
Temperature-Aware Runtime Power Management for
Chip-Multiprocessors with 3-D Stacked Cache

Kyungsu Kang1 and Giovanni De Micheli2
1 CAE Team, Samsung Electronics, Hwasung, Korea

2LSI, EPFL, Lausanne, Switzerland

Seunghan Lee and Chong-Min Kyung
EE, KAIST, Daejeon, Korea

Abstract—The advent of 3-D fabrication technology makes it
possible to stack a large amount of last-level cache memory onto
a multi-core die to reduce off-chip memory accesses and, thus,
increases system performance. However, the higher power density
(i.e., power dissipation per unit volume) of 3-D integrated circuits
(ICs) might incur temperature-related problems in reliability,
leakage power, system performance, and cooling cost. In this
paper, we propose a runtime solution to maximize the perfor-
mance (i.e., instruction throughput) of chip-multiprocessors with
3-D stacked last-level cache memory, without thermal-constraint
violation. The proposed method combines runtime cache tun-
ing (e.g., cache-way partitioning, cache-way power-gating, cache
data placement) with per-core dynamic voltage/frequency scaling
(DVFS) in a temperature-aware manner. Experimental results
show that the integrated method offers 23% performance im-
provement on average in terms of instructions per second (IPS)
compared with temperature-aware runtime cache tuning only.

I. INTRODUCTION

3-D integration is an emerging technology that can stack
multiple active silicon layers on top of each other, and connect
them through vertical interconnects [e.g., through silicon vias
(TSVs)]. For instance, a large amount of last-level cache can
be stacked onto a multi-core die to reduce the latency and
power consumption resulting from off-chip memory accesses
[1][2]. As more cache memory tiers are stacked, the increased
cache capacity is expected to improve the system performance
owing to the reduced number of off-chip memory accesses.
However, multiple (memory) die stacking may cause a drastic
increase in power density which causes temperature-related
problems in reliability (e.g., negative bias temperature instabil-
ity, time-dependent dielectric breakdown), power consumption
(i.e., temperature-induced leakage power), performance (i.e.,
increased circuit delay as temperature increases), and system
cost (e.g., cooling and packaging cost).

For power and thermal management techniques in 3-
D chip multiprocessors (CMPs), dynamic voltage frequency
scaling (DVFS) is a well-known technique to control power
consumption of processing cores and, thus, the whole system
temperature [3][4][5]. DVFS takes an advantage of the fact
that linear reduction in the supply voltage can quadratically
reduce the power consumption, while linearly slows down
the clock frequency. When operating temperature approaches
the thermal limit, reducing core’s voltage/frequency effectively
reduces the operating temperature, but inevitably leads to
system performance degradation. In conjunction with core’s
thermal management, facilitating thermal management tech-
niques for stacked memory also needs to be considered be-
cause temperature of the stacked memory (and the whole
system temperature) substantially increases owing to the heat
transferred from the processing cores as well as the heat

generated by the stacked memory itself. Turning off a subset
of cache memory (e.g., cache ways) can suppress the cache
leakage power, thus help reduce the whole system temperature.
However, too aggressive power-gating of cache resources may
incur performance degradation due to the increase in cache
misses. Thus, the amount of cache capacity should be deter-
mined at runtime according to the memory access demand of
applications running on 3-D CMPs [6].

In this paper, we propose a runtime solution that integrates
both DVFS and runtime cache tuning in a temperature-aware
manner to maximize performance of 3-D CMPs in terms of
instructions per second (IPS), while keeping the operating
temperature from the maximum temperature limit. Although
temperature-aware DVFS and cache tuning are self-sufficient
techniques, applying them together help fully exploit the poten-
tial of both techniques. For example, under a given temperature
(and/or power) limit, one can reduce core’s supply voltage
to activate more cache resources (i.e., to allocate more cache
capacity to the processing cores) to reduce off-chip memory
accesses. On the other hand, one can turn off more cache
resources and increase core’s supply voltage and clock speed.
For the cache tuning techniques, way-based cache partitioning
[7] and power-gating [8] are used. The contributions of this
paper are as follows.

1) We simultaneously considered way-based cache par-
titioning, power-gating, and per-core DVFS to max-
imize performance of 3-D CMPs in a temperature-
aware manner. We developed analytical models that
help determine the positions of cache ways to be
turned off, the allocation of cache ways to each core,
and the supply voltage of each core in order to
maximize the instruction throughput without violating
the temperature limit. The analytical models exploit
the inherent thermal characteristics of 3-D ICs, i.e.,
heterogeneous cooling efficiency (e.g., silicon layers
closer to the heat sink have higher cooling efficiency)
and heterogeneous thermal coupling (e.g., blocks in
different dies but in the same horizontal position have
a strong thermal correlation among them).

2) Based on runtime workload monitoring units, we
applied the proposed analytical models as a runtime
solution with considerations of memory access be-
havior of applications (i.e., CPU stall time induced
by off-chip memory accesses). For fast computation,
some numerical algorithms and a look-up table (LUT)
are used. Experimental results show that the integrated
method (i.e., the proposed one) gives a significant per-
formance improvement than applying either technique
without the other.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148000395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A solution that simultaneously manages the power con-
sumption of cores and cache memory was first suggested in
[25], where a runtime greedy algorithm is proposed to find
an energy-minimal cache and voltage/frequency configuration
among some pre-defined configurations (i.e., combinations
of available core’s voltage/frequency level, cache line size,
and cache set-associativity). In [26], a runtime solution for
single core is proposed that dynamically adopts the core’s
voltage/frequency and the cache configuration parameter (e.g.,
the number of cache ways) according to the workload re-
quirements (e.g., number of execution cycles, number of L2
cache accesses/misses, etc.). J. Zhao et al. [27] applied voltage
control to both processor cores and MRAM-based L2 cache
hierarchy where a fixed cache capacity is assigned to cores,
which is likely to lead to suboptimal result. However, [25],
[26], and [27] have considered neither peak temperature nor
temperature-induced leakage energy, which is not applicable
to 3-D CMPs. Kang et al. [28] first proposed a thermal
management technique that simultaneously manages the power
consumption of cores and stacked cache memory in 3-D CMPs
as a design-time solution, not applicable at runtime.

The rest of this paper is organized as follows. Section II
explains preliminaries. Section III gives a motivational exam-
ple of our work. Section IV presents the problem definition.
Section V presents analytical formulations to solve the defined
problem. Section VI explains how to apply the analytical
formulations at runtime. Section VII presents the experimental
setup and results followed by conclusion in Section VIII.

II. PRELIMINARIES

A. Heterogeneous Thermal Characteristics in 3-D CMPs

Fig. 1 illustrates a coarse-grained thermal model of a 3-D
CMP where each block (e.g., core and cache) is represented
by a set of thermal model element (i.e., thermal resistance,
heat capacitance, and current source) [4][5]. In Fig. 1, the
heat sink is located at the bottom of the die stack. The
power consumption of a block influences the temperature
of other blocks as well as its own temperature. However,
vertically adjacent blocks have much larger thermal influence
on each other than horizontally adjacent blocks, which is called
heterogeneous thermal coupling. It is because heat dissipation
occurs mostly in the vertical direction due to much larger
thermal resistance between horizontally adjacent blocks (i.e.,
Rintra) than that between vertically adjacent blocks (i.e.,
Rinter). According to the experimental data in [4], Rintra is
approximately 2.44K/W, while Rinter approximately 0.15K/W,
i.e., Rintra ∼ 16 · Rinter, which means that most heat
propagates vertically.

Ignoring the heat flow in horizontal direction, the steady-
state temperature of each block is calculated as follows.

T3 = P3 ·Rinter + T2 (1)

T2 = (P2 + P3) ·Rhs + Tamb (2)

where T2 and T3 are the temperatures of Block 2 and Block
3, P2 and P3 are the power consumed by Block 2 and
Block 3, respectively. Tamb is the ambient temperature and
Rhs is the thermal resistance from Block 2 to the ambient
through the heat sink. As shown in Eqns. (1) and (2), blocks
closer to the heat sink have higher cooling efficiency than

Fig. 1. Coarse-grained thermal model of a general 3-D CMP where each
block has uniform temperature distribution.

those located farther from the heat sink because the heat
generated from the farther blocks is transferred to the heat sink
through more thermal resistors than the closer blocks, which
we call heterogeneous cooling efficiency. Details about these
heterogeneous thermal characteristics with experimental data
are also shown in [4][5][9].

B. Application’s Execution Time

A task can be defined as a sequence of instructions to be
executed. Thus, execution time of a task is sum of latencies
of all instructions in the task, which can be divided into two
parts; on-chip and off-chip latencies. The on-chip latency is
caused by events that occur inside the core such as data
dependency, cache hit, branch prediction, etc. These events can
be synchronized to the internal clock and the resultant delay
can be reduced by increasing core’s clock frequency. The off-
chip latency, on the other hand, is not affected by changing
the core’s clock frequency since accesses to off-chip memory
(resulting from last-level cache misses) are synchronized to the
memory bus clock. Thus, execution time of a task, tex can be
presented as follows.

tex =
w

f
+ tstall (3)

where w is the number of core clock cycles when there is
no core stall for off-chip memory accesses, f core clock fre-
quency, and tstall stall time spent by a core for the completion
of the off-chip memory accesses. Note that the amount of
change in the execution time owing to the clock frequency
change is limited to the first part of the right-hand side in
Eqn. (3). Fig. 2 illustrates execution time of three programs,
gzip [10], equake [10], and free cfd [11]. gzip shows the
most significant performance improvement as the core clock
frequency increases, while equake shows little performance
improvement. It is because equake is memory bound that
there are many off-chip memory accesses owing to the last-
level cache misses. The execution time of such a memory-
bound application is relatively independent of the core clock
frequency.

III. MOTIVATION

In this section, we explain the motivation of our work with
an example of 3-D CMPs. Fig. 3 shows a 3-D CMP consisting
of two cores with eight tiers of stacked L3 (last-level) cache
memory. Each cache tier consists of eight cache ways each

TABLE I. RESULTS OF THE MOTIVATIONAL EXAMPLE

Scheme # of cache ways assigned to # of cache ways stacked on Clock frequency (GHz) of Normalized IPSCore 1 Core 2 Core 1 Core 2 Core 1 Core 2
DCA only 8 5 7 6 3.00 3.00 1.00

DCA with DVFS 25 13 18 20 2.35 1.68 1.24
DCAP with DVFS 22 14 24 12 1.59 2.23 1.30

Fig. 2. Execution time of three applications (i.e., gzip, equake, and free cfd)
with respect to core clock frequency.

Heatsink

Core 2

Core Tier

Core 1

L3 Cache Tier

L3 Cache Tier

L3 Cache Tier …

Way

Core-stack

Way

Fig. 3. A motivation example of 3-D CMPs consisting of two cores with
eight tiers of L3 cache.

of which has 256KB capacity. The core tier is located next
to the heat sink since cores are major heat sources. Let us
assume that equake and free cfd are mapped to Core 1 and
Core 2, respectively. The average power consumed by cores
running equake and free cfd are, respectively, 30.65W and
61.87W at 2GHz clock frequency. Fig 4 shows cache misses
per instruction for equake and free cfd as L3 cache capacity
varies from 256KB to 8MB when two programs are executed
separately. The target 3-D CMP, which is constrained by max-
imum temperature, Tmax=80oC, dynamically performs per-
core voltage/frequency scaling and per-cache way power gating
during runtime. The clock frequency (and the corresponding
supply voltage) varies from 1GHz (1.097V) to 3GHz (1.372V).
As explained in Section II, a core and cache ways directly
stacked on the core have strong thermal correlation. Thus, we
call the core and the cache ways in the same stack a core-stack
as shown in Fig. 3.

Table I shows performance results of three different thermal
management schemes [i.e., dynamic cache-way assignment
(DCA) only, DCA with DVFS, and dynamic cache-way as-
signment and placement (DCAP) with DVFS] in terms of
instructions per second (IPS). In Table I, the second column

Fig. 4. Cache misses per instruction for equake and free cfd with varying
L3 cache size from 256KB to 8MB while the core clock frequency is fixed.

shows the average numbers of cache ways logically assigned
to Core 1 and Core 2, respectively. The third column shows
the average number of activated (i.e., turned on) cache ways
stacked on Core 1 and Core 2, respectively. The fourth column
shows the average clock frequency of Core 1 and Core 2,
respectively. The instructions per second (IPS) results are
normalized with respect to that of DCA only.

In case of DCA only, cache ways are assigned to Core 1
and Core 2 without per-core voltage/frequency scaling such
that the sum of IPS is maximized while the temperature of
each block (i.e., core and cache way) does not exceed Tmax. As
shown in Table I, more cache ways are assigned to Core 1 than
Core 2, because equake (mapped onto Core 1) achieves larger
performance improvement than free cfd (mapped onto Core 2)
as the assigned cache capacity increases, as shown in Fig. 4.
In DCA only scheme, we assume that as many physical cache
ways are turned on as required to be assigned to each core,
starting from the heat sink side because of the heterogeneous
cooling efficiency (e.g., silicon blocks farther from the heat
sink have higher temperatures.). As the result, the physical
distribution of activated cache ways are more even across
Core-stack 1 and Core-stack 2 than their logical assignment
as shown in Table I. However, the performance of DCA only
is limited by the relatively small number of assigned cache
ways because, without voltage/frequency scaling, the number
of activated cache ways needs to be lowered to reduce the
whole power consumption thereby meeting the temperature
constraint.

In our first method, i.e., DCA with DVFS, if the marginal
performance gain due to the cache capacity allocation is larger
than that due to core’s frequency assignment while the power
consumption due to either method remains equal, then more
cache ways are activated and assigned to the cores while
lowering the supply voltage and clock frequency of cores in
order to satisfy the maximum temperature limit, as shown in
Table I. Compared with DCA only, DCA with DVFS allows
19% performance improvement. Note that we still assume that
the cache ways, which are logically assigned to each core, are
turned on starting from the tier closest to the heat sink.

While, DCA with DVFS focuses only on the effectiveness
of cache capacity assignment with voltage/frequency scaling
of cores, DCAP with DVFS further enhances the performance
by considering both application’s memory boundedness and
heterogeneous thermal coupling of 3-D CMPs together. In
DCAP with DVFS, more cache ways are activated in the core-
stack running application with higher memory boundedness
because the execution time of the core (running the application
with higher memory boundedness) is less sensitive to the
change of core clock frequency. Thus, as shown in Table I,
DCAP with DVFS activates more cache ways in Core-stack 1
than Core-stack 2, although the number of cache ways logically
assigned each core is similar to that of DCA with DVFS. Since
more cache ways are activated in Core-stack 1, more power
consumed by cache ways is incurred there. Thus, in order to
meet the temperature constraint in Core-stack 1, Core 1’s clock
frequency is set to a lower level, on the other hand, Core 2’s
clock frequency is set to a higher level without violating the
temperature limit because the number of turned on cache ways
in Core-stack 2 is reduced. This frequency setting in DCAP
with DVFS gives additional performance improvement because
memory-bound application (e.g., equake) is less sensitive to
frequency change than CPU-bound application (e.g., free cfd),
as shown in Table I.

IV. PROBLEM DEFINITION

This paper focuses on a multi-core system where 3-D L3
cache is stacked as shown in Fig. 5. The tier closest to the heat
sink consists of multiple cores with its own private L1 and L2
cache. Multiple tiers of L3 cache each of which consists of
multiple cache ways are stacked on the multi-core tier. Each
core dynamically changes its clock frequency and voltage level
at a discrete time interval. Each cache way can be dynamically
turned on and off when it is necessary. The discrete time
intervals for both scaling of voltage/frequency and turning
on/off of cache ways are determined by the scheduler in the
operating system (OS). System temperature and performance
profiling, e.g., instructions per cycle (IPC), are obtained from
temperature sensors and hardware performance counters at
runtime as they are provided in most modern processors. The
delay overhead of accessing temperature sensors and hardware
performance counters is assumed to be negligible.

The problem is to find 1) frequency/voltage of each core
and 2) cache way placement (i.e., assigning cache ways to each
core and turning off unassigned cache ways) at every discrete
time interval, e.g., 200ms, such that the instruction throughput
of the target 3-D CMP is maximized while the temperature
constraint is met. The problem can be defined as follows.
Given the number of cores, M , an allocated thread set, the
number of stacked cache tiers, L, and the total number of cache
ways, B, the problem is to find the clock frequencies (and the
corresponding voltages) of each core, fset = f1, f2, ..., fM ,
the number of cache ways assigned to each core, bset =
b1, b2, ..., bM , and the number of power-on cache ways that
are directly stacked on each core, lset = l1, l2, ..., lM such
that the total sum of IPS (instructions per second), IPSsum
is maximized while keeping the temperature of each core
and cache way within the given temperature limit, Tmax. The
problem is represented as follows.

Find fset, lset, bset (4)

Core

Core Tier

Core

Core Core

Way

Way

L3 Cache Tier

Way

Way

L3 Cache Tier
…

Way

Way

L3 Cache Tier

Heatsink

Fig. 5. An example of target 3-D CMPs consisting of four cores with 3-D
stacked L3 cache. Each core has its own private L1 and L2 cache that are not
depicted in this figure.

such that IPSsum =

M∑
i=1

IPSi is maximized (5)

subject to T corei ≤ Tmax ;∀i = 1, 2, ...,M (6)
Twayj ≤ Tmax ;∀j = 1, 2, ..., B (7)
M∑
i=1

bi =

M∑
i=1

li ≤ B (8)

li ≤
W · L
M

;∀i = 1, 2, ...,M (9)

where IPSi is IPS of core i, and W is the number of cache
ways per tier.

V. ANALYTIC FORMULATIONS FOR CACHE TUNING WITH
VOLTAGE/FREQUENCY SCALING

In Section V-A, we explain how to determine the
performance-maximal number of cache ways assigned to each
core, i.e., bset when the total number of activated (i.e., turned
on) cache ways, Bactive is given. In Section V-B, we explain
how to determine the positions of cache ways to be turned
on as well as the clock frequency of each core such that
the performance degradation owing to the decrease in clock
frequency is minimized. In Section V-C, we explain how to
determine the total number of activated cache ways, Bactive
that maximizes the system performance.

A. Cache Way Assignment to Cores

The number of cache misses (Nmiss
i) decreases as a power

law of the amount of cache capacity as follows [13].

Nmiss
i (bi) = γrefi · (Cway · bi)−µi (10)

where Cway is the cache capacity per way and γrefi is the
reference cache miss ratio which depends on the application
running on core i. The exponent, µi also depends on core i
and typically lies between 0.3 and 0.7. To estimate γrefi and
µi, the cache monitoring circuit proposed in [7] is adopted.

In Eqn. (3), tstall can be modeled by the number of last-
level cache misses as follows [14].

tstalli = α ·Nmiss
i + β (11)

where α and β are empirical constants determined by system
memory architecture (e.g., bus/memory frequency and width).
The rationale of modeling tstall only with the number of last-
level cache misses is two-fold. First, the effect of last-level
cache miss dominates the others (e.g., TLB miss, interrupts,
etc.). Second, the number of hardware counters simultaneously
monitored in a processor is usually limited.

Based on Eqns. (10) and (11), the stall time of core i, tstalli
is represented as a function of cache capacity assigned to core
i (i.e., bi), therefore IPSsum in Eqn. (5) can be rewritten as
a function of bi, as follows.

IPSsum(bi) =

M∑
i=1

Ni
texi (fi, bi)

=

M∑
i=1

Ni
wi

fi
+ tstalli (bi)

(12)

where Ni is the total number of instructions executed in core
i. When the clock frequency of each core (i.e., fi) is fixed,
IPSsum in Eqn. (12) is a non-decreasing concave function
with respect to the number of assigned cache way, bi. Thus,
we introduce the concept of performance improvement (PI) of
each core with respect to the number of assigned cache ways
as follows.

PIi =
∂IPSi
∂bi

(13)

where PIi indicates the IPS improvement of core i due to
the increase in cache capacity by one additional cache way.
IPSsum can be maximized when the total number of activated
cache ways, Bactive is distributed to all the cores such that
each core achieves the same PI as follows.

PI1 = PI2 = ... = PIM (14)

A proof of Eqn. (14) can be given by using Lagrange function
[15], which is omitted due to the page limit.

B. Cache Way Activation with Voltage/Frequency Scaling

As described in Section II-A, a core and cache ways within
the same core-stack have strong thermal correlations with each
other. That is, the temperature of a core-stack depends mainly
on its own power consumption (consumed by the core and the
cache ways in the same core-stack). We refer to cache ways
which are stacked on core i and positioned on the jth cache tier
as way-set (i, j). Based on Eqns. (1) and (2), the temperatures
of core i and way-set (i,j) can be presented as follows.

T corei = Rhs · (P corei +

L∑
j=1

Pway−seti,j) + Tamb (15)

Tway−seti,j = Rj ·
L∑
k=j

Pway−seti,k + Tway−seti,j−1 (16)

where P corei and Pway−seti,k are, respectively, the power con-
sumptions of core i and way-set (i, k) and Rj is the thermal
resistance between the way-set on tier j − 1 and the way-set
on tier j. [Tier 0 indicates the core tier in Eqn. (16)].

According to Eqns. (15) and (16), the temperature of top
tier, Tway−seti,L becomes the highest temperature of core-stack i.
As the number of activated (i.e., turned on) cache ways in core-
stack i increases, Tway−seti,L [shown in Eqn. (16)] increases
more than linearly with respect to the number of activated
cache ways in core-stack i (i.e., li) and frequency of core i
(i.e., fi) needs to be reduced when the maximum temperature
of core-stack i exceeds the temperature limit, Tmax. Thus,
fi can be represented as a function of li. If the number of
cache ways assigned to each core, bi is fixed, Eqn. (12) can
be rewritten as follows.

IPSsum(li) =

M∑
i=1

Ni
wi

fi(li)
+ tstalli

(17)

IPSsum in Eqn. (17) is a non-increasing concave function
with respect to li because the maximally allowable clock
frequency of core i, which is obtained when Twayi,L becomes
Tmax, decreases more than linearly with respect to li. Thus,
we introduce the concept of performance loss of each core,
PLi with respect to li as follows.

PLi =
∂IPSi(li)

∂li
(18)

where PLi indicates the IPS loss of core i owing to the
decrease of clock frequency resulting from one additional ac-
tivated cache ways in core-stack i. Thus, in order to maximize
IPSsum in Eqn. (17), the number of activated cache ways in
each core-stack needs to be determined such that each core has
the same performance loss per cache way activated as follows.

PL1 = PL2 = ... = PLM (19)

We also omit the proof of Eqn. (19) because the proof is
basically the same as Eqn. (14) using Lagrange function.

C. Total Number of Activated Cache Ways Decision

Fig. 6 shows the result of the sum of IPS of each core
with respect to the total number of activated cache ways,
Bactive, when a set of benchmark applications are mapped on
cores and cache way assignment and activation with proper
voltage/frequency scaling are determined based on Eqns. (14)
and (19). As shown in Fig 6, the curve of IPSsum is convex,
because there is a trade-off between the reductions in cache
misses and clock frequencies as the number of activated cache
ways increases. While increasing the number of activated
cache ways, IPSsum may increase owing to the reduction in
cache misses resulting from more cache capacity allocation.
However, it may also reduce core’s clock frequency, thus,
decrease IPSsum in order to offset the additional power
consumed by the more activated cache ways, thus not to
violate the temperature limit. In conclusion, there exists a
performance-maximal number of activated cache ways, Bopt
(shown in Fig. 6) at the inflection point where slope of the
curve is zero.

VI. APPLICATION OF ANALYTIC FORMULATIONS AT
RUNTIME

In order to apply the analytic formulations explained in
Section V to 3-D CMPs at runtime, we need to consider
discrete values of the number of assigned and activated cache

In
st

ru
ct

io
ns

 p
er

 se
co

nd

The number of activated cache ways

Fig. 6. Results of sum of IPS, IPSsum, with respect to the total number
of activated cache ways, Bactive.

Algorithm to find lset

1: for (i = 0; i < M; i++) do
2: l[i] = 1;
3: end for
4: remains = Bactive – M;
5: while (remains > 0) do
6: grad_min = MAX_VALUE;
7: for (i = 0; i < M; i++) do
8: grad = get_grad (i, l[i]);
9: if (grad < grad_mid) then
10: grad_mid = grad;
11: core_index = i;
12: end if
13: end for
14: l[core_index]++;
15: remains – –;
16: end while

Fig. 7. Algorithm to find the number of activated cache ways for each
core-set, lset

ways, and that of clock frequency of cores with algorithm’s
computational complexity. Fig 7 shows a greedy algorithm
to find the number of activated cache ways for each core-
stack, lset. This greedy algorithm finds optimal lset based on
Eqn. (19). The algorithm starts with initializing the number of
activated cache ways for each core-stack as one (line 1-3). The
algorithm then finds the core having the smallest gradient, PL,
and increases the number of activated cache ways in the core-
stack by one (line 6-14). This makes the gradient of each core,
PLi, almost equal to each other. Lines 6-15 in the algorithm
are repeated until the variable remains becomes zero. Note that
this greedy algorithm can also be applied to find the number
of cache ways to be assigned to each core, bset, because of
the same relation of Eqns. (19) and (14).

Since temperature of a core-stack is determined by power
consumed by the core and the cache ways in the same core-
stack, the maximum clock frequency that does not violate the
temperature limit can be pre-computed for all available range
of workload’s switching activity (or IPC) and the number of
activated cache ways in the core-stack. For fast clock frequency
assignment, we prepared a look-up table (LUT) storing the
design-time results of (voltage and) clock frequency as shown
in Fig 8. Since the clock frequency is not a continuous value
in real design, an approximation is required to determine the
clock frequency of each core. Thus, if the determined clock
frequency based on the LUT does not match any frequency
levels of the real system, the nearest one, but not higher one,

IPC$ #ofac*vated$cache$ways$ Frequency$

0.2$~$5.0$
(0.1$steps)$

1$~$32$
(1$steps)$

1.0GHz$~$3.0GHz$

Fig. 8. Look-up table (LUT) storing clock frequency of a core in a core-stack
with respect to instructions per cycle (IPC) and the number of activated cache
ways in the core-stack.

is selected not to violate the temperature constraint. In our
experiment, we used seven steps of voltage/clock frequency
levels from 1GHz to 3GHz with 0.333GHz step size.

Since the curve of IPSsum is convex with respect to
Bactive as shown in Fig. 6, a root-finding algorithm such as
bisection method [16] can be applied to find the performance-
maximal number of activated ways, Bopt. The bisection
method is a general binary search algorithm where the com-
putational complexity is O(logNk

2), where Nk is the number
of possible ways.

VII. EXPERIMENT

A. Setups

We performed experiments using 3-D CMPs consisting
of a multi-core tier and eight stacked L3 cache tiers. The
number of cores varies from four to eight. A core studied in
our experiments is based on the architecture of Intel Core 2
Duo Merom processor [17], manufactured at 65nm technology
node. In each L3 cache tier, four cache ways are directly
stacked on a core and each way has capacity of 256KB [18].
To estimate temperature-dependent power consumption for the
cores and cache, we used a leakage power model from [12].
To calibrate the power values of core and cache with respect to
temperature, we used the product data-sheet [19] and CACTI
[18], respectively. The switching power used in this paper is
based on the relationship between power, switching activity,
frequency, and voltage, which is presented as follows.

Ps = Cs · IPC · V 2
dd · f3 (20)

where Cs is the average switching activity and different
among applications since the usage of the functional units
in microprocessor is different among them. To characterize
Cs for each application, we used PTscalar [20], which is a
cycle-accurate micro-architecture-level performance and power
simulator for Super Scalar architecture.

For 3-D temperature estimation, we employed HotSpot
[21] version 5.0 as a grid-based thermal modeling tool. Core
floorplan was obtained from [17]. Each core has a size of
7.237mm×5.23mm. The convection capacitance and resistance
are 140.4J/K and 0.1K/W, respectively. Other physical param-
eters such as thickness and thermal conductivity of each tier
are shown in Table II. In Table II, interlayer is the interface
material between two adjacent silicon layers that are connected
with TSVs. We modeled interlayer as a homogeneous layer
with its thermal resistivity and specific heat capacity values.
To account for the thermal impact of interlayer, we assumed
a homogeneous TSVs distribution that allows us to calculate
the combined thermal conductance of interlayer based on the
TSV density. This modeling method has already been justified
in [3]. We assumed that each core-stack has a temperature
sensor that provides temperature reading at regular intervals

TABLE II. PHYSICAL PARAMETERS FOR THERMAL MODEL

Layer Thermal conductance Heat capacitance Depth
(W/mK) (J/m3K) (µm)

Heat sink 400.0 3.55 · 106 6,900
Heat spreader 400.0 3.55 · 106 1,000

Thermal interface material 4.0 4.00 · 106 20
Core / L3 Cache 100.0 1.75 · 106 150

Interlayer 4.0 4.00 · 106 20

TABLE III. BENCHMARK SUITES

Suite Programs
HP6 free cfd, free cfd, face rec, face rec, sphinx3, sphinx3
LP6 equake, equake, mcf00, mcf00, mcf06, mcf06
MP6 free cfd, face rec, sphinx3, equake, mcf00, mcf06

HVAR4 free cfd, face rec, equake, mcf00
LVAR4 face rec, sphinx3, mcf00, mcf06
MVAR8 free cfd, face rec, face rec, sphinx3, mcf00, mcf00, mcf06, equake

(e.g., 200ms). In our experiment, Tamb and Tmax are set to
40oC and 80oC, respectively.

Our experiment was performed with SPEC2000/2006
[10], ALPBench [22], and a computational fluid dynamics
(CFD) [11] benchmark programs. Among them, we chose
six memory-intensive programs and classified the benchmark
suites based on the power intensity and variation as listed in
Table III. In Table III, HP, MP, and LP indicate high power
intensive, middle power intensive, and low power intensive,
respectively. The numbers followed by HP, MP, and LP indi-
cate the number of cores used in the experiments. Similarly,
HVAR, MVAR, and LVAR indicate high power variation,
middle power variation, and low power variation, respectively.

B. Results

We performed experiments with four different thermal
management schemes as follows.
1) DVFS only: Clock frequency of each core varies to satisfy
the maximum temperature limit, while the whole cache ways
are activated.
2) DCA only: Each core runs at a fixed clock frequency, i.e.,
3GHz, while cache ways are partially activated and assigned
to each core in order to maximize system performance and not
to violate the temperature limit.
3) DCA with DVFS (proposed method): Cache way assign-
ment with voltage/frequency scaling is performed. We assume
that the ways farthest from the heat sink are turned off if there
are unassigned cache ways.
4) DCAP with DVFS (proposed method): Position of activated
cache ways is also considered, while applying cache way
assignment with voltage/frequency scaling.

Fig. 9 shows the IPS results, which are normalized with
respect to that of DCA only. DCA with DVFS improves IPS
by 16.22% on average (ranging from 5.4% to 24.2%) compared
with DCA only. This results show that allocating more cache
capacity to each core while sacrificing clock frequency is
effective in achieving further performance improvement under
the given temperature constraints. Table IV shows the average
clock frequency and the number of activated cache ways per
core for DCA only and DCA with DVFS. As shown in Table
IV, DCA with DVFS has more activated cache ways with
lower clock frequency for all benchmark suites than DCA only.
As shown in Fig. 9, DVFS only is the worst scheme because of

HP6$ LP6$ MP6$ HVAR4$ LVAR4$ MVAR8$

Instruc(ons*per*second*

0.00$

1.40$

1.20$

1.00$

0.80$

0.60$

0.40$

0.20$

DVFS$only$ DCA$only$ DCA$with$DVFS$ DCAP$with$DVFS$

Fig. 9. IPS (instructions per second) results of each benchmark suite.

TABLE IV. AVERAGE CLOCK FREQUENCY, favg AND AVERAGE
NUMBER OF ACTIVATED CACHE WAYS PER CORE, lavg .

Benchmark DCA only DCA with DVFS
Suit favg lavg favg lavg

HP6 3.00 4.75 1.55 17.10
LP6 3.00 13.47 1.94 21.70
MP6 3.00 5.00 1.89 18.57

HVAR4 3.00 4.63 1.83 17.70
LVAR4 3.00 4.63 2.00 16.75
MVAR8 3.00 4.51 2.12 18.56

the extremely large amount of heat generated from the stacked
L3 cache without proper turning cache ways off.

DCAP with DVFS improves IPS by 22.51% on average
(ranging from 8.4% to 29.0%) compared with DCA only,
and by 7.57% on average (ranging from 3.2% to 13.5%)
compared with DCA with DVFS. The difference between
DCA with DVFS and DCAP with DVFS, i.e., up to 13.5%
performance improvement, shows that mapping the (logically)
assigned cache ways to physical cache blocks affects clock
frequency of each core and, thus, its instruction throughput.
In Fig. 9, the performance of DCAP with DVFS increases as
the IPC variations of applications increase. It shows that the
effect of more cache resource assignment becomes prominent
as the memory-boundedness of applications becomes more
significant.

The runtime method used for DCAP with DVFS (explained
in Section VI) consists of three methods; finding 1) the number
of assigned cache ways to each core, bset, 2) the number of
activated cache ways in each core-stack, lset, and 3) the clock
frequency of each core, fset. We measured the computational
time of each method from the experimental platform, i.e., LG
LW 25 laptop with a core running at 3GHz. The computational
time is shown in Fig. 10, where the time spent for finding fset
is included into the time spent for finding lset. Thus, the time
spent for finding lset is a little higher than that for bset. The
time for finding fset is used for looking up the LUT described
in Fig. 8. As shown in Fig. 10, the computation time increases
with the number of cores. Based on the experimental data in
[12], the thermal resistance-capacitance (RC) time constant is
usually on the order of hundred milliseconds. The thermal RC
time constant also increases with the footprint that is typically
proportional to the number of cores. Considering the thermal
RC time constant, the runtime overhead shown in Fig. 10 is
deemed acceptable. The transition time for voltage (e.g., dc-
dc conversion time) and frequency (e.g., phase-locked loop

Fig. 10. Computational time of DCAP with DVFS

locking time) add up to 10µs [23]. When the number of
assigned cache ways decreases at runtime, dirty cache blocks
in the cache ways that will be turned off must be written back
to the off-chip memory for data coherency. When the number
of assigned cache ways increases, it costs only wakeup time to
switch cache ways back to the active mode from the power-off
mode. According to [24], the wakeup time is negligible (i.e.,
four clock cycles).

VIII. CONCLUSION

In this paper, we proposed an integrated solution of cache
tuning (i.e., cache resource allocation and turning off unneces-
sary cache resources) and per-core DVFS for 3-D CMPs with
stacked L3 cache. The proposed method employed mathemat-
ical formulations to maximize the instruction throughput (i.e.,
instructions per second) under the given maximum temperature
constraint. The experimental results show that the proposed
method achieves up to 29% (23% on average) performance
improvement compared with the thermal management scheme
which performs temperature-aware runtime cache tuning only.

ACKNOWLEDGMENT

This work is supported by the NanoSys project (ERCAdG-
246810) and by the Center for Integrated Smart Sensors funded
by the Ministry of Science, ICT & Future Planning as Global
Frontier Project” (CISS-2013066998).

REFERENCES

[1] B. Black et al., “Die stacking (3D) microarchitecture,” In Proc. MICRO,
2006, pp. 469-479.

[2] G. Loh, “3D-stacked memory architectures for multi-core processors,”
in Proc. ISCA, 2008, pp. 453-464.

[3] A. K. Coskun et al., “Dynamic thermal management in 3D multicore
architectures,” in Proc. DATE, April 2009, pp. 1410-1415.

[4] C. Zhu et al., “Three-dimensional chip-multiprocessor run-time thermal
management,” in IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 27, no. 8, pp.1479-1492, Aug. 2008.

[5] K. Kang et al., “Runtime power management of 3-D multi-core architec-
tures under peak power and temperature constraints,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,
no. 6, pp. 905-918.

[6] G. Sun, H. Yang, and Y. Xie, “Performance/thermal-aware design
of 3D-stacked L2 caches for CMPs,” ACM Transactions on Design
Automation of Electronic Systems, vol. 17, no. 2, pp. 1-20.

[7] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: a
low-overhead, high-performance, runtime mechanism to partition shared
caches,” In Proc. MICRO, 2006, pp. 423-432.

[8] T. Ishihara and F. Fallah, “A non-uniform cache architecture for low
power system design,” In Proc. ISLPED, 2005, pp. 363-368.

[9] X. Zhou et al., “Thermal-aware task scheduling for 3D multicore
processors,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 1, Jan. 2010.

[10] Standard Performance Evaluation Corporation [Online]. Available:
http://www.specbench.org.

[11] Free Computational Fliud Dynamics [Online]. Available:
http://www.freecfd.com.

[12] W. Liao, L. He, and K. M. Lepak, “Temperature and supply Voltage
aware performance and power modeling at microarchitecture level,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 7, July 2005.

[13] A. Hartstein et al., “Cache miss behavior: is it
√
2?,” In Proc. CF, 2006,

pp. 313-321.
[14] J. Kim, S. Yoo, and C.-M. Kyung, “Program phase-aware dynamic

voltage scaling under variable computational workload and memory
stall environment,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 30, no. 1, Jan. 2011.

[15] H. Everett III, “Generalized Lagrange multiplier method for solving
problems of optimum allocation of resources,” Operations Research,
vol. 11, no. 3, May-Jun. 1963.

[16] G. Corliss, “Which root does the bisection algorithm find?,” SIAM
Review, vol. 19, no. 2, Apr. 1977.

[17] N. Sakran et al., “The implementation of the 65nm dual-core 64b
Merom processor,” in Proc. ISSCC, 2007, pp. 106, 107, and 590.

[18] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “CACTI 4.0,” HP Laborato-
ries, Palo Alto, CA, Tech. Rep. HPL-2006-86, Jun. 2006.

[19] Intel, “Intel core2 duo processors and Intel core2 extreme processors for
platforms based on mobile Intel 965 express chipset family,” Datasheet,
2008, pp. 23-40.

[20] PTscalar [Online]. Available: http://eda.ee.ucla.edu/PTscalar/
[21] W. Huang et al., “HotSpot: a compact thermal modeling methodology

for early-stage VLSI design,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 14, no. 5, May 2006.

[22] M.-L. Li et al., “The ALPBench benchmark suite for complex multi-
media applications,” In Proc. IISWC, 2005, pp. 34-45.

[23] J. S. Lee, K. Skadron, and S. W. Chung, “Predictive temperature-aware
DVFS,” IEEE Transactions on Computers, vol. 59, no. 1, Jan. 2010.

[24] H. Homayoun, M. Makhzan, and A. Veidenbaum et al., “Multiple
sleep mode leakage control for cache peripheral circuits in embedded
processors,” in Proc. CASES, 2008, pp. 197-206.

[25] A. C. Nacul and T. Givargis, “Dynamic voltage and cache reconfigura-
tion for low power,” in Proc. DATE, Feb. 2004, pp. 1376-1377.

[26] W. Wang and P. Mishra, “Leakage-aware energy minimization using dy-
namic voltage scaling and cache reconfiguration in real-time systems,”
in Proc. VLSID, 2010, pp. 357-362.

[27] Z. Jishen, D. Xiangyu, and X. Yuan, “An energy-efficient 3D CMP
design with fine-grained voltage scaling,” in Proc. DATE, 2011, pp.
1-4.

[28] Kang et al., “Maximizing throughput of temperature-constrained multi-
core systems with 3D-stacked cache memory,” in Proc. ISQED, 2011,
pp. 577-582.

