier to construct q-weak bit-commitments using a formalisation
of distinguishable envelopes, when no UC-security or asymmetrical strengths
are required.)

Let us move to EUC-security. For a wrap-up on GUC (Generalised
UC) or EUC (Externalised UC) see the Appendix, Section A.2. Imagine an
EUC model with the FDE

OneSeal-setup. Further, consider an environment that
creates the envelopes and gives them to the adversary. Then, in the ideal
world, the simulator cannot “extract” the bit b to commit to and thus he is
bound to fail to indistinguishably simulate the commitment phase. So, on
these grounds, none of the protocols presented so far, nor those constructed
previously in [22] for the receiver-strong case are EUC-secure or GUC-secure.

To remedy the above (i.e., make the protocols herein and those in Moran
and Noar’s work [22] EUC-secure), we present a slightly modified FDE

OneSeal-
setup.

FpurpotedDE
OneSeal : A Stronger Functionality for Tamper-Evident Distin-

guishable Sealed Envelopes



28 Ioana Boureanu, Serge Vaudenay

This functionality stores tuples of the form (id, value, holder, state).
The values in one entry indexed with id, like before.

SealSend(id , value, Pj ). Let this command be received from an envelope-
creator party Pi. It seals an envelope and sends its id to the future holder Pj .
If this is the first Seal message with id id, the functionality stores the tuple
(id, value, Pj , sealed) in the table. The functionality sends (id, Pi) to Pj

and to I. (Optionally, it can send (id, sealed) to Pi and to I). If this is not
the first command of type Seal for envelope id, then the functionality halts.

Send(id , Pj ). Let this command be received from a holder-party Pi.
This command encodes the sending of an envelope held by Pi to a party Pj .
Upon receiving this command from party Pi, the functionality verifies that
there is an entry in its table which is indexed by id and has holderid = Pi. If
so, it outputs (Receipt, id, Pi, Pj) to Pj and I and replaces the entry in
the table with (id, valueid, Pj , stateid).

Open id . Let this command be received from a holder-party Pi. This
command encodes an envelope being opened by the party that currently
holds it. Upon receiving this command, the functionality verifies that an
entry for container id appears in the table and that holderid = Pi. If so, it
sends (Opened, id, valueid) to Pi and I. It also replaces the entry in the
table with (id, valueid, holderid, broken).

Verify id . Let this command be received from a holder-party Pi. This
command denotes Pi’s verification of whether or not the seal on an envelope
has been broken. The functionality verifies that an entry indexed by id
appears in the table and that holderid = Pi. It sends (Verified, id, stateid)
to Pi and to I.

The essential modification from FDE
OneSeal to the FpurpotedDE

OneSeal is that in
the latter functionality an envelope is built for an intended holder. To this
end, the purported destinator receives a notification of the form (id, creator),
which indicates that his faced with a newly created envelope. If these
envelopes were to be constructed by some real manufacturer, this company
would ship its products to known/registered addresses. Thus, we believe
that this modification is reasonable. A much stronger enhancement would
have been to store or disclose the identities of the creators. This would be
similar to signing the TE devices. We do not adhere to this behaviour for
FpurpotedDE
OneSeal .

With this amendment, at a high level, we deter relay attacks. A receiver
will expect envelopes freshly created for him and parties will not be able to
pass on, as creators, envelopes produced by other participants, i.e., Z will
not be able to prepare envelopes for A, to be used as if A was their creator.
Thus, the issue raised by Lemma 3.8 is rectified.



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 29

Theorem 3.4 In a hybrid EUC-model, where the setup is the FpurpotedDE
OneSeal

functionality, the protocol CommitEnablesCheat EUC-realizes the F
2
3
−WBC

LearnAtCommitment

functionality.

Note: We have to note that the protocol in the theorem above is in
fact the CommitEnablesCheat slightly changed to accommodate the use of
purported DE instead of simple DE. I.e., it is where it is the setup functionality
(e.g., a sort of creating-authority) which sends the created envelopes to the
destinator, not the logical creator; and, further, the destinator must check
the ID of the logical creator as announced by the functionality.

The proof of the above theorem follows from the proofs of Theorem 3.2
and that of Lemma 3.8, combined with the fact that FpurpotedDE

OneSeal -envelopes
have a specified entity as their destination and this entity knows this fact
upon the creation of the envelopes. We conjecture that Theorem 3.4 holds
even in the case of adaptive adversaries.

A version of Theorem 3.4 can be given for the rest of our WBC protocols
and those in [22], i.e., purported DE can bring EUC-security to the other
WBCs too.

4 Implication-Relations between (Weak)
Bit-Commitments and Distinguishable Envelopes
in UC

From the work in [22] and the line herein, we can summarise that receiver-
strong and sender-strong weak UC bit-commitment (amplifiable to BC) can

be UC-realized with FDE
OneSeal (or FpurpotedDE

OneSeal ). We already know that the
ideal functionality of FBC (see FCOM in [7]) is a sufficient UC-setup to
realize ZK. The ultimate question in this context would be whether, e.g.,
FDE
OneSeal is sufficient for UC-secure ZK. But, we could first study the possible

separations (within UC) between all these ideal functionalities, i.e., for BC,
WBC, DE.

Firstly, we can UC-realize an Fq−WBC
EscapeThenMayCheat, F

q−WBC
LearnAtCommitment or

an Fq−WBC
LearnAtOpening functionality, for some q ∈ (0, 1) by using just a multiple

commitment FMCOM [7] UC-setup. (For the FMCOM [7] functionality, please
refer to Section C of the Appendix). In other words, to get a UC-secure sender-
strong weak bit-commitment, we only need several instances of the regular
bit-commitment functionality FBC . Namely, three FBC functionalities (see
Section C of the Appendix) are sufficient to UC-realize a 2

3 -WBC which



30 Ioana Boureanu, Serge Vaudenay

is sender-strong. Imagine the protocol CommitEnablesCheat where three
commitments using FMCOM or using three instances of FBC respectively
and uniformly replace the three envelopes used inside. Let this transformed
protocol be called P . Obviously, P is a UC-secure SS-WBC build via FMCOM

or FBC . The same mechanism would work to transform OpenEnablesCheat

instead of CommitEnablesCheat and we would UC-realize F
2
3
−WBC

LearnAtOpening,

using a FMCOM or FBC setup.

Secondly, all sender-strong weak BCs UC-imply regular BCs (following
from Theorem 3.3).

Thirdly, we conjecture that a bit-commitment setup is not enough to
UC-realize the FDE

OneSeal distinguishable tamper-evident envelope functionality.
This is mainly due to the difference in opening commitments and opening
“envelopes”. The first are always open by their creator. If BC would UC-imply
DE, then DE should also always be finally opened by their creator. Or, the
latter could be possible only if the creator of the DEs would always know who
the current holder of the DE is. This is not the case, hence our conjecture.

If we take into about the amplification proofs as well, then we have
rendered the picture of the UC-realisability of different flavours of sender-
strong weak BC with tamper-evident envelopes, have drawn of their relation
with (almost) regular BC and with receiver-strong weak BCs by Moran and
Naor [22]. Also, we now can see that all weak BCs are equivalent to regular
BCs, at some level.

We leave the EUC or the GUC correspondents of the implications
enumerated above as open questions. Also, it is in our future interests to
investigate if flavours of tamper-evident devices can UC-construct ZK proofs
of knowledge without passing through BC protocols.

5 Conclusions

We conclude that quite simple, distinguishable, sealed envelopes can create
sender-strong (weak) bit-commitments protocols. This answers several prac-
tical needs [11, 18, 14], but also we can view it as answering a quicker variant
of the open question in Moran and Naor’s work [22].

We have also shown that the protocols in [22] are not EUC-secure but
only UC-secure. We then showed how to modify the FDE

OneSeal functionality
given in Moran and Naor’s work [22] such that we also create (weak) bit-
commitment protocols that are EUC-secure. We illustrated lightweight
amplification proofs of our WBC protocols. The implications between UC
weak BCs, UC regular BCs and distinguishable tamper-evident UC envelopes



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 31

were finally discussed.

References

[1] D. Beaver. Adaptive Zero Knowledge and Computational Equivocation
(Extended Abstract). In The 28th Annual ACM Symposium on Theory
of Computing (STOC), pages 629–638, 1996.

[2] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Iden-
tification protocols secure against reset attacks. In Proceedings of the
International Conference on the Theory and Application of Crypto-
graphic Techniques: Advances in Cryptology, EUROCRYPT ’01, pages
495–511, London, UK, UK, 2001. Springer-Verlag.

[3] Ioana Boureanu and Serge Vaudenay. Several weak bit-commitments
using seal-once tamper-evident devices. In Tsuyoshi Takagi, Guilin
Wang, Zhiguang Qin, Shaoquan Jiang, and Yong Yu, editors, Provable
Security - 6th International Conference - ProvSec, volume 7496 of Lecture
Notes in Computer Science, pages 70–87. Springer, 2012.

[4] Ioana Boureanu and Serge Vaudenay. Input-aware equivocable commit-
ments and uc-secure commitments with atomic exchanges. In The 7th
International Conference on Provable Security (ProvSec), pages 121–138.
Springer Berlin Heidelberg, Melaka, Malaysia, October 2013.

[5] G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of
Knowledge. Journal of Computer Systems Science, 37:156–189, October
1988.

[6] C. Crépeau. Efficient Cryptographic Protocols Based on Noisy Channels.
In Advances in Cryptology, Proceedings of the 16th Annual International
Conference on Theory and Application of Cryptographic Techniques –
EUROCRYPT, Lecture Notes of Computer Science, pages 306–317,
Berlin, Heidelberg, 1997. Springer-Verlag.

[7] R. Canetti. A Unified Framework for Analyzing Security of Protocols.
Electronic Colloquium on Computational Complexity (ECCC), 8(16),
2001.

[8] R. Canetti. Universally Composable Signature, Certification, and Au-
thentication. In Proceedings of the 17th IEEE workshop on Computer



32 Ioana Boureanu, Serge Vaudenay

Security Foundations, pages 219–239, Washington, DC, USA, 2004.
IEEE Computer Society.

[9] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally Composable
Security with Global Setup. Cryptology ePrint Archive, Report 2006/432,
2006. http://eprint.iacr.org/.

[10] N. Chandran, V. Goyal, and A. Sahai. New Constructions for UC
Secure Computation Using Tamper-Proof Hardware. In Advances in
Cryptology, Proceedings of the 27th Annual International Conference on
Theory and Application of Cryptographic Techniques – EUROCRYPT,
pages 545–562, 2008.

[11] C. Chin-Chen and C. Ya-Fen. Efficient Anonymous Auction Protocols
with Freewheeling Bids. Computers & Security, 22(8):728–734, 2003.

[12] I. Damg̊ard. On the existence of bit commitment schemes and zero-
knowledge proofs. In Advances in Cryptology, Proceedings of the 9th
Annual International Cryptology Conference, CRYPTO, pages 17–27,
New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[13] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, STOC ’98, pages 409–418, New York, NY, USA, 1998. ACM.

[14] G.Dane. The Implementation of an Auction Protocol over
Anonymous Networks. http://research.microsoft.com/en-
us/um/people/gdane/papers/partiiproj-anonauctions.pdf, 2000.

[15] R. Gennaro. Multi-trapdoor commitments and their applications to
proofs of knowledge secure under concurrent man-in-the-middle attacks.
In CRYPTO, pages 220–236, 2004.

[16] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia. Found-
ing Cryptography on Tamper-Proof Hardware Tokens. In Theory of
Cryptography, pages 308–326, 2010.

[17] J. Katz. Universally Composable Multi-party Computation Using
Tamper-Proof Hardware. In Theory and Application of Cryptographic
Techniques, pages 115–128, 2007.

[18] H. Kikuchi, M. Harkavy, and J. D. Tygar. Multi-round Anonymous
Auction Protocols. In In Proceedings of the 1st IEEE Workshop on

http://eprint.iacr.org/


UC and EUC Weak Bit-Commitments Using Tamper-Evidence 33

Dependable and Real-Time E-Commerce Systems, pages 62–69. Springer-
Verlag, 1998.

[19] P. Mateus and S. Vaudenay. On Tamper-Resistance from a Theoreti-
cal Viewpoint. In Proceedings of the 11th International Workshop on
Cryptographic Hardware and Embedded Systems(CHES), volume 5747 of
Lecture Notes in Computer Science, pages 411–428. Springer, 2009.

[20] T. Moran and M. Naor. Basing Cryptographic Protocols on Tamper-
Evident Seals. In L. Caires et al., editor, Proceedings of the 32nd
International Colloquium on Automata, Languages and Programming
(ICALP), volume 3580 of Lecture Notes in Computer Science, pages
285–297. Springer-Verlag, Jul 2005.

[21] T. Moran and M. Naor. Polling with Physical Envelopes: A Rigor-
ous Analysis of a Human-Centric Protocol. In S. Vaudenay, editor,
Advances in Cryptology, Proceedings of the 25th Annual International
Conference on Theory and Application of Cryptographic Techniques –
EUROCRYPT, volume 4004 of Lecture Notes in Computer Science,
pages 88–108. Springer Berlin / Heidelberg, May 2006.

[22] T. Moran and M. Naor. Basing Cryptographic Protocols on Tamper-
Evident Seals. Theoretical Computer Science, 411:1283–1310, March
2010.

[23] T. Moran and G. Segev. David and Goliath Commitments: UC Com-
putation for Asymmetric Parties Using Tamper-Proof Hardware. In
Theory and Application of Cryptographic Techniques, pages 527–544,
2008.

[24] M. Naor. Bit Commitment Using Pseudo-Randomness. Journal of
Cryptology, 4:151–158, 1991.

[25] V. Shoup. Sequences of games: a tool for taming complexity in security
proofs. manuscript, 2006.



34 Ioana Boureanu, Serge Vaudenay

A Overview on the UC and Enhanced UC Frame-
works

A.1 General Approach to UC proofs

At some high level, a UC proof that a protocol is secure means to show that
the environment (Z) cannot distinguish between the execution in the “real
world” from the execution in the “ideal world” [7].

The “ideal world” contains “dummy” parties, the “target” ideal function-
ality (that the protocol is emulating) and the “ideal” adversary, I. The “ideal”
adversary” I can corrupt up to half minus one of the parties, in which case
I will see the input of such a party, all communication sent to it, and I can
decide its output. Normally, these “dummy” parties simply send their inputs
to the ideal functionality and wait for the response which they write on their
output tape. The environment Z normally gives the inputs to the parties
and reads their local outputs, can communicate with I, but it does not have
a direct input-output communication link with the ideal functionality.

The “real world” contains protocol participants, the environment Z,
the “real adversary”A and potentially ideal, “setup” functionalities. There
can be up to half minus one parties corrupted by A (i.e., parties which
may not follow the protocol) and A can communicate with Z and with the
setup functionalities, if and when the latter are present. The environment Z
has the same capabilities as in the ideal world (e.g., he cannot see internal
communications).

The protocol securely UC-realizes an ideal functionality, if there exists
I such that for any Z and any A, Z cannot distinguish between the ideal
world and the real world. Or, an alternative definition reads as follows: a
protocol securely UC-realizes an ideal functionality, if for any Z and any A,
there exists I such that Z cannot distinguish between the ideal world and
the real world [7, 9].

A.2 Enhanced UC frameworks

This short summary on enhanced UC frameworks follows the work by Canetti
et al. [9], where the reader is referred for further details. In the basic UC
framework, the environment Z is able to interact with the adversary and with
the general challenge protocol (i.e., the protocol distinguishing actual attacks
in the real world from simulated attacks on the ideal, target functionality),
but the environment Z is unable to invoke directly the setup functionalities.
While this is enough to get the composability theorem [8], it was shown



UC and EUC Weak Bit-Commitments Using Tamper-Evidence 35

to be impossible to UC-realize some protocols in UC with global setup,
i.e., when protocols share state information with each other [9]. To bypass
such impossibility results, strengthened UC frameworks were created [9], i.e.,
Externalized UC and Generalized UC.

In GUC (Generalized UC), the environment Z is allowed to invoke and
interact with arbitrary protocols (setup functionalities included) and even in
multiple sessions of the challenge protocol.

Additionally to a basic UC environment and restricting the GUC envi-
ronment, the EUC (Externalized UC) environment Z is allowed to invoke a
single external protocol instance. Any state information that will be shared
by the challenge protocol must be shared via calls the shared functionality
(here, FDE

OneSeal or similar distinguishable envelope functionalities) and the
EUC environment is granted direct access to the shared functionality.

B The Tamper-Evident Envelope,
Creator-Forgeable Functionality (as per [22])

The FDE
MultiSeal Functionality for Tamper-Evident Distinguishable

Sealed Envelopes

This functionality for tamper-evidence stores a table of “devices”, in-
dexed by their id. More precisely, an entry in this table is of the form
(id, value, creator, holder, state). The values in one entry indexed by id are
respectively denoted creatorid, valueid, holderid and stateid.

Seal(id , value). Let this command be received from party Pi. It creates
and seals an envelope. If this is the first Seal message with id id, the
functionality stores the tuple (id, value, Pi, sealed) in the table. If this is
not the first command of type Seal for envelope id and the command comes
from the envelope’s creator, then the functionality updates the stored value.
If this is not the first command of type Seal for envelope id but the command
does not come from the envelope’s creator, then the functionality updates
the stored value.

Send(id , Pj ). Let this command be received from party Pi. This
command encodes the sending of an envelope held by Pi to a party Pj . Upon
receiving this command from party Pi, the functionality verifies that there
is an entry in its table which is indexed by id and has holderid = Pi. If so,
it outputs (Receipt, id, Pi, Pj) to Pj and I and replaces the entry in the
table with (id, valueid, Pj , stateid).

Open id . Let this command be received from party Pi. This command
encodes an envelope being opened by the party that currently holds it.



36 Ioana Boureanu, Serge Vaudenay

Upon receiving this command, the functionality verifies that an entry for
container id appears in the table and that holderid = Pi. If so, it sends
(Opened, id, valueid) to Pi and I. It also replaces the entry in the table
with (id, valueid, holderid, broken).

Verify id . Let this command be received from party Pi. This command
denotes Pi’s verification of whether or not the seal on an envelope has been
broken. The functionality verifies that an entry indexed by id appears in the
table and that holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

C Regular Bit-Commitment UC-Functionality

The FBC functionality idealizing regular bit-commitment.
Commit b. This command simulates a party (the sender) committing

to the bit b in front of another party (the receiver). The functionality records
b and outputs Committed to the receiver and to the ideal adversary. It
then ignores any other commands until it receives the Open command from
the sender.

Open. This command simulates a party (the sender) opening a com-
mitment in front of another party (the receiver). The functionality outputs
(Opened, b) to the receiver and to the ideal adversary.

The FMCOM functionality idealizing multiple regular bit-commitment.

(Commit, sid , cid , Pi , Pj , b). Upon receiving this command from
Pi, with b ∈ {0, 1}, the functionality stores (cid, Pi, Pj , b) and it sends
(receipt, sid, cid, Pi, Pj) to Pj and the ideal adversary. It then ignores
subsequent commands (commit, sid, cid, Pi, Pj , ∗) from Pi.

(Open, sid , cid , Pi , Pj ). Upon receiving this command from Pi, if a
tuple (cid, Pi, Pj , b) for some bit b exists, then the functionality sends
(open, sid, cid, Pi, Pj , b) to Pj and to the ideal adversary. Otherwise,
the functionality does nothing. It then ignores subsequent commands
(open, sid, cid, Pi, Pj) from Pi.


	1 Introduction
	2 Setup and Target UC Functionalities
	2.1 UC-Setup Functionalities Modelling Tamper-Evident Envelopes
	2.2 Target UC Functionalities of Bit-Commitment

	3 UC (Sender-Strong) Bit-Commitments
	3.1 Pass&MayCheat — a SS-WBC protocol à la Moran and Naor MoranNaor10
	3.2 The CommitEnablesCheat and OpenEnablesCheat Protocols
	3.3 Amplifying q-WBC Sender-Strong Protocols
	3.4 EUC-Insecurity of the CommitEnablesCheat Protocol in the FDEOneSeal-hybrid model
	3.5 (Stronger) Universally Composable Security

	4 Implication-Relations between (Weak) Bit-Commitments and Distinguishable Envelopes in UC
	5 Conclusions
	A Overview on the UC and Enhanced UC Frameworks
	A.1 General Approach to UC proofs
	A.2 Enhanced UC frameworks

	B The Tamper-Evident Envelope, Creator-Forgeable Functionality (as per MoranNaor10)
	C Regular Bit-Commitment UC-Functionality

