View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Hardware/Software Approach
for Code Synchronization in
Low-Power Multi-Core Sensor Nodes

Rubén Braojos, Ahmed Dogan, Ivan Beretta, Giovanni Ansaloni and David Atienza
Embedded Systems Laboratory
Ecole Polytechnique Fédérale de Lausanne, Switzerland
Email: {ruben.braojoslopez}, {ahmed.dogan}, {ivan.beretta}, {giovanni.ansaloni}, {david.atienza}@epfl.ch

Abstract—Latest embedded bio-signal analysis applications,
targeting low-power Wireless Body Sensor Nodes (WBSNs),
present conflicting requirements. On one hand, bio-signal analysis
applications are continuously increasing their demand for high
computing capabilities. On the other hand, long-term signal
processing in WBSNs must be provided within their highly
constrained energy budget. In this context, parallel processing
effectively increases the power efficiency of WBSNSs, but only if
the execution can be properly synchronized among computing
elements. To address this challenge, in this work we propose
a hardware/software approach to synchronize the execution of
bio-signal processing applications in multi-core WBSNs. This
new approach requires little hardware resources and very
few adaptations in the source code. Moreover, it provides the
necessary flexibility to execute applications with an arbitrarily
large degree of complexity and parallelism, enabling considerable
reductions in power consumption for all multi-core WBSN
execution conditions. Experimental results show that a multi-core
WBSN architecture using the illustrated approach can obtain
energy savings of up to 40 %, with respect to an equivalent single-
core architecture, when performing advanced bio-signal analysis.

Index Terms—Embedded Systems, Bio-Medical Signal Process-
ing, Wireless Sensor Nodes, Code Synchronization.

I. INTRODUCTION AND MOTIVATION

Recent advances in embedded bio-signal analysis have
changed the landscape of health monitoring applications, al-
lowing for continuous digital signal processing (DSP) directly
on low-power Wireless Body Sensor Nodes (WBSNs) [1]. In
addition to acquisition and wireless transmission of sampled
data, state-of-the-art WBSNs embed advanced real-time appli-
cations, able to automatically retrieve relevant diagnostic data
such as the analysis of respiration or heart rhythm [2] and the
detection of epileptic seizures [3].

Energy efficiency is of paramount importance for battery-
supplied WBSNs, which must operate autonomously for pro-
longed periods of time. To minimize energy consumption, pro-
cessing on these devices requires a carefully tailored comput-

This work has been partially supported by the EC FP7 FET Phidias project
(Grant agreement no. 318013.), and the ObeSense (no. 20NA21_143081) and
BodyPoweredSenSE (no. 20NA21_143069) RTD projects evaluated by the
Swiss NSF and funded by Nano-Tera.ch with Swiss Confederation financing.

978-3-9815370-2-4/DATE14/(©2014 EDAA

ing architecture. An effective method to decrease power con-
sumption is voltage-frequency scaling (VFS), which trades-off
the voltage supply (and, consequently, energy consumption)
for peak clock frequency [4] [5]. Aggressive VFS [6] can
nonetheless degrade run-time performance below the require-
ments of the target application, so that parallel computations
have to be performed to achieve the required throughput [7].
Low-power multi-core WBSNS, thus, appear as promising can-
didates to improve energy efficiency, exploiting the benefits of
single-instructions-multiple-data (SIMD) architectures when
executing code synchronously [8]. Devising synchronization
techniques for multi-core platforms is often domain-specific,
as trade-offs must be considered between flexibility and effi-
ciency of implementations.

Herein, we propose a new lightweight synchronization
methodology, enabling parallel execution of embedded bio-
signal processing applications on multi-core WBSN platforms.
Our solution stems from the observation that applications in
this field [2] [9] [10] are divided in several consecutive phases.
In the illustrative example of Figure 1, multiple signals are
acquired in parallel and independently processed, and outputs
are subsequently combined and transformed into a single
data stream or set of features that are later analyzed. Similar
schemes are found in most WBSNs applications [1].

In this scenario, substantial energy gains can be achieved
when multiple cores execute the same phases of an application
(e.g., conditioning in Figure 1) on multiple acquired inputs,
as demonstrated by the authors of [11] and [8]. However,
these synchronization approaches do not provide the nec-
essary flexibility to perform parallel processing of streams

bio-signals

A A/D
converter

5 A/D
converter

A/D
converter

p

Radio

Fig. 1. Block scheme of a smart WBSN platform.

https://core.ac.uk/display/148000324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on multiple cores, while also supporting producer-consumer
relationships among cores. In this work, we generalize the
concept of multi-core execution to more complex applications
presenting multiple internal phases, with an arbitrarily large
degree of parallelism and producer-consumer relationships.
To achieve this goal, we propose a novel synchronization
mechanism, allowing an efficient mapping of advanced bio-
signal processing applications.

The method detailed in the paper is a hybrid hard-
ware/software (HW/SW) solution, employing a dedicated In-
struction Set Extension (ISE) and a synchronizer unit that
orchestrates the run-time behavior of the system. It requires
little manual effort to perform application mapping and results
in small run-time overheads.

The contributions of this paper are the following:

o We propose a flexible synchronization technique for bio-
signal processing applications presenting different de-
grees of parallelism and/or producer-consumer schemes
among their internal processing phases.

e We detail the synchronization methodology and its hard-
ware and software requirements, and show a case study
of its realization on a multi-core WBSN.

o We comparatively evaluate the performance of the pro-
posed system when executing advanced bio-signal DSP
benchmarks, obtaining power savings of up to 40% with
respect to a similar single-core architecture.

The remaining of this paper proceeds as follows: Section
II reviews related works in the field, while Section III details
the proposed synchronization method. Section IV describes
the experimental set-up and Section V discusses the obtained
results. Section VI concludes the paper.

II. RELATED WORK

Embedded signal processing on WBSNs reduces the amount
of data to be stored or transmitted through the power-hungry
radio link by reporting only the analysis results [10]. More-
over, the tight energy budget of these platforms demands
careful optimization of both the executed algorithms and
the underlying hardware. Indeed, dedicated processing cores
have been proposed which, by integrating custom accelerators
for common operations (such as FFT and Cordic engines),
increase the energy efficiency of bio-signal applications [12]
[13]. As opposed to our work, these studies assume an a-priori
knowledge of the computationally intensive operations of each
target applications.

An orthogonal approach, focus of this paper, is to minimize
energy consumption by parallelizing the workload on multi-
ple computing units. Lower clock frequency attainable by a
multi-core platform with respect to an equivalent single-core
implementation can in fact be exploited to aggressively scale
down the supply voltage, resulting in energy gains [7]. The
goal of parallelism in this context is therefore not to obtain
the highest run-time performance, as is the case for general-
purpose multi-core CPUs or GPUs [14], but to achieve the
performance required by the target application while lowering
the energy consumption.

The authors of [11] and [15] have shown that, even in the
field of embedded bio-signal analysis applications, where the
computational demands are rather low, parallelism leads to
high energy efficiency, especially when multiple cores can
execute in lock-step, i.e.: they are at the same point of the
program flow, so that a single instruction is fetched and
delivered in parallel. Indeed, a mechanism to recover lock-
step execution across data-dependent branches was proposed
in [8]. Nonetheless, the introduced paradigm has the limiting
assumption that each core executes the same program flow on a
different data stream, which restricts the range of applications
that can be targeted. The solution presented herein can instead
support either parallel processing on multiple data streams,
successive computation stages executed on different cores or
a combination of the two paradigms.

Our work is based on barrier insertion, a widely used
technique for synchronization of multi-core platforms [16].
A number of implementations of this concept have been
proposed, either software-based [17] or requiring dedicated
hardware support [18]. Compared to [17] and [18], our method
is much less resource-intensive, and therefore better suited for
low-power computing architectures.

IIT. SYNCHRONIZATION METHODOLOGY

In this section we detail the high-level characteristics of
the system in which the proposed technique can be applied,
the synchronization mechanism itself and how to application
mapping is performed to obtain maximum energy savings.

A. Hardware/Software elements

Low-power multi-core WBSNSs (e.g. [11] and [15]) typically
presents a structure comprising a set of computing units
interfaced to instruction and data memories (IM and DM)
through interconnection networks, as depicted in Figure 2.
Three properties, common in this family of systems, must be
satisfied by the platform to apply the proposed synchronization
method. First, IM and DM must be divided into several banks
so that they can be read/written independently and powered-
off if not used in order to save energy. Second, the address
space of the data memory needs to be divided into shared and
private sections, each core having its dedicated region. Third,
to maximize the savings, the interconnection between the
memory units and the processors has to allow broadcasting,

Data
Memory

Instruction
memory

Computing

Peripherals
cores

‘ Bank 1 Core 1 Bank 1 ‘

(o
T eren |

Synchronization clock
Instructions gating

data

Bank 2 Bank 2 ‘

INTERCONNECT
INTERCONNECT

‘ Bank N Bank P ‘

B | interrupts
synchronizer |

Fig. 2. Hardware architecture of a multi-core WBSN. In red, HW support
for the proposed synchronization technique

i.e. multiple read requests from the same location in memory
and in the same clock cycle have to be merged into a single
memory access.

In this context, our proposed approach consists of a hybrid
HW/SW synchronization mechanism. Hardware support for
synchronization is provided by a lightweight synchronizer unit
that manages the interaction among cores, ensuring lock-step
execution when possible, resolving memory access conflicts
and keeping track of the execution flow. The unit can clock-
gate (pause) cores and resume them, according to the received
interrupts and the synchronization instructions issued by the
cores. Software support consists of a set of dedicated instruc-
tions (SINC, SDEC and SNOP), employed to synchronize code
execution using reserved locations (synchronization points) in
the shared data memory, which store information about the
execution flow. Furthermore, a SLEEP instruction requests
the synchronizer to clock-gate the issuing core until the next
synchronization event happens.

B. Synchronization mechanism

Synchronization instructions modify synchronization points,
which are divided in two fields: their most significant bits
contain 1-bit flags corresponding to the identifiers of each core,
while the least significant bits are used as an up/down counter
(as illustrated in Figure 3).

The SNOP(#lit) instruction appends the identification flag
of the issuing core to the #lit synchronization point, without
modifying the core counter. SINC(#lit) also sets the core
identification flag, but in addition increases by one the counter.
Finally, the SDEC(#lit) instruction, without modifying the
identification flags, decreases the counter.

These instructions are used both to manage producer-
consumer relationships and to enforce lock-step execution
after data-dependent branches. In the first case, consumer
cores having no data to process execute a SNOP instruction,
registering themselves in the corresponding synchronization
point. The cores then go immediately to the clock-gated
mode by issuing a SLEEP instruction. Producers, instead, use
SINCs to register in the synchronization point when starting to
compute data for the consumer cores, and SDECs when data
is ready (Figure 3-a). When all input data from the producers
is available, the value of the counter reaches zero and the
synchronizer resumes execution of all the registered cores, as
indicated by the identification flags. In the common case when
more than one synchronization instruction are issued on the

a) core0: SINC(#lit) | synch. counter
core1: SINC(#lit) ' : !
|
I

core2: SINC(#lif) “O' L
cored: SNOP(#it) T T I I I T 1

b) core0: SINC(#lit) | core ID (7..0) | synch. counter |
core1: SINC(#lit) Ll L |
core2: SINC(#lif) [o[o[o]0[0|1[1][1] 2 l#lit

T T T

core0: SDEC(#lit) f

Fig. 3. Examples of synchronization points values. a) cores 0, 1 and 2 should
jointly produce data for core 4; data is not yet available. b) cores 0, 1 and 2
have entered a data-dependent branch, core O has finished executing it.

same memory location, the synchronizer merges the requests
to perform a single and consistent memory modification.

The data producer for a core can also be an external periph-
eral, such as an analog-to-digital converter (ADC) sampling a
bio-signal at a constant frequency and providing a data-ready
interrupt that will be connected to the synchronizer. When data
is not available, cores subscribe to the interrupt line through
a memory-mapped register, execute a SLEEP instruction and
remain clock-gated until the arrival of an interrupt from the
registered source forwarded by the synchronizer.

As aforementioned, the synchronization instructions can
also enforce lock-step execution among cores across data-
dependent branches (Figure 3-b), by employing the method-
ology described by the authors of [8]. In this case, before
entering a branch, cores execute a SINC instruction. When they
arrive to the end of the segment of code, they issue a SDEC
and enable clock gating with the SLEEP instruction. When
all cores that initially entered the branch finish executing it,
the core counter becomes zero, and cores are notified by the
synchronizer to resume their execution in lock-step.

As a result, starting from the source code of a single-core
implementation, three steps have to be performed to parallelize
and execute an application using the propose synchronization
method, namely:

1) Partitioning: applications are divided into different
phases, each executing on one core. To exploit lock-
step execution, application phases operating in parallel
on different data streams should be assigned to different
cores. As discussed in Section I, partitioning naturally
follows the structure of bio-signal processing algorithms.

2) Insertion of synchronization instructions: SNOP in-
structions are added to consumer cores, while SINC and
SDEC to producers. SINC and SDEC pairs are also
inserted before and after data-dependent code segments
executing on cores assigned to parallel computation
streams.

3) Mapping: binary code of the different phases is placed
in different IM banks in order to avoid access conflicts
and benefit from broadcasting. Moreover, the threshold
between shared and private sections in memory and the
number of synchronization points must be configured.

Figure 4 graphically shows the result of applying these steps
to the application introduced in Figure 1. First, the application
is divided into two phases: conditioning and processing. Be-
cause conditioning is performed in three different inputs, it is
assigned to three different cores that run in parallel, each of
them processing one input. The processing phase is assigned
to a fourth core that consumes the data produced by the first
three. SNOP and pairs of SINC and SDEC are placed properly
to manage the producer-consumer relationship and ensuring
lock-step execution. In the mapping step, code dedicated for
the different phases is placed in different IM banks, with cores
executing the same application phase sharing the same bank.

Instruction Computing

units

Data
Memory

IS
INTERCONNECT
INTERCONNECT

Application Architecture

Fig. 4. Mapping the application in Figure 1 on a WBSN embedding 4
computer units, 4 IM banks and 4 DM banks.

IV. EXPERIMENTAL SET-UP
A. Hardware architecture

We considered a multi-core platform similar to the ones
described in [11] and [15] employing parallel computing cores
connected to multi-banked IM and DM through crossbars. In
addition, the synchronizer unit proposed in Section III-A is
integrated in the system and peripherals (such as ADCs) are
interfaced using memory-mapped registers.

The crossbars fully connect the cores to the memories
and their implementation follows the logarithmic interconnect
scheme proposed in [19], which allows combinational (single-
cycle) accesses from cores to memories. We modified the
crossbars to allow broadcasting of data and instructions.

Each computing core consists of a 16-bits RISC architecture
featuring a three-stages pipeline with forwarding paths. Their
instruction set has been extended to support the proposed
synchronization technique. To enforce the division of DM
into private and shared sections, each core is equipped with
a combinational Address Translation Unit (ATU) consisting
of a multiplexor that appends a unique tag per core when an
access to the private section is requested. This implementation
interleaves the shared section of DM between all the available
memory banks.

B. Target multi-core and baseline single-core systems

The target multi-core system employs 8 cores, interfaced
with a 96 KByte instruction memory (32 KWords of 24 bits
width) divided into 8 banks and a 64 KByte data memory (32
KWords of 16 bits width) divided into 16 banks. Crossbars are
sized accordingly and a three-channels ADC unit is interfaced
to the system using memory mapped registers located in
shared DM and data-ready interrupt lines connected to the
synchronizer, which forwards them to cores.

We considered as baseline configuration a single core con-
nected to the same memory hierarchy as in the previous case,
so that unused memory banks can be powered-off. To manage
the memory interface in this system, simpler decoders can be
used instead of crossbars allowing higher clock frequencies at
the same voltage level.

C. Simulation framework

The HW/SW co-simulation framework developed to eval-
vate the proposed method is composed by the programming
tool-chain (compiler, builder and linker) and the simulation

environment. The former allows for the compilation of code
to be loaded and executed on the platform and requires a
set of building directives, which guide the automatic linking
process. The latter includes a synthesizable RTL description
and a System-C architectural simulator of the target platform,
which encapsulates the model of the employed RISC cores
developed using the LISA tool-suite from Synopsys [20].

We investigated the baseline and target architectures, ex-
ecuting bio-signal processing applications, at two levels of
abstraction. At the lower level, post-layout RTL simulations
(using a 90nm low-leakage process) are employed, measuring
the average energy consumption of each architectural element
when executing small code sections. Data gathered from RTL
simulations is then used to annotate a System-C model of
the system, from which application-wide energy consumption
figures are extracted in different settings.

Output of the framework is then the average power con-
sumption gathered from an extended period of simulated time
(60 seconds for all the experiments in this work), which
would not be possible to obtain with time- and resource-
consuming RTL simulations. This aspect is of great relevance
for WBSN applications, as the input bio-signals have slow
dynamics (e.g., in the example of heart monitoring, the normal
heart rate ranges from 60 to 100 beats-per-minute), requiring
extended simulations to capture the average energy efficiency
of different architectural configurations.

D. Benchmarks

We considered three highly optimized applications, from the
field of embedded electrocardiogram (ECG) signal processing.

The first benchmark performs three-lead morphological
filtering (3L-MF) [21], which removes unwanted components
from acquired ECG signals, and operates in parallel on three
different input streams (Figure 5-a). When mapped on three
cores, the application does not employ producer-consumer
relationships, so that synchronization primitives are only used
to recover lock-step execution among cores.

Instead, in the second benchmark (Figure 5-b), a three-
lead delineation application using multi-scale morphological
derivatives (3L-MMD), based on [10], presents both types of
synchronizations. In fact, in addition to filtering inputs, it also
aggregates them and analyses the resulting combined streams
to automatically detect the ECG fiducial points. Consequently,
as opposed to 3L-MF, it cannot be mapped using the technique
described in [8]. The application is mapped onto five cores,
of which three perform filtering in parallel and two are
employed to combine the signals and identify the fiducial
points, respectively.

The third benchmark (RP-CLASS) uses a heartbeat clas-
sifier, operating on a single lead, to discern normal from
pathological heartbeats, applying the method proposed by the
authors of [22]. When an abnormal situation is detected, a
three-lead delineation is activated only for the pathological
heartbeat. RP-CLASS is mapped onto six cores (Figure 5-
¢), and showcases the ability of our proposed synchronization
technique to manage both control and data flows among cores.

i (g

e

e
a)

| ~{Cowerng)
\J/L —{_filtering
e

b)

‘AJ‘/L J—b[filtering }——F[classification }—!

activation

c)

Fig. 5. Block schemes of benchmark applications: a) 3-leads morphological filtering (3L-MF), b) 3-lead filtering + delineation (3L-MMD), c) early classification

of pathological beats activating 3-leads delineation (RP-CLASS).

3L-MF 3L-MMD RP-CLASS
SC MC SC MC SC MC
Active Cores 1 3 1 5 1 6
Active IM banks 1 1 3 4 4 6
Active DM banks 3 16 3 16 11 16
IM Broadcast (%) - 40,36 - 23,44 - 10,30
DM Broadcast (%) - 3,74 - 2,82 - 1,07
Min. Clock (MHz) 2,3 1,0 34 1,0 33 1,0
Min. Voltage (V) 0,6 0,5 0,6 0,5 0,6 0,5
Code Overhead (%) - 2,57 - 0,92 - 0,69
Run-tim Overhead (%) - 1,65 - 0,96 - 0,60
Avg. Power (uW) 53,6 [31,8 79,7 [50,3 80,4 [56,9
Saving 40,7 % 36,9 % 29,2 %
TABLE I

DETAILS OF THE EXECUTIONS OF THE DIFFERENT BENCHMARKS ON THE
SINGLE-CORE (SC) SYSTEM AND THE MULTI-CORE (MC) ONE
EMPLOYING THE PROPOSED APPROACH

It also exemplifies a case where workload is not uniform: as
abnormal heartbeats are rare, in fact, the four cores in the
delineation chain are seldom activated.

Across experimental tests, we have used standard multi-
lead ECG inputs. To evaluate the 3L-MF and 3L-MMD, a
multi-lead signal from a healthy subject of the CSE Database
[23] has been employed. For the RP-CLASS application, 20%
of pathological beats were inserted, representing the average
presence of abnormalities in the CSE database.

V. EXPERIMENTAL RESULTS

Three aspects are investigated in this section. First, the run-
time requirements of the described benchmarks are analyzed
while executed in the baseline and target architectures. Then,
the power consumption of the building components of both
systems is shown and the obtained numbers are discussed.
Finally, the most complex of the evaluated benchmarks, RP-
CLASS, is further employed to demonstrate the effectiveness
of the proposed synchronization technique in reducing the
power consumption of the multi-core system even in the case
of unbalanced workload and not lock-step code execution.

A. Performance and memory footprint comparison

The evaluated benchmarks were optimized to be executed
in both the single- and multi-core architectures, considering in
each case the least possible amount of memory and compu-
tational requirements while meeting real-time constraints. In
particular, the unused memory banks are powered-off and the
system clock frequency is reduced to the minimum in order to
exploit the benefits of voltage-frequency scaling (VFS). Details
of the executed experiments are shown in Table I.

Three main conclusions can be drawn from these numbers.
First, all the applications can run in real-time and at a lower

clock frequency in the case of the multi-core architecture,
which allows to perform aggressive voltage scaling. Indeed, as
explained in Section II, higher demands of computing power
are solved using a larger number of cores instead of increasing
the system clock frequency.

Second, the single-core architecture presents lower memory
requirements. In fact, the mapping of code in the IM is less
constrained, whereas in the multi-core platform instructions
need to be placed in different memory banks to avoid access
conflicts. In addition, in order to support the division of the
data memory into shared and private sections, all the banks of
the multi-core platform need to be active due to the design of
the ATU unit explained in Section IV-A.

Third, the introduced overhead due to the proposed method-
ology is very low. In the worst case (3L-MF), the inserted spe-
cial instructions add-up less than 3% of the total code while,
at run-time, the issued synchronization primitives represent
1,65% of the active time.

B. Single- and- multi-core energy consumption

Power consumption numbers from Table I show a consider-
able reduction of up to 40% when employing the proposed
approach in the multi-core platform. Figure 6 presents a
decomposition of the power consumption of the building com-
ponents of both architectures. Moreover, it shows the power
consumption of a multi-core system that does not employ the
proposed synchronization approach, performing active waiting
for the producer-consumer relationships.

The experiments show that the multi-core system adds a
non-negligible overhead (e.g. up to 34% of the total energy
in 3L-MF) due to the extra necessary components (crossbars,
logic and a more complex clock tree). In addition, when the
synchronization technique is not employed, the total power
consumption of the multi-core platform can be lower, compa-
rable or higher (e.g. 3L-MF, 3L-MMD and RP-CLASS respec-
tively) than the consumption of the single-core architecture,
depending on the workload balance among cores. However,
if our proposed approach is used, the energy requirements
are drastically reduced in all the cases, achieving important
savings thanks to the benefits of VFS.

As Figure 6 shows, one of the advantages of our technique
is the reduction of the program memory consumption due to
instruction broadcasting. In addition, although the synchro-
nization technique slightly increases the memory usage, the
DM consumption is not incremented significantly. In fact,
when the application memory footprint is large, like in RP-
CLASS, the multi-core DM becomes more energy-efficient,

1251 [Clock Tree
[D-Crossbar
Il |-Crossbar
Cores & logic
Data Mem.
Prog. Mem.

3L-MF RP-CLASS

100f

(1)s¢
(2) MC (no synch.)
(3) MC (synch.)

751

Power consumption (LW)

251

1w @ 6 1 @ 6 1 @ 6

Fig. 6. Power consumption decomposition of the single-core (SC) and multi-
core (MC) systems with and without the proposed synchronization approach.

since it operates at a lower voltage level and only few banks
can be powered-off in the baseline system.

C. Synergies between VFS and broadcasting

The proposed synchronization methodology allows to effi-
ciently exploit the benefits of voltage-frequency scaling and
broadcasting. These two features, on their own, improve the
energy efficiency of low-power multi-core systems ([4] [6]
[11] [8]), and in combination lead to even greater savings.
Figure 7 shows the energy consumption of the baseline and
the target architectures and the percentage reduction while
executing the RP-CLASS applications with different inputs,
varying the amount of pathological heartbeats. For all the tests
the abnormal heartbeats have been distributed uniformly.

When there are no pathological heartbeats, the analysis
chain (4 cores) is never activated and no parallel computation
is carried out. However, energy savings of 17% are still
obtained due to voltage-frequency scaling since the workload
is divided among cores in the multi-core system. In addi-
tion, when abnormalities are present, broadcasting reduces
the consumption when the analysis chain is activated due to
the lock-step execution of code. In that case, the benefits of
both features combined allow for improvements in the energy
efficiency of up to 38% in the best case.

VI. CONCLUSION

In this work we have proposed a HW/SW synchronization
methodology to reduce the power consumption of low-power
multi-core WBSNs targeting the execution of bio-medical
applications. The energy efficiency is improved by exploiting
instruction and data broadcasting and voltage-frequency scal-
ing. The described methodology includes minimal hardware
support and an instruction set extension while requiring little
software adaptations in the source code of the applications.

Three advanced DSP applications including different levels
of complexity and parallelism have been used as benchmarks
for our study. Experimental results show that, by using the
described synchronization technique, a state-of-the-art multi-
core system can achieve considerable energy savings of up to
40% with respect to an equivalent single-core platform.

125 1 [== scuw) 100
- MC(uw)
1 Reduction (%)

-

.a
8
\
i
1
1
1
\

~
a

[
o

125

Power consumption (LW)
Consumption Reduction (%)

N
a

0% 10% 20% 25% 33% 50 %
Proportion of abnormal heartbeats

100 %

Fig. 7. Power consumption (left axis in pW) of the single-core (SC)
and multi-core (MC) systems and the respective reduction (right axis, in
percentage) when employing the proposed approach in the multi-core platform

REFERENCES

[1]1 Y. Hao et al., “Wireless Body Sensor Networks for Health-Monitoring
Applications,” Physiological Measur., vol. 29, no. 11, p. R27, 2008.

[2] T. Berset et al., “Robust Heart Rhythm Calculation and Respiration Rate
Estimation in Ambulatory ECG Monitoring,” BHI, pp. 400—403, 2012.

[3] F. Massé et al., “Miniaturized Wireless ECG Monitor for Real-Time
Detection of Epileptic Seizures,” ACM TECS, vol. 12, no. 4, pp. 102:1-
102:21, 2013.

[4] S. Hanson et al., “Exploring Variability and Performance in a Sub-200-
mV Processor,” Solid-State Circuits, vol. 43, no. 4, pp. 881-891, 2008.

[5] R. Dreslinski et al., “Near-Threshold Computing: Reclaiming Moore’s
Law Through Energy Efficient Integrated Circuits,” IEEE, vol. 98, no. 2,
pp. 253-266, 2010.

[6] M. Seok et al., “The Phoenix Processor: A 30pW Platform for Sensor
Applications,” VLSI Circuits, pp. 188-189, 2008.

[71 Y. He et al., “Xetal-Pro: an Ultra-Low Energy and High Throughput
SIMD Processor,” DAC, pp. 543-548, 2010.

[8] A. Dogan et al., “Synchronizing Code Execution on Ultra-Low-Power
Embedded Multi-Channel Signal Analysis Platforms,” DATE, pp. 396—
399, 2013.

[9] J. Yoo et al., “An 8-Channel Scalable EEG Acquisition SoC with
Fully Integrated Patient-Specific Seizure Classification and Recording
Processor,” ISSCC, pp. 292-294, 2012.

[10] F. Rincon et al., “Development and Evaluation of Multilead Wavelet-
Based ECG Delineation Algorithms for Embedded Wireless Sensor
Nodes,” Info. Tech. in Biomedicine, vol.15, no.6, pp. 854-863, 2011.

[11] M. Ashouei et al., “A Voltage-Scalable Biomedical Signal Processor
Running ECG Using 13plJ/cycle at IMHz and 0.4V,” ISSCC, pp. 332—
334, 2011.

[12] J. Kwong et al., “An Energy-Efficient Biomedical Signal Processing
Platform,” Solid-State Circuits, vol. 46, no. 7, pp. 1742-1753, 2011.

[13] S. Sridhara et al., “Microwatt Embedded Processor Platform for Medical
System-on-Chip Applications,” Solid-State Circuits, vol. 46, no. 4, pp.
721-730, 2011.

[14] J. Owens et al., “GPU computing,” IEEE, vol. 96, no. 5, pp. 879-899,
2008.

[15] A. Dogan, et al., “Multi-Core Architecture Design for Ultra-Low-Power
Wearable Health Monitoring Systems,” DATE, pp. 988-993, 2012.

[16] D. E. Culler et al., “Parallel Computer Architecture: a Hard-
ware/Software Approach,”, Gulf Professional Pub., 1999.

[17] C. Ferri et al., “Energy-Optimal Synchronization Primitives for Single-
Chip Multi-Processors,” GLSVLSI, pp. 141-144, 2009.

[18] C. Stoif et al., “Hardware Synchronization for Embedded Multi-Core
Processors,” ISCAS, pp. 2557-2560, 2011.

[19] M. Kakoee et al., “A Resilient Architecture for Low Latency Commu-
nication in Shared-L1 Processor Clusters,” DATE, pp. 887-892, 2012.

[20] Synopsys [Online]. Available: www.synopsys.com

[21] Y. Sun et al., “ECG Signal Conditioning by Morphological Filtering,”
Comp. in Biology and Medicine, vol. 32, no. 6, pp. 465—479, 2002.

[22] R. Braojos et al., “A Methodology for Embedded Classification of
Heartbeats Using Random Projections,” DATE, pp. 899-904, 2013.

[23] J. Willems et al., “Common Standards for Quantitative Electrocardiog-
raphy: Goals and Main results. CSE working party.” Methods Inf. Med.,
vol. 29, no. 4, pp. 263-271, 1990.

