SPADnet: from Concept to Realization

NSS-MIC Special Focus Workshop "Towards 10ps single soft photon detectors"

Claudio Bruschini, EPFL On Behalf of the SPADnet Consortium

www.spadnet.eu

SPADnet Concept & Requirements

Photonic Component, comprising:

Scintillator (LYSO)

Sensor (SPAD)

Network (Gbps)

Scalable, modular System

Photonic module construction

DPCU: Data Processing and Communication Unit

Image Sensor and Coupling to Scintillator

Pixel Architecture

- 2 x 2 mini-SiPMs
- 720 SPADs
- 1 active TDC
- ~0.6 x 0.6 mm²
- 42.6% FF

Discriminating Gamma Events

discrete Photons are counted in time bins → derivative

Time-to-digital converter (TDC) per pixel

<i>Y</i> O _C	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700
700	700	ŽΟC	Žζ	χ	Žζ	ŽΟC	700	χ	ŽΟC	χ	ŽΟC	Ś	700	700	<i>`</i> كرر
700	Ś	Σ	Ś	Ś	\mathcal{F}	Σ	$\mathcal{V}_{\mathcal{C}}$	Ś	Ś	Ś	Ś	Ś	Ź	700	700
700	Ź	Ś	Ś	Ś	Σ	χ	$\mathcal{S}_{\mathcal{C}}$	Ś	Ś	Ŕ	Ś	Ŕ	Ś	700	χος
χος	Ś	Š	Ś	Ś	Ś	Śζ	Š	Ś	لحج	Ś	کی	Ď	Ś	700	χ
700	Ź	χ	Ś	Ś	χOC	\sum_{i}	Σ	Ś	Ś	Ŕ	χ	Ŕ	Ś	700	ŽΟC
700	$\gamma_{\mathcal{O}_{\mathcal{C}}}$	Ž	700	χ	ŽδC	Ž	ŽδC	Ś	<i>Y</i> SC	Ś	<i>Y</i> SC	Ś	Ź	700	700
$\gamma_{\mathcal{O}_{\mathcal{C}}}$	χÓC	ζÓC	Σ	Ś	ŽδC	<i>Y</i> 2C	$\mathcal{V}_{\mathcal{C}}$	Ś	χOC	Ś	χOC	Ŕ	Ŕ	700	ŽΟς

Multi-Ring Sensor Network Architecture & Coincidence Detection

Axial ring

<u>Coincidence packets are circulated</u> <u>first</u> (32 bits, mainly timing information)

[If coincidence] True event Packet 64 bits

- Node information
- •Scintillation τ , E, x-y

Realization and Results

Sensor Micrograph

Braga et al., ISSCC 2013

Characterization (²²Na, 370kBq): **Energy Spectrum**

← photo peak resolution = 10.8%

······· 1275kev compton

Gamma Characterization

Coincidence timing resolution:

-Algorithm from [Braga, NSS 2012], with 3 timestamps.

Micro-Optical Structures

Conventional hemispherical microlenses.

 The etching technique for the realization of the master leads to various shapes: Flat microlens (→ for parabolic structures) and sharp edge

Compact Packaging: Through-Silicon

Vias (TSVs)

Frontside: Smooth Abutment

Assembly with similar TSV chips

- Flat and level for scintillator mounting
- Easy X,Y scalability
- Standard reflow assembly

SPADnet tile

PET detector module optimisation

Primary choice

- 2x better total count
- works with modified COG

Reserve solution

- good spatial resolution w. COG
- acceptable total counts

Conventional

- non-DOI capable
- safe, prooven solution

Clinical PET Network Simulations

Axial ring

Worst case expected gamma event rate per module

Network Implementation

- Migration to multi-ring for three applications (H, B, P)
- Clock synchronization completed

Preliminary System

- Non-magnetic material
- Mechanical stability (~3.5 kg crystal)
- Mechanical precision
- Flexibility
- Easy to mount on Mediso's existing gantry

Beyond SPADnet – Possible Enhancements of the underlying Concepts

Alternative detector modules

TDCs: use of more advanced processes

- MEGAFRAME128: an array of 160x128 TDCs
- Pixel size: 50μm,
 Timing res: 55ps,
 0.13μm process
- Move towards more advanced processes -> even better time resolution?

TDCs: ASIC vs FPGA

FPGA

- Best time uncertainty:20ps
- Usage examples
 - —High-energy physics
 - —OpenPET

ASIC

- Best time uncertainty: <1ps
- Examples
 - —Time-correlated imaging
 - —Frequency synthesizers for RF

SPADs: increase bias voltage

Red laser (637 nm)

- Increased bias voltage better timing resolution vs increased noise (DCR)
- Advantageous when using robust architectures

Preclinical ToF Application

Lower Minimal Detectable Activity (extend system dynamic range)

Conclusions

- SPADnet Innovates in:

- Gamma detection via multi-pixel sensor with embedded TDCs and digital output
- Large format with through-silicon-via based packaging and CMOS compatibility, Advanced optical coupling
- Scalable, multi-ring network with coincidence detection at gigabit data rates
- Image reconstruction exploiting spatial information

Overall considerations

 Let's not forget practical aspects: Scalability, room temperature operation, mass production, and... cost!

Live sensor demo & Presentations

- Come see a live sensor demo at:
- → Booth #16 (MEDISO);
- → Tuesday 19:00-20:00 and Wednesday 16:00-17:00.
- SPADnet presentations:
 - L. H. C. Braga et al, N08-6
 - E. Charbon et al, M02-3
 - L. Gasparini et al, N34-8
 - B. Jatekos et al, M11-31
 - G. Patay et al, M13-6
 - L. H. C. Braga et al, M14-3

Back-up Slides

Next: Complete Photonic Component

Sensor Requirements

- Single- and multi-photon detectability
- Multi-pixel
- Time-of-arrival
- Digital output
- CMOS

Conventional Digital SiPM

Pixel Architecture

Discriminating Energy

- Fast readout of the counted photons which are proportional to the energy of the Gamma ray
- Fast evaluation of event to reduction of noise impact

Spatial and Temporal Compression

- Detector block: the mini-SiPM
 - —Shortened SPAD pulses flow through a compression tree up to a counter.

The Advantages of TOF PET

Tera-Tomo™ based, binned ToF reconstruction

Any finite support distribution can be used

Boxcar, 1 iteration

Gaussian, 1 iteration

Edge artefacts in the quickest "boxcar" approximation vanish in the first iterations

ToF + AC + SC + TV are working and optimized simultaneously

Boxcar, 3 iterations

Gaussian, 3 iterations

SPADnet Consortium - www.spadnet.eu

- EPFL, Lausanne, Switzerland
- TU DELFT, Delft, Netherlands
- Univ. of Edinburgh, Edinburgh, Scotland
- Fondazione Bruno Kessler, Trento, Italy
- STMicroelectronics, Edinburgh, Scotland
- STMicroelectronics, Crolles, France
- MEDISO Ltd., Budapest, Hungary
- LETI, Grenoble, France
- Budapesti Muszaki es Gazdasagtudomanyi Egyetem (BUTE), Budapest, Hungary

Expected Impact

- Cheaper, simpler, scalable, robust PETs
- MRI compatibility, radhardness
- New radiotracers with low lifetime and high specificity will be feasible

