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Abstract
Thin-film silicon technology is a major candidate to comply with the ever-increasing global

energy demand. The small thickness of silicon allows high industrial throughput and low

material usage and subsequently opens new avenues to mass-production of low-cost solar

cells. This small thickness, together with the indirect bandgap of silicon and thus its relatively

weak absorption of long-wavelength light, requires methods to improve absorption. This is

often called light trapping.

Light absorption can be enhanced in a thin film solar cell by introducing light scattering func-

tionalities, for example textured interfaces. Of common interest is to know: 1) how far the

photocurrent and efficiency of a cell can be improved by applying these geometrical changes,

2) which geometries can satisfy the criterion of high photocurrent generation, and 3) how

much the incident angle affects the two previous points. This thesis addresses the mentioned

questions. Specifically, amorphous silicon (a-Si) cells are the main subject of focus in the

thesis, however, the results and conclusions are applicable to other types of solar cells, and

similar structures such as light-emitting diodes.

The first part of the thesis is devoted to the electromagnetic theory for thin film multilayers

and the numerical methods which were used for optical simulations during the PhD work.

These methods are described and compared, and some common sources of numerical error

in them are identified.

To address the first and the third questions, the limits of light absorption enhancement, pho-

tocurrent generation and efficiency in thin-film solar cells are studied. As a result, we obtain

the limits of absorption enhancement in thin films with periodic texture, over a wide angular

and wavelength range. More specifically, first we extend the statistical temporal coupled-

mode theory to the case of thin films with wavelength-scale grating couplers. Then, we use

this theory to study the effect of the incident angle and the grating period on the absorption

enhancement in an idealized thin film with a thickness of 200 nm and refractive index n=4.

We show that absorption in a thin-film solar cell depends strongly on the grating period and

angle of incidence; therefore, consideration of oblique incident of light in these cells is a ne-

cessity. We provide guidelines for the design of thin-film solar cells with periodic texture. Af-

terwards, we obtain the limit of absorption enhancement for different structures including a

full thin-film a-Si solar cell stack for different grating geometries. We show that for thin-films,

hexagonal gratings enhance absorption more significantly compared to square gratings. We

identify parasitic absorption as a major bottleneck for photocurrent generation.

To deal with realistic cases, we investigate the guided modes of thin-film a-Si solar cells by
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rigorous simulations (the second and the third question). First, we extract the guided modes

of the cells and study them in an equivalent planar model. We show that a plasmonic mode

exists for very thin buffer layers. Then, we focus on the effect of texture geometry over a broad

angular range by comparing the short-circuit current density (Jsc ) of the cells for different

grating patterns. We find that based on the cell configuration, the optimal texture may be

symmetric or asymmetric. We show that TM polarized light produces higher photocurrent at

large incident angles regardless of the texture geometry.

In the final part of the thesis, we study two novel configurations for thin-film solar cells. First

a plasmonic a-Si cell is considered which does not include a buffer layer. We demonstrate

that the Jsc of the plasmonic cell is sensitive to the thickness of the n-doped silicon layer

and we find that for an n-Si thickness of less than 10 nm, the plasmonic cell outperforms a

conventional a-Si cell. Then we simulate an a-Si cell with a periodic array of ZnO nanowires

inside the active layer. Our simulations indicate that assuming a periodicity of around 500

nm, the Jsc is highest for a nanowire diameter of about 300 nm.

Key words: Solar energy, photovoltaics, thin film, silicon, light trapping, absorption, scatter-

ing, diffraction grating, guided mode, plasmonics, nanoparticle, numerical electromagnetics,

rigorous optical simulation, coupled-mode theory
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Résumé
Les couches minces à base de silicium représentent une technologie photovoltaïque à fort

potentiel. La faible épaisseur de silicium permet un flux de production important et une

faible consommation de matière, ce qui permet une production de masse de cellules solaires

à faible coût. Aux vues des épaisseurs utilisées dans cette technologie et du fait que le si-

licium possède une bande interdite indirecte (par conséquent une faible absorption pour

les grandes longueurs d’onde), il est primordial de développer de nouvelles méthodes afin

d’améliorer l’absorption lumineuse, ceci étant désigné comme le piégeage de la lumière.

L’absorption de la lumière dans une cellule solaire à couches minces peut être amplifiée en

introduisant des procédés de diffusion de la lumière, par exemple la texturation de l’inter-

face. Afin de quantifier l’efficacité de la cellule solaire, il est important d’étudier 1) le photo-

courant maximum atteignable en appliquant ces modifications géométriques, 2) les géomé-

tries permettant d’atteindre les photo-courants les plus élevés et 3) l’influence de l’angle d’in-

cidence de la lumière sur les deux points précédents. C’est à ces trois questions que nous ten-

tons de répondre dans cette thèse. En particulier, nous nous intéressons aux cellules solaires

à base de silicium amorphe (a-Si). Néanmoins, les résultats et les conclusions obtenus sont

applicables à d’autres types de cellules solaires ainsi qu’à des structures similaires, telles que

les diodes électroluminescentes.

La première partie de cette thèse est consacrée à l’introduction de la théorie électromagné-

tique des couches minces. Une description ainsi qu’une comparaison des différentes mé-

thodes de calcul utilisées pendant cette thèse sont présentées. Certaines erreurs communes

des différentes méthodes numériques sont étudiées.

Afin de répondre à la première et à la troisième question, les limites de l’amélioration de l’ab-

sorption lumineuse, de la génération de photo-courant et de l’efficacité des cellules solaires

à couches minces sont étudiées. Les limites de l’amélioration de l’absorption sont obtenues

sur une large gamme angulaire ainsi que sur une large gamme de longueurs d’onde pour des

couches à texture périodique. La théorie des modes couplés dans le domaine temporel est

adaptée afin d’étudier des couches minces ayant une périodicité de l’ordre de la longueur

d’onde. Cette méthode est ensuite utilisée afin d’étudier l’effet de l’angle d’incidence et ce-

lui de la période du réseau sur l’amélioration de l’absorption dans des couches de 200 nm

d’épaisseur et ayant un indice de réfraction n=4. Nous démontrons que l’absorption dépend

fortement de la période du réseau ainsi que de l’angle d’incidence et, par conséquent, qu’il

est nécessaire de prendre en considération l’incidence oblique dans les simulations. Puis, la

limite de l’amélioration de l’absorption lumineuse est étudiée pour différentes structures, y
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compris une structure complète représentant un empilement de couches formant une cel-

lule solaire a-Si ayant différentes géométries de réseaux. On démontre que pour des couches

minces, un réseau hexagonal améliore l’absorption d’une manière plus significative qu’un

réseau carré. L’absorption parasite est considérée comme un obstacle majeur pour le photo-

courant.

Ensuite, afin de considérer des cas se rapprochant de la réalité, les modes guidés dans les cel-

lules solaires en silicium amorphe sont étudiées par des simulations rigoureuses (deuxième

et troisième question). Premièrement, les modes guidés des cellules sont déterminés et ana-

lysés dans un modèle planaire équivalent. Ensuite, la texture géométrique est étudiée sur

une large gamme angulaire tout en comparant la densité de courant de court-circuit Jsc des

cellules pour différentes structures de réseau optique. Nous constatons que selon la configu-

ration de la cellule, la texture optimale peut être soit symétrique soit asymétrique. Nous dé-

montrons que la lumière polarisée TM produit un photo-courant plus élevé pour des grands

angles d’incidence, et ceci, quelque soit la géométrie de la texture.

Finalement, deux configurations innovantes de cellules solaires à couches minces sont pro-

posées et étudiées. Premièrement, une cellule a-Si plasmonique ne comprenant pas de couche

intermédiaire (buffer) est considérée. On démontre que la densité de courant Jsc est sensible

à l’épaisseur de la couche de silicium dopé de type n. Pour une épaisseur de n-Si inférieure

à 10 nm, la cellule plasmonique surpasse une cellule a-Si classique. Deuxièmement, une cel-

lule a-Si avec un réseau périodique de nano-fils en ZnO à l’intérieur de la couche active est

simulée. Pour une périodicité de 500 nm, on obtient la densité de courant Jsc la plus élevée

pour un diamètre des nano-fils de 300 nm.

Mots clés : Énergie solaire, photovoltaïque, couche mince, silicium, piégeage de la lumière,

absorption, diffusion, réseau de diffraction, mode guidé, plasmonique, nanoparticule, mé-

thodes numériques pour l’électromagnétisme, simulation optique rigoureuse, théorie des

modes couplés
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1 Introduction

1.1 Why solar energy?

Since the early days of industrialization, providing cheap energy has been a concern to de-

velop western economies. Previously, fossil fuels such as coal and oil have been exploited to

respond this energy demand. However, industrialization in a global scale requires that the

energy sources satisfy other criteria too.

Fig. 1.1 shows the total energy world consumption in the years between 1990-2010 in TWh.

Unfortunately, oil, natural gas and coal are the main sources of energy nowadays [1]. Based

on energy statistics provided by International Energy Agency (IEA), in 2010, coal, oil and nat-

ural gas cover up to more than 81 % of the total word energy supply. These fossil fuels can

supply energy temporarily, but in long term, they cannot serve as sustainable energy sources.

First of all, emission of CO2 by fossil fuels intensifies the greenhouse effect and therefore leads

to temperature increase. In 2004, 56.6 % of the total CO2 emission was due to fossil fuel use.

Now we are at the limit of 2◦C temperature increase, which is considered by the scientists as

the safe limit of global temperature increase [3]. Eleven of the twelve years from 1995 to 2006

are among the twelve warmest years in our records [4]. Consistent with this, the sea level

has been rising at an average rate of 1.8 mm/year over the period from 1961 to 2003 [4] and

snow and ice extent of the world has decreased accordingly [4]. These data convey that we

are approaching a dangerous regime of climate change. From this perspective, satisfying the

increasing energy demand by fossil fuels does not seem a long -term solution because they

emit CO2 which intensifies the greenhouse effect and accelerates the climate changes.

Second, fossil resources can be used to make by-products, which are very useful and essen-

tial to industry. In specific, oil, is required to fabricate petrochemicals, which are absolutely

necessary for industrial development. It is not clear whether we will be able to replace them

by synthetic materials or not; at least in the moment we do not have a replacement for them

in many applications.
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Figure 1.1: Total world energy supply 1990-2010 [1, 2].

Third, fossil fuels are not renewable. They need a long time to form, supposedly millions of

years, and if we consume them at the present rate, they will not last more than a few hundreds

of years even from an optimist perspective. As our supplies of fossil fuels approach their end,

their prices will rise and they will not be economically available as energy sources.

The mentioned points already reveal some of the advantages of renewable energies over fos-

sil fuels. Specifically solar energy seems a good solution to respond the ever increasing global

energy demand. It can be considered as an absolutely green energy because it emits no CO2,

thus causes no climate change. Its energy comes from the sun, which practically lasts in-

finitely long; for a few billions of years, we are safe from going out of sun! The amount of

energy that is emitted by sun on earth is larger than one usually imagines. Over one hour,

this amount is about 89300 TW [5]. This means that the solar energy emitted on earth in

approximately one and a half hour can cover all our annual energy needs!

Solar energy is usually transformed to either electric or thermal energy before being used. If

the solar cell produces electricity, sunlight dissociates carriers of different charge and pro-

duces a voltage on the two sides of the cell, which is called the “photovoltaic effect”1. In the

second case, sunlight is focused on a reservoir to increase its temperature. This high tem-

perature can be then transformed into another form of energy. For example, if this reservoir

includes a liquid, the increased thermal energy evaporates the liquid and the energy of the

vapor can be released into mechanical form in a Carnot cycle. Usually the second approach

needs huge plants to be practical but the first one can be applied to a vast variety of appli-

cations at different scales. In this thesis, we deal with solar cells which are based on the

photovoltaic effect. A solar cell can be made from materials which are found abundantly on

1Alexandre-Edmond Becquerel (24 March 1820 – 11 May 1891), who was an expert in optics, electricity and
magnetism discovered the photovoltaic effect in 1839. He is the father of Henri Becquerel who won the Nobel
prize in 1903 for his works on radioactivity.
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1.2. Thin-film silicon solar cells

(a) (b)

Figure 1.2: (a): Schematics of a thin-film solar cell in an electric circuit. (b): Schematics of a thin-film
solar cell with doped layers.

earth and harvesting solar energy is not a waste of precious material compared to burning

oil. One remarkable advantage of solar cells is that they can be fabricated at different scales;

we do not necessarily need a huge power plant to generate it. Solar cells can be found as tiny

as a few square centimeters installed on toys. This flexibility in size brings also the possibil-

ity of mobility; for example, the Solar Impulse plane completed recently its journey across

the US on solar power alone [6]. Mobility of solar cells brings another advantage in turn. In

a conventional electric power generation scheme, a remarkable amount of electricity is lost

while being transmitted from plants to consumers. If the solar cell is very close to the users,

effectively no power will be lost in transmission.

To be fair, we should also note some difficulties regarding solar energy harvesting. One major

concern is about stability of power generation by a solar cell. Because sun light is received

only during day, batteries are needed to store surplus energy in daytime and give it back at

night. For this, efficient cost-effective batteries are required. Other probable concerns are

about CO2 emission and the energy spent in the solar cell fabrication process. These two

have been checked recently and it has been shown that a solar cell pays its fabrication energy

back at most in three years [4] and that it is by an order of magnitude less CO2 emitting than

natural gas [4]. Another potential threat of solar cells is their price. However, this should not

be a basic problem because first, already in some parts of the world using solar cells instead

of fossil fuels is economically justified. Second, with development of technology the price of

solar cells are decreasing rapidly. Altogether none of the mentioned problems seems to be an

intrinsic barrier against the development of photovoltaics now and in the near future.

1.2 Thin-film silicon solar cells

A solar cell consist of two main parts: absorber and electrodes, as depicted in Fig. 1.2a. Light

absorbed in the absorber —which should be a semiconductor —dissociates electrons and

holes. The separated electron and hole are presented by red and yellow circles. The role of

3



Chapter 1. Introduction

electrodes is to collect these optically-generated carriers to the external circuitry. To guide

the carriers which are generated inside the absorber towards the electrodes, an electric field

may be needed 2. This internal electric field can be realized by a semiconductor junction,

for example a p-n Si junction. However doping increases the recombination rate of carriers,

leading to their inefficient collection. One possible solution is to put an intrinsic layer be-

tween the p-doped and the n-doped layers, as depicted in Fig. 1.2b. Light is absorbed in both

the doped layers and the intrinsic layer. However, only the carriers generated in the intrin-

sic layer contribute effectively to the photocurrent of the cells. The thickness of the doped

layers should be minimized to reduce recombination. On the other hand, the doped layers

should have a certain thickness to provide an electric field which is strong enough to collect

the generated carriers. The mentioned model of a solar cell may seem over-simplified but it

can serve for most of the discussions in this thesis.

A solar cell should be cost-effective, thus, it should be made from abundant materials. Sili-

con (Si) appears then as an appropriate choice because it is found in vast quantities on earth.

Actually it is the second most abundant material in earth crust (27.7 %). Also, Si is non-toxic

and is a relatively well-known compared to many other materials. Add to all of these ben-

efits the availability of mature existing silicon technology. A Si solar cell can be made from

different forms of Si; wafer, different types of nano- and micro-crystalline, and amorphous. A

silicon wafer is a monocrystal which is grown by Czochralski process and then cut into wafers.

Thanks to the almost perfect crystalline structure, electronic properties of monocrystalline Si

are superior to the other forms of Si, however, its fabrication process is costly. Other forms

of Si allow fabrication of cells at lower prices. The price of a cell depends on the Si thickness

in it. Wafer-based Si solar cells which are a few hundreds of microns thick are the most ex-

pensive Si cells. Other forms of Si cells are thinner and they are called thin-film solar cells

but their efficiencies are normally lower than wafer-based Si cells. The thinnest Si solar cells

are based on amorphous Si (a-Si). Si thickness in these cells is typically around 300 nm. A-Si

cells are the main focus of this thesis. Based on solar cell efficiency tables (version 40)[7], the

highest efficiency3 of a-Si cells were manufactured in Oerlikon Solar Lab in Neuchâtel and

is 10.1±0.3% and. Very Recently, Matsui et al. have reported a-Si cell with an efficiency of

10.11%[8]. For crystalline and multicrystalline Si cells, the highest efficiency is 25.0± 0.5%

and 20.4±0.5% respectively. The interested reader is referred to Table. I of [7] for the latest

data on the state-of-the-art solar cells of different classes.

Since the first report on the fabrication of an a-Si cell [9], opto-electronic properties of this

type of solar cells has been studies extensively. Because of the high density of dangling bonds

in a-Si, a cell made of a-Si is not practical. Thus even in the first a-Si cells, hydrogenated a-Si

(a-Si:H) was used. It was then observed that under light illumination, the efficiency of a-Si:H

cells drops and stabilizes at a lower value than its initial efficiency [10]. This drop of efficiency

2Here we have assumed the "drift" of free charge carriers to be the main mechanism of photo-current genera-
tion. Although this assumption seems logical for thin-film a-Si solar cells, for wafer-based solar cells "diffusion"
plays the main role.

3Efficiency of a solar cell is defined as the percentage of incident optical energy that it converts into electricity.
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1.2. Thin-film silicon solar cells

is called light induced degradation or in the name of its discoverers, Staebler-Wronski effect

(SWE). Although a clear understanding of the SWE effect is still missing, in a simplified model

one can explain it by the high density of dangling bonds in a-Si:H. Later it was shown that

a mixture of SiH4 and H2 can ameliorate cell stability against SWE [11].Furthermore, it is

observed experimentally that thicker a-Si cells suffer more from SWE[12], thus, a-Si solar cells

are designed and fabricated with a constraint of 300 nm on their Si layer thickness.

The difference in the crystalline structure of various types of Si is translated into their opto-

electronic properties. For example, for microcrystalline Si (μc-Si), the band gap is at around

1.1 eV but for a-Si:H, it is approximately at 1.7 eV4. This in turn translates into optical absorp-

tion; a-Si:H and μc-Si absorb blue and red light better respectively. To absorb light over a

broader spectral range, one can make a multijunction (tandem) Si cell, which consists of an

a-Si:H cell on top and a μc-Si cell at the bottom [13].

a-Si cells —which are the main focus of this thesis —can be classified into two main cate-

gories based on their fabrication procedure. If first the p-doped Si layer is deposited, and the

intrinsic (i-Si) and n-doped Si (n-Si) layers are deposited followingly, the cell is called a p-i-n

cell. To fabricate a p-i-n cell, one deposits a transparent conducting oxide (TCO) on glass. Re-

(a) (b)

Figure 1.3: Thin film Si solar cells in (a): p-i-n, and (b): n-i-p configuration. In both configurations
fabrication starts from the glass side.

spective deposition of p-Si, i-Si and n-Si forms the absorptive layers. Then the back-reflector

covers the previous layers, which consists of either a thick TCO layer (≈ 1μm) and white paint

or a thin TCO layer (≈ 100nm) and Ag. A p-i-n cell is shown in Fig. 1.3a. Light reaches the cell

layers from the glass side. A second fabrication process can be such that one develops the

back-reflector (including a TCO buffer layer) on glass and deposits n-Si, i-Si, p-Si and TCO

on top of the back-reflector respectively, as demonstrated in Fig. 1.3b. In this case, glass is

underneath the cell and is used as a mechanical support. It can thus be made from other

4Optical data of a-Si:H and μc-Si:H are compared in Appendix B
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Figure 1.4: Characterisitics of solar illumination on earth (AM 1.5). [15]

materials too. The latter configuration is called the n-i-p configuration because the n-Si layer

is deposited first. Note that in both n-i-p and p-i-n configurations, light reaches the p-Si layer

before the n-Si layer, I mean physically the p-Si layer is always on top in an operating a-Si cell

and this has nothing to do with its being p-i-n or n-i-p.

1.3 Solar illumination

Sunlight intensity is not the same for all wavelengths. Sun illuminates light very similarly to

a blackbody at the temperature of at around 5700◦K.

As sunlight passes through earth atmosphere, its spectrum is deviated from its initial form

because of absorption and scattering by atoms in the atmosphere. This reduces the incident

light intensity from 1365 W/m2 to 1000 W/m2 [14]. It is therefore necessary to take into ac-

count solar spectrum data on earth to characterize the performance of a normal solar cell5.

The effect of the atmosphere and also the angle θ that sun makes with a horizontal plane

on earth6 on the solar spectrum is characterized by a parameter called "air mass" which is

defined as AM = 1/cosθ. Solar spectrum outside the atmosphere is called AM0. AM1 refers

to the solar spectrum at the equator (θ = 0◦) where the impact of atmosphere is applied. For

central Europe and North America, usually AM1.5 is used to characterize solar illumination

which corresponds to an incident angle of θ = 48.19 degrees. The dotted graph in Fig. 1.4

shows solar spectral intensity for AM1.5.

Let us assume that a photon enters the active layer of a solar cell, for example in the i-Si layer

of an a-Si cell. Neglecting free carrier absorption and defects in the active layer, if the energy

of this photon is larger than the band gap energy of the absorber, it creates an electron-hole

5I exclude the solar cells which are used in outer space from this discussion.
6Note the difference between this angle and the incidence angle on the solar cells.
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1.3. Solar illumination

pair (EHP). Here we suppose that each photon can create at most one EHP regardless of its

energy.

Photocurrent is an accumulative sum of the EHPs generated by the incident photons at dif-

ferent wavelengths. If the photons which are absorbed in the active layer (i-Si) contribute

perfectly to the photocurrent, i.e. if all of them generate EHPs and all of these EHPs are col-

lected, and if absorption in the other layers of the cell do not contribute to the photocurrent,

the short circuit current density of the cell can be expressed as

J sc = q
∫
Δλ

λ

hc
Φ(λ) ·EQE (λ)dλ (1.1)

where λ is the incident photon wavelength, h is Planck’s constant, c is speed of light in air,

q is electron charge, Φ is solar spectral irradiance, and EQE is the External Quantum Effi-

ciency of the cell. EQE is defined as the ratio of spectral density of EHPs that contribute to

the photocurrent to the spectral density of incident photons for each wavelength. In simple

words, it shows how much of the energy of the incident light is converted into electrical en-

ergy at each wavelength. Because we assumed that all of the light which is absorbed in the

i-Si layer contributes to EQE and the other layers of the cell do not contribute to it, EQE can

be approximated as the percentage of incident photons which is absorbed in the i-Si layer.

Eq. 1.1 reveals that the number of carriers is not a simple integral of solar spectrum or ab-

sorbed light because the wavelength λ appears in the intergral as well. This brings a very

important conclusion: more photocurrent is generated at longer wavengths for the same

amount of incident light energy. Fig. 1.4 shows the spectral density of flow rate of incident

photons. This quantity is obtained by dividing the spectral irradiance Φ(λ) by the photon en-

ergy λ/hc . Since each incident photon can produce at most one EHP independent of its exact

energy value 7, the latter curve represents the actual contribution of the solar illumination to

the number of generated carriers, and thus the photo-generated current. An important con-

clusion from the mentioned weighting of the spectrum is that the spectrum peak is shifted

from its initial wavelength at around 500 nm to the wavelengths about 700 nm. A solar cell

should be able to absorb light at around this peak very efficiently. Furthermore, solar illumi-

nation has remarkable amount of energy until the wavelength of approximately 2.5 μm. a-Si

absorbs strongly from 300 to 600 nm but at around 700 nm it absorbs weakly. Remember also

that the i-Si layer thickness in an a-Si cell is limited to around 300 nm. This introduces the

main challenge of a-Si cells. It cannot absorb light where it is most effective to do so! It is thus

essential to find ways to increase light absorption in an a-Si cell8.

7Photon energy is anyway larger than band gap as assumed primarily.
8Here we discuss mainly thin-film a-Si solar cells but absorption enhancement is a general goal for (almost)

all types of solar cells.
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Chapter 1. Introduction

1.4 Motivation for absorption enhancement: Jsc , Voc and F F

Silicon has an indirect electronic band gap which leads to its weak absorption of long-wavelength

light. To compensate this weak absorption, the incident light should go long distances through

the active layer of Si solar cells. To achieve this, one may use a thick Si layer, which is not

practical in many cases. Another solution is to scatter light efficiently in the cell such that it

effectively passes a longer way inside the semiconductor.

Having discussed the importance of absorption enhancement to improve Jsc in Eq. 1.1, we

put a step further and claim that absorption enhancement improves also other important

parameters of a cell such as open-circuit voltage and fill factor, although this might not be as

evident as improvement in photocurrent. A solar cell’s current-voltage characteristic can be

described by the diode equation.

J = Jsc − J0[eqV /kT −1] (1.2)

where q is electron charge, k is Boltzmann’s constant, V and J denote voltage and current

density, Jsc is the short circuit current density of the cell and J0 is the cell’s saturation current

density. The open circuit voltage (Voc ) is obtained when J = 0.

Voc ≈
kT

q
ln

(
Jsc

J0

)
(1.3)

Fill factor is defined as the ratio of the maximum power to the product of Voc and Jsc .

F F = Pmax

JscVoc
= (V J)max

JscVoc
. (1.4)

Fill factor is a very important quantity because finally what matters is not only Voc and Jsc but

the values of photocurrent and voltage which result in maximal power output. This requires

that fill factor is incorporated in the calculations as well. Maximum power can be obtained

from Eq.1.2 by solving ∂ (JV )/∂V = 0 which leads to

Jsc − J0eqVopt /kT
(

1+ qVopt

kT

)
= 0 (1.5)

where Vopt represents the voltage at the point with maximal output power. Based on the

latter equation Vopt can be increased by

1. increasing Jsc : which means more efficient light absorption in the cell

2. reducing J0: which is linked to the electronics of the device.
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Figure 1.5: Variations of Vopt as a function of Voc .

The saturation current density (J0) is a basic parameter for a solar cell’s operation. It gives a

measure of the dissipative processes in the cell. More specifically, it is related to the amount

of non-radiative recombination in the cell. Internal luminescence yield of a silicon cell is

fundamentally limited by Auger recombination [16] , which is in turn proportional to the

thickness of the absorber material [17]. Thus, making a solar cell thin, not only leads to less

material consumption, but also reduces the unwanted dissipative processes which increase

the saturation current; thus it increases the efficiency.

Comparison of Eqns. 1.3 and 1.5 results in

Vopt +
kT

q
ln

(
1+ qVopt

kT

)
=Voc (1.6)

which due to the slightly varying behavior of the natural logarithm can be approximated as

Vopt =Voc − kT

q
ln

(
1+ qVoc

kT

)
. (1.7)

Fig. 1.5 shows Vopt as a function of Voc at the temperature of 300°K based on Eq. 1.7. Clearly,

Vopt is a monotonic function of Voc . Thanks to monotonicity of both Eq. 1.5 and Eq. 1.7, it is

possible to link these two equations and conclude that an increase in Jsc results in an increase

in Voc . Therefore, the efficiency (η) of a cell, which is defined as the amount of incident optical

energy that it converts to electric energy, can be improved by absorption enhancement.
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Chapter 1. Introduction

Figure 1.6: Most popular techniques for absorption enhancement. The profiles show from left to
right a guided mode (which is not plasmonic) (1), a plasmonic mode (2) and a radiation mode (3).
Light scattering nano-particles (4) can be put in different layer of a thin-film solar cell. The layers are
textured to maximize light coupling into the cell. All of the layers are usually textured but here only the
front texture (5) is shown. Light coupling from outside to the cell and from inside the cell to outside is
reciprocal [18]; i.e. coupling coefficient is the same for both in- and out-coupling.

1.5 Light trapping in thin film silicon solar cells

Absorption can be enhanced in an a-Si cell by modifying its geometry. It is true that bulk

properties of a-Si influence its optics dominantly at around 700 nm, however, by modifying

a cell’s geometry one can potentially enhance absorption in it. Light trapping is applying

geometrical changes to a cell to improve light absorption in it.

As a primary goal, it is desired to reflect as little light as possible. Reflection from the cell’s

top surface can be minimized by choosing the front TCO such that it act as an anti-reflection

coating between air and absorber. Thickness and texturing of the front TCO play a decisive

role in reflection [19]. Apart from the front TCO layer, thickness of the back TCO layer can be

varied to maximize light intensity inside the cell’s active layer. Thickness of the doped layers

is usually kept minimal because of the large recombination rate in them.

Fig. 1.6 shows some other popular approaches to enhance absorption in a thin-film solar cell.

A very well-known method is to put back-reflector underneath the cell. The back-reflector

reflects light after its first passage through the cell thickness and gives it a second chance to

be absorbed.

A second approach to enhance absorption is related to the optical modes of the cell. An opti-

cal mode is a solution of Maxwell equations for the desired structure. In a planar multilayer
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1.5. Light trapping in thin film silicon solar cells

stack, two types of modes can be found: guided modes and radiation modes. Guided modes

are modes which are completely isolated from the outside medium. Their being decoupled

from outside the cell is evidenced by their decay in amplitude outside the cell. Contrarily,

radiation modes do not vanish even at far distances from the cell and their profile oscillates

up to infinity. Radiation modes can exchange energy with the ambient. Excitation of guided

or radiation modes introduces peaks into the EQE of the solar cell, thus enhances absorption.

While radiation modes are available for excitation in a planar device, to excite guided modes

one can deviate the geometry from perfect planar to textured. Subsequently, interface textur-

ing is a second approach to enhance light absorption in a solar cell. The interface texture can

be random or periodic. To date the most promising results have been obtained by random

textures . Theoretical studies, however, predict the possibility of more effective absorption

with periodic textures [20].

The introduction of a metallic back-reflector underneath the cell results in a special type of

guided modes, which are called plasmonic modes (or surface plasmons). Normally a guide

mode is localized in the dielectric layers of a solar cell. A plasmonic mode is contrarily lo-

calized at the interface between the metal and the adjacent dielectric. This localization at

the metallic interface is a characteristic of a plasmonic mode. As Fig. 1.6 shows, localization

of the plasmonic mode to the metallic interface results in existence of a wave-tail inside the

metallic layer. This penetration into metal results in a considerable amount of parasitic ab-

sorption for a plasmonic mode and is a bottleneck for the application of plasmonics to solar

cells [21, 22, 23]. It is possible to fabricate almost perfect light absorbers over the whole opti-

cal band [24] but collecting this absorbed energy into the form of photocurrent has not been

realized efficiently yet to my knowledge. The profile of plasmonic modes depends strongly

on the interface texture. It is not clear how far one can localize the plasmonic mode profile

in the dielectric layer, and thus get rid of parasitic losses. Furthermore, a metallo-dieletric

interface can have a high density of defects, which may increase the recombination rate and

reduce the photocurrent corresponding to the plasmonic mode excitation.

Embedding nano-particles inside the cell is another method to enhance light trapping. These

nano-particles can be incorporated in different layers of a cell. Nano-particles in a cell can

improve light absorption in different ways. First, they can scatter light and locally increase

light intensity in their adjacent regions. Second, they can effectively act as a layer inside

the cell and introduce a guided mode into the cell’s dispersion diagram. Both metallic and

dielectric nano-particles can be used to enhance absorption in the cell. However, metallic

particles can absorb light depending on their size [25]. Recently, cells with metallic nano-

particles have been fabricated which can excel cell’s based on interface textures. These cells

benefit from light scattering from nano-particles which are incorporated in the back TCO

layer [26].

Dielectric nano-particles can enhance absorption in the solar cell [27, 28]. In chapter 6 I

investigate incorporation of ZnO nano-particles inside the i-Si layer and I show that large

nano-particles can improve absorption in the cell significantly. However, one should note
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Chapter 1. Introduction

that embedding metallic or dielectric nano-particles may cause problems for a cell’s opera-

tion, especially for carrier collection. The boundary between the nano-particles and the i-Si

layer may have a high defect density, and therefore, result in a dramatic recombination rate.

The mentioned points seem interesting to be investigated experimentally to determine the

practical limits of a cell with nano-particles inside the i-Si layer.

The methods of absorption enhancement are usually tightly entangled to each other in a thin-

film solar cell, especially in an a-Si cells. For example, texturing the front TCO changes reflec-

tion and coupling to guided modes simultaneously. It seems therefore not strictly correct to

distinguish these effects and to try to optimize them separately because they are interwoven

and once one of them changes, it affects all of the other parameters. Practically, however,

it seems often inevitable to simplify the cell optimization problem and to assume that the

different optical parameters are not tightly correlated, at least to some extent.

A common misleading interpretation is that in an ideal light-trapping scheme, one tries to

let as many photons as possible into the cell, then should block them there to let the cell

absorb them. Even if the cell is weakly absorbing, the photons will be absorbed in the cell

provided that they remain trapped in it for a long-enough time. This idea may seem brilliant

at first, but unfortunately its correctness is limited to the conceptual level. The physical con-

straint which limits the applicability of this idea is the electromagnetic reciprocity. Coupling

from outside into the cell and from the cell to the external medium is reciprocal. If a photon

can enter the cell easily, it can also go out easily and vice versa. It is recently shown that to en-

hance absorption, one should not try to trap photons inside the cell; contrarily, it is necessary

to let them come into the cell and go out as freely as possible [20], which means increasing

coupling. Hence, one should not be misled by the term “light trapping” and interpret it as a

longer photon life time inside the cell. From this point of view, works on absorption enhance-

ment in solar cells by using "slow light” are conceptually questionable. The interested reader

is referred to [20].

As already mentioned, to increase absorption one can excite guided modes of the cell—which

are a main topic of investigation in this thesis. Now two main questions arise:

1. How far can mode excitation enhance absorption in a solar cell?

2. How can we excite guided modes most effectively?

The first question has been studied since a few decades [29, 30, 31, 20] . As light absorption

and efficiency of a solar cell are not independent, some other authors have been able to ob-

tain limits for the efficiency of solar cells with similar assumptions [32, 33]. Efficiency of a

solar cell is defined as the amount of optical energy that is converted into electric energy.

From optical simulations, one can get an approximation of the photocurrent according to Eq.

1.1.

To respond the second question, one can primarily use a coupled-mode approach [18]. Coupled-
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1.5. Light trapping in thin film silicon solar cells

mode theory predicts approximately the changes of coupling strength as a function of ge-

ometry. However, when deviation from planar geometry is remarkable, the coupled-mode

approximation becomes less accurate. Furthermore, near field effects are not considered in

the coupled-mode solution. This obliges one to perform rigorous calculations to evaluate ab-

sorption in the solar cell accurately. In chapter 5 of the thesis, guided modes and their effect

on absorption enhancement are studied in detail by considering various cell geometries.

1.5.1 Is Lambertian scattering optimal?

A Lambertian scatterer is an object which scatters light isotropically 9. Although Lambertian

scattering resembles a black-body radiation in the sense that it does not distinguish direction,

and because of this sometimes in the literature it is assumed to be the ideal case or a goal to

achieve [34, 35], it seems unlikely that a Lambertian scatterer can be a close-to-ideal form

of scattering at least for thin-film solar cell with wavelength scale texture. In these cells, the

directionality of light scattering from and in the cell can be manipulated by engineering the

shape of the interfaces, thickness of the cell and using surface effects.

1.5.2 Guided modes and plasmonics

Guided modes of a solar cell do not transfer energy with the ambient unless the cell is de-

viated from planar geometry. 10 Recently guided modes have been used to enhance light

absorption in thin-film solar cell [36, 37]. Still, optical behavior of the cells that are very thin

(thinner than a few hundred nano-meters) and have wavelength-scale periodic texture, and

absorption enhancement by guided-mode excitation in these cells seems interesting for re-

search.

Using plasmonics is another approach which seems to have a potential to boost absorption

in solar cells [38]. Unfortunately up to date, plasmonics has not lead to state of the art cells.

More unfortunate, it is not addressed in the literature that the cells which are claimed to

be using the concept of plasmonics (e.g. [39]) are not really benefiting from the existence of

plasmons. Even it has been suggested that these cells are using guided modes and not surface

plasmons [40]. Therefore, it seems essential to study these cells in more detail and to realize

to what extent true plasmons have been used in them.

It is worth mentioning that using metals in solar cells does not necessarily mean using plas-

monics. Even if near field absorption enhancement due to the presence of a metallic struc-

ture is observed, it is not necessarily an improvement due to a plasmonic mode. In chapter

6 I mention an example where absorption is improved due to near field enhancement at a

metallic interface. However, the polarization which is assumed in the example does not al-

low the existence of plasmonic modes. Thus, every near field enhancement close to a metallic

9This naming is in the honor of Johann Heinrich Lambert who introduced the concept of perfect diffusion.
10For simplicity, we do not refer to plasmonic modes as guided modes unless specified, although they apply to

the definition of guided modes.
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interface should not be considered as a plasmonic resonance. This makes the claim of using

plasmonics in thin-film solar cells rather weak. Often in a thin film a-Si cell a TCO layer is put

between the metallic layer and the absorber. However, the existence of this TCO layer con-

tradicts the concept of using the near field to enhance absorption. From this point of view, it

seems that plasmonics has not been exploited to improve absorption in solar cells to its full

potential yet.

1.6 Importance of correct optical simulation

It should have been clear by now that it is of utmost importance to perform accurate calcu-

lations for the optical simulation of thin-film solar cells. It is absolutely necessary to obtain

the electromagnetic field with high accuracy such that near field effects —which can have

a definitive effect on the final value of light absorption in the solar cell —can be correctly

calculated. From this point of view, approximate theories such as the coupled-mode theory

[41, 18] do not provide detailed information about the absorption in the cell because they do

not take into account near-field effects. For optimization of a solar cell geometry from an

optical perspective, reliable calculation is an essential, otherwise the calculation error may

dominate the changes in the results imposed by structure modifications and give wrong re-

sults.

Different methods may be proposed for the rigorous simulation of thin-film solar cells. Nu-

merical methods can solve Maxwell equations in time-domain such as the finite-difference

time domain (FDTD) or in frequency domain such as the finite element method (FEM) in

frequency domain, the rigorous coupled wave analysis (RCWA), finite difference frequency

domain (FDFD) method and the multiple multipole method (MMP). Most of these methods,

especially the FEM and the FDTD methods are extensively used in literature to model the

optics of solar cells. However, little attention has been paid to verify the accuracy of these

calculations. From this point of view, a lot of these simulations are questionable, especially

when it comes to optimization.

To model solar cells with the FDTD method one should be extremely careful because there

are multiple factors which make this method very vulnerable to numerical errors, which can-

not always be detected easily. One important drawback of FDTD is its numerical dispersion.

This means that based on the order of the FDTD algorithm which is used, the wavelengths

may be shifted. Normally a higher order algorithm suffers less from numerical dispersion

[42]. Another problem is the high density of grid points needed to guarantee numerical ac-

curacy. Also FDTD simulations are time consuming. Contrarily, one can simulate a wide

band of wavelengths in one FDTD run, which may seem an advantage, but the following

post-processing may be time-consuming. Also, to implement dispersion, it is necessary to

express material dispersion in terms of a summation of poles of predefined types, for exam-

ple Lorentzian poles. This introduces an unnecessary approximation of the optical data into

the simulation, and when the dispersion form is complicated, slows down the simulation be-
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cause simulation time is proportional to the number of poles which are used to approximate

the optical data. In FDTD, the grid size limits the time-step duration; a finer mesh means a

slower simulation. This disadvantage is even more pronounced when dispersive materials

are used because they may cause instabilities for the simulation and to stabilize the simu-

lation, it may be necessary to set the time-step to smaller values than the ones allowed by

the Courant stability factor [42]. Altogether, FDTD does not seem an optimal approach for

simulation of solar cells.

Frequency domain methods seem more adapted to the simulation of solar cells. One impor-

tant advantage of them is that they do not suffer from numerical dispersion. Also, they can

use tabular optical data without any approximation and their speed does not depend on op-

tical data. As examples of this group of simulations, one can mention recent publications

which use FEM [43] or RCWA [44, 45] to simulate solar cells.

Different parameters should be considered to guarantee the accuracy of frequency domain

simulations of solar cells. For full numerical methods such as the FEM, the mesh should be

fine. To guarantee the accuracy of the method usually ten to twenty mesh points are neces-

sary per wavelength [46, 47, 48, 42]. The final limit to grid size can be obtained by application

of the Nyquist theorem. Furthermore, at boundaries, especially at metallic boundaries, a

high mesh resolution is essential so that the method can take into account field discontinu-

ities at these boundaries. Because these methods are often modal methods, enough modes

should be used in the corresponding expansion. The latter point is more critical for asym-

metric patterns. Overall it seems that for large-scale simulations, especially the cells thicker

than 1μm, very strong computer facility is needed to have reliable results. To the author’s

knowledge the numerical stability of the FEM simulations of μc-Si cells or tandem cells has

not been strictly verified; nevertheless acceptable correspondence to the experiments has

been obtained [49, 50].

Semi-analytical methods such as RCWA have an intrinsic advantage over full numerical meth-

ods. Their complexity does not depend on a cell’s thickness. This means that RCWA simula-

tion of μ-c Si cell or a tandem Si cell is as complex as the simulation of a thin film a-Si solar

cell. However, one should take care to implement the boundary conditions correctly. Espe-

cially at metallic interfaces, a huge number of modes may be necessary to provide accurate

results. A remarkable improvement in the convergence of RCWA has been achieved by im-

plementation of the fast Fourier factorization [51]. Exponentially convergent results can be

obtained by polynomial expansion of the fields [52] or adaptive spatial resolution (ASR) [53].

Polynomial expansion is harder to implement and it is not optimal for complicated textures.

The problem with ASR is that with the present formulation, its implementation to more than

one layer is unstable in the general case.

A common approximation which can sometimes introduce considerable error to the frequency

domain calculations is the slowly varying approximation (SWA). This is discussed in section

2.5.2. Briefly, when materials are strongly dispersive at the wavelengths under investigation,

15



Chapter 1. Introduction

absorption should be obtained through a more complicated formula compared to the form

usually used in literature [54, 43, 37, 44].

1.7 About this thesis

During this thesis I have focused on the following objectives:

• Preparation of codes to simulate thin film structure with different geometries (planar,

1D gratings and 2D gratings), and comparison of different methods for the analysis of

thin-film Si solar cells.

• Studying the upper bound of absorption enhancement in thin-film a-Si solar cells, and

trying to find ways for improvements.

• Studying unconventional structures which can enhance the photocurrent in a thin-film

solar cell.

Chapter 2 and 3 of the thesis provide an overview of the numerical approaches that I have

studied or used during the project.

Chapter 4 discusses the limits of absorption enhancement in solar cells through three dif-

ferent arguments. First, the limits on photocurrent enhancement are studied. In literature,

thick solar cells have been extensively investigated. Also, thin films with random textures

have been considered [30] Here, for the first time a thorough study of the upper bound of

absorption in thin-film solar cells with wavelength-scale periodicity is performed. Then, lim-

itation on external coupling of solar cells is studied in chapter 4. A limit is obtained for the

strength of coupling to the optical modes of a solar cell. Finally, the bounds on efficiency are

discussed.

Chapter 5 is devoted to the study of guided waves in thin-film a-Si solar cells. Specifically,

the role of back TCO is studied in detail. Also, we assume that the back-reflector of the cell is

shaped into a grating pattern and we investigate the dependence of the EQE and Jsc of the cell

on the geometrical parameters of the back-reflector such the grating depth and symmetry of

the grating pattern. These investigations are done over broad range of incidence angles and

thus provide a deep insight towards the optical properties of the solar cell.

In chapter 6, we study two different approaches for absorption enhancement in thin-film

solar cells: elimination of the buffer layer between the metallic back-reflectors and the Si, and

incorporation of dielectric nano-particles in the cell. We show that from the optical point of

view, both methods can ameliorate a-Si solar cells.
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2 Electromagnetic theory for thin-film
multilayers

In this chapter we briefly go over general properties of electromagnetic waves in thin films.

Later in chapter 3, some techniques to calculate the fields will be mentioned.

2.1 Some definitions

Before going on, let us introduce some definitions which are commonly used during the the-

sis. Polarization of light is defined in different ways in the literature. Assume a planar geom-

etry such as the one depicted in Fig. 2.1a which is illuminated by a beam of light at an angle

θ. The incidence plane is defined as the plane in which both the incidence and the reflected

beams occur. For plane-waves, the incidence plane can be defined as a plane spanned by

the wave-vectors of the incident and the reflected beams. The transverse electric (TE) polar-

ization is the case where the electric field is normal to the incidence plane. The transverse

magnetic (TM) polarization is the case where the magnetic field is normal to the incidence

plane.

Relief structures that are periodic along one direction (e.g. x) as depicted in Fig. 2.1b and

variant along z direction are called one-dimensional (1D) gratings. Incidence of light on 1D

gratings can lead to diffraction. Still if the wave-vector of the incident plane-wave is normal

to grating grooves, two polarizations can be distinguished. In this case, the incident and

reflected wave-vectors occur in one plane, which is called the incident plane. Similar to the

case of planar structures, if the electric or the magnetic field is normal to the incidence plane

i.e. along grating grooves, the polarization is called TE or TM.

Normal incidence is the case where the incident wave-vector is perpendicular to x − y plane

for both planar structures and gratings. If the incidence is not normal, it is called oblique.

For 1D gratings under oblique incidence, if the incident wave-vector is perpendicular to the

grating grooves, the incidence is called in-plane, otherwise it called out-of-plane. For out-of-

plane incidence on 1D gratings and for incidence on two-dimensional (2D) gratings 1, the TE

1Two-dimensional gratings are periodic along two linear-independent directions in x − y plane.

17



Chapter 2. Electromagnetic theory for thin-film multilayers

and TM polarizations cannot be distinguished.

2.2 Maxwell’s equations in guided wave structures

Maxawell’s equations for source free fields in a charge free medium can be expressed in time

domain in the following form.

∇× Ẽ = −∂B̃

∂t
(2.1)

∇× H̃ = ∂D̃

∂t
(2.2)

In the harmonic regime, we can write

Ẽ (t )= E exp
(

jωt
)+E∗ exp

(− jωt
)

(2.3)

whereω is the angular frequency and j =�−1. Through using permittivity ε and permeability

μ and by applying the consitutive relations

D = εE (2.4)

B = μH (2.5)

to Maxwell’s equations at single frequency, we can rewrite Maxwell’s equations.

∇×E = − jωμH (2.6)

∇×H = jωεE (2.7)

In the absence of surface charge and surface current, the following boundary conditions ap-

ply

H∥,1 = H∥,2 (2.8)

H⊥,1 = H⊥,2 (2.9)

E∥,1 = E∥,2 (2.10)

D⊥,1 = D⊥,2 (2.11)

where the subscripts ⊥ and ∥ refer to the normal and tangential components of the specified

field. Considering wave propagation in x direction, it is possible to separate the components
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2.2. Maxwell’s equations in guided wave structures

(a) (b)

(c) (d)

Figure 2.1: (a): Incidence plane for a planar structure, (b): In-plane incidence for a 1D grating, (c):Out-
of-plane incidence for a 1D grating, (d): A 2D grating. For 1D gratings, the wave-vector of the incident
and the 0-th order reflection are plotted.
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Chapter 2. Electromagnetic theory for thin-film multilayers

of the electric and the magnetic fields in the propagation direction and transverse to it.

∇t ×Et = − jωμHx (2.12)

∇t ×Ht = jωεEx (2.13)

∇t ×Ex + x̂ × ∂Et

∂x
= − jωμHt (2.14)

∇t ×Hx + x̂ × ∂Ht

∂x
= jωεEt (2.15)

Here the transversedel (∇t ) is defined as

∇t =
(

0,
∂

∂y
,
∂

∂z

)
(2.16)

2.3 Optical modes in planar structures

Solving source-free Maxwell’s equations in multilayers results in two main non-trivial classes

of solutions. The first type of solutions, which are called guided modes, are mainly confined

to the multilayer and they tend to zero at infinity in both half-spaces on top and bottom of

the multilayer. Because a multilayer structure can support guided modes, it is sometimes

called a “guide”. The other type of modes are called radiation modes and do not vanish in

distances far from the multilayer. If the refractive index depends only on one direction, for

example z, the modes are confined only in z direction. Assuming that the wave propagates in

x direction, a mode’s dependence on x can be expressed as exp(− jβx) where β is the mode

propagation constant. A planar guide supports both transverse electric (TE) and transverse

magnetic (TM) modes. A TE mode is a mode with no longitudinal electric field, i.e. Ex = 0.

Similarly a TM mode has no longitudinal magnetic field. We treat these two polarizations

separately.

2.3.1 TE polarization

In TE polarization, the magnetic field has no component in y direction, i.e. Hy = 0. This

together with the assumption ∂/∂y(.) = 0 and Eq. 2.13 means that the electric field is normal

to the propagation direction, i.e. Ex = 0. Also Eq. 2.14 results in Ez = 0 which shows that

power flows only in x direction. Eq. 2.14 furthermore leads to the following equation

∂Ey

∂z
= jωμHx (2.17)
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2.4. Waves in textured multilayers

Thanks to the simple form of dependence of the fields on x direction, one can simplify deriva-

tion in this direction; ∂/∂x(.) =− jβ(.). So, from Eq. 2.14, one finds that

βEy =ωμHz (2.18)

By combining Eqs. 2.15, 2.17, and 2.18 one concludes that

∂2

∂z2 Ey =
(
β2 −εk2

0

)
Ey . (2.19)

The last equations shows that one can solve a scalar equation to find Ey . Other field compo-

nents can be obtained versus Ey . Specifically, Hz has the same phase as Ey , thus it carries

power in x direction due to Poynting theorem.

2.3.2 TM polarization

In TM polarization, Hx = Hz = Ey = 0 . Also,

∂Hy

∂z
= − jωεEx (2.20)

βHy = ωεEz (2.21)

In this case it is possible to find a scalar equation for Hy .

ε
∂

∂z

[
1

ε

∂

∂z
Hy

]
= (β2 −εk2

0

)
Hy . (2.22)

2.4 Waves in textured multilayers

If the interfaces of the structure are textured, field components take a more complicated form

compared to the case of planar device. Such a geometry can be a two-dimensional (2D) or

three-dimensional (3D) structure. In 2D structures still two distinct polarizations can be un-

coupled for in-plane incidence. By in-plane I mean that the incidence plane is normal to the

geometrical invariance direction as depicted in Fig. 2.1b. For each polarization the vectorial

form of Maxwell’s equations is reduced to a scalar equation which is much easier to solve

than its original form. In 3D strucures and out-of-plane incidence (Fig. 2.1c) wave-coupling

is more complicated and cannot be separated into different polarization directions. There-

fore, it is required to solve vector Maxwell’s equations.
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Chapter 2. Electromagnetic theory for thin-film multilayers

2.5 Additional notes

2.5.1 Refractive index and permittivity

In the general case, the refractive index can have a real and an imaginary part. Its imaginary

part, κ, is usually called the extinction coefficient and shows loss or gain in the medium and

its real part n is called the refractive index and demonstrates the wavelength in the medium;

higher n means a more compressed wave and shorter wavelength. In a medium with refrac-

tive index n and an extinction coefficient κ wave propagation can be described by exponen-

tial terms of form exp(− j k.r) where k = (n+ jκ)k0k̂. If the medium does not amplify the wave,

the extinction coefficient counts for loss. Therefore wave propagation along the propagation

direction must result in decay of the field energy. This requires that the extinction coefficient

κ must be negative. Thus we normally write the refractive index as n − jκ where n,κ > 0.

Permittivity can then be expressed as ε= (n − jκ)2 = (n2 −κ2)− j 2nκ.

2.5.2 Slowly varying approximation and absorption calculation

Eq. 2.3 defines the field as a real quantity obtained by superposing two complex terms. Ap-

proximation of the electric field Ẽ with the complex-valued amplitude E which does not de-

pend on t is called slowly varying approximation. For solar cell simulation and analysis, this

approximation is valid. The Poynting vector is defined as the multiplication of electric and

magnetic fields

S̃ = Ẽ×H̃ (2.23)

By using the slowly varying approximation we can write

S̃ = [
E exp

(
jωt
)+E∗ exp

(− jωt
)]× [Hexp

(
jωt
)+H∗ exp

(− jωt
)]

= ℜ{E×H∗}+ℜ{E×Hexp
(
2 jωt

)}
(2.24)

The time-averaged Poynting vector can be expressed as

< S > = ℜ{E×H∗} (2.25)

Using a similar argument one can conclude that absorption over a volume V can be approxi-

mated by

A = ωεi

2

∫
V

∣∣E2∣∣dr (2.26)
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2.5. Additional notes

We use Eq. 2.26 to calculate absorption in this work. One should however note that in Eq. 2.26

slowly varying approximation has been used and absorption expression is more complicated

in the general case [55, 56].

2.5.3 External quantum efficiency

The external quantum efficiency (EQE) of a solar cell is the ratio of collected carriers to the

number of incident photons. We assume that loss is mainly optical and once a photon is

absorbed in the active layer of a cell, it can effectively result is a collection of a carrier. Fur-

thermore, we assume that other layers of a cell do not contribute to the photocurrent. Using

these assumptions, the EQE can be expressed as

EQE = (1−R −T )×
∫

i−Si εi
∣∣E2
∣∣dr∫

cel l εi
∣∣E2
∣∣dr

(2.27)

The short circuit current density (Jsc ) can be calculated from EQE by using Eq. 1.1.
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3 Numerical methods for exact calcula-
tions

In this section the different computational methods which were used during the thesis are

explained. First, the transfer matrix method which is used to analyze planar multilayers is

discussed in section 3.1. Analysis of a cell as a planar multilayer can provide primary knowl-

edge about light absorption in the cell, however, to take into account the effect of texturing,

one needs to use more complicated approaches. In this thesis, the Rigorous Coupled Wave

Analysis (RCWA) method is used to model a cell based on a multilayer with periodically tex-

tured interfaces. Section 3.2 discusses the RCWA method and different possibilities to ame-

liorate its convergence. The last section of this chapter discusses other possible methods to

simulate thin-film solar cells and my methods for 3D calculations. Note that in this chapter

we only explain the simulation procedures; the results are presented in the corresponding

chapters later.

3.1 Planar multilayer

In a planar multilayer, Maxwell’s equations take a simple form thanks to simplicity of geome-

try. Different methods can be used to analyze these flat multilayers [57, 58, 59, 60]. Here we

introduce the transfer matrix method.

3.1.1 Transfer matrix method for planar multilayers

Our analysis of planar multilayers is based on the formulation mentioned in Ref. [61]. We

assume the convention that the field has a time dependence of the form exp
(

jωt
)
. Polariza-

tion definition is similar to the definitions mentioned in section 2.1. Assume that an incident

beam illuminates the structure at and angle θ. The description includes two separate polar-

izations which are completely decoupled and lead to a scalar equation for each polarization

(Eq. 2.19 or Eq. 2.22). The latter scalar equation is expressed versus a scalar field Ψ which

is the electric field in TE polarization and the magnetic field in TM polarization. This scalar
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Chapter 3. Numerical methods for exact calculations

field can be expressed in the i -th layer of the multilayer structure as

Ψi = Ai exp
[− jκi (z − zi−1)

]+Bi exp
[+ jκi (z − zi )

]
(3.1)

where κi =
√

β2 − (ni k0)2, ni is the layer refractive index, and Ai and Bi are the coefficients

of forward and backward waves in the i -th layer. Continuity of the tangential components of

the electric and the magnetic fields helps one to link the coefficients of forward and backward

waves in the following form.

(
At

Bt

)
= QM−1QM−2 · · ·Q0

(
Ai

Bi

)
, (3.2)

Q = 1

2

⎡
⎣
(
1+ fi

κi
κi+1

)
exp(−κi di )

(
1− fi

κi
κi+1

)
exp(κi di )(

1− fi
κi
κi+1

)
exp(−κi di )

(
1+ fi

κi
κi+1

)
exp(κi di )

⎤
⎦ . (3.3)

where i = 0,1, · · · , M −1 and M is number of layers. The parameter fi depends on the polar-

ization; fi = 1 for TE and fi = n2
i+1/n2

i for TM polarization. Transmission and reflection can

be obtained directly from the matrix Q as stated below.

R = Q21

Q22
, (3.4)

T = 1

Q22
(3.5)

Because Q22 appears in the denominator of both R and T , one can find its zeros to extract the

modes of the multilayer structure [62]. However this zero finding can be challenging, thus

a better alternative is to use the phase φRP M of Q22 = |Q22|exp( jφRP M ). This approach to

exctract the modes of the multilayer is called the reflection pole method (RPM) [61]. For loss-

less modes and at single wavelength, φRP M changes its value abruptly by π for each guided

mode propagation constant β. For lossy modes, the phase changes at the real part of the

propagation constant, ℜ{β}, but the phase change at this location is not exactly equal to π.

This is because introduction of loss spreads the resonance and subsequently the phase shift

of π over a range of propagation constants around ℜ{β}. The half width at half maximum

(HWHM) of this resonance is equal to the imaginary part of the propagation constant, ℑ{β}.

One can thus use dφRP M/dβ as a measure to detect guided modes. Examples of mode extrac-

tion are given in chapter 5.
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3.2. Two-dimensional structures: Rigorous Coupled Wave Analysis

3.2 Two-dimensional structures: Rigorous Coupled Wave Analysis

3.2.1 One-dimensional gratings: in-plane incidence

Let us assume a “one-dimensional (1D) grating"1 with period Λ which is illuminated “in-

plane"2 by a plane-wave at wavelength λ under an angle θ. Fig. 2.1b shows the geometry

under investigation. Since the angle varies only perpendicular to the incidence plane, it is

enough to consider only one parameter (θ) to define the angle.

For oblique incidence, a secondary parameter would be needed to take into account the other

degree of freedom for the change of the incidence angle. This is the least difference between

the case of in-plane and oblique incidence of light over 1D gratings. There are more funda-

mental differences also. For example, for in-plane incidence, one can distinguish two distinct

polarizations; transverse electric (TE) and transverse magnetic (TM). In TE polarization, the

electric field is parallel to the grating grooves (geometrical invariance direction) and in TM

polarization, the magnetic field is parallel to the grating grooves. Unfortunately the defini-

tion of these two polarizations is frequently confusing because of various definitions in the

literature. For TE polarization, one may find other abbreviations such as “P” or “s” polariza-

tion. Similarly, for TM, “S” or “p” are used sometime. The small letters “s” and “p” are used

in Fresnel’s notation and the capital letters “S” and “P” are usually used in the context of

gratings. Even the definition of TE and TM is sometimes mixed. This, however, should put

no confusion in this manuscript because we defined the two polarizations. As in the case of

planar structures, the time dependence of exp( jωt ) is assumed here.

Thanks to periodicity of the cell along x direction, we can express the permittivity (which was

defined in Eq. 2.4) in the form of a Fourier series.

ε(x, z) =
+∞∑

i=−∞
εi exp

(− j i Kx x
)

(3.6)

where Kx = 2π/Λ. This Fourier representation has an important physical meaning. Let us

consider the whole periodic structure as an optical system and the incident electromagnetic

waves as the input of this system as depicted in Fig. 3.1. Output of the system can be defined

by knowing its transfer function and the incidence wave spectrum. The transfer function can

hold the spatial harmonics of the incident field uncoupled or it can couple them together

depending on the nature of the transfer operator. It appears that the operator which acts on

the incident electromagnetic field couples the field spatial harmonic and has a nature similar

to a convolution. The coupling is done by using the Fourier components of the periodic

structure. The transfer operator of the structure shifts the spatial harmonics of the incident

field by multiples of Kx . We now explain this idea in more detail.

1defined in section2.1
2defined in section2.1
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Figure 3.1: The solar cell as an optical system.

TE polarization

Let us consider the 1D grating geometry of Fig. 2.1b. The coordinates are shown on the figure

to help understanding the formulation. According to the Floquet-Bloch theorem [63], the

parallel field components can be expressed as

Ey (x, z) =
+∞∑

i=−∞
E i

y exp
(
− j ki

x x
)

(3.7)

hx (x, z) =
+∞∑

i=−∞
hi

x exp
(
− j ki

x x
)

(3.8)

where hx is the x component of the normalized magnetic field h = H
�

μ0/ε0 and ε0 and μ0

are permittivity and permeability of vacuum respectively. Here only parallel components of

the field are considered because they are enough to solve Maxwell equations in the geometry

under investigation. The x component of the wave-vector is obtained by k0
x = n0k0 sin(θ).

Then one can find ki
x by

ki
x = k0

x + i Kx (3.9)

From Maxwell’s equations we have

∂z Ey (z) = j k0hx (z) (3.10)

Also, by partial derivation of the latter equation with respect to z and replacing it in Helmholtz

equation

(∂2
x +∂2

z )Ey (z)+εk2
0Ey (z) = 0 (3.11)

we obtain

∂z hx (z) =
[

jεk0−
j k2

x

k0

]
Ey (z) (3.12)
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From these two equations, one can link the Ey and hx by Maxwell equations and by Floquet

expansion of the fields, it is possible to come up with a system of equations as

dU(z)

d z
= [M]U(z) (3.13)

in which

U(z) =

⎡
⎢⎢⎢⎣

...

E i
y

...

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

...

hi
x
...

⎤
⎥⎥⎥⎦

(3.14)

In equation 3.13, [M] is an 2N ×2N matrix (N is the number of terms in the expansion of each

field component) which can be expressed as

[M] = j

[
0 k0 [IN ]

k0

(
[ε]− k2

x

k2
0

)
0

]
(3.15)

where [IN ] is an N × N identity matrix, [ε] is a Toeplitz matrix [64] including Fourier coeffi-

cients of permittivity and kx is a diagonal matrix with diagonal elements of ki
x . The convolution-

like behavior of this optical system is already observable in the formulation. The permittivity

appears as a Toeplitz matrix and not a diagonal matrix, which is the characteristic of opera-

tors which shift harmonics. Matrix [M] can be diagonalized and thus be written in the form

[M] = [P] [D] [P]−1 where [P] and [D] stand for the matrices of eigenvectors and eigenvalues

of [M]. It is easy to show that U = [P(z1)]exp−(z2 − z1)[D] [P(z2)]−1 (Ref. [65]).

In the reflection region, the field components Ey and hx are described as

Ey (x, z) =
∞∑

i=−∞

[
f i

F exp(− j ki
F z z)+bi

F exp(+ j ki
F z z)

]
exp(− j ki

F z z) (3.16)

hx (x, z) = −1

k0

∞∑
i=−∞

ki
F z

[
f i

F exp(− j ki
F z z)−bi

F exp(+ j ki
F z z)

]
exp(− j ki

F z z) (3.17)

Here ki
F z =

√
εk2

0 −
(
ki

x
)2

, nF is the incident medium refractive index and f i
F and bi

F are the

coefficients of forward (incident) and backward (reflected) waves. At the top boundary of the
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structure, electromagnetic boundary conditions apply which mean continuity of tangential

field components, i.e. Ey and hx . Then, one should use an appropriate propagation algo-

rithm to obtain the forward and backward coefficients along the interfaces of each layer of the

structure according to Eq. 3.13. An important point about applying the boundary conditions

is that using transfer matrix formulation can cause instabilities in obtaining the expansion

coefficients. The reason is that numerical noise can increase exponentially as it propagates

along a layer. Thus, it is necessary to apply the boundary conditions such that this exponen-

tial growth is avoided. This can be done by forming a large sparse matrix [52] or by using a

recursive method [65, 66].

After obtaining the parallel field components, hz can be obtained by via hz = (kx/k0)Ey .

TM polarization

TM polarization has a fundamental difference from TE; it includes field discontinuities. Since

the method is based on Fourier expansion, convergence of the method for TM polarization is

not as good as for TE due to the Gibbs phenomenon [51] and a higher number of orders is re-

quired to achieve convergence. A remarkable improvement in the convergence of the method

was achieved by Morris and Lalanne [67] and by Li [51]. In their formulation, whenever the

expression εEx appeared, they used the expansion of the inverse of the η = ε−1 instead of ε,

i.e. they used the Toeplitz matrix [η]−1 instead of [ε]. Another major progress was achieved

by Morf when he expanded the field in each continuous part of each layer into Legendre

polynomials and then applied the boundary conditions between the different parts of each

layer and between the different layers [52]. This latter approach leads to the exponential con-

vergence of the eigenvalues and eigenvectors of Helmholtz equation for each stack, which

can be a significant improvement compared to the conventional RCWA. The drawback of

polynomial expansion method is that its extension to two-dimensional gratings is not trivial

and specially for random textures, its efficient implementation can be complicated. Another

method to improve convergence in TM polarization is to change the coordinates such that

resolution is increased close to the interfaces, where the field is discontinuous. This method,

which is commonly called adaptive spatial resolution (ASR) solves the problem of conver-

gence elegantly for both 1D and 2D gratings but its application is limited to only one layer

unfortunately [53]. The ASR method has been applied to a low number of layers [68] but then

it can become unstable. Recently the method has been stabilized [69] by application of the

boundary conditions in the mapped coordinates but again the application is limited to only

one layer. Later in section 3.2.4 we come back to this problem and we mention two ways to

overcome this problem.

The conventional RCWA can be formulated for TM polarized light similar to the case of TE

polarization. Based on Maxwell equations, ∂z hx (z) =− j k0η
−1Ey (z) and Helmhotz equation

(∂2
x +∂2

z )hy (z)+ εk2
0hy (z) = 0, the components of the field which are parallel to the grating

plane can be linked to each other in the same form as Eq. 3.13 where [U] and [M] are defined
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as

U(z) =

⎡
⎢⎢⎢⎣

...

hi
y

...

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

...

E i
y

...

⎤
⎥⎥⎥⎦

(3.18)

[M] =− j

[
0 k0

[
η
]−1

k0

(
[IN ]− 1

k2
0

kx [ε]−1 kx

)
0

]
(3.19)

The rest of the process of obtaining the fields is similar to the procedure mentioned for TE

polarization. After obtaining the parallel field components, Ez can be obtained via Ez =
η(kx/k0)hy where η= ε−1.

Second order RCWA

The RCWA method up to here was based on a first order differential equation (Eq. 3.13 ). It is

possible to merge the system of Eq. 3.13 into a second order system.

⎧⎨
⎩

d2U(z)
dz2 +k2

0

(
[ε]− k2

x

k2
0

)
U(z) = 0 (T E )

d2U(z)
dz2 +k2

0

[
η
]−1
(
[IN ]− 1

k2
0

kx [ε]−1 kx

)
U(z)= 0 (T M )

(3.20)

The advantage of these sets of equations is that they have half of the size of the previous first

order systems. This helps in achieving faster convergence and thus higher accuracy.

Calculation of diffraction efficiency

Thanks to the modal nature of the RCWA method, it is possible to find the diffraction effi-

ciency of individual orders very easily. Diffraction efficiency is defined as the amount of

power carried by an individual order. If the system is lossless, energy conservation neces-

sitates that the sum of the energy in the reflection and transmission is equal to the incident

energy. This means that for any surface A around the structure, the following equation should
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hold.

∫
A

−→
S .−→n d A = 0. (3.21)

where
−→
S is the Poynting vector and −→n is the surface normal. Assume that there is a metallic

back-reflector underneath the structure, therefore there is no transmission. Also consider a

surface parallel to the grating plane at a certain distance on top of the structure. The electric

and magnetic fields of a plane wave propagating in a homogeneous medium can be linked

via the impedance of the medium, H = (1/ηmedi um )k×E, therefore, the expression E×H∗

simplifies to |E|∗ or |H|∗. Hence, based on Eq. 3.21 one can write

Pi n =∑
i

∣∣∣bi
F

∣∣∣2 cosψi (3.22)

where Pi n is the incident power, i is the order index and ψi is the angle between the prop-

agation direction of the i -th order and surface normal, which is −z direction in this case.

The term in the summation expresses the power carried by the i -th order and it is called the

diffraction efficiency of the order.

Absorption calculation

To calculate absorption, it is necessary to find the coefficients of the forward and the back-

ward waves for each slice. It is then possible to find the field profile over each slice and thus

over the whole structure. Then, absorption can be found by using the slowly varying approx-

imation A = ω
2 εi
∫ |E|2 dV .

3.2.2 One-dimensional gratings: conical diffraction

For conical diffraction, it is no longer possible to decouple the two polarizations. Here we go

over a simple formulation for this case. Maxwell equation ∇×E =−∂t B can be expanded in

the form

∂y Ez −∂z Ey = − jωμHx (3.23)

∂z Ex −∂x Ez = − jωμHy (3.24)

∂x Ey −∂y Ex = − jωμHz (3.25)
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3.2. Two-dimensional structures: Rigorous Coupled Wave Analysis

Similarly the equation ∇×H = ∂t D can be written in the form

∂y Hz −∂z Hy = jωεEx (3.26)

∂z Hx −∂x Hz = jωεEy (3.27)

∂x Hy −∂y Hx = jωεEz (3.28)

Thanks to periodicity of the structure along x direction we can expand the fields into a Bloch-

Floquet series. This means expanding the field using basis functions of the form exp(− jαn x).

This in turn shows that derivation with respect to x can be accounted for by multiplication

by − jαn . Similarly the z-dependence of the field can be described as ∂y =− j ky . The second

Maxwell equation can be then rewritten as

⎡
⎢⎣

∂z Hx −∂x Hz

∂x Hy −∂y Hx

∂y Hz −∂z Hy

⎤
⎥⎦= j k0

⎡
⎢⎣
[
η
]−1 0 0

0 [ε] 0

0 0
[
η
]−1

⎤
⎥⎦
⎡
⎢⎣

Ey

Ez

Ex

⎤
⎥⎦ (3.29)

where [ε] and
[
η
]

are Toeplitz matrices of the Fourier coefficients of ε and ε−1. A similar set of

equations can be formed for the other Maxwell equation which includes permeability μ. By

assuming the z-dependence of the form exp(− jχz) one can further simplify the latter set of

equations and end up in a system which includes only the y and the x field components.

⎡
⎢⎢⎢⎢⎣

Ex

Hx

Hy

Ey

⎤
⎥⎥⎥⎥⎦=−χ

⎡
⎢⎢⎢⎢⎢⎣

0 γ
k0

[ε]−1α μ− γ2

k0
[ε]−1 0

− αγ
k0μ

0 0 γ2

k0μ
−k0

[
η
]−1

− α2

k0μ
+k0

[
η
]−1 0 0 αγ

k0μ

0 1
k0
α [ε]−1α − γ

k0
α [ε]−1 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ex

Hx

Hy

Ey

⎤
⎥⎥⎥⎥⎦(3.30)

Finally the electromagnetic field in the grating region can be expressed as

⎡
⎢⎢⎢⎢⎣

Ex

Hx

Hy

Ey

⎤
⎥⎥⎥⎥⎦=

∑
nq

exp
(− jαn

)
⎡
⎢⎢⎢⎢⎣

E+
x

H+
x

H+
y

E+
y

E−
x

H−
x

H−
y

E−
y

⎤
⎥⎥⎥⎥⎦
⎡
⎣ exp

(
jχ+

q z
)

0

0 exp
(

jχ−
q z
)
⎤
⎦[ uq

dq

]
(3.31)

Here uq and dq are coefficients to be found by a stable algorithm which can be recursive such

as the S-matrix algorithm [66] or non-recursive [52]. Now we briefly go over the idea of the

scattering matrix algorithm.
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3.2.3 S-matrix algorithm

The scattering matrix algorithm, which is often abbreviated as the S-matrix algorithm, links

the forward and the backward wave amplitudes in the incident medium and at the interfaces

of the p-th layer.

[
A(p+1)

B (0)

]
= S(p)

[
A(0)

B (p+1)

]
(3.32)

where A and B are forward and backward waves respectively. In the last layer of the structure

there is no backward wave, i.e. B (M+1) = 0 (M is the number of layers). Also in the incident

medium the forward wave A(0) is known. Hence, even from its definition, it is clear that the

scattering matrix can provide both reflection and transmission data.

In addition to its abstract mathematical meaning, the scattering matrix does have a physi-

cal interpretation. In Fig. 3.2 the Transfer matrix and the scattering matrix are compared

schematically. The solid arrows show the input waves and the dashed arrows are the output

waves for each algorithm. In the transfer matrix the input data are the forward and backward

waves on one side of the system (for example one layer or the whole stack of layers) and the

output is the forward and the backward waves on its other side. The scattering matrix ac-

cepts the forward wave of the incident medium and the backward wave of the transmission

medium and gives the backward wave of the incident medium and the forward wave of the

transmission medium as the output. In this way, the scattering matrix gives a more natural

way of representing an optical system with incident waves as input and reflection and trans-

mission as the output. The result of this natural behavior is stability of the scattering matrix

formulation compared to the transfer matrix formulation. The main reason is that the formu-

lation of the transfer matrix includes growing exponentials but the scattering matrix does not

contain such terms.

(a) (b)

Figure 3.2: Schematic demonstration of (a): transfer matrix, and (b):scattering matrix.

In Ref. [66] a method is developed to calculate the scattering matrix of the whole stack of lay-

ers recursively. The algorithim is usually called the S-matrix algorithm because it calculates

the scattering matrix.

34



3.2. Two-dimensional structures: Rigorous Coupled Wave Analysis

3.2.4 Adaptive spatial resolution

The RCWA method converges slowly for TM polarized illumination. The reason behind this

slow convergence is discontinuity of the normal component of the electric field at the inter-

face between two different media according to the Maxwell equation ∇×H = jωεE. Since

RCWA uses Fourier expansion of the fields and the permittivity, this can be attributed to

Gibbs phenomenon, which is a well-known mathematical problem. One way to resolve the

problem is to express the permittivity in a new coordinate system u that is denser where the

permittivity is discontinuous 3. Here we mention the suggestion of Vallius for definition of

the new coordinate system between the jump points l −1 and l .

x(u)= a1 +a2u + a3

2π
sin

(
2π

u −ul−1

ul −ul−1

)
(3.33)

where x is the cartesian coordinates and the cofficients a1, a2 and a3 are defined as

a1 = ul xl−1 −ul−1xl

ul −ul−1
(3.34)

a2 = xl −xl−1

ul −ul−1
(3.35)

a3 = G(ul −ul−1)− (xl −xl−1) (3.36)

and G is a constant close to zero, for example 0.001. Fig. 3.3 shows the new coordinates

assuming that the discontinuities occur at x = 0,0.1,0.6 and 0.65, and that G = 0.001. The

thin lines show the positions of discontinuities in x.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

u

(a)

Figure 3.3: Mapping x to u for the adaptive spatial resolution. Discontinuities are assumed to occur
at x = 0,0.1,0.6 and 0.65. For simplicity ul = xl

3 We remind the reader that increasing the spatial resolution around the discontinuity is not the only method
to improve convergence. Although the methods which apply the boundary conditions at the discontinuity (e.g.
the finite element method or polynomial expansion method) seem more correct from a mathematic point of view,
changing the spatial resolution may be considered an alternative that may be easier to program.
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In TM polarization, Hy can be obtained by solving Eq. 3.20. The solution can be expressed as

Hy =
∑
q

[
Aq exp(− jχq z)+Bq exp( jχq z)

]∑
m

Hmq exp(− j kx,mu) (3.37)

Note that instead of using the basis functions exp(− j kx,m x), we use new basis functions of

the form exp(− j kx,mu). It is necessary to adapt Helmhotz equation to the new coordinate.

The only change to be applied is that the derivations with respect to x change to d/dx = (du/dx)·
(d/du). By defining three auxiliary functions

f (u) = ∂x

du
(3.38)

a(u) = ε(u) f (u) (3.39)

b(u) = f (u)

ε(u)
= η(u) f (u) (3.40)

we can write derivation with respect to x as d/dx = (1/f ) · (d/du). Derivation with respect to x

can be identified by the appearance of kx in Eq. 3.20, which can be thus expressed as

d 2U(z)

d z2 + [b]−1 (k2
0 [f]−kx [a]−1 kx

)
U(z)= 0 (3.41)

where f, a, and b are Toeplitz matrices formed from the Fourier coefficients of the respective

functions. To apply boundary conditions, Vallius et al. transform the fields back to a common

basis, for example the Fourier domain of the original Cartesian coordinates. This enables

them then to apply the method to a multilayer stack. This projection can be done by using a

projection operator (matrix) T which is defined as

Tpm = 1

Λ

∫Λ

0
f (u)exp

[
j
(
kx,p x(u)−kx,p u

)]
du (3.42)

and multiplying the matrix of Fourier coefficients of any field component by it, for example

H x
y = TH u

y . The next step is applying boundary conditions which can be done for example

using a recursive S-matrix method.

During application of the boundary conditions one can observe the instability of the adap-

tive spatial resolution. The reason is that during this process one needs to invert the matrix T

which is usually ill-conditioned and its inversion introduces remarkable error into the results

and consequently makes the method instable. This can be avoided for a single layer by ap-

plication of the boundary conditions in u-coordinate. However, application of the method is

limited for more than one layer.
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3.3. Other methods and three-dimensional geometries

3.2.5 How to use adaptive spatial resolution for stacked gratings?

Solving the eigenvalue problem is the main concern while using Fourier based methods. ASR

can give eigenvalues and eigenmodes very accurately with significantly improved conver-

gence. To use ASR for multilayers one should use a common coordinate for all of the lay-

ers. This technique is impractical when the number of layers is large and their profile is not

similar. Coordinate transformation in Fourier domain before application of the boundary

conditions causes instability problems because the transformation matrices become singu-

lar. One method is to consider a grid in the real space domain and first solve the eigenvalue

problem using ASR, then evaluate the eigenmodes on the mesh in real space and finally apply

the boundary conditions in real space using an algorithm such as S-matrix [66] or by simply

solving for all boundaries in a large system [52].

3.3 Other methods and three-dimensional geometries

The finite Difference Time Domain (FDTD) method is a popular approach to solve Maxwell

equations for arbitrary geometries. As its name suggests, it uses a time-marching algorithm.

Contrary to many frequency-domain approaches, it does not include matrix inversion which

adds to its stability. Thanks to its time domain nature, it can simulate structures over a very

wide spectral range. Thanks to its simple algorithm, FDTD can provide a versatile tool for

simulation of optical systems and various optical properties such as dispersion, nonlinearity,

anisotropy, etc. Therefore, it may seem an appropriate tool for the simulation of solar cells

[39, 70, 71]. A major advantage of FDTD is that it can find the response of a system over

the whole desired band in one simulation. This can be done for example by shooting an

incident temporal pulse which covers the desired frequency band into the structure. Another

advantage of FDTD is that it does not need as high amount of memory as some full-numerical

frequency-domain approaches such as the finite element method (FEM).

There are different criteria that are of critical importance while performing FDTD simulation

of solar cells. First, numerical dispersion can modify the spectral response [72, 73, 74]. A so-

lution to this problem is using an algorithm which considers higher orders [42]. Another way

to reduce the numerical dispersion is to increase mesh resolution. For solar cells this seems

to make the method very memory-hungry and also time-consuming. As a rule of thumb, to

make reliable FDTD calculations, each wavelength of light should be equal to at least 10 grid

points [42]. This means that for example at the wavelength of 300 nm, in a medium with

refractive index of n = 5, maximal grid size is 300/5×10 = 6nm.

Another disadvantage of the FDTD method is that it takes long. The main criterion is the sta-

bility condition of the method which limits the time-step via the Courant stability condition

[42]. In the 3D case, this criterion can be expressed as

vΔt ≤ 1√
(Δx)2 + (Δy)2 + (Δz)2

(3.43)
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In the above expression v is light speed in the medium and Δt is time-step. Δx, Δy and Δz

denote the grid size along different Cartesian coordinates. Usually, Δx = Δy = Δz and one

gets

vΔt ≤ 1�
3Δx

(3.44)

Increasing resolution in each direction by a factor of N , increases the total number of grid

points N 3 times and reduces the maximal step size by a factor of 1/N . This increases memory

usage by a factor of N 3 and simulation time by a factor of N 4.

Another concern about FDTD is that to simulate dispersive media, it should approximate the

wavelength-dependent permittivity by a summation of poles that have a pre-defined form

e.g. Lorentzian, Drude or Debye [42]. Application of this approximation has several disad-

vantages; first, it introduces a fitting error. Second, the method becomes slow by introducing

poles. The more poles one introduces for a material, the slower the method becomes. Third,

introducing dispersion can modify the stability condition of FDTD. This means that one

may need smaller step-size to reach stability which slows down the already time-consuming

FDTD method even more.

The finite element method (FEM) is another method used for the optical modelling of thin-

film solar cells by different groups such as Zuse Institute [75], the group of M. Zeman in Delft

[43, 76, 77], and the group of M. Topic̆ in University of Ljubljana [78]. Usually the main bot-

tleneck of the FEM is it needs a huge amount of memory. Altogether, it seems an appropriate

method for the analysis of thin-film a-Si cells. However, its applicability to the μc-Si cells

seems not possible with the current ordinary computational facility.

An alternative approach to the Fourier modal expansion of the fields can be modal expansion

in real space. The benefit is that Gibbs phenomenon does not occur in real space and there-

fore the problem of poor convergence should not be encountered. Several approaches have

been studied recently in this regards: Finite difference modal method [79], moment method

[80] and point-matching pseudo-spectral modal method [81].
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4 Optical limits for thin-film solar cells

In this chapter I1 investigate the physical limits which are imposed by the optical properties

of a solar cell on its efficiency and photocurrent. Efficiency of a solar cell is tightly entangled

to its photo-generated current as already explained in section 1.4. The photocurrent is in

turn a function of light absorption in the cell (Eq. 1.1). Enhancing absorption —which is also

called light trapping—can thus improve the efficiency of a solar cell, and it is a main subject of

study in this chapter. Specifically, I investigate the upper bound of absorption enhancement

in thin film a-Si solar cells.

Section 4.1 reviews briefly different limits for absorption enhancement in thin films. Then,

we consider an ideal thin film to study the angular behavior of the upper bound of absorp-

tion enhancement in section 4.2. Later, we extensively investigate this limit and its angu-

lar behavior in section 4.3 for a slab and a full solar cell stack. Absorption enhancement by

guided modes is determined by both the number of guided-mode excitations and the cou-

pling strength for each excitation. In section 4.4 we discuss two limitations on coupling

strength. The first one is imposed by single pass absorption of the cell (4.4.1) and the sec-

ond one is based on Planck’s law of radiation (4.4.2) Then, in section 4.5 we mention some

bounds for a cell’s efficiency and we suggest ways to surpass them. This chapter of the thesis

explains the results mentioned in three of my published papers [82, 83, 84].

4.1 Limits on photocurrent enhancement

In the literature, usually the “absorption enhancement factor”, or simply the “enhancement

factor” is used as a figure of merit to characterize the capability of a solar cell to absorb light.

This factor is defined in the literature as

F = maximal absorption in the absorber

single pass absorption over the absorber thickness
(4.1)

1I have benefited from several of my publications (Refs. [82, 83, 84]) in this chapter, thus, the cooperation of
all co-authors of the mentioned publications is appreciated.
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Chapter 4. Optical limits for thin-film solar cells

Absorption enhancement is mainly required at the wavelengths where the solar cell is weakly

absorbing. Weak absorption means that one can approximate the single pass absorption

over the cell’s thickness with the expression αd where α is the absorption coefficient of the

absorber and d is its thickness.

Based on the above definition of the enhancement factor, different limits have been sug-

gested to estimate the upper bound of absorption in a solar cell, which will be reviewed later

in this section. It is important to know that all of these limits are based on a mode count-

ing scheme explicitly or implicitly. Specifically guided modes have attracted special interest

recently and they have been observed to improve a cell’s photocurrent [36].

Guided modes of an optical system, for example a thin film multilayer, are solutions of Maxwell’s

equations in the system which ideally do not exchange energy with the outside environment.

Because of this, these modes are sometimes called “trapped modes” [30]. Guided modes of a

solar cell can be excited if the cell interfaces are changed from planar into textured. To excite

a guided mode, both the“transverse resonance condition” and the“Bragg condition” should

be satisfied.

z

Figure 4.1: Schematics of a slab with a 1D periodic texture. The field phase variations are symboli-
cally shown with sinusoidal patterns. The dashed and the solid curves correspond to the cases where
transverse resonance condition and the Bragg condition are satisfied respectively.

Fig. 4.1 shows schematically a dielectric film textured using a 1D grating. The transverse res-

onance condition means that the wave makes constructive interferences along the thickness

of the film. Approximately, this is equivalent to the condition that the resonances are solu-

tions of the transcendental equation of the film; i.e. they are phase-matched to the guided

modes of the film. I say approximately because modification a planar geometry deviates its

modes from the dispersion of a planar device. In Fig. 4.1 the sinusoidal curves represent

symbolically change of the wave phase along the longitudinal and the transverse directions.

The dashed curves correspond to the cases where the phase change in one round trip along

the film thickness is a multiplicand of 2π i.e. where the transverse resonance condition is

satisfied.

Satisfaction of the Bragg condition couples the modes inside the multilayer stack to the con-

tinuum of radiation modes outside the device. For a 1D grating and at normal incidence this
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4.1. Limits on photocurrent enhancement

means that

k∥ = 2m′π/Λ (4.2)

where k∥ is the guided-mode propagation constant m′ is an integer and Λ is the grating pe-

riod. The red solid curves in Fig. 4.1 demonstrate schematically when the Bragg condition is

satisfied.

The two mentioned conditions imply the existence of a discrete spectrum of the distribution

of the wave-vectors and the wavelengths corresponding to guided modes. In other words,

the guided modes in the dispersion diagram do not form a continuum. If the guided-wave

structure thickness (d ) or the grating period (Λ) is much larger than the incident wavelength

(λ), the guided modes get so close to each other in the dispersion diagram that they may

be regarded as a continuum. The two continuum approximations of Λ � λ (continuity in

k−space) or d � λ (continuity in k-space) have been used by different authors to find the

limit of absorption enhancement in solar cells [29, 31, 30, 20].

One of the first calculations of the absorption enhancement limit dates back to 1982 when

Yablonovitch et al. suggested the limit of 4n2 for the enhancement factor where n is the

refractive index of the absorber. [29]. They assumed scattering full-randomization at the

cell’s interfaces which is equivalent to continuity in k−space. Apart from this, Yablonovitch

et al. have considered two further assumptions: weak absorption of light —which is a com-

mon convention between all of the limits of absorption enhancement discussed in this the-

sis—and large thickness of the absorber. The first condition is logical because it is desired to

increase absorption mainly when the cell does not absorb light well. The second assumption

starts to be true if the cell is thicker than a few wavelengths and it means that a large num-

ber of modes are present in the absorber such that one can use the wavelength continuum

approximation. To find more practical values, Deckman et al. extended the limit by inclu-

sion of loss in other layers of the cell [31]. Their method to find the upper bound of absorp-

tion enhancement motivated other researchers to further extend their approach [85, 86, 87].

For thinner films, Stuart and Hall have found the limit to be smaller than 4n2 [30]. In their

calculations, they have considered thin films which are randomly textured, thus, again they

have assumed Lambertian scattering in their calculations (continuity in wavelength). The de-

crease of the enhancement factor in their calculations is because they included the imperfect

confinement of the modes to the solar cell. This effect also exist in thick cells but it has not

been considered in the corresponding calculations [29, 20].

The assumption of Lambertian light scattering is common between all of the mentioned up-

per bounds, at least partly. I say partly because in Ref. [85] the authors have considered

Lambertian scattering after two bounces inside the film. A Lambertian scatterer is a scat-

terer whose scattering is uniform over the whole angular range. Fig. 4.2 shows the scattering

pattern of a Lambertian scatterer in thick blue.
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(a) (b)

Figure 4.2: (a): Radiance (see Appendix A for definition) of a Lambertian scatterer (thick blue) and
a second scatterer which scatters light directionally. (b): Same as (a) including the guided modes
directions of the thin film structure.

An important question is whether the assumption of Lambertian scattering is valid for real

solar cells. A second question is whether the upper bound of absorption necessarily corre-

sponds to a Lambertian scatterer. For example, does Lambertian scattering (blue thick curve

in Fig. 4.2a) result in better light absorption compared to directional scattering ( red thin

pattern in Fig. 4.2a).

The first question seems to be not hard to respond. Based on the agreement between the

experimental data and the upper limits which assume Lambertian scattering of interfaces, it

appears that this assumption is not far from reality [35, 34]. The assumption of angular in-

sensitivity of interfaces -let us call it perfect randomness- is further justified if we note the

different factors that try to randomize light absorption in the cell. First, the light illumination

angle is not completely fixed and the incident light does not prefer a specific polarization.

Then, at each interface of the cell, direction randomization occurs. The whole travel of light

inside the cell can be imagined as a sequence of up and down bounces between different

interfaces. Furthermore, the cell is a very wide-band device and this reduces sensitivity of

the device to a specific resonance or direction. To date, the best fabricated cells are based on

random textures and because of the rich spectral response of these textures, perfect random-

ization assumption seems not very far from reality.

Contrarily to the first question, the second one seems to be very hard to respond, if possible at

all. It is true that our state-of-the-art cells are based on random textures but this is not enough

to conclude that light randomization can maximize light absorption in the cell. Planck’s law

of radiation guarantees that the sum of coupling strength over different angles/frequencies

is fixed [88]. At least for thin films this seem to have an impact. Fig. 4.2b shows schematically

guiding of a mode in a thin film. Assume that light is coupled into the film from the bottom

interface which may have two different scattering patterns: Lambertian (thick) and the sym-

metric pattern with two lobes (thin). Light coupling into the film can happen in the form of

an interference or excitation of guided modes. Interference occurs mainly as a function of

film thickness. Guided-mode excitation, contrarily, happens if the lobes of radiance of the

interfaces meets the direction of guided modes inside the film. This is shown in Fig.4.2b by

arrows. A Lambertian scatterer does not distinguish direction. Therefore, it sends light in
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the direction that it couples to the guided mode (solid arrows) similarly to other directions

which do not result in effective coupling (dashed arrow). The directional scatterer, inversely,

can couple light to the guided mode, if its direction matches the one of the guided mode.

Otherwise, it may lose the guided-mode direction and be unable to excite it.

4.1.1 The 4n2 limit

Yablonovitch and Cody assumed Lambertian scattering interfaces to find this limit. They

claimed that in a medium of refractive index n, intensity and absorption can be enhanced by

respective factors of 2n2 and 4n2. They present two types of formulation in their paper [29]

to find this limit; one approach based on statistical mechanics and a second method based

on detailed balance. Here we briefly reproduce the former.

The energy density U of a black-body at temperature T can be described by Planck’s formula

[89]

U = ħω
exp{ħω/kT }−1

dΩk2dk

(2π)3 (4.3)

where k = nω/c , ω is the angular frequency, c is speed of light, Ω is solid angle, n is the

refractive index and ħ represents the reduced Planck’s constant. Intensity impinging on a

surface can be obtained by multiplication of U with the group velocity vg = dω/dk

I =U vg =n2I0 (4.4)

where I0 represents light intensity in air. Considering reflection from the back-side makes

a factor of 2 for the intensity enhancement. Absorption enhancement can be obtained by

integrating the light path prolongation inside the cell by Lambertian scattering. The effect

of scattering angle θ of light at the interfaces appears as a sinθ term in the corresponding

integral, which after being integrated brings another factor of 2, thus results finally in the 4n2

factor (Eq. 9 in Ref. [29]).

Evidently in the mentioned approach no effect of incident angle is present. If the effect of the

incident angle is considered, higher upper bounds can be obtained for the absorption limit

[20, 82].

4.1.2 The 4πn2 and the 8πn2/
�

3 limit

Recently Yu et al. have shown that by using periodic patterns, it is possible to go over the 4n2

limit for absorption enhancement. By using grating patterns, Yu et al. relaxed the continuum
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approximation in k-space2. They obtain the upper bound of absorption enhancement by

using temporal coupled-mode theory. Because they consider the case where there are many

modes in the structure, they call their method "the statistical coupled-mode theory". 3 Here

we briefly go over their method.

Temporal evolution of a single resonance satisfies the following approximation [18, 20].

d a

d t
=
(

jω0 −
Nγe +γi

2

)
a + j

�
γe S (4.5)

In this equation γe is the external coupling rate and γi is the internal loss rate. N in the

number of output ports and it is assumed that all the output ports have the same output

characteristic. For a solar cell based on gratings, each diffraction order is equivalent to one

output port, thus N is equal to the number of reflected and transmitted diffraction orders.

The term with square root shows coupling to a source with an amplitude of S. The resonance

angular frequency is represented by ω0.

Here we present a brief heuristic justification of Eq. 4.5 4. Assume a mode with amplitude a

in a resonator, which is isolated from its ambient. If the resonator is lossless, the mode will

remain in it forever and its energy will be preserved. Assuming so, in the harmonic regime,

the mode amplitude is expected to be of the form

a(t )= A0 exp( jω0t ) (4.6)

which is a solution of Eq. 4.5 for γi = γe = 0. If the resonator is not perfectly lossless, the mode

amplitude will damp with at a rate equal to γi /2. Damping of the mode amplitude can also

occur due to coupling of the mode to the external ambient. If the mode is not completely

decoupled from outside, its energy can be transferred through an output port at a rate equal

to γe /2. If there are N equivalent output ports, energy of the mode can be transferred N

times faster to the outside; thus the overall external coupling rate will be equal to Nγe/2. The

overall damping rate of the wave amplitude is thus equal to (Nγe +γi )/2 which is mentioned

inside the parentheses in Eq. 4.5, and it can be considered as the imaginary part of ω0. This

is consistent with the exponential dependence of the wave amplitude a on ω0 in Eq. 4.6

because the imaginary part of ω0 leads to damping of the exponential function. If there is

an external radiation source, due to reciprocity its radiation can couple to the mode inside

the resonator in the same way that the mode energy couples out. In many cases the external

source S is coupled to the resonant mode through one input port. For example in a solar cell,

2which was discussed in section 4.1.
3Coupled-mode theory has been extensively used as an approximation to solve optical problems which in-

clude resonant optical structures [90, 91, 92, 93, 94, 95]. It has been developed extensively by Haus a few decades
ago [18, 41, 96]. Other authors have extended the coupled-mode theory and used it for the analysis of different
structures [97, 98, 99, 100, 101, 102, 103, 104, 105, 106].

4For a more detailed derivation, the interested reader is referred to chapter 7 of Ref. [18].
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4.1. Limits on photocurrent enhancement

at each moment sun illuminates the cell at a certain angle, which corresponds to the zero-

th diffraction order 5. The last term in Eq. 4.5 accounts for coupling of mode energy to this

source 6.

One should note that the coupled-mode formula mentioned in Eq. 4.5 is an approximation

in many respects and by no means can replace an exact solution of Maxwell’s equations for

solar cells. First of all it is a slowly varying approximation, which mean that when the dis-

persive effects become remarkable, it can get inaccurate (c.f. section 2.5.2). We will come

back to this point later in section 4.2. Besides, the coupled-mode theory is a perturbation

approach. This means that for small deviations from the reference geometry —which is pla-

nar in this case —it can predict many optical effects relatively accurately but as the deviation

from the reference becomes strong, the method gets inaccurate. Generally, such a method

is not appropriate to deal with strong interactions. For instance, if the material is highly ab-

sorbing, the coupled-mode theory becomes inaccurate. More specifically, the coupled-mode

theory results in a Lorentzian resonance shape as will be shown later (Eq. 4.9), which is not

always the case in practice, especially when the absorber material is strongly absorptive. Also,

when several resonance are very close to each other in frequency domain, their shape can be

deviated from exact Lorentzian and the final spectrum may include broadened resonances

or very sharp ones. Another approximation is that near field effects may be neglected in the

coupled-mode formulation. Despite the mentioned points, the coupled-mode theory is used

in literature to provide an approximation of the optical limits of light absorption enhance-

ment in solar cells [20]. Since absorption enhancement is mainly desired where the materials

are weakly absorbing, the application of the coupled-mode theory seems reasonable to find

the upper bounds of absorption enhancement in relevant structures.

In the harmonic regime, we can replace time derivation with jω and rewrite Eq. 4.5 as

a = j
�
γe S[

j (ω−ω0)+ (Nγe+γi )
2

] (4.7)

By using Eq. 4.7 and noting that [18, 20]

A = γi |a|2
|S|2 (4.8)

5We neglect the spatial incoherence of solar illuminaiton on the cell.
6The reader may question the appearance of γe inside the square root in Eq. 4.5. It is beyond the scope of

this thesis to perform the corresponding calculations; however, the interested reader is strongly recommended
to study chapter 7 of Ref. [18], and more specifically the part which includes Eq. (7.27). In brief, this comes
from reciprocity and time reversal of electromagnetic fields and a main assumption in this calculation is that the
media should be weakly absorbing. Note that the dimension of a and S is different: |a|2 represents mode energy
but |S|2 stands for incident power.
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Chapter 4. Optical limits for thin-film solar cells

one obtains the following expression for absorption

A(ω) = γiγe

(ω−ω0)2 +
(
γi+Nγe

2

)2 (4.9)

Figure 4.3: Schematics of the considered Si film (blue) on Ag back-reflector (gray). The grating depth
h is varied to change coupling.

To provide a feeling of the values that the coefficients γe and γi can take, we consider a 30

nm thick Si slab on top of a 200 nm-thick silver back-reflector. The Si layer is considered very

thin to avoid coexistence of multiple guided modes and thus to simplify the analysis. The

materials are “idealized”: their permittivity is considered εSi = 13+0.01i and εAg =−35. The

metal is used here as a lossless back-reflector, thus the imaginary part of its permittivity is

zero. The Si layer is weakly absorbing to resemble an a-Si layer in the low-absorption long-

wavelength regime. Since the structure is planar, the guided modes are not excited, because

γe = 0. However, perturbing the planar geometry results in coupling the external radiation to

guided modes of the device. Our aim is to have an estimate of the values that γe and γi take.

For this purpose, we assume that the back-reflector is deviated from planar into a sinusoidal

pattern with the period of 500 nm. We change the grating peak to valley depth h and we find

γe and γi for a certain guided-mode excitation for each h. The grating is shown in Fig. 4.3. TE

polarization is considered for the simulations of this part which means that the the electric

field is parallel to the grating grooves.

Fig. 4.4 shows the increase of absorption in the Si layer, compared to the planar case, for

the grating depths (h) of 5, 10, 20, 50 and 100 nm in the wavelength range from 535 to 560

nm. For very small h, mode excitation is not strong and the Lorentzian peak takes very small

values. As the grating becomes deeper, the resonance becomes wider, which is a result of
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4.1. Limits on photocurrent enhancement
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Figure 4.4: Spectrum of the increase of absorption (compared to the planar case) for the sinusoidal
grating for different grating depths.

Table 4.1: external coupling rate (γe ) and internal loss rate (γi )

h (nm) γe (×1013 rad/s) γi (×1013 rad/s)

2 0.0010 0.2381
5 0.0002 0.2399

10 0.0325 0.2376
20 0.1874 0.2435
50 1.2818 0.2354

100 3.8911 0.2356

increase in the external coupling rate γe . However, the resonance amplitude does not change

monotonically versus h. For small grating depth, increasing the grating amplitude increases

the resonance amplitude up to the depth of around 20 nm. Further increase of h leads to

reduction of the resonance amplitude.

To obtain the values of the coefficients γe and γi for each h, we consider the difference of ab-

sorption in each case from the absorption of planar geometry. This gives the effect of guided-

mode excitation independent of the influence of interference. Then, we fit a Lorentzian curve

of the form suggested by Eq. 4.9 (for N = 1) to the corresponding guided-mode resonance ab-

sorption curve. Table 4.1 and Fig. 4.5 show the obtained coefficients (γe and γi ) for different

grating depths (h). The internal loss rate γi is almost fixed, independent of the grating depth,

but the external coupling rate is monotonically increasing as the grating depth increases 7.

For small grating depth, the effect of internal loss is more pronounced than the external cou-

7This monotonicity may be violated for strong coupling. [107].
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Figure 4.5: The coefficients γe and γi as a function of the grating depth.

pling (γi > γe ) but for large grating depth, the contrary is true (γe > γi ). There is a point where

γe and γi equate. In this example, this occurs at around a grating depth of 20 nm. As Fig. 4.4

shows, the grating depth of around 20 nm results in a resonance which can absorb light com-

pletely at around its peak. The condition γe = γi is called the “critical coupling” condition

[18]. A single Lorentzian resonance reaches unity at its peak only when the critical coupling

condition applies. Thus, for narrowband applications, to attain maximal absorption it is nec-

essary that γe = γi . For wideband application, as in the case of solar cells, critical coupling

does not lead to maximal absorption because it is not only the peak of the Lorentzian that

matters and one should look at the average absorption provided by the Lorentzian over a

wide wavelength range. In this case, the “over-coupling” condition should result in maximal

coupling, which means γe > γi [20].

To continue the discussion, we come back to Eq. 4.9. Different conclusions can be made

based on this equation.

1. Absorption depends on both external coupling rate (γe ) and internal loss rate (γi ). This

means that if absorption is very small, as in the light-trapping regime of thin-film solar

cells, the resonance peak value in the absorption spectrum will not be very high, which

is in agreement with experimental observations and simulation results.

2. Due to symmetry of Eq. 4.9, it is expected that large external coupling can have the

same impact as large absorption (internal loss rate).

3. Absorption is larger if there is only one output port (N = 1) because N appears only in

the denominator of Eq. 4.9. This justifies putting a back-reflector at the bottom of solar

cells and working with sub-wavelength gratings.
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4.1. Limits on photocurrent enhancement

Since the application is wide-band, we assume that the resonance is mostly contained within

the wavelength range of interest. Then, the contribution of a single resonance peak on the

absorption can be calculated by integrating from −∞ to ∞ instead of the range of interest.

The maximal value that the corresponding integral can take is equal to

σmax =
∫∞

−∞
A(ω)dω

∣∣∣∣
max

= 2πγi

N
(4.10)

To obtain this equation it is assumed that γi � γe . If there are M identical resonances, the

average absorption over a angular frequency range of Δω can be obtained by multiplication

of σmax by M an dividing the result by Δω.

σmax = 2πMγi

ΔωN
(4.11)

Having established an equation for the general form of absorption, the role of periodic struc-

tures can be now incorporated into the model. Let us assume that the texture is a grating

pattern with square geometry with a period of L in both periodicity directions. If the cell

thickness is d , the density of resonances at an angular frequency ω0 can be approximated as

M (ω) = 8πn3ω2

c3

(
d

2π

)(
1

Suc

)
Δω (4.12)

where Suc is the surface area of a unit cell in the reciprocal lattice and is equal to ( 2π
L )2 and�

3
2 ( 2π

L )2 for square and hexagonal geometries respectively. Finally, one finds the absorption

enhancement factor by dividing the average absorptionσmax from Eq. 4.11 to the single-pass

absorption (αd ) 8

F = 2πγi M

αdΔωN
(4.13)

Fig. 4.6a and Fig. 4.6b show the square and the hexagonal geometries respectively, both in

real space. The distance between each two closest points is Λ. Fig. 4.6c and Fig. 4.6d show

the two geometries in reciprocal space. The dots denote conditions where the diffraction oc-

curs, i.e. where Bragg condition is satisfied. The circle shows schematically the condition of

propagation in air, i.e.
∣∣k∥
∣∣≤ k0. The number of diffraction orders (N ) is equal to the number

of dots within the circle, and it is equal to one until the frequency gets so large that the first

order diffraction orders appear. For the square lattice, more dots occur within the circle for

8As already mentioned, for a weakly absorbing film, single-pass absorption can be approximated as αd where
α is the absorption coefficient of the film and d is its thickness.
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Chapter 4. Optical limits for thin-film solar cells

the same radius, which means that the reciprocal lattice is denser for square geometry com-

pared to the hexagonal geometry. This is also observed in Fig. 4.6e which shows the number

of orders as a function of the normalized period (Λ/λ where λ is the wavelength)9 for both

geometries. For the hexagonal geometry the jumps in number of orders are less but more

pronounced compared to the square lattice. However, overall the square geometry supports

more diffraction orders, especially at larger normalized periods.

Based on Eqs. 4.11 and 4.13 both the absorption and the enhancement factor are propor-

tional to M/N , hence, for maximal absorption, there should be as many resonances and

as few diffraction orders as possible. As the normalized period increases, N increases but

the number of resonance (M ) increases as well (Eq.4.12). Absorption enhancement is thus a

trade-off between the number of resonances and the number of diffraction orders.

Fig. 4.6f shows the values of the enhancement factor based on the assumption of bulk ap-

proximation γi = αc/n [20]. The horizontal axis is the normalized period. The horizontal

line shows the 4n2 limit which is obtained under the condition of Lambertian scattering of

light by the interfaces. Because of the discrete nature of the diffraction phenomena, it is ob-

served that the peak of the enhancement factor F occurs for Λ/λ = 1 for square geometry.

This primarily means that for a fixed period Λ, absorption is enhanced most efficiently for

wavelengths slightly larger than Λ. However, for wavelengths just below Λ, the enhancement

factor drops to values smaller than 4n2. Because usually the absorber material is known, and

thus the wavelength range of interest for absorption enhancement is specified, we can define

a wavelength λ as the target and try to provide design criteria for Λ. Based on the following in-

tuition, the highest average absorption can be obtained under the condition that the period

is taken slightly smaller than the wavelengths of interest. This means that for example for

a-Si, the period should be at most equal to 600 nm where absorption enhancement becomes

important. Shorter wavelengths do not correspond to the assumptions of these calculations

because absorption coefficient is large enough to absorb light efficiently. Similar conclusions

can be made for hexagonal geometry.

To summarize, at very small periods, no diffraction phenomena are observed. For square

geometry, the first order diffraction occurs at Λpeak = λ. The onset of the corresponding

graph, i.e. the part between the normalized period of zero up to the normalized period of

around one, in Fig. 4.6f can be expressed in the following form

F = 4πn2
(
Λ

λ

)2

(4.14)

which passes the 4n2 limit at Λst ar t = λ�
π
≈ 0.56λ. Absorption enhancement is predicted to

be most efficient in the range of normalized periods between Λst ar t and Λpeak . For hexago-

nal geometry, Λpeak = 2�
3
λ and F has the following form at the start, before the appearance

9The quantity that we refer to as the “normalized period” is also called the “normalized frequency" in the
context of periodic structures.
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Figure 4.6: (a): Schematic of the square lattice is real space. (b): Schematic of the hexagonal (trian-
gular) lattice is real space. In (a) and (b) the unit cell is represented as dashed. (c): Reciprocal space
of square lattice. (d): Reciprocal space of hexagonal lattice. In (c) and (d) the circle corresponds to
the wave-vector in free space. The reflection orders are associated with the dots. (e): Number of
diffraction orders for a 2D grating with a square or hexagonal geometry as a function of normalized
period. (f): Absorption enhancement factor for a 2D grating with a square or hexagonal geometry as
a function of normalized period. The horizontal line shows the 4n2 limit.
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Chapter 4. Optical limits for thin-film solar cells

of first-order diffraction:

F =
�

3

2
4πn2

(
Λ

λ

)2

(4.15)

The 4n2 limit is surpassed in the wavelength range with between Λpeak and Λst ar t . This

shows that hexagonal geometry supports enhancement values above 4n2 for a broader range

of Λ:

Λpeak −Λst ar t

λ
=
{

0.44 (square)

0.54 (hexagonal)
(4.16)

Furthermore, the peak value of F is equal to 8πn2/
�

3 and 4πn2 for hexagonal and square

geometry respectively, which reveals that hexagonal geometry should enhance absorption

more significantly. Actually, the best fabricated solar cells which use gratings as the light-

coupling mechanism are based on hexagonal gratings [86, 108] .

4.2 Light trapping in solar cells at the extreme coupling limit

In this section, we10 focus on the enhancement provided by the guided modes in thin-film

solar cells with a wavelength-scale periodic coupler. By using temporal coupled-mode the-

ory [18, 20], we study the angular dependence of the limit of light absorption enhancement.

Our model is different from calculations of Yu et al. for thin films [20] because we simulta-

neously consider both the thin film and the wavelength-scale grating texture. Furthermore,

our model can handle multiple modes in the thin film as well as a single mode in contrast

to the model of Yu et al. for thin films. In this part we extend the model to wide wavelength

ranges and oblique illumination. Furthermore, we consider the modal structure of the thin

film absorber to weight the guided modes based on their impact on the absorption. For the

sake of simplicity and without losing generality, we apply our model to a dielectric slab with

refractive index n = 4 and thickness d = 200 nm embedded in air. The conclusions are not

limited to the structure under investigation and can be observed for similar geometries, even

for a complete solar cell stack. The refractive index and the thickness are similar to the one

of a thin film a-Si solar cell. We show that the enhancement factor depends on how much

the energy of the guided mode is confined to the thin film absorber. Wave confinement to

the cell is characterized with the “energy overlap”, which is defined here as the fraction of the

electromagnetic energy of the mode which is spread over the active layer. We also demon-

strate that for a high index absorber, for example silicon, almost all of the mode energy is

inside the film. So, one may neglect the impact of the energy overlap. However, we do not

10This part of the thesis is based on my recent publication,Ref. [82]. By using “we”, I include all of the co-authors
of the mentioned paper.
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4.2. Light trapping in solar cells at the extreme coupling limit

use this simplification in our calculations here.

This section is organized as follows. First, in subsection 4.2.1, we explain the temporal coupled-

mode theory which is the basis of our calculations in this part. In subsection 4.2.4 we calcu-

late the limit of absorption enhancement at normal incidence for a thin-film solar cell based

on a 1D grating. Then we extend the calculations to oblique incidence in subsection 4.2.5.

The effect of wave confinement to the cell is discussed mainly in sections 4.2.2 and 4.2.3.

4.2.1 Overview of temporal coupled mode theory

We have already mentioned the basic coupled-mode formulation in section 4.1.2. Here we

explain application of the formulation to thin film structures with wavelength-scale periodic

texture. In Eq. 4.13, it is worth to investigate the relation between α and γi . If we assume that

the optical wave observes the solar cell as a bulk material, the bulk approximation

α= nγi /c (4.17)

can be used [20] where c is speed of light in air. However, Eq. 4.17 is not correct for thin films

[30] because γi is the loss rate of the “whole structure” whereas α describes the absorption

coefficient only for the “bulk” of the absorber. In other words, γi is affected by the modal

dispersion of the multilayer stack. One can find the “effective absorption coefficient” αw g of

the complete structure such that it can be expressed versus γi similar to Eq. 4.17. Evolution of

the amplitude a of a guided-mode resonance can be described in the temporal or the spatial

domain

d a

d t
=
(

jω− γ

2

)
a +·· · (4.18)

d a

d x
=
(

j k∥ −
α′

2

)
a +·· · (4.19)

Here γ and α′ represent photon loss rate and damping factor, z is the propagation direction

along the waveguide. The source terms are not shown in Eq. 4.19. Both α′ and γ include

internal loss and external coupling effects. If there is no external coupling, α′ = αw g and

γ= γi . It is then possible to conclude from Eq. 4.19 that

d x

d t
= vp = ω

k∥
= γi

αw g
= c

nw g
(4.20)

where vp is the phase velocity and nw g is the “effective refractive index” of the waveguide.
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The loss rate γi is linked to αw g via

αw g = nw gγi /c (4.21)

Eq. 4.21 is not strictly correct because it considers the phase index np = k∥/k0 (k0 is wave

vector of light in air) as the effective refractive index of the film. Actually the group index ng =
∂k∥/∂k0 gives a better approximation of the effective refractive index. This can be explained

by considering a guided mode traveling inside the slab over an infinitesimal distance d x. The

wave energy undergoes a decay of e−αdx in space domain . The equivalent decay in time

domain is equal to e−γi dt , where d t is the time which the wave takes to travel the distance

d x. Since energy is guided in the waveguide at a speed equal to the group velocity vg , time

and space elements can be related via d t = d x/vg . The paradox of the latter conclusion and

Eq. 4.20 can be explained by noting that Eq. 4.20 is a slowly varying approximation of the

resonant mode evolution, so, it only considers the phase variations. We still need to find the

relation between α and αw g in order to obtain the link between α and γi by using Eq. 4.21.

4.2.2 The effective absorption coefficient

Here I show that the ratio αw g /α is equal to the energy overlap η .

Proof. Assume that a mode travels inside a film as depicted in Fig. 4.7. The wave loses energy

with the effective absorption coefficient αw g as it is guided along the film. If the whole space

is filled with the absorber, this absorption coefficient will be equal to α. In a film with finite

thickness, energy will be distributed over both the device and the outer space with the energy

overlap η. The wave energy after passing a length d x is

E (d z)= E (0)e−αwg dx =E (0)[ηe−αdx + (1−η)] (4.22)

Taylor expansion of Eq. 4.22 leads to αw g /α= η.

Figure 4.7: Schematic of a mode traveling inside an absorbing film with absorption coefficient of α.
The mode energy has an overlap of η with the film.
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So, we can write Eq. 4.13 as

F = 2πc

nw g dΔω

M

N
η (4.23)

Here we see apparently the effect of wave spread outside the film. If η is small, the wave is

spread over regions other than the absorber, thus the enhancement factor is reduced. We

explain now that for high index films, almost the whole energy of the mode is inside the film.

However, we consider the impact of energy overlap in our calculations.

4.2.3 The energy overlap

For a slab of thickness d at normal incidence, the electric field profile of even and odd modes

can be easily obtained [107].

Ee =
{ cos(kz z)

cos(kz
d
2 )

(|z| ≤ d
2 )

exp(−α(|z|− d
2 )) (|z| > d

2 )
(4.24)

Eo =

⎧⎪⎪⎨
⎪⎪⎩

sin(kz z)
sin(kz

d
2 )

(|z| ≤ d
2 )

exp(−α(z − d
2 )) (z > d

2 )

−exp(α(z − d
2 )) (z <−d

2 )

(4.25)

where z refers to the direction normal to the interfaces and Eo and Ee refer to electric field of

the odd and the even modes respectively. The energy overlap can be obtained via the electric

field profiles.

η= n2
∫ |Esl ab|2 d z

n2
∫ |Esl ab|2 d z +∫ |Eai r |2 d z

(4.26)

At non-perpendicular incidence, TE and TM polarizations must be distinguished. As in the

case of normal incidence, the guided modes can be classified into odd and even in each po-

larization.

In TE polarization, the electric field is parallel to the slab boundary and the electric field of

the modes can be expressed with Eq.s 4.24 and 4.25. Therefore, the energy overlap η can

be obtained similarly to the case of normal incidence. Figs. 4.8a and 4.8b show the energy

overlap versus phase index np and photon energy E for the slab (d = 200 nm , n = 4) under

oblique incidence. Since η is the same as for normal incidence, Figs. 4.8a and 4.8b can also

be used for normal illumination of light. The energy overlap is very close to unity almost

everywhere except near the light line of air (np = 1 ). The guided modes corresponding to

each case are shown in Fig. 4.8 with red curves with circle markers. In a narrow spectral
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range, there is an even TE mode partly in the low η region close to the light line of air. As this

mode approaches the light line of air, its group index decreases gradually, therefore, Eq. 4.23

predicts that the mode should provide high enhancement factors. However, this advantage

is compromised by the small η which means extension of the wave tail outside the guide and

subsequently, reduction of F .

In TM polarization, the magnetic field has a form similar to the electric field in TE polariza-

tion but the electric field has two components which can be derived from the magnetic field

by using Maxwell equations.

Ex = − j

ωε

∂

∂z
Hy (4.27)

Ez = j

ωε

∂

∂x
Hy (4.28)

By applying Eq.s 4.27 and 4.28 and using the form of the magnetic field which is already de-

scribed in Eq.s 4.24 and 4.25, the electric field profiles in TM polarization can be obtained. To

calculate the intensity profile, both components of the electric field must be considered.

I = |Ex |2 +|Ez |2 (4.29)

After some algebraic manipulation the following intensity profiles can be obtained for the

TM polarized modes.

Ie =
⎧⎨
⎩

μ0

ε0n2
k2

z sin2(kz z)+β2 cos2(kz z)

k2
0 cos2(kz

d
2 )

(|z| ≤ d
2 )

μ0

ε0
exp(−2α(|z|− d

2 )) (|z| > d
2 )

(4.30)

Io =
⎧⎨
⎩

μ0

ε0n2
k2

z cos2(kz z)+β2 sin2(kz z)

k2
0 sin2(kz

d
2 )

(|z| ≤ d
2 )

μ0

ε0
exp(−2α(|z|− d

2 )) (|z| > d
2 )

(4.31)

where Io and Ie refer to intensity of the odd modes and even modes respectively. The energy

overlap can be obtained via the intensity profiles by applying Eq. 4.26.

Figs. 4.8c and 4.8d show the energy overlap for the slab (d = 200 nm, n = 4 ) under TM po-

larized illumination. As in the previous cases, the energy overlap is almost unity everywhere

except near the light line of the air (np = 1 ). Fig. 4.8c shows an even TM mode which occurs

only very close to the light line of air. Since η is very small in this region, this mode cannot

result in very huge absorption enhancement although its group index is small.

Altogether, the incident angle does not have a dramatic effect on the energy overlap for high

index cells. Hence, one can almost always approximate η≈ 1 by considering a margin around
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Figure 4.8: The energy overlap as a function of photon energy (eV) and phase index for (a) even
modes under TE polarized light, (b) odd modes under TE polarized light (c) even modes under TM
polarized light (d) odd modes under TM polarized light. The energy range corresponds to the wave-
lengths between 600 and 1200nm. The red dotted curves represent the guided modes corresponding
to each case.

the light line of air and due to section 4.2.2, αw g ≈α.

Note that the diagrams of Fig. 4.8 are plotted for a continuum of energy and phase index

values but dispersion of the film produces a discrete spectrum. So, on the surfaces in Fig.

4.8 , only the np and E values corresponding to the guided modes i.e. the red dotted curves

should be considered.

Having explained the expressions for energy overlap, we can now return to the calculation

of the enhancement factor. In Eq. 4.23, the parameters M , N and nw g and η need to be

calculated. In the previous section we explained how N is obtained. The number of guided-

mode resonances, M , is calculated by considering the number of intersections of the film

dispersion diagram and the lines k∥ = 2πm′/Λ which correspond to Bragg condition in the

interval [ω,ω+Δω]. Fig. 4.9 demonstrates the dispersion diagram of a slab with refractive

index of n = 4 and thickness d = 200nm under TE-polarized illumination. By TE we mean

where the electric field is normal to the incidence plane. Treatment of TM polarization is
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Chapter 4. Optical limits for thin-film solar cells

similar. Despite the simplicity of this structure, the results can be generalized to more com-

plex structures e.g. complete solar cells consisting of several layers. We assume a 1D grating

texture for the slab with period Λ = 500 nm. The energy interval of interest is equivalent to

wavelengths from 600 to 1200 nm because a-Si cells need light trapping mainly in the range

from 600 to 800 nm and the different types of crystalline silicon cells e.g. micro-crystalline,

mono-crystalline, etc. can be enhanced by light trapping mainly in the range from 800 to

1200nm. Different diffraction orders m=1,2,3 for normal incidence correspond to the vertical

lines. The allowed excitations within the wavelength range of interest are marked with circles.
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Figure 4.9: Dispersion of a film with refractive index n=4 and thickness d=200 nm in TE polarization.
The guided modes (green curves) occur between the light line of air (dashed black) and dielectric (dot-
ted dashed blue). The periodic texture excites the guided modes where they satisfy Bragg condition
(vertical lines). The dashed horizontal lines correspond to 600 and 1200 nm. Resonances are illus-
trated by the red circles.

Based on Eq. 4.23, using the phase index instead of the group index can result in overestima-

tion of the enhancement factor F because the phase index is smaller than the group index.

However, if the definition of the group index is ambiguous, for example for very broad reso-

nances, the phase index can be used as an approximation.

The presence of nw g instead of n in the denominator is a major difference between Eq. 4.23

and the calculations of Ref. [20] for thick solar cells. Of course in Ref. [20] the case of a thin-

film solar cell has been investigated too, in which modal properties have been considered,

however, there are at least two main differences between their method and our approach.

First, they use a continuum model to count the resonances supported by the grating texture

(Eq. (11) in [20]). This can be a good approximation for large periods or random textures, but

when dealing with wavelength-scale gratings the resonances might be well distinguished and

one should use a discrete model. Second, their model for thin films is appropriate to treat a

single mode film since they count the resonances in the two dimensional kx y space but our
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4.2. Light trapping in solar cells at the extreme coupling limit

model can treat multiple modes since we count the resonances in the three dimensional kx y z

space.

In summary, by using group index for the effective waveguide index, and by application of the

corresponding energy overlaps, we weight the absorption due to a resonance based on the

resonance position in the dispersion diagram. In this way, we take into account the modal

properties of the thin film structure.

4.2.4 Limit of absorption enhancement under normal incidence

Fig. 4.10 shows the enhancement factor of the slab (n = 4, d = 200 nm) versus the normal-

ized period (Λn =Λ/λ) for two wavelength ranges from 600 to 800 nm and from 800 to 1200

nm. For each of these spectral ranges, we calculate the enhancement factor for a 1D grating

through the following procedure:

1. We calculate the enhancement factor F for a certain grating period (Λ) for the spectral

ranges over tiny wavelength subintervals to consider the dispersion diagram point by

point.

2. Then, we average F over the considered spectral range. The value Λn is obtained by

dividing the period to the central wavelength of the considered wavelength range.

3. Up to here, the method gives us one point in the graphs of Fig. 4.10. To complete the

graph we change the period and repeat this procedure.

Fig. 4.10 shows that the enhancement factors that we obtain are smaller than the values

suggested by Yu et al. for thick layers regardless of polarization and wavelength range. The

reason is that in our calculations the absorber bulk refractive index is replaced by the group

index. This conclusion can be extended to 2D gratings as well. The difference from the 1D

case is the more complicated counting procedure. Note that the wavelength intervals used in

our simulations are wide. For small spectral ranges, the enhancement factor can be higher.

An important observation is that by changing the period of the grating (Λ), the enhancement

factor oscillates [20]. These fluctuations are due to the discrete changes of the number of

reflected orders as the wavelength changes. There is a balance between two different phe-

nomena:

1. on one hand increasing the normalized period leads to appearance of more diffraction

orders (N ) and hence, reduction of F via Eq. 4.23.

2. On the other hand, increasing the normalized period increases the number of excited

modes (M ) which in turn, increases F .
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Chapter 4. Optical limits for thin-film solar cells

However, there are more resonances compared to the number of reflection orders. Thus, M

is more similar to a continuum compared to N . Therefore, two types of fluctuations can be

observed in the enhancement factors plotted in Fig. 4.10: one with high repetition frequency

and the other one with lower repetition frequency. The first one corresponds to changes in

M and the second one is related to N . For thick structures, M can be approximated with a

continuum and only the discontinuities pertaining to N (low frequency) are observed.

0 1 2 3 4 5
0

5

10

15

20

25

/

F

[600−800]
[800−1200]
Yu

(a)

0 1 2 3 4 5
0

5

10

15

20

25

/

F

[600−800]
[800−1200]
Yu

(b)

0 1 2 3 4
x 105

0

0.5

1

1.5

2

(cm−1)

E
 (e

V
)

(c)

0 1 2 3 4
x 105

0

0.5

1

1.5

2

(cm−1)

E
 (e

V
)

(d)

Figure 4.10: (a) The enhancement factor introduced by 1D gratings in TE polarization versus the
normalized period for the slab (d=200 nm, n=4). Dashed: Wavelength range from 600 to 800 nm. Solid
with markers: Wavelength range from 800 to 1200 nm. Bold solid: Yu’s model (thick absorber), (b)
Same as (a) but for TM polarization, (c) Dispersion diagram of the slab for TE polarization, (d) same
as (c) for TM polarization. The horizontal dashed lines in (c) and (d) correspond to the wavelengths
600, 800 and 1200 nm.

Fig. 4.10c shows the dispersion plot of the slab in TE polarization. The borders of the spectral

ranges from 600 to 800 nm and from 800 to 1200 nm are shown by horizontal lines. In the

high energy range ([600-800] nm) there are three guided modes but at low energy range ([800-

1200] nm), there are only two modes. This is the reason why in Fig. 4.10a TE polarized light

can result in higher enhancement factor in the high energy range compared to the low energy

range.
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4.2. Light trapping in solar cells at the extreme coupling limit

Fig. 4.10d shows the dispersion plot of the slab in TM polarization. In TM polarization the

highest order mode is very close to the light line of air, which means that it is spread a long

distance outside the slab over air. It is shown in section 4.2.3 that a major part of the energy

of this mode occurs outside the slab. There are thus two TM modes in both energy ranges.

This can explain why in TM polarization, there is not much significant difference between

the enhancement factors for the two energy ranges as shown in Fig. 4.10b.

One may expect huge enhancement factor close to the light line of air due to Eq. 4.23 because

both group index and phase index take their lowest values there. This happens for example

for the second TM mode in Fig. 4.10d. However, this lower effective index is compromised

by the low confinement of the mode to the guide in some cases as the third TM mode in the

example. Nevertheless, it should be possible to find a region of optimized conditions in the

dispersion diagram.

4.2.5 Absorption limit under oblique illumination

In this section the absorption enhancement limit provided by the guided-mode excitation

is calculated at arbitrary angles. We consider in-plane incidence over the slab (n = 4, d =
200nm) as depicted schematically in Fig. 4.11a, to simplify the study. As earlier, we consider

a 1D texture; 2D case can be treated accordingly.

The incident angle θ modifies the enhancement factor by changing Bragg condition

k
′
∥,m = k∥,m +k0 sinθ (4.32)

where k
′
∥,m and k∥,m show the parallel component of the wave-vector of the m-th diffraction

order at normal and oblique incidence respectively and k0 is the wave-vector of the light in

air.

Change of the incident angle modifies the Bragg condition and consequently varies the res-

onance conditions for guided modes. Fig. 4.11b shows the variation of the resonant energy

(equivalently the resonant frequency) corresponding to positive and negative orders intro-

duced by changing the incident angle. The vertical and tilted dashed lines correspond to the

Bragg conditions under normal and oblique illumination both for Λ= 500 nm. For simplicity,

only one mode of the film and two orders (m =±1) are demonstrated between the light lines

of the air and the dielectric n = 4. By starting from normal incidence, as the incident angle

θ is increased, the positive order goes farther from the origin (k∥ = 0) but the negative order

gets closer to it. In Fig. 4.11b the dashed lines correspond to θ = 20°. Because both positive

and negative orders undergo the same wave-vector shift, their corresponding resonant ener-

gies are not the same any more. This asymmetry in satisfying the resonance condition is a

natural result of the breaking symmetry provoked by changing the incident angle.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: (a) Schematic view of the grating under in-plane oblique incidence. (b) shift of the
resonant energy of the positive and negative orders due to the change of the incident angle from 0°
to 20°. (c) Angular dependence of the F under TE polarized illumination over the wavelength range
[600-800] nm. (d) same as “c” for TM polarized illumination. (e) same as “c” for the wavelength range
[800-1200] nm. (f) same as “e” for TM polarized illumination.
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Figure 4.12: (a) F under TE polarized illumination over the wavelength range [600-800] nm for the
incident angles of 20° and 60°. (b) same as “a” but for TM polarization.

Fig. 4.11c and Fig. 4.11d show the angular behavior of the enhancement factor of the slab

(n = 4, d = 200 nm) for TE and TM polarized light over the wavelength range from 600 to

800 nm. Equivalently, Fig. 4.11e and Fig. 4.11f show similar results for the interval from

800 to 1200 nm. Although the impact of energy overlap is negligible except very close to

the line of the air (section 4.2.3) we consider it in our calculations. At normal incidence, the

enhancement factor follows the same sawtooth trend as observed in Fig. 4.10 . As the incident

angle is increased, the peaks of the enhancement factor move in an ordered way in both

polarization directions.

Peaks of the enhancement factor F move in the period-angle plane on two series of curves

with positive and negative slope, which are associated with the positive and negative diffrac-

tion orders. Increasing the incidence angle results in higher resonant energy for positive or-

ders as demonstrated in Figure Fig. 4.11b. Thus, for a fixed grating period, the normalized

period (Λ/λ) becomes larger too. Therefore, the positive and negative slopes in 4.11 corre-

spond to the appearance of the positive and negative diffraction orders respectively. Rela-

tively high enhancement factors can be obtained at oblique incidence. This is a direct result

of the asymmetric shift of the resonant energies of the positive and negative orders under

oblique illumination.

Fig. 4.12 shows the enhancement factor for the discussed 1D grating for only two incident

angles of 20° and 60° and in the wavelength interval from 600 to 800nm. The smaller incident

angle permits larger enhancement factor at close-to-period wavelengths (Λn =Λ/λ= 1). For

smaller wavelengths, there is no significant difference between the two angles. This is a gen-

eral conclusion and agrees with the intuition that at the limit of large period, the grating

should resemble a Lambertian scatterer [20].

It is worth mentioning that because solar illumination occurs at a limited range of incidence

angles, it is possible to keep the condition of normal incidence at least to some extent. Based
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Chapter 4. Optical limits for thin-film solar cells

on the wavelength range which affects the performance of the cell, periods can be found

which can enhance light absorption more significantly. Also one should note that in all the

calculations in this section and also in the prior research [20, 29, 30], coupling strength is

assumed to be so large that its actual value does not affect the calculations. Also, other loss

mechanisms such as parasitic absorption, imperfect collection of photo-generated carriers

and reflection from the top interface of the cell would lead to a decrease in photocurrent.

4.3 Angular behavior of the absorption limit in thin film silicon so-

lar cells

Light absorption in solar cells is a function of incident angle, regardless of the type of tex-

turing. Unfortunately, most of solar cell literature deals with the case of normal incidence

of light and ignores the impact of incidence angle. Recently, Yu et al. proposed a model to

determine the light absorption enhancement limit for an arbitrary incidence angle [20]. In

their model, Yu et al. considered an absorber film that is thick enough to envelop discrete

modes by a continuum model. However, recent work on thin film devices with periodically

textured interfaces showed that discrete waveguide modes can be distinguished, and that

the excitation of these modes varies significantly with the angle of incidence [36]. In this sec-

tion, we11 investigate the upper limit of absorption enhancement in a thin film silicon solar

cell based on a gratings pattern. We also take into account the angular dependence of this

limit to find out how much and in which manner the absorption enhancement changes as a

function of incident angle. The cell thickness is considered only a few hundreds of nanome-

ters to simulate the case of a a-Si:H solar cell, which is normally in the range of 80 to 300

nanometers thick. Thicker cells degrade quickly when exposed to solar illumination due to

Staebler-Wronkey effect [10] and thinner cells suffer from formation of shunts in fabrication.

Angular behavior of light absorption in thin film devices mainly depends on interference and

resonant excitation of guided modes. Resonances are discussed here by taking into account

the following properties; first, the field profile of a guided mode supported by a thin dielectric

film can extend over a considerable distance out of the actual guiding medium. Second, the

interface texture serves to couple energy from the incident light into a given mode. Similar

to the previous section, we assume that the periodic texture is a slight deviation of the device

interfaces from a planar structure. In other words, we treat the interface texture in terms of

periodic perturbations. This assumption allows application of band-folding to the dispersion

relation of the corresponding flat interface model.

A major assumption in most of the calculations of upper limit of absorption enhancement is

that the amount of energy which is absorbed in the cell is completely absorbed in the active

layer and is fully converted to photocurrent. Besides, it is commonly assumed that the wave

is completely inside the structure. Furthermore, efficiency of coupling to a specific mode is

assumed to be so large that it does not affect calculation of absorption upper bound (perfect

11Here “we” refers to all of the authors of Ref. [83].
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4.3. Angular behavior of the absorption limit in thin film silicon solar cells

coupling). In practice, there is always some parasitic loss which prevents the generated pho-

tons to be fully converted into photocurrent. Also, never the energy is fully bound to the solar

cell. Besides, coupling efficiency can vary a lot for different modes.

We start our analysis in section 4.3.1 by obtaining the angular dependence of the enhance-

ment factor for a slab geometry. Grating coupling is taken into account similar to section 4.2

by considering the Bragg condition. However, along the slab thickness, we use the closed-

waveguide approximation as previously considered by Yu et al. for thick films [20]. We refer

to this model as the “ideal model”. As already mentioned, this approximation is not valid

for thin-film solar cell. Hence, in section 4.3.2 we replace the closed-waveguide assumption

by considering the dispersion diagram of a dielectric slab waveguide for the transverse reso-

nance condition. We call this model as the “real model”. We compare these two models in

section 4.3.2. In section 4.3.5, we extend the analysis to a complete thin film silicon solar cell.

Also we provide a general discussion on the effect of the incident light polarization, In section

4.3.6 the analysis is extended to the case of 2D gratings. For our analysis, we need a proce-

dure to extract the modes of the planar structure and to count the corresponding resonances.

This procedure is explained in section 4.3.3. In section 4.3.4, we describe how to calculate

the enhancement factor over a wide wavelength range while considering the open waveg-

uide condition. To find more practical values for absorption enhancement, the loss due to

parasitic absorption over the supporting layers of the stack should be subtracted from the

absorbed power to provide only absorption over the active layer. This modification is applied

in Section 4.3.7. Note that this modification in the definition of the enhancement factor does

not introduce a fundamental constraint on absorption enhancement, however, it provides a

more applied approximation. Finally, in Section 4.3.8, we highlight some practical considera-

tions. For example, we obtain an approximation of the maximal photocurrent enhancement

provided by a 1D grating pattern.

4.3.1 Closed waveguide approximation: Idealized model

We calculate the enhancement factor for two slab thicknesses of 200 and 355 nm. The thick-

ness of 355 nm is equal to the thickness of complete solar cell which will be discussed later.

For simplicity, we use the same values of 1D and 2D limit throughout this section which are

calculated for n = 4 via Eq. 4.13 by assuming the bulk approximation γi = cα/n. We consider

the physical slab thickness as the variable d in Eq. 4.13, thus, we neglect wave penetration

outside the slab. As previously stated, we call this model the “idealized model”. Later in

section 4.3.2 we will consider wave penetration outside the solar cell; we will call the corre-

sponding model the “real model”. The three horizontal lines in Fig. 4.13 show the wide-band

limits πn = 12.57 and 4n2 = 64 which correspond to 1D grating and for 2D textures respec-

tively, and the narrow-band 1D limit of 2πn = 25.13. The enhancement factor in Fig. 4.13 is

larger for thinner slabs because of stronger single pass absorption over the thick slabs. The

enhancement factor peaks at around normal incidence but still it is below the 2D wide-band

limit. The enhancement factor is more sensitive to changes in refractive index for the thin
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slab. This can be because for the thick slab, the single pass absorption will be large and mod-

ification of the refractive index will not change it dramatically. The enhancement factor ap-

proaches the πn line at large incident angles for the thin slab. For the thick slab, it surpasses

this limit for almost normal incidence.
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Figure 4.13: Enhancement factor of a dielectric slab averaged over the wavelengths from 600 to 900
nm as a function of incident angle for 1D grating with period of 560 nm. The horizontal lines represent
the limit for 1D and 2D gratings. The other four curves represent the enhancement factor which is
obtained by the “idealized” model for the 200 nm thick slab with n=4 (dotted blue), the 200 nm thick
a-Si:H slab (solid blue), the 355 nm thick slab with n=4 (dashed black) and the 355 nm thick a-Si:H
slab (dashed red). For simplicity, on axis incidence is considered only.

4.3.2 The open nature of the thin film

The assumption of periodicity along a cell thickness (in z direction) is not valid for open

guided wave structures. In these devices, field penetration into air makes the effective guide

thickness larger than its physical thickness. The difference between the effective and the

physical thickness is not negligible if the mode is close to the light line of air in the dispersion

diagram. This increased effective thickness makes the dispersion deviates the dispersion di-

agram of the device from the dispersion of a closed waveguide. This deviation normally hap-

pens in the form of a compression towards lower energies (longer wavelengths). This, in

turn, means a higher density of guided modes, and thus, a higher potential for absorption

enhancement.

To continue the discussion, we obtain the enhancement factor of a thin a-Si:H slab using the

“real” model. We have recently applied the “real model” at normal incident to thin-film solar

cells [109]. For other angles, both the number of channels N and the number of resonances
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ΔM should be modified. Number of channels is the same for both “idealized” and “real” mod-

els because it only concerns the phase-matching (or equivalently the Bragg) condition in x y

plane and is independent of the transverse direction z. Obtaining ΔM is more complicated

and is explained here.

4.3.3 Counting the resonances of the flat interface structure

The Transfer Matrix Method (TMM) and the Reflection Pole Method (RPM) [61] are used to

calculate the reflection and the dispersion diagrams respectively. Using TMM, forward and

backward fields in the incident medium (air) and the transmission medium (silver) can be

related with a simple 2 by 2 matrix Q.

(
At

Bt

)
=Q

(
Ai

Bi

)
=
(

q11 q12

q21 q22

)(
Ai

Bi

)
(4.33)

In the above equation, A and B stand for the forward and backward waves respectively and

the indices i and t correspond to the incident or the transmission medium respectively. With-

out losing generality we assume all the waves normalized to the incident wave, i.e. Ai = 1.

Since light does not illuminate the structure from the bottom, Bt = 0. Therefore, Eq. 4.33

reduces to the system of two equations and two unknowns which can be solved very easily.

Specifically, reflection from the top interface can be represented as

rc = rc exp
(

jφc
)=−q21

q22
(4.34)

Theoretically, poles of the reflection coefficient rc correspond to the guided modes. As ev-

ident in Eq. 4.34, reflection becomes infinite when q22 = 0. The RPM monitors the phase

φRP M of q22 = ∣∣q22
∣∣exp

(
jφRP M

)
when the longitudinal wave vector, k∥ , is changing. In the

case of pure dielectric waveguides, φRP M will change in steps equal to π exactly at the k∥
values corresponding to propagation constants of the waveguide modes. If loss is introduced

into the structure as well, φRP M varies abruptly by about π around the propagation constants

of the modes [61]. So, an “effective” number of modes can be found for each polarizations by

the dividing amount of variation of φRP M by π. The word “effective” is used since in thin films,

the individual resonances are relatively wide compared to the case of thick layers. Therefore,

it is not always possible to distinguish different resonances since at each wavelength, there

may be more than one resonance which enhances absorption.

To find the number of allowed resonances, ΔM , in each energy range [E ,ΔE ], we should con-
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sider limitations imposed by both the φRP M and the periodicity P along x direction. The

latter criterion necessitates that

k∥ = k0 sinθ+ 2πm

P
(4.35)

Note that we take into account only parts of the phase diagrams which correspond to k∥ > k0

to consider only the guided modes.

Once ΔM is calculated, it is possible find F via the “real model” as explained below.

4.3.4 Calculation of the enhancement factor in the “real model”

The process of finding the absorption enhancement factor, F , via the “real model” can be

described as follows:

1. Divide the energy range into tiny subintervals δE .

2. Move on the curve of +1 diffraction order, i.e. m = 1 in Eq. 4.35, and find the change of

φRP M (introduced in section 4.3.3) on this curve in each energy subinterval δE . Divide

this phase shift by π to obtain the effective number of modes δm in δE .

3. Divide δm by the average phase index (np ) on the curve m = 1 over δE .

4. Repeat the previous steps for different diffraction orders which excite the guided modes

in the spectral range of interest.

5. Add δE/np for different diffraction orders at each δE to obtain a total δE/np which

depends only on the photon energy and not on the diffraction order.

6. Find the number of diffraction orders, N ,at each δE .

7. Calculate the enhancement factor F via F = c
Nd

δm
np

and average it over the whole wave-

length range of interest to find the average enhancement factor.

Logically, the speed of the method depend on the choice of δE , however, practically this is not

a limitation for the simulations. Furthermore, because the enhancement factor is averaged

over a broad spectral range, the method is not very sensitive to the choice of δE . Of course

δE should be very smaller than the spectral range over which the average is taken.

In the second example, we obtain the enhancement factor of a 355 nm thick a-Si:H slab using

both “idealized” and “real” models. Fig. 4.14 shows three curves based on the “real model”.

Two of these curves correspond to TE and TM polarization and the third one is their average.
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Also a curve which is obtained by using the “idealized model” is plotted. For the ideal model

only one curve is enough because in this model the film thickness does not depend on polar-

ization. For all of these curves, material data of a-Si:H is used. As Fig. 4.14 shows, the real

model provides higher enhancement values regardless of polarization. This is because of the

increased effective thickness of the film which is considered in the “real model”. Equivalently,

this can be considered as the lower effective guide index compared to its physical refractive

index. For incident angles smaller than 25°, TM polarized fields lead to larger enhancement

factor values compared to the TE polarized fields. We will see later the same phenomenon in

a complete solar cell stack.
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Figure 4.14: Enhancement factor of a dielectric slab averaged over the wavelengths from 600 to 900
nm obtained by the “real” and the “idealized” models as a function of incident angle for 1D gratings
with a period of 560 nm. The horizontal lines represent the limit for 1D and 2D gratings. The other
curves represent the enhancement factor for the 355 nm thick a-Si:H slab obtained with the idealized
model (bold dashed red) and the real model in P polarization (dashed black), S polarization (dotted
black) and the unpolarized case (bold black). For simplicity, on axis incidence is considered only.

4.3.5 Complete solar cell stack

For the next example, we calculate the maximal enhancement factor using the “real model”

for a complete solar cell stack on a 1D grating substrate. The stack consists of 70 nm of ITO

front contact, 15 nm of p-doped Si (p-Si), 180 nm of intrinsic a-Si (i-Si), 20 nm of n-doped

Si (n-Si), 70 nm of ZnO and a silver back-reflector respectively from top to bottom. Because

the cell consists of different materials, application of the bulk approximation (Eq. 4.17) may

not be as clear as for a slab which consists of a single material. Furthermore, the bulk approx-

imation ignores wave spread outside the film. We discussed in section 4.2.1 that instead of

using the bulk refractive index n in Eq. 4.17, one should use the group index to incorporate
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the modal properties of waves in the cell (Eq.4.21). For a structure with broad resonances, we

assume the effective refractive index to be ne f f = k∥/k0 [82].

Fig. 4.15 shows the enhancement factor obtained for the cell through different models. Again

the TE-polarized, the TM-polarized and the unpolarized results are presented. The enhance-

ment factor of the complete cell is maximal at around normal incidence similar to the a-Si:H

slab. However, the enhancement factor of the complete cell is smaller than the one of a-Si:H

slab regardless of the incident angle. This can be because of the smaller refractive index of the

complete cell compared to the a-Si:H slab. The latter discussion reveals a trade-off for thin-

film solar cells: additional layers which act as buffer or anti-reflection coating can reduce the

potential of the cell for absorption enhancement.
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Figure 4.15: (a): layers of the full functional solar cell stack including doped and contact layers. (b):
Comparison of the average enhancement factor of the solar cell structure and a slab of a-Si:H as a
function of incident angle for 1D gratings with a period of 560 nm. The horizontal lines represent
the limit for 1D and 2D gratings. All of the other curves are obtained with the real model and they
represent the enhancement factor obtained for the 355 nm thick a-Si:H slab under unpolarized illu-
mination (bold dashed blue) and for the complete solar cell stack in P polarization (dotted black), S
polarization (dashed black) and the unpolarized case (bold black). For simplicity, on axis incidence is
considered only.

The two latter examples (Fig. 4.14 and Fig. 4.15) predict that the guided modes can enhance

absorption further for TM polarization compared to TE polarization, especially at close-to-

normal incidence. In Fig. 4.16 the phase ΦRP M for the complete stack is plotted for both

polarizations. Details about the definition of ΦRP M and obtaining it is mentioned in section

4.3.3. In these diagrams, phase jumps show the existence of guided modes. Fig. 4.16 shows

that phase variations are more considerable in TM polarization compared to TE polarization.

This means a higher density of modes and potentially higher absorption enhancement by

guided modes for TM waves.

Two factors affect the guided-mode excitations: material absorption (γi ) and external cou-
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4.3. Angular behavior of the absorption limit in thin film silicon solar cells

Figure 4.16: φRP M /π versus k∥ (cm−1) and energy (eV) in TE (left) and TM (right) polarization for a
complete solar cell stack. Each mode is associated with a jump of about unit in these graphs.

pling (γe ) to the other modes due to perturbation of the guided wave structure. The guided

modes are associated to resonance peaks/dips or jumps in a corresponding quantity e.g. the

absorption or the reflection phase. The quality factor of the resonance is determined by ma-

terial absorption and external coupling. A high quality factor demonstrates that the energy

which is coupled to a resonance can hardly couple outside, and neither is it absorbed in the

structure. Therefore, the quality factor of the resonance ( f
Δ f ) shows the capability of a res-

onance to trap photons. Of course this is not desired for absorption enhancement in solar

cells as already discussed. Exchange of energy with the outside medium and internal absorp-

tion broaden the resonances. In the phase diagrams of Fig. 4.16 this appears as blurring of

the diagram which reduces abruptness of the phase discontinuities corresponding to guided

modes. In this way, blurring of the diagram at high energies is understood by high absorption

of materials.

4.3.6 2D gratings: square and hexagonal periodicity

In this part we investigate the angular dependence of the upper bound of the absorption

enhancement factor for 2D gratings. The method is similar to the procedure that we already

explained for 1D gratings. The major difference is that the Bragg condition becomes more

complex for 2D gratings because the reciprocal lattice will be two dimensional. This makes

the mode counting procedure more complicated. The mode counting procedure depends on

the symmetry of the two dimensional lattice e.g. hexagonal or square. Fig. 4.17a and b show

the enhancement factor for the case of a 2D grating with square geometry. The grating period

is 560 nm in both x and y directions. To change the incident angles, we consider two angles

θ and φ which define the incident wave-vector direction as

k̂ = ∣∣k̂∣∣ (sinθcosφx̂ +sinθ sinφŷ +cosθẑ) (4.36)

The enhancement factor is plotted as a function of θ and φ in Fig. 4.17. The polar direction
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Chapter 4. Optical limits for thin-film solar cells

corresponds to the θ axis and the azimuthal direction is related to φ. Because many mode

excitations can occur in this case, the maximal enhancement factor for 2D gratings can sur-

pass the 4n2 limit in both the real and the idealized model. As previously observed for 1D

gratings, the enhancement factor is larger when the real model is applied. This effect is espe-

cially observed close to normal incidence. The reason is the smaller refractive index for the

real model as previously explained for 1D gratings.

Fig. 4.17 indicates also that the enhancement factor shows an anisotropic behavior. It is

rather strong along the sides of the Brillouin zone. The Brillouin zones of the square lattice

and the hexagonal lattice geometries are depicted in Fig. 4.17c. Fig. 4.17d shows the enhance-

ment factor for a 2D grating with hexagonal geometry with a lattice constant of 560 nm. The

enhancement factor of the cell based on the hexagonal lattice takes larger values at close-

to-normal incidence similar to the square geometry. The hexagonal lattice shows a rather

isotropic behavior compared to square lattice. Therefore, by using hexagonal geometry one

can reduce the azimuthal angular dependence of the photocurrent of a solar cell.

Figure 4.17: Top: angular variation of the average enhancement factor under unpolarized light ob-
tained with the “idealized” (a) and the “real” (b) models for the square lattice. The radius represents θ
and the angle shows the corresponding φ. Bottom: Brillouin zones for the square lattice and triangu-
lar lattice geometries (c) and angular variation of enhancement factor obtained with the ”idealized"
model for the triangular lattice (d).
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4.3. Angular behavior of the absorption limit in thin film silicon solar cells

To summarize, thin films can provide high enhancement factors if they are optimized. To

obtain the enhancement factor of thin films, we should take into account penetration of the

wave into air and supporting layers. This penetration of the wave compresses the optical

bands. In a real device, the existence of layers with low index can reduce the enhancement

factor. TM polarization provides higher enhancement factor than TE polarization. Finally,

2D periodic thin film devices can potentially surpass the 4n2 limit over a wide spectral range.

It is worth mentioning that although the enhancement factor is widely used in literature, its

application to compare solar cells can be misleading. To obtain the enhancement factor we

normalized absorption to the single pass absorption. Therefore, a small value of single pass

absorption can lead to a large enhancement factor which does not necessarily correspond

to remarkable enhancement in the absolute absorption value and thus, does not contribute

effectively to the corresponding cell’s photocurrent.

4.3.7 Impact of field overlap: practical limit

Spread of the wave outside the cell has different effects on the enhancement factor. First, it

increases the effective thickness of the cell. Second, it means that the wave cannot be fully

absorbed in the cell. Therefore the enhancement factor is less than the values predicted pre-

viously.

Even if the wave is totally confined to the cell, absorption does not occur only in the i-Si layer.

Absorption in other layers is mainly lost in the cell and does not count in the enhancement

factor.

Previously, Stuart and Hall have discussed the impact of a wave’s spread outside the cell [30].

For cells made of high index absorber materials such as silicon, this effect is marginal as

shown in section 4.2. Also, some part of the absorption which occurs in the cell is parasitic

because it occurs in the layers of the cell with a high recombination rate. To distinguish this

kind of absorption from the absorption which happens in the i-Si layer and thus contributes

to photocurrent, we define the “absorption overlap” as the ratio of the absorption in the active

layer of the cell to the absorption integral of the whole cell.

ηabs =
∫

i−Si εi |E|2 dV∫
cel l εi |E|2 dV

(4.37)

where dV indicates the volume element. The absorption enhancement factor should be

modified to take into account the absorption overlap.

Fe f f =
∑

i
ηi

abs F i (4.38)
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Chapter 4. Optical limits for thin-film solar cells

where the index i is used to distinguish different resonances. The modification of the en-

hancement factor in Eq. 4.38 is general and not restricted to a special geometry. To evaluate

it, the electric field of the mode for different energy and propagation constants is required to

allow calculation of the field overlap. As primarily we assumed that the structure is a slight

deviation from a planar geometry, field profiles can be approximated with the profile of a

flat one. Furthermore, for each resonance, the guided-mode profile at the correspondence

resonance peak can be used.

Imperfect confinement of the wave energy to a cell and parasitic absorption over the different

layers of the cell reduce the enhancement factor in both thick and thin cells. However, one

should note that high confinement of a mode does not necessarily result in a high amount

of absorption enhancement by the mode. For example, a plasmonic mode which is localized

at the metal-dielectric interface can lose a major part of its energy in the metal; therefore, its

ηabs and Fe f f are small. Absorption in the metal is a major challenge of applying plasmonics

to thin-film solar cells [110].

Fig. 4.18 demonstrates the effect of the absorption overlap on the enhancement factor of the

complete solar cell described in section 4.3.5 where a 1D grating coupler with P = 560 nm

is used. The “absorption overlap” reduces the enhancement factor to almost its half. This

shows that parasitic loss is a major constraint for absorption enhancement in thin-film solar

cells.
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Figure 4.18: Effect of loss on the average enhancement factor of the full solar cell stack with 1D grating
coupler (P = 560nm) under unpolarized illumination. The curve with “no overlap” is the benchmark
where modification of relation (5) is not applied. The “with abs overlap” corresponds to the case where
this modification is applied. For simplicity, on axis incidence is considered only.
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4.3. Angular behavior of the absorption limit in thin film silicon solar cells

4.3.8 Practical considerations

Up to now we have obtained the average absorption enhancement factor over the wavelength

range from 600 to 900 nm. What finally matters for a solar cell regarding absorption is its pho-

tocurrent. In this part we calculate the maximal increase in the short circuit current density

(Jsc ) over the same wavelength range provided by guided modes. For this aim, we first obtain

the absorption via A = Fαd . Then we calculate the increase in Jsc by weighting the absorp-

tion with the photon flux of the solar spectrum and integrate over the range of interest. This

approximation is better than the simple averaging of the enhancement factor over the wave-

lengths of interest because it considers the solar spectral density also. Figure 4.19 shows the

increase in the short circuit current density (ΔJsc ) under unpolarized illumination versus the

incident angle for the complete solar cell stack on a 1D grating coupler with P = 560 nm. The

dotted curve shows ΔJsc where the absorption overlap is not considered (ηabs = 1), i.e. where

it is assumed that the wave is fully confined to the i-Si layer. This curve shows that if absorp-

tion occurs only in the i-Si layer, the guided modes can increase the photocurrent at most

by 2 mA/cm2. Maximal photocurrent increase occurs for close to normal incidence. If we

consider ηabs too, we obtain the solid curve. This curve takes into account the imperfect con-

finement of the wave to the i-Si layer. The maximal photocurrent increase is obtained still

for close-to-normal incidence. In this case, photocurrent increase is limited to 1 mA/cm2.

This confirms once more the undesirable effect of parasitic absorption. Note that the value

of Jsc provided by the single-pass absorption over the considered wavelength range is 0.0174

mA/cm2 which is much smaller than the potential Jsc enhancement provided by the guided

modes even assuming parasitic loss over the other layers of the cell.

It is worth mentioning that usually a cell is encapsulated beneath a planar glass sheet. In

this case the incidence on the glass-ITO interface will be limited to an angular range close to

normal, between normal and critical angle of glass ( almost 42 degrees). The glass layer also

affects the polarization of the incident light. It even modifies the whole dispersion diagram

of the multilayer stack. However, the angular dependence of F and ΔJsc should not be much

different from the case without glass at least qualitatively. The reason is that F depends on

both of the incident angle and the refractive index of the incident medium. Limiting the

incidence to small angles by increasing the refractive index of the incidence medium does

not increase F due to the radiance theorem. To study more complex effects e.g. polarization,

the dispersion diagram of the structure including the glass layer should be used.

Despite the tight dependence of absorption enhancement on a cell’s layers, some guidelines

for the design of interface textures can be concluded. In general, 2D gratings or random

patterns are preferred to 1D gratings for interface texturing because they support a larger

number of mode excitations. Specifically 2D gratings with hexagonal geometry can support

more resonances and reduce the angular dependence of the absorption enhancement factor

compared to the square geometry.

Apart from the mentioned points, the method which we used to obtain the dispersion dia-
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Chapter 4. Optical limits for thin-film solar cells

gram can be used to analyze guided modes in thin-film solar cells. This technique can help

engineering the guided modes for a cell with an arbitrary number of layers and materials,

which can be an initial but important step in the design of textured solar cells.
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Figure 4.19: Angular dependence of photocurrent increase for the full solar cell stack with a 1D grat-
ing coupler with P=560 nm under unpolarized light. The curve with “no overlap” is where modifica-
tion of Eq. (5) is not applied. The “with abs overlap” corresponds to the case where this modification
is applied. For simplicity, on axis incidence is considered only. The horizontal line corresponds to the
photocurrent provided by single-pass absorption.

4.4 Limit of light coupling strength in solar cells

4.4.1 The limit imposed by single-pass absorption

As already mentioned in the previous sections, enhanced light absorption is a requirement

to realize cost-effective photovoltaics. To absorb light more efficiently, solar cells should be

designed such that the incident light is coupled into them as strongly as possible [111, 112,

113, 114, 76, 115, 116]. This can be in turn achieved by excitation of guided modes. [117, 40,

36, 118, 44].

The extent to which guided modes can boost absorption in a solar cell depends on two main

factors:

1. Number of resonances: Absorption is enhanced more if a higher number of resonance

excitations is combined with few reflected orders.

2. Coupling strength: Stronger coupling to external radiation means a higher amount of

absorption enhancement.
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4.4. Limit of light coupling strength in solar cells

Often in the literature, only the number of modes —or equivalently their density— is con-

sidered, which assumes that coupling is so efficient that it does not affect calculations [29,

30, 20, 109]. To provide more accurate values for the maximal absorption enhancement, cou-

pling strength of the modes should be considered as well.

In this part, an upper limit is derived for the coupling strength of the modes of a thin film to

the outside radiation. For simplicity, only guided modes are considered here but radiation

modes can be treated similarly. A grating coupling mechanism is assumed to excite guided

modes. Also, the cell is periodic along the grating periodicity. Here, I show that the maximal

coupling rate depends on the film thickness and its modal structure. The formulation men-

tioned here does not depend on the choice of grating texture, therefore, random textures may

be analyzed analogously.

We start from Eq. 4.5 and we assume that an incident wave travels through the film. If the

wave couples to a guided mode during its travel through the film, it also decouples from the

mode at the end of this travel. If for simplicity the number of output ports N = 1, for ex-

ample if a back-reflector is put underneath the film, the coupling rate is the same for both

in-coupling and out-coupling. A mean time of τe is required for each coupling. Therefore,

the whole travel time will be 2τe ; one τe for coupling in and one τe for coupling out. The min-

imum travel time of a wave inside the film determines the minimum of τe and the maximum

of γe . I verify this intuition by using the temporal coupled-mode theory.

The maximum absorption A in the film can be calculated from Eq. (4.9) [18, 20]:

A = γi |a|2
|S|2

∣∣∣∣
ω=ω0

= γiγe

(ω−ω0)2 + (N γe

2 + γi

2

)2
∣∣∣∣∣
ω=ω0

< 4γi

N 2γe
, (4.39)

Therefoe γe has an upper limit:

γe <
4γi

N 2 A
(4.40)

Based on Eq. (4.40), there is a trade-off between the absorption and the coupling rate that

eventually limits both of them. Higher absorption values represent lower coupling rates and

vice versa. This shows that in the weakly absorbing regime of solar cells, guided modes can be

coupled more strongly to external radiation. One should take the minimum possible value

of absorption not to underestimate coupling strength. Let us assume that the wave passes

through the film only once so that the absorption over this one-pass length along the film L

77



Chapter 4. Optical limits for thin-film solar cells

(a) (b)

Figure 4.20: Schematic of an incident wave transiting a dielectric film under an angle θ. The effective
and the physical thickness of the guide are indicated by def f and d . (a) The film on a back reflector,
(b) The film in air. In TE/TM polarization, electric/magnetic field is normal to the incidence plane.

is the minimum of absorption [82]:

A ≈ γi

vg
L. (4.41)

where vg is group velocity of the mode at resonance. From Eqs. (4.40) and (4.41) one con-

cludes that

γe <
4vg

N 2L
= 4

N 2τt
. (4.42)

Here τt = L/vg is the wave travel time while passing through the film. For only one reflection

order at the presence of back-reflector(N = 1), Eq. (4.42) and γe = 2/τe lead to τe > τt /2,

which is consistent with our initial intuition that τe,mi n = τt ,mi n/2. Because τt depends on

the modal structure of the film, the order of the mode to which the light couples and the cell

thickness, γe is related to these parameters similarly. Specifically, thin-film devices should

support stronger coupling compared to thick devices because they let τt become very small.

Also, it should be possible to excite modes more effectively close to the light line of air because

their group velocity is large.

For the first example, let us consider a dielectric film of thickness d and index n between a

half space of air and another half space of perfect reflector as shown in Fig. 4.20a. Also assume

that the guided modes of the slab are coupled to external radiation by interface texturing. An

incident wave coming from the air side couples to a guided mode of the film associated with

the internal reflection angle θ. The back-reflector affects the coupled mode equation in two

ways; first, it makes the incident wave pass through the film twice. Second, it decreases the

number of output ports to one. Based on Eq. (4.42) we can thus write [107]

γe,max = 4vg

2d tanθ
= 2vg

d

√
n2 −n2

p

np
. (4.43)
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Figure 4.21: γe,max obtained by using the phase velocity approximation in Eq. (4.43) versus wave-
length (λ) and phase index (np ) for a slab with n = 4 and d = 200 nm.

Here np = c/vp is the phase index where vp is the phase velocity and c is the speed of light in

air. In Eq. (4.43) we consider d and not the effective thickness of the film, de f f [107], because

absorption occurs only inside the waveguide.

An important point is the appearance of film thickness in the denominator of Eq. (4.43),

which reveals an advantage for thin films; they allow strong mode excitation. The problem

with thin films might be that the wave is not confined to them but if the mode is extremely

confined, e.g. a surface plasmons, the small thickness of the film will guarantee efficient

coupling of light and the high confinement of the mode insures that the mode is absorbed

efficiently in the film [119, 120, 121]. The group velocity and the phase index also influence

γe,max in Eq. (4.43) but both maximize it on the light line of air. The maximal coupling rate of

a film with one reflection order and a perfect back reflector occurs at np = 1 and it is equal to

2c
�

n2 −1/d .

As a second example, consider a film suspended in air (as in Fig. 4.20b). Due to the elimi-

nation of the back reflector, this system has two ports (N = 2) and the incident wave passes

through the film only once. For simplicity, we assume that both sides of the film have the

same coupling characteristics. Eq. (4.42) suggests that

γe,max = 4vg

(2)2 d tanθ
= vg

d

√
n2 −n2

p

np
. (4.44)
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Chapter 4. Optical limits for thin-film solar cells

Figure 4.21 shows the maximum coupling rate γe,max for a film with refractive index n = 4

and thickness d = 200 nm as a function of the incident wavelength and the phase index np .

The wavelengths correspond to the range of operation of solar cells. The refractive index and

the thickness are chosen such that structure resembles a thin-film amorphous silicon solar

cell. In Fig. 4.21, we have applied the approximation of using the phase velocity instead of

the group velocity in Eq. (4.44) to obtain γe,max regardless of polarization and band shape in

the dispersion diagram. Therefore, Fig. 4.21 is plotted as a continuum and the bands should

be mapped on it. The maximum of γe,max occurs on the light line of air (np = 1) and it is

equal to c
�

n2 −1/d which is half of the value obtained in the previous example (Eq. (4.43)).

Therefore, adding a back-reflector is beneficial not only to increase the path length of light

inside the film, but also because it allows stronger coupling. In this way, a solar cell’s back-

reflector boosts the absorption of light in the cell which in turn increases the short-circuit

current density and the open-circuit voltage, and consequently the efficiency [17].

Figure 4.22a and 4.22b show γe,max in logarithmic scale for the same film (n = 4 and d =
200 nm) along the bands in the dispersion diagram in transverse electric (TE) and trans-

verse magnetic (TM) polarizations. In TE polarization, the electric field is normal to the

incidence plane (c.f. Fig.4.20). For these calculations, Eq. (4.44) was used with the group

velocity (vg = dω/dβ). In both polarizations, γe,max is maximum at the onset of the modes

on the light line of air. Starting from this line and moving along the bands, γe,max decreases

in agreement with the phase index approximation of Fig. 4.21. At fixed energy or propaga-

tion constant, higher-order bands provide larger γe,max because they correspond to smaller

np . Specifically, the TE2 and the TM1 modes emerge from the light line of air in the energy

range where amorphous silicon is weakly absorbing, so, they have extremely high γe,max in

this range. Note that very close to the light line of air guided modes are weakly confined to

the cell, so they cannot lead to significant absorption enhancement despite their strong ex-

citation. Nevertheless, it should be possible to find a region of optimal parameters in the

dispersion diagram such that both the coupling rate and the mode confinement have reason-

ably high values. One might consider this in the design of solar cells.

In summary, we derived a limit for the rate of light coupling into the modes of solar cells. This

limit depends on the thickness of the cell, the group velocity of the mode, and where in the

dispersion diagram the mode is excited. We showed a trade-off between absorption in the

cell and the coupling rate. Therefore, calculations of the maximum absorption enhancement

in solar cells should be modified to consider this constraint. We applied our approach to solar

cells but it can be used to provide limits and design guidelines for a broad variety of devices

whose operation is based on resonant phenomena.

4.4.2 The limit imposed by Planck’s law

Planck’s law gives the maximum energy that can be emitted from an object at a temperature T

as a function of wavelength. Assume a square cell with an area L2. For simplicity consider also
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Figure 4.22: log10(γe,max ) for a slab with n = 4 and d = 200 nm for (a) TE polarization and (b) TM
polarization. The dashed lines show the light lines of air and the dielectric. The unit of γe,max is rad/s.
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that periodic boundary conditions can be applied and that there is a perfect back-reflector at

the back of the cell so that light-coupling occurs only from the top interface of the cell. The

sum of the external coupling rates of the optical modes of the cell in the angular frequency

range [ω,ω+Δω] has an upper bound [88].

∑
m

γm ≤
(

L

2πc

)2

ω2Δω (4.45)

where c is speed of light in air and m is mode index. If we also assume that all the modes have

the same coupling characteristic γ=γm , Eq. 4.45 becomes

γ≤ c

4d

ρvac

ρ
(4.46)

where ρ and ρvac = ω2/(π2c3) are the density of optical modes (states) in the cell and in air

and d is the cell thickness. Two very important points can be concluded here. First, by in-

creasing the density of states it is possible to increase absorption and second, by reducing a

cell’s thickness, it can be possible to push the upper bound of coupling to larger values.

At thermal equilibrium, the rate of photon emission in the angular frequency range [ω,Δω]

at temperature T for each optical mode can be expressed as

pm = γm

exp(ħω/kB T )−1
(4.47)

where kB is Boltzmann’s constant. Based on Planck’s formula for blackbody radiation, the

rate of photon emission from the blackbody of surface area L2 at temperature T is equal to

B = L2
( ω

2πc

)2 Δω

exp(ħω/kB T )−1
(4.48)

Kirchheoff’s law bounds the emission rate to the blackbody radiation, thus,

∑
m

pm ≤ B (4.49)

This puts an upper limit on the external coupling rate. More detailed calculation can be fol-

lowed in [88]. From the mentioned formulation, it appears that regardless of the texture ge-

ometry, the sum of coupling coefficients has an upper bound. Thus, stronger excitation of

some modes may be at the expense of weaker excitation of the other ones. This seems to be

not far from reality for a-Si solar cells.

82



4.5. Limits on efficiency

4.5 Limits on efficiency

The upper bound of efficiency has been determined by Shockley and Queisser [32] for a p-n

junction. To obtain this limit, they considered that the band gap of the semiconductor is in

the form of a step function and that each photon can create one free carrier at most. Also

they assumed a description in terms of blackbody radiation. This efficiency limit is about

33 percent. Different methods have been proposed to overpass this limit, the most relevant

of which to this work is making tandem cells [33]. Here we briefly go over the argument of

Shockley and Queisser to obtain this limit.

4.5.1 The Shockley-Queisser limit

In 1961 Shockley and Queisser wrote a key paper [32] about the limit of efficiency in a solar

cell based on a single p-n junction. Their paper uses the laws of thermodynamics and the

principle of detailed balance. Here we briefly show a potential for passing their limit.

Assume that each photon with an energy larger than the band gap of the absorber generates

only one electron-hole pair. Power absorbed by the cell is equal to

Pout put = hνg AQs (4.50)

where νg is the frequency corresponding to the band gap of the semiconductor, and Qs de-

notes the number of quanta of frequency greater than νg incident per unit area per unit time

for black-body radiation at temperature Ts and it can be obtained by using Planck’s formula

Qs =
(

2π

c2

)∫∞

νg

ν2dν

exp(hν/kTs)−1
(4.51)

The incident power is equal to

Ps =
(

2πh

c2

)∫∞

0

ν3dν

exp(hν/kTs)−1
(4.52)

the efficiency limit can be thus approximated as a function of absorber band gap

u(νg ) = hνQs

Ps

∫∞
νg

ν2dν
exp(hν/kTs )−1∫∞

0
ν3dν

exp(hν/kTs )−1

(4.53)

This is the ultimate limit of efficiency in a solar cell with band gap frequency of νg .
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Shockley and Queisser further extended their calculations by considering that the maximal

radiation by a cell at a temperature of Tc is described by Planck’s formula. Similar to Eq. 4.51

they defined Qc corresponding to radiation from the cell as defined below.

Qc =
(

2π

c2

)∫∞

νg

ν2dν

exp(hν/kTc)−1
(4.54)

They furthermore took into account the exponential dependence of carrier generation and

recombination processes as a function of internal potential. Based on the amount of the net

generation rate (equivalently net recombination), they obtain limits for the efficiency of a

solar cell which are lower than the values predicted by Eq. 4.53

In summary, in this chapter limits of light absorption enhancement for thin-film solar cells

were studied. For this purpose we extended the coupled-mode theory to the case of thin-

films with periodic texture. Since it was assumed that the guided modes are excited very

strongly, the calculations of this chapter are useful to obtain the upper bounds of absorption

in a solar cell. We showed in this chapter that imperfect confinement of light to the absorber

layer can decrease the absorption enhancement. Specifically, parasitic absorption can de-

crease the enhancement factor dramatically. We furthermore studied the effect of the inci-

dent angle on absorption enhancement. We found that absorption can be large for oblique

incidence. We also compared 2D gratings based on square and hexagonal geometry and we

showed that hexagonal structure can enhance absorption more isotropically. We furthermore

presented an upper bound for the coupling-strength of light to the guided modes of a multi-

layer device such as a solar cell. This limit can also be used for other similar opto-electronic

devices such as light emitting diodes.
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5 Guided waves in solar cells

5.1 Introduction

One approach to enhance light absorption in a solar cell is to improve the cell morphology.

Usually a solar cell is an almost-planar multilayer device. There are thus two main methods

to modify its geomtry: texturing the interfaces and changing the sequence of the layers. Of

course additional approaches such as placing dielectric or metallic nano-particles [122] or

photonic crystals can be applied [123, 124] but these methods can be ususally considered as

extensions of the two mentioned techniques or a combination of them.

Based on theoretical considerations, it was suggested that periodic interfacee textures should

be more efficient than random ones [20]. However, random textures are normally preferred

in practice due to ease of fabrication. Regardless of whether it is random or periodic, the

surface texture couples the incident light into the modes of the cell. Strength of this coupling

can depend strongly on the texture morphology and finding textures which can improve light

coupling to the modes of the cell has been investigated recently by many authors [125, 126,

127, 128, 129].

Layers of a cell provide a new degree of freedom to improve light absorption in it. If the cell

is made only of dielectric materials, it will support just guided modes which are confined

mainly to the cell, although their confinement is not perfect and a part of the mode energy

can extend outside the cell in air. Contrarily, if the cell consists of metals too, it will probably

support “plasmonic modes" which are localized at the metal-dielectric interface. Here, by

guided modes", we refer to the non-plasmonic modes although actually plasmonic modes

are guided modes too. Plasmonic modes can provide more light confinement than guided

modes, and seem theoretically a promising route towards efficient light trapping even be-

yond the conventional ergodic limit [30]. Despite the interesting optical properties of plas-

monic modes and their theoretical promise to improve photovoltaics [119, 130, 25, 131], fab-

rication of high quality metallo-dielectric interfaces is still a practical challenge. A major

problem is the high amount of parasitic absorption in the metal and recombination of carri-

ers at the metal-dielectric interface.
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Chapter 5. Guided waves in solar cells

On the other hand a back-reflector at the bottom of the cell reflects the incident photons after

they pass the cell and gives them another chance to be absorbed, thus it increases absorption

[29]. Also, it enhances the coupling strength of the modes [84]. A highly reflective metal

e.g. Ag seems an appropriate choice of material for the back-reflector. However, a Ag back-

reflector may support a plasmonic mode which is mainly absorbed at the vicinity of the silver

surface. If a spacer layer is deposited on the silver layers, it shifts the plasmonic mode to

higher energies (frequencies eventually), converting it to a a guided mode in the wavelength

range of interest [40]. This is only one example of modifying the sequence of layers in the

cell to enhance light trapping. One can consider other modifications of this sequence as a

degree of freedom. Adding new layers, removing the existing layers and changing the layer

thicknesses are examples of other geometrical changes which have a potential for improving

light absorption in the cell.

In this chapter we explain the mechanism of absorption enhancement by guided modes in

thin-film a-Si solar cells. To take into account the effect of layers sequence on the optical

resonances in a cell, we use the dispersion diagram of the cell assuming that the cell is in

the form of a planar multilayer. This allows us to study the nature of modes in the cell and

to judge whether they are guided or plasmonic. The flat-interface model helps us also to

study the impact of changing the thickness of a specific layer, e.g. the spacer layer or its

consisting material. Then, the effect of texture on absorption enhancement is studied. For

simplicity, we consider only one- dimensional (1D) gratings in a major part of this contribu-

tion except the last part where we compare 1D and 2D gratings. Note that a 1D grating is

actually a 2D structure. It is usually expected that asymmetric textures in the form of blazed

gratings can enhance absorption in a cell maximally. This is previously predicted by coupled-

mode approximation [132] and also by rigorous calculations [133]. We consider three differ-

ent geometries and we show that depending on texture parameters, a symmetric pattern may

be able to improve light abosrption in the cell more than an asymmetric pattern especially

when angular changes of photocurrent are considered. Unfortunately, solar cells literature

often deals with normal incidence of light in a cell. We show that it is necessary to investigate

other incident angles too, because a texture which seem non-optimal at normal incidence

may outperform another texture which has a higher photocurrent under normal illumina-

tion. We also consider the effect of changing the spacer layer material (which is between the

Ag and the n-Si layer) to verify the predictions of the planar model. Finally, we compare 1D

and 2D gratings with an experimental sample and we discuss the extent to which texturing

can enhance absorption in the cell.

The arrangement of the chapter is as follows. In section 5.2, different limitations on absorp-

tion enhancement in a solar cell are discussed briefly. To show the impact of guided modes

in real thin-film Si cells, in section 5.3 we present a fabricated a-Si cell based on a 1D grating

pattern. The cell shows improved absorption at long wavelengths thanks to the excitation of

guided modes. The rigorous simulation of the cell provides results which correspond closely

o the experimentally-obtained absorption. The planar model is then used in section 5.4 to

investigate the impact of the back-reflector on modal structure of the solar cell. The effect
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5.2. Physical limitations on coupling

of both thickness and material of the spacer layer is studied in this respect. Section 5.5 is

devoted to comparison of different textures and studying their angular response. Symmetry

of the texture, grating depth and the effect of the spacer material on the EQE of the different

textures are investigated in section 5.5. Finally 2D gratings are considered in section 5.5.3.

5.2 Physical limitations on coupling

Interface texturing plays a major role in coupling solar radiation to the guided modes of a so-

lar cell. In the ideally planar structures, the guided modes are fully trapped inside the cell so

their energy cannot couple outside. This may seem beneficial at the first glance since once

light is inside the cell, its energy can be fully absorbed at least theoretically. However, due

to Kirchhoff’s law, in-coupling and out-coupling processes are reciprocal i.e. their coupling

coefficient for in- and out-coupling are equal. This means that if the guided modes and the

outside radiation are not coupled, there is no light to trap by the guided mode and to absorb.

However if the guided mode is slightly coupled to the external radiation, the photons which

couple in, are almost perfectly trapped and hence absorbed nearly completely. Another sce-

nario is when coupling is strong. In this case, light can get inside the cell easily but it can

couple out and escape easily too. This introduces a fundamental trade-off between in- and

out-coupling in the cell. A major question is whether the coupling should be high or low to

maximize absorption. Recently, it was demonstrated that in the weak absorption limit, maxi-

mal coupling is an essential to realize higher absorption [20].

Another physical limitation is imposed by Planck′s law of radiation [88]. Due to Planck′s law,

the maximal electromagnetic emission (or equivalently absorption) by an object is limited to

Black body radiation. This limits the magnitude of the coupling coefficient of guided modes.

Regardless of the number of guided modes, their coupling coefficients are limited such that

their total emission is under the radiation of a Black body at the temperature of the cell.

While Planck′s law describes a limit for the coupling strength, however it does not determine

the exact value of coupling. Coupling strength is determined by both the layers of the cell

and the exact shape of the interfaces. Therefore, it seems at least hard to define a general

easy-to-calculate formula for the coupling strength if possible at all. Recently, remarkable

effort has been spent over optimization of the interfaces of the solar cells to enhance cou-

pling [134, 44, 135, 136]. However, little has been studied on the impact of cell thickness on

coupling strength. Nevertheless, it has been recently shown that coupling strength also de-

pends inversely on the cell thickness [88, 84]. This puts another limitation on coupling and

emphasizes again the importance of studying the dispersion of the planar device.

5.3 An example: Absorption enhancement in an a-Si cell

To show the importance of guided mode excitation for absorption enhancement, thus pho-

toucurrent and efficiency increase in thin-film solar cells, we fabricated an a-Si cell which
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Chapter 5. Guided waves in solar cells

(a)

(b)

Figure 5.1: (a): SEM micrograph of the fabricated cell. (b): The RCWA model which is used for the
simulations Sequence of layers from top to bottom is ITO (50 nm), p-Si (15 nm), i-Si (180 nm), n-Si (20
nm), ZnO (70 nm) and Ag, and grating period is 550 nm. The dark part of SEM shows the Si layers.

from top to bottom consists of ITO (50 nm), p-Si(15 nm), i-Si (180 nm), n-Si (20 nm), ZnO (70

nm) and Ag back-reflector1. The back-reflector has a 1D grating pattern with a period of 550

nm. We measured the external quantum efficiency (EQE) of the cell for different wavelengths.

We also simulated the cell by using the rigorous coupled-mode analysis (RCWA) method 2.

The fabricated cell and the applied RCWA model are shown in Fig. 5.1. The method allows

implementation of the cell interfaces such that the implemented interfaces resemble the tex-

ture of the real device. In this way, the non-conformalities in the deposition of different layers

of the cell are taken into account.

Fig. 5.2 shows the EQE of the cell which is obtained through both experiment and simulation,

under in-plane oblique incidence of light, for both TE and TM polarizations, as a function

of the incident angle and wavelength. The resonances due to guided modes are observed

in both simulation and experiment; the peaks at wavelengths longer than around 650 nm

mainly correspond to the excitation of guided modes. Experimentally, in TE polarization,

these excitations increase the EQE over a wide angular range at angles mainly other than

normal. The simulation supports this strong enhancement of EQE at oblique incidence but

it also reveals that there should be some relatively strong mode excitations at wavelengths

1In this section some of the results mentioned in Ref. [44] are used.
2For the simulations of this chapter, 31 Fourier orders were used in TE polarization and 91 orders were used in

TM.
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Figure 5.2: The EQE as a function of the incident angle and wavelength for the a-Si cell obtained
through (a): experiment for TE-polarized illumination, (b): simulation for TE-polarized illumination,
(c): experiment for TM-polarized illumination, (d): simulation for TM-polarized illumination.

longer than 700 nm at about normal incidence. These resonances are not captured in the

experimental EQE. In TM polarization, the most significant enhancement is observed for

around normal incidence, in both experiment and simulation.

The difference between the simulation and the experimental results may originate from vari-

ous sources. First of all, in practice geometrical parameters of the grating may differ from one

period to another. This may appear in the EQE as broadened resonances with lower peaks.

Also some sharp resonances may not be observed clearly because they may be spread out

over a wider spectrum. Imperfections in the device operation, such as ohmic losses can also

reduce the measured EQE compared to the simulated values. Despite all these points, up

to around 700 nm the experimental and simulated EQEs correspond to each other relatively

well. As the wavelength becomes larger, their difference becomes more pronounced.

As this experiment and the corresponding simulations reveal, guided modes can effectively

increase light absorption in a solar cell. Therefore, it is important to investigate them in more

detail, and to study the ways that they can be excited more strongly. Specifically, it is of in-
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Chapter 5. Guided waves in solar cells

terest to obtain cell geometries which can support such strong excitations. In Ref. [44], we

presented an optimization of the mentioned solar cell for different back-reflector geometries.

Our calculations showed that asymmetric textures may allow the existence of geometrical

parameters which result in relatively high photocurrent for both polarizations.

In the previous chapter we studied mainly physical limitation on absorption enhancement in

thin-film solar cells. For this aim, the exact geometries were not required. In this chapter, our

focus is on specific close-to-reality geometries, and we go beyond optimization by studying

physics of thin-film silicon solar cells considering realistic geometries.

5.4 Planar model: The impact of back-reflector

As a first approximation, one can use the band diagram of the planar device without inter-

face texturing as an initial guess of the guided modes dispersion of the textured device. Of

course in the real device, the bands are deviated from the modal structure of the planar geom-

etry. However, if the texturing does not change the geometry significantly, this planar device

approximation gives reasonable values for the propagation constants.

We consider a single junction a-Si solar cell stack. From bottom to top, the cell consists of a

silver back-reflector, a 70 nm ZnO spacer, an n-i-p junction of a-Si:H with respective thick-

nesses of 20, 250 and 15 nm, and 50 nm ITO electrode. Fig. 5.3 shows the band diagram of

the planar device which is obtained by the reflection pole method (RPM) [61] in both polar-

izations. In the dispersion diagram, the guided modes are between the light line of air and Si,

which is a result of spread of wave energy over Si, other layers and air. If absorption is high, it

becomes hard to detect modes because the resonances get very wide. For a fixed energy, the

fundamental mode (0-th order mode) appears at higher parallel wavevectors (k∥) compared

to the other modes, regardless of polarization.
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Figure 5.3: Dispersion diagram of a thin-film a-Si:H stack which consists of Ag, ZnO (70 nm), n-Si
(20 nm), i-Si (250 nm), p-Si (15 nm) and ITO (50 nm) from bottom to top. (a)TE polarization (b) TM
polarization. The dashed blue line is the light line of air and the black solid line is the light line of i-Si.
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5.4. Planar model: The impact of back-reflector

Fig. 5.4 shows the normalized magnitude of the electric field along the cell thickness at the

wavelength of 700 nm (1.77 eV) under TE polarized illumination. Normalization for field

amplitude is applied with respect to its highest value for each case. The vertical lines show

the planar interfaces. The leftmost part is air and the rightmost region is Ag. In both air and

Ag, increasing mode order results in more spread of the wave over space. This is in agreement

with the intuition that in the dispersion diagram, the closer the mode to the Si light line, the

more localized its energy to the Si layer.
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Figure 5.4: Normalized electric field magnitude for the TE modes of the cell at the energy of 1.77 eV
(wavelength of 700 nm). The field is normalized to its largest value in each case. The horizontal axis
shows the thickness of the structure. The air side occurs in leftmost part.

Fig. 5.5 shows the dispersion of the planar stack when the ZnO spacer layer is removed. In

TE polarization, the only remarkable difference is that the guided modes are shifted slightly

towards higher energies. However, in TM polarization, there is a dramatic difference in the

dispersion diagram. The lowest order mode falls down to lower energies. It even goes beyond

the light line of silicon in the dispersion diagram. Its dramatic displacement leaves space for

the other modes to reconfigure their position in the dispersion diagram. However, the total

number of modes in the dispersion diagram stays constant in the considered spectral range.

Violation of the placement between the light lines of air and Si in the dispersion diagram

by the low-order mode in TM polarization is the characteristic of a surface plasmon. As its

name suggests, a surface plasmon is a surface wave; its profile peaks exactly at the metallo-

dielectric interface and decays into both adjacent media. Fig. 5.6 shows the normalized ab-

solute value of the magnetic field for the planar stack (without the spacer layer) at the wave-

length of 700 nm (1.77 eV) under TM polarized light. The fundamental mode is very localized

to the metallic interface and its peak intensity is exactly on this interface. This is why it is ab-
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Figure 5.5: Dispersion diagram of a thin-film a-Si:H stack without spacer layer, which consists of Ag,
n-Si (20 nm), i-Si (250 nm), p-Si (15 nm) and ITO (50 nm) from bottom to top. (a)TE polarization (b)
TM polarization. The dashed blue line is the light line of air and the black solid line is the light line of
i-Si.

solutely important to put the absorber as close as possible to this interface if it is intended

to use the plasmon for improving photocurrent in the cell. Apart from this mode, the other

modes show a normal guided-mode behavior. Their field amplitude extends mainly over the

i-Si layer. The tail of profile in air shows the same trend as observed for TE modes: higher

order modes are less confined to the stack and spread more over air.

5.4.1 Change of spacer material

It is clear by now that the spacer can have a remarkable effect on the optical properties of the

lowest order TM mode. One important parameter to study is the material of which the spacer

is made. In the previous example the spacer was assumed to be made of ZnO. Here, we as-

sume that the spacer is made of MgF2 and we compare the bands to the case with ZnO spacer.

Our purpose here is to explore the effect of this material replacement only theoretically; in

practice, MgF2 will require some effort for electrical contacting.

Fig. 5.7 compares the dispersion diagram of the cell in two cases where a ZnO or MgF2 spacer

layer has been used. Both materials are almost lossless over the spectral range of interest,

especially at long wavelengths, however, ZnO (n ≈ 2) has a refractive index which is larger

than the refractive index of MgF2 (n ≈ 1.38). In both cases, a spacer thickness of 70 nm has

been considered. The red circles and the blue dots correspond to the cells with ZnO and

MgF2 layer respectively. Fig. 5.7a shows the bands for the two cases in TE polarization. In TE,

both structures have almost the same dispersion diagram. In TM (Fig. 5.7b), the high order

bands are deviated more compared to lower order bands. It seems that the TM modes with

the same order are similar in shape and in their starting point at their onset on the light line

of air. By moving on the bands from the light line of air to the light line of Si, the bands of

the two cells (MgF2 and ZnO) deviate from each other. Specially, band of the fundamental
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Figure 5.6: Normalized magnetic field magnitude for the TM modes of the cell without spacer layer
at the energy of 1.77 eV (wavelength of 700 nm). The field is normalized to its largest value in each
case. The horizontal axis shows the thickness of the structure. The air side occurs in leftmost part.

mode is very similar in both cases. This is because this mode is localized very well in the Si

layer. Because the only difference between the two cases is the material used in the spacer,

variation of the bands from one case two the other one is a sign of spread of electromagnetic

energy over the spacer.

The refractive index of the spacer material has a key role in light-trapping in the cell, even if

it does not absorb light at all. We note that the spacer can play two contradictory roles from

an optical point of view. First, it can attract the electric energy of the external field because

the electromagnetic energy density is proportional to permittivity. This is confirmed in Fig.

5.7b by the appearance of the bands of the same order at lower energies for the ZnO spacer

compared to the MgF2 one. However, more attraction of electromagnetic energy does not

necessarily guarantee a higher absorption because the high refractive index of the spacer can

also attract energy which is spread over the Si layer and result in reduction of field profile

overlap with the active layer. It seems, thus, not easy to guess which one of these effects

finally wins and attraction of energy by the spacer can lead to a higher photocurrent or not.

For this, we need to study the impact of spacer in more detail. Later in section 5.5.2 we study

the impact of spacer material is a cell based on a one-dimensional grating.

5.4.2 Effect of spacer thickness

Thickness of the spacer is another parameter which can affect the guided waves in the cell. In

the extreme case where thickness of the spacer tends to zero, a plasmonic mode can coexist
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Figure 5.7: Dispersion diagram of a thin-film a-Si:H stack which consists of Ag, spacer (70 nm), n-Si
(20 nm), i-Si (250 nm), p-Si (15 nm) and ITO (50 nm) from bottom to top. (a)TE polarization (b) TM
polarization. The circles show the bands of the cell with ZnO spacer. The curves with ’+’ sign represent
the bands of the MgF2 spacer.

with higher order guided modes. It is interesting to find out how the thickness of the spacer

changes the nature of the mode. In this part we study the effect of spacer thickness on the

optical bands of the planar thin-film solar cell.

Fig. 5.8 shows the dispersion diagram of the cell with different ZnO spacer thicknesses of

70, 10 and 5 nm. Also the bands of the cell with no spacer are plotted in the figure. The

cross marks shows the bands of the cell without spacer, and the circles, triangles and solid

correspond to the spacer thickness of 5, 10 and 70 nm respectively.

Fig. 5.8a shows the bands of the cells in TE polarization. In TE polarization, the higher order

modes of the cell with the thickest spacer (70 nm) show the largest deviation from the corre-

sponding bands of the other cells. However, overall the bands are not much modified with

changing the spacer thickness.

Fig. 5.8b shows the bands of the cells in TM polarization. In TM polarization, the optical

bands deviate remarkably with changing the spacer thickness. For the higher order modes,

the cell with the thickest spacer shows the most significant band deviations. These deviations

are most pronounced for the TM0 mode. The lowest order mode is a plasmonic mode for

the cell without spacer. For the spacer thickness of 5 nm, this lowest order mode is still a

plasmonic mode because it occurs beyond the light line of Si. Spacer thickness of the 10

nm and 70 nm correspond to conventional guided modes which occur between the light

line of air and Si, thus they do not support any plasmonic modes. The fundamental mode

of the cell with 10 nm spacer is very close to the light line of Si which shows that it is very

localized in Si. However, for the spacer thickness of 70 nm, this mode is shifted towards higher

energies. This is expected that by increasing the spacer thickness, the fundamental mode

(which can be guided or plasmonic) is pushed towards higher photon energies. The reason is

that increased thickness of the low-index spacer reduces the effective refractive index of the
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Figure 5.8: Dispersion diagram of a thin film a-Si:H stack which consists of Ag, ZnO (variable thick-
ness), n-Si (20 nm), i-Si (250 nm), p-Si (15 nm) and ITO (50 nm) from bottom to top. (a)TE polarization
(b) TM polarization. The blue crosses shows the bands of the cell without spacer, and the green circles,
red triangles and blue solid correspond to the spacer thickness of 5, 10 and 70 nm respectively.

whole cell. However, it is hard to guess intuitively that in TM polarization, this band shift is

more significant for a thinner spacer thickness, as observed in Fig. 5.8b. Altogether, a thin

spacer layer can change the nature of the plasmonic mode into a guided mode. Nevertheless,

for very thin spacer layers, the mode may still be called plasmonic according to the dispersion

diagram of the multilayer stack.

5.5 Texture geometry and diffraction phenomena

The modes which are obtained in the dispersion diagrams need to be coupled to external

radiation. This is done by texturing the interfaces of the structure. Geometry of this texture

is of primary importance for both the number of excitations and the coupling strength. For

example, it has been shown recently that using the hexagonal geometry may result in larger

absorption than the square lattice [132, 83]. The reason is the higher number of mode excita-

tions for hexagonal geometry.

For 1D gratings, the Bragg condition takes a simple form

km
∥ = k0

∥ +
mλ

Λ
(5.1)

where k0
∥ is the parallel component of the unperturbed wave-vector. The effect of the grating

is to shift the parallel component of the wave-vector by multiplies of the reciprocal lattice

vector. For 2D gratings, the reciprocal and thus the number of diffraction orders depends on
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lattice geometry in real space. In this case, the Bragg condition can be expressed as

�km1,m2

∥ =�k0,0
∥ +λ (m1e1/Λ1 +m2e2/Λ2) (5.2)

where e1 and e2 are the reciprocal lattice vectors. From Eq. 5.2 the impact of the lattice

geometry on the number of resonances can be understood. The periodic pattern can excite

guided modes for all m1 and m2 integers that satisfy the criterion
∣∣∣�km1,m2

∥
∣∣∣<nk0.

Apart from the general geometry of the grating which was studied in section 4.1.2, the details

of its pattern are important too. For example symmetry of the grating seems to have a pattern

on absorption enhancement. In general, a grating texture which has several spatial frequency

components, can shift the guided modes by using these components; therefore, it seems

primarily that the richer the Fourier decomposition of a texture is, the more probable it will

enhance absorption. This however needs to be investigated in more detail.

5.5.1 Effect of texture symmetry

Texturing a cell’s interfaces couples light to its guided modes. The geometry of the texture can

change the coupling properties of the cell. The exact amount of coupling can be obtained

through a numerical simulation of the cell but it is possible to figure out rules of thumb too.

For example, coupling can be improved by increasing the texture height (modulation depth)

[107]. However high aspect ratios are hard to fabricate. They can also deteriorate a cell’s

electronic properties for example they can result in the appearance of shunts in the cell.

Symmetry of the texture is another geometrical parameter which affects coupling properties

of the texture. Based on the work of Heine and Morf [133], asymmetric textures are preferred.

Superiority of asymmetric textures can be attributed to the higher number of mode excita-

tions that they support. In a recent calculation of the upper bound of absorption in solar

cells, Yu et al. assumed that asymmetric patterns can enhance absorption in solar cells twice

as strongly as symmetric patterns [20].

While an asymmetric texture can excite more resonances compared to a symmetric one, it is

not clear whether its resonances are excited as strongly. In other words, it is possible that a

single wide resonance can enhance absorption more significantly than a multitude of sharp

resonances. Are asymmetric patterns preferred even after considering coupling strength? In

the following example we try to respond this question.

Consider an a-Si solar cell which from top to bottom consists of ITO (50 nm), p-Si (15 nm), i-Si

(250 nm), n-Si (20 nm), ZnO (70 nm) and Ag. Assume that the silver back-reflector is textured

into three different 1D grating patterns: sinusoidal, symmetric trapezoid and asymmetric

sawtooth. The normalized shape of the patterns are depicted in Fig. 5.9. Depth of grating

and its period is considered 150 and 500 nm respectively for all cases. Also assume that the
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Figure 5.9: The different back-reflectors which are simulated.

interfaces of the cell are conformal. This is consistent with the nearly conformal growth of the

cell layers in fabrication as long as moderate thickness is used. We simulate the cells under

in-plane oblique incidence of TE-polarized (electric field parallel to the grooves) light. For

simplicity we consider only in-plane illumination which means that the incidence plane is

normal to the grating grooves. Fig. 5.10 shows angle-resolved EQE of the cells based on the

different back-reflector shapes. For symmetric shapes, only positive angles are considered

since negative angles lead to similar results. The peaks at wavelengths longer than 650 nm

are signatures of guided modes. Based on these EQE plots, EQE varies as a function of both

the incident angle and wavelength. The final benchmark to compare light absorption in the

cells is the short circuit current density.

Fig. 5.11a compares the short circuit current density of the cells as a function of incident

angle under TE-polarized in-plane incidence. It is observed that the symmetric patterns can

provide Jsc as large as for the asymmetric pattern. At normal illumination, this is exagger-

ated because both symmetric patterns result in a Jsc higher than the one of the asymmetric

pattern. The symmetric trapezoidal pattern seems to be less efficient than the two other pat-

terns at around 30 degrees. Furthermore the sinusoidal pattern results in quite a high Jsc

although it may seem that its Fourier spectrum is not rich enough to perform coupling as ef-

ficiently as the two other textures. Another important point is that the maximal photocurrent

is obtained for angles other than normal. This puts an important question to a huge body of

photovoltaic literature which only report Jsc or EQE under normal incidence of light and has

been previously addressed by us [82, 137].

Fig. 5.11b compares the Jsc of the cells under TM-polarized light. Other conditions are the

same as before. This time, normal incidence results in higher light absorption except for the

symmetric trapezoidal grating. Overall, the sinusoidal and the asymmetric patterns show a

similar trend for Jsc variations. The main difference is that for negative angles, the asymmet-

ric grating provides higher photocurrent and for positive angles, the sinusoidal grating does

so. Again the sinusoidal grating performs better than the symmetric trapezoidal grating for

almost all incident angles.

Fig. 5.11c shows the unpolarized short circuit current density of the cells. These results are

obtained by averaging the TE- and TM-polarized results. The sinusoidal grating performs

better than the two other gratings at normal incidence and its Jsc is slightly larger than the

one of asymmetric grating. The sinusoidal grating also provides the highest Jsc values for

positive angles but for negative angles, its Jsc is less than the Jsc of the asymmetric grating.
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(a)

(b)

(c)

Figure 5.10: TE polarized EQE of the cells based on 1D grating with (a) sinusoidal (b) symmetric
trapezoidal and (c) asymmetric geometry. The grating depth is 150 nm.
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Figure 5.11: The short circuit current density as a function of the incident angle for the three different
geometries under (a) TE, (b) TM, and (c) unpolarized illumination. The grating depth is 150 nm.
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The asymmetric grating performs generally better at negative angles but at positive angles,

its Jsc is smaller than the two other cells.

Figs. 5.12a, 5.12b and 5.12c compare the TE- and TM- polarized photocurrents for the sinu-

soidal, trapezoidal and asymmetric pattern respectively. In all of the cells, TM polarization

of light provides higher Jsc at large angles. For almost normal incidence, TM polarization is

preferred only for the asymmetric pattern. For the asymmetric grating, TM polarization is

better except for angles around 30 degrees.

Fig. 5.13 shows the TE-polarized EQE as a function of wavelength and incident angle for the

cells when the peak to valley depth is changed from 150 nm to 300 nm. Compared to the

cell with 150 nm grating depth (Fig. 5.10), EQE values are relatively higher in general and

diffraction phenomena are more observable. Regardless of the grating shape, there is a re-

gion of high EQE which starts from the wavelength of 500 nm towards longer wavelengths.

As Fig. 5.13 shows, this high EQE region seems to occur between two lines which are the mir-

ror image of each other with respect to horizontal axis (θ = 0). These lines are actually curves

which correspond to the appearance of first order reflection. Regardless of the grating shape,

the condition of existence of only one reflection order has a strong impact on the coupling

strength of guided modes and it ameliorates the EQE. As previously stated by Yu et al., the

existence of only one reflection order in a cell with back-reflector can improve light absorp-

tion beyond the ergodic limit [20]. There is also another curve of EQE variation appearing at

shorter wavelength which seem to separate a high-EQE region from a low EQE region. This

curve corresponds to the appearance of the second order reflection orders. For the asym-

metric grating, this curve is pronounced well for negative angles but for positive angles, its

presence is not as apparent.

Fig. 5.14 compares the angular behavior Jsc of different texture under TE (Fig. 5.14a), TM

(Fig. 5.14b) and unpolarized (Fig. 5.14c) illumination. In TE poalrization, the asymmetric

grating produces the highest Jsc . However, when a broader range of angles are considered,

the symmetric trapezoidal pattern seems to outperform the other cells. In TM polarization,

the asymmetric grating has the lowest Jsc under normal illumination and at positive incident

angles. But it excels the two other grating patterns at negative incidence angles similar to

the previous example with the grating depth of 150 nm. For unpolarized illumination, the

symmetric trapezoidal pattern seems to be the optimum of the three patterns for all possi-

ble incident angles. This example puts a question on the intuition that asymmetric patterns

can enhance absorption more significantly than the symmetric patterns. Based on the two

mentioned examples, it seems that this intuition is questionable for deep gratings.

Fig. 5.15 compares the TE and TM polarized Jsc for each grating pattern where the grating

depth is 300 nm. For the sinusoidal grating, the TM polarized Jsc is slightly lower at close to

normal illumination but it is much superior at large incident angles. The superiority of TM

polarized photocurrent to the TE polarized one is observed in all of the considered grating

patterns but it is more pronounced for the sinusoidal pattern. For the symmetric trapezoidal
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Figure 5.12: The short circuit current density as a function of the incident angle for the cell based
on a 1D grating with the (a) sinusoidal, (b) symmetric trapezoidal, and (c) asymmetric pattern. The
grating depth is 150 nm.
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(a)

(b)

(c)

Figure 5.13: TE polarized EQE of the cells based on 1D grating with (a) sinusoidal (b) symmetric
trapezoidal and (c) asymmetric geometry. The grating depth is 300 nm.
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Figure 5.14: The short circuit current density as a function of the incident angle for the three different
geometries under (a) TE, (b) TM, and (c) unpolarized illumination. The grating depth is 300 nm.
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Figure 5.15: The short circuit current density as a function of the incident angle for the cell based
on a 1D grating with the (a) sinusoidal, (b) symmetric trapezoidal, and (c) asymmetric pattern. The
grating depth is 300 nm.
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pattern, under normal incidence, the Jsc is significantly larger in TE polarization compared

to TM polarization. This advantage of TE polarization remains valid until around 45 degree.

At larger incident angles, TM polarization results in larger photocurrent. For the asymmetric

pattern, still TE polarization is superior over a limited angular range around normal illumina-

tion. At larger angles, especially at negative angles, TM polarization leads to larger photocur-

rent. Overall, TE polarized light seems to be beneficial at close to normal incidence and TM

polarized illumination helps increasing the photocurrent at larger incidence angles.

Fig. 5.16 compares the unpolarized Jsc of the different grating patterns for the grating depths

of 150 and 300 nm to reveal the impact of grating depth on the Jsc . For the sinusoidal pattern,

the effect of grating depth is marginal at around normal incidence. At larger angles, however,

the grating depth has a clear impact and its corresponding photocurrent becomes signifi-

cantly larger than the photocurrent of the shallower grating. For the symmetric trapezoidal

and the asymmetric grating patterns, the effect of grating depth on photocurrent increase is

pronounced clearly over almost all the range of incident angles. As mentioned, the asymmet-

ric and the symmetric trapezoidal grating patterns resulted in the largest photocurrent for

the grating depth of 150 nm and 300 nm respectively. Fig. 5.16d compares these two best

obtained Jsc s. The illumination is unpolarized. It is observed that the deeper grating outper-

forms the shallower grating. Based on these observations, it seems that the grating depth has

a clear effect on absorption enhancement in solar cells but to find an optimal texture, sim-

ulations are necessary to do. Furthermore, it appears that the effect of grating depth on the

photocurrrent is more pronounced compared to the grating texture symmetry.

5.5.2 Change of spacer in cell based on 1D gratings

As previously discussed in section 5.4.1, the spacer material can have an impact on the pho-

tocurrent in the thin-film solar cell. We showed that the change of spacer material can modify

the optical bands of the solar cell, thus, it may either increase or decrease light absorption in

a cell. Here, we consider a cell based on a 1D Ag grating and by rigorous calculation, we

study the impact of spacer material on a cell’s Jsc . The cell geometry is similar to the previous

example and a grating depth of 150 nm has been considered. The only difference from the

previous example is that the spacer material is changed from ZnO to MgF2. As previously

discussed in section 5.4.1, the higher refractive index of ZnO compared to MgF2 can attract

electromagnetic energy more effectively into the cell but similarly it can do the same to the

energy which is spread over the i-Si layer towards the spacer layer. In this section we perform

rigorous calculations to understand which of these two effects is dominant at last.

Fig. 5.17a shows the unpolarized Jsc for the cell with MgF2 spacer for the different grating

patterns. Similar to the case with ZnO spacer, the asymmetric grating provides the largest

photocurrent at negative angles but it gives the smallest photocurrent value at positive an-

gles. At close to normal incidence, its corresponding Jsc is slightly larger than the sinusoidal

grating. By assuming that the range of incident angles is limited we can choose the asymmet-
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Figure 5.16: Comparison of the unpolarized short circuit current density as a function of the incident
angle for the cell based on a 1D grating with the (a) sinusoidal, (b) symmetric trapezoidal, and (c)
asymmetric pattern. The blue solid curves and the red dashed correspond to the grating depth of 150
and 300 nm respectively. (d) The best textures for unpolarized illumination for each grating depth.
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Figure 5.17: (a) Unpolarized photocurrent of the cell with MgF2 spacer as a function of the incident
angle for the different grating textures with 150 nm depth. (b) Best unpolarized results for the cells
with MgF2 (blue solid) and ZnO (red dashed) spacer.

ric pattern as the optimal pattern similar to the case of ZnO spacer. Fig. 5.17b compares the

Jsc of the cells based on asymmetric patterns under unpolarized illumination for MgF2 and

ZnO spacers. The ZnO spacer provides a higher photocurrent over all incident angles. This

shows that a higher refractive index of spacer has attracted energy into the cell and thus has

increased light absorption. Nevertheless, it seems that this conclusion may not be extended

to the general case and rigorous calculation is inevitable for different geometries.

5.5.3 Two-dimensional gratings

Two-dimensional (2D) gratings can excite more resonances compared to 1D gratings. As ob-

served in the previous section, the higher number of resonances can lead to more efficient

light absorption at least for an angular range close to normal incidence. One should perform

rigorous calculations to find how much the guided modes can enhance absorption in a solar

cell.

Consider a thin-film a-Si solar cell with the following layers from top to bottom: ITO (60 nm),

p-Si (15 nm), i-Si (200 or 250 nm), n-Si (20 nm), ZnO (70 nm) and Ag (back-reflector). By

changing the back-reflector geometry, we study the impact of different parameters on light

absorption in the cell. Assume that the cell is based on a 2D grating with symmetric square

geometry as depicted in Fig. 5.18a. Period of the grating is 500 nm in both periodic directions
3. Simulations of this section are based on rigorous finite element calculations.

Fig. 5.19a demonstrates the rigorous calculation of the EQE of the cell with the i-Si thickness

3We did not optimize the period here; our aim is mainly understanding in this part.
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(a) (b)

Figure 5.18: (a): Schematics of the solar cell based on a 2D symmetric square grating. (b): The thick-
ness of the layers as considered in the simulations (d) and the minimum thickness of the layer ob-
served by the incident photons (de f f ).

of 200 nm for two different grating peak to valley depths of 150 and 300 nm4. At short wave-

lengths, there is a remarkable difference between the EQEs. According to Fig. 5.18b, this can

be explained by the difference between the vertical (d ) and the effective thickness (de f f ) of

the cell layers, which are connected by de f f = d cosθ where θ is the incidence angle. In the

simulations, usually d is kept constant, thus a smaller effective thickness is obtained for deep

gratings. In the experiment this enhancement is not as pronounced as in the simulations be-

cause of the almost-isotropic behavior of the deposition process.

Fig. 5.19a shows also that an increased grating depth enhances the EQE at wavelengths longer

than 500 nm. At these wavelengths, the front layers of the cell are almost transparent and

their effect on the EQE is marginal. The impact of interference is the same for both cases

because the thickness of the layers is similar in both cases. Thus, I interpret the difference

between the two EQEs as the stronger excitation of guided modes for the deeper grating 5.

At longer wavelengths, the EQE of the deeper grating is still larger but this superiority dimin-

ishes at wavelengths longer than 700 nm. Overall, the 300 nm deep grating shows a larger

EQE over a broad wavelength range from about 400 to 700 nm 6.

We repeat the same simulation for the i-Si thickness of 250 nm. The resulted EQEs are plotted

4The simulation is done by the HFSS software package[138]
5Here I have assumed that near-field effects do not influence the optical response of the cell after at wave-

lengths longer than 500 nm remarkably.
6Fabrication of solar cells with high aspect ratios might be problematic in practice, at least with the present

technology.
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Figure 5.19: Effect of grating depth (h) and i-Si layer thickness on the EQE of the cell with an Ag back-
reflector in the shape of a symmetric square pyramid. (a): The i-Si layer thickness is 200 nm. (b): The
i-Si layer thickness is 250 nm. (c): Grating depth is 150 nm. (d): Grating depth is 300 nm.

in Fig. 5.19b. Again the EQEs are (spuriously) different at short wavelengths. The EQE peak

drop at around 650 nm is shifted towards longer wavelengths for the deeper grating; this is

the major difference between the two EQEs. At long wavelengths the EQEs are very similar.

It seems that if the i-Si layer is thick enough, the grating depth does not change the EQE that

much.

As a next example, let us study the effect of i-Si thickness in more detail by keeping the grating

depth constant. Fig. 5.19c considers the case where grating depth is 150 nm, and compares

i-Si layer thicknesses of 200 and 250 nm. At short wavelengths, the EQE of the cells is very sim-

ilar, which is due to the resemblance of the cell geometry in the front layers. The thicker cell

has a remarkable advantage over the wavelengths from 500 to 650 nm. At longer wavelengths,

there is not a remarkable difference between the two cells.

The latter example is repeated for a grating depth of h = 300 nm and the results are plotted in

Fig. 5.19d. The observations are similar to the previous case; the EQEs are similar at short and

long wavelengths and the thickness of the i-Si layer mainly affects the EQE in the wavelength
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range from 500 to 650 nm.

Symmetry of the grating pattern is another important factor to study. For this, we consider

a symmetric grating as before and an asymmetric grating, which are plotted in Fig. 5.20a

and 5.20b respectively. The asymmetric pattern is the same asymmetric pattern as Fig. 5.9

applied in both periodic directions. The cell is the similar to the previous example; the only

differences are the i-Si layer thickness (180 nm) and the period (550 nm). Figs. 5.20c and

5.20d show the EQE of the cell for a grating depth of 150 and 300 nm respectively. For both

cells. Asymmetry of the grating leads to slightly higher EQE. This can be attributed to the

richer spectrum of an asymmetric pattern in comparison with a symmetric pattern.
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Figure 5.20: Effect of grating symmetry on the EQE of the cell with an Ag back-reflector. (a): A period
of the symmetric grating, (b): A period of the asymmetric grating, (c): Grating depth is 150 nm, (d):
Grating depth is 300 nm.

In summary, in this chapter we studied the impact of geometrical changes on the absorp-

tion in thin-film silicon solar cells. The difference of the previous chapter and this one is

that in the former, generic structures were considered and optical limits were obtained, but

in this chapter specific geometries were considered and analyzed rigorously by electromag-

netic simulation. To understand the physics of the solar cell, we primarily used a planar

model, and by using the corresponding dispersion diagrams, we investigated the impact of

the back-reflector parameters. Specifically we changed the buffer layer material or thickness
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to find out its effect on the modal structure of the solar cell. Then we considered a-Si cells

based on 1D metallic grating Ag back-reflectors and we investigated the effect of geometrical

parameters of the grating on the EQE and Jsc over a wide angular range. In general, when the

grating becomes deep, diffraction effects become more visible. Asymmetric textures provide

higher photoucrrent for a range of angles at the expense of reducing photocurrent for some

other angles. Thus, depending on the rangne of angles of interest, the optimal structure may

be symmertic or asymmetric. Overall, it seems that the photo-generated current is a com-

plex function of the back-reflector shape, and an optimal shape of back-reflector depends

tightly on parameters such as layer thicknesses, materials which are used in the cell, angular

range of interest, etc. Specifically, a structure which seems optimal for normal illumination

may be non-optimal if other incident angles are considered too. Thus, a general optimiza-

tion procedure should consider a range of incident angles rather than only a single one. This

is often neglected in the existing literature. We also simulated symmetric and asymmetric

back-reflectors based on 2D gratings under normal illumination. Asymmetry and depth of

the grating increase the photocurrent for these 2D gratings under normal incidence.
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6 Suggested alternative structures

6.1 Unbuffered metallic back-reflectors

Using a back-reflector can improve both photocurrent and efficiency of a solar cell [17]. If this

back-reflector is metallic, it can support a plasmon which may seem an interesting means to

realize high efficiency solar cells [119]. Plasmonics provides a way to localize light very tightly

at a metal-dielectric interface. As mentioned in section 4.4, high confinement of light to the

active layer of the cell is a necessity to obtain high photocurrent. Theoretically, plasmonics

seems useful in the design of very thin solar cells [139] because it fulfills both conditions

of high confinement and strong coupling [84]. To clarify whether plasmonics can excel the

conventional techniques of absorption enhancement such as interface texturing, research

has been done recently, and one of the best plasmonic cells has been fabricated by H. Tan in

Delft university [26]. Normally its is observed that to obtain higher photocurrent, we need

to suppress the surface plasmon by putting a ZnO buffer layer on the metallic back-reflector

[40]. In this section I show that by removing this buffer layer one may gain a considerable

amount of photocurrent over a wide band of wavelengths from before 500 nm to after 600

nm; hence, there is no reason to deposit the buffer layer, at least from the optical point of

view. I show that the effect is observed in both TE and TM polarizations, thus, it may not be

attributed necessarily to the presence of a surface plasmon, because in TE polarization no

surface plasmon exists.

It is important to note that a plasmon intensity peaks at the interface between a metal and

a dielectric and decays into both of them although the decay is sharper in the metal. Thus,

to benefit from the plasmonic absorption maximally, the absorber should be put as close as

possible to the metallo-dielectric interface. In most of the publications regarding plasmonic

solar cells, a buffer layer is put between the metal surface and the silicon layer, as depicted in

Fig. 6.1a. This buffer layer shifts the optical bands of the plasmonic mode such that the mode

occurs between light line of air and silicon. Thus, the mode is no longer plasmonic because

it is converted into a guided mode. To investigate a truly plasmonic solar cell, we consider

the following stack: ITO (60 nm), p-Si (20 nm), i-Si (230 nm) and Ag as the back-reflector,

113



Chapter 6. Suggested alternative structures

(a) (b)

Figure 6.1: (a) Schematic view of a cell with buffer layer; The layers are ITO, p-Si, i-Si, n-Si, ZnO and
Ag respectively, (b) The same cell when there is no ZnO buffer and n-Si layers. Light comes from below
and the back-reflector is on top

which is schematically shown in Fig. 6.1b. The ZnO and n-Si layers are eliminated to allow

absorption of the surface plasmon. The cell includes a Schottky junction at the back side.

To allow efficient light-coupling, the back-reflector is designed in the form of a sinusoidal

grating with the period of 500 nm and peak to valley height of 140 nm. Elimination of the n-

Si layer results in poor carrier collection and the photocurrent has to be collected by applying

a reverse bias in the experiments. Fig. 6.2 shows the cell’s EQE in TM polarization predicted

by RCWA optical simulations. Absorption in the p-Si layer is the main cause of EQE loss at

short wavelengths but this layer absorbs less as the wavelength increases. Absorption in the

Ag back-reflector shows a opposite behavior; at short wavelength it is negligible but as the

wavelength increases, it becomes more important. Absorption in the ITO layer and reflection

from the cell show a trend similar to the absorption in Ag; they are generally larger at longer

wavelengths. The dips in the reflection are associated with the presence of modes in the

structure. The dips at 650 and 700 nm are related to excitation of modes which are localized

mainly in the i-Si layer, thus, they enhance EQE. At longer wavelength, for example at around

700 nm and at 750 nm, the dips are due to the excitation of surface plasmons, which are

absorbed more in Ag. Note also that the variation of reflection at around 750 nm is almost

perfectly compensated by the change in absorption in Ag. However, at 700 nm, absorption in

Ag does not fully compensate reflection variations. The reason is that at 700 nm Si can also

absorb light to some extent. There are three distinguishable resonances at the wavelengths

of 525, 585 and 660 nm. The intensity profile at each one of these resonances is plotted in Fig.

6.3. It appears that for the resonances at wavelengths of 525 and 585 nm the back-reflector

geometry plays a decisive role. As Fig.s 6.3a and 6.3b show, in these wavelengths the peak

of the sinusoidal profile concentrates the field amplitude. The third peak which occurs at

660 nm is different from the first two in the sense that it is similar to a hybrid mode which

includes both a guided mode and a plasmonic component (Fig. 6.3c) as noticeable by the

increased field amplitude at the Si-Ag interface. At longer wavelength, the plasmon increases

absorption in Ag and therefore the EQE decays after 660 nm. The intensity profile at 700 nm
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Figure 6.2: TM polarized EQE of the plasmonic cell based on a silver grating. Sequence of layers from
top to bottom is ITO (60 nm), p-Si (20 nm), i-Si (230 nm) and Ag. The peaks at 525, 585 correspond to
interferences and the tail after 660 nm corresponds to a plasmon. The peak at 660 nm is the signature
of guided mode.

(Fig. 6.3d) shows the intensity peak is at the metallic interface which is the characteristic of a

plasmonic mode.

To give an idea about the absorption enhancement provided by the plasmonic and interfer-

ence effects in the cell, I simulate the same structure while it also includes a ZnO (60 nm) and

a n-Si (20 nm) layer on Ag and the rest of the layers are as before. Fig. 6.1a shows the geom-

etry under investigation and Fig. 6.4 shows its EQE. The guided-mode resonance is shifted

towards longer wavelengths in the presence of ZnO layer. As shown in Fig. 6.4, over a wide

band range from 450 to 620 nm, the resonances increases the EQE more effectively when the

buffer layer is absent. Fig. 6.4 also shows the EQE of a the plasmonic cell when i-Si layer

thickness is reduced to 80 nm. This value is chosen because normally thinner cells suffer dra-

matically from shunts. Although the i-Si layer is significantly thinner in the latter cell, EQE

drop is not as dramatic. At around 600 nm, this thin cell even overtakes the cell with ZnO

buffer layer thanks to exploiting the appearance of an resonance similar to the one discussed

for the primary plasmonic cell.

In Fig. 6.5 the absorption in individual layers of the plasmonic cell and total reflection from

the cells are plotted. As depicted in Fig. 6.5a, in the wavelength range under 600 nm, ab-

sorption in the top layers (p-Si and ITO) is almost the same in both the plasmonic cell and
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(a) (b)

(c) (d)

Figure 6.3: TM polarized Intensity profile of the plasmonic solar cell at the wavelengths of 525 nm (a),
585 nm (b), 660 nm (c) and 700 nm (d). Light enters the cell from bottom.

the cell with buffer layer. Absorption in the bottom layers demonstrates a different behavior.

Fig. 6.5b shows that in the cell with buffer at short wavelengths absorption in the n-Si layer

is almost equal to absorption in the Ag back-reflector. As the wavelength increases, these lay-

ers absorb more light. At around 580 nm, n-Si and Ag layers eat up about 20 percent of the

incident energy. After 600 nm, absorption in the n-Si layer decreases because of approaching

the band gap of Si. Contrary to the n-Si layer, the ZnO layer does not absorb that much over

the entire wavelength range of interest thanks to its almost zero extinction coefficient. In the

plasmonic cell, the Ag back-reflector does not absorb a lot at short wavelength. Surprisingly

the back-reflector of the cell with buffer absorbs more light at wavelengths shorter than 650

nm. At longer wavelength, however, it absorbs much more than the case where ZnO buffer is

used. But, this seems not an advantage for the cell with buffer because there is an exchange of

energy between reflection from the cell and parasitic absorption over other layers of the cell.

As shown in Fig. 6.5c, variations in the absorption in Ag is compensated mainly by reflection

changes. The rest of the energy is absorbed by the ITO layer.

My colleague Karin Söderström fabricated this cell and we measured the EQE of the cell. Bias

of -0.5 V was applied to the cell for carrier collection. Fig 6.5d compares the experimental
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Figure 6.4: Comparison of EQE of the plasmonic cell with two i-Si thicknesses of 230 and 80 nm and
a cell which has ZnO (60 nm) and n-Si (20 nm) on top of Ag. The rest of the layers are identical. The
results are plotted for TM polarization

EQE and the EQE obtained from simulation in the wavelength range of interest. At long wave-

lengths after the peak at 660 nm, the simulation and the experimental results fit very well re-

vealing that the carriers generated by the surface plasmon have been successfully collected.

Contrarily at wavelengths shorter than 600 nm, there is a difference between experiment and

simulation which is attributed to the existence of shunts in the cell. We hope that by proper

fabrication of a cell, it is possible to approach the EQE predicted by simulation.

Up to now we have just considered the TM polarized response of the cells. Because solar illu-

mination is not polarized, it is important to consider behavior of the cells under TE polarized

light as well. Fig. 6.6 compares the EQE of the plasmonic cells with i-Si layers of 230 and 80

nm thickness to the cell with buffer layer. The cell with 80 nm i-Si layer has the lowest EQE

due to the too small thickness of the active absorber layer. However, the two other cells show

a relatively similar optical response. At the wavelength shorter than 550 nm, both cells have

an almost equal EQE. At longer wavelengths their EQE includes peaks and dips as a signature

of optical resonances.

The remarkable difference between the TE-polarized EQE of the cells at around 600 nm can

be understood better by comparing intensity profiles. Fig. 6.6 shows the intensity profile

for the three cells at the wavelength of 595 nm which corresponds to the peak of EQE for

the plasmonic cell (i-Si= 230 nm). In all cases, the metallic back-reflector reflects the light
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Figure 6.5: (a) Absorption in the top layers (p-Si and ITO) of the plasmonic and the cell with buffer
layer (b) Total reflection and absorption in the bottom layers (the layers under the i-Si layer) of the
plasmonic and the cell with buffer layer. (c) The trade-off between reflection and absorption in elec-
trodes of the plasmonic and the cell with buffer layer. (d) Comparison of the simulation result and
the experimentally-obtained EQE under -0.5 V bias for the plasmonic cell. All parts from (a) to (d)
represent results under TM-polarized light.

back into the cell. However, for the thin cell and the cell with buffer an intensity peak occurs

on a doped Si layer and therefore, reduces the EQE. For the thick plasmonic cell there is an

intensity peak on the p-Si layer but it is rather weak and is less-pronounced.

It is instructive to compare optical absorption in the two different polarizations for the same

cell. This is done in Fig. 6.7. Fig. 6.7a shows the EQE obtained in both polarizations for the

plasmonic cell (i-Si= 230 nm). It is observed that except at short wavelength range under 500

nm, TE polarized illumination permits higher EQE. Interestingly the peak at 600 nm is even

more pronounced in TE than in TM polarization. At longer wavelengths, EQE is covered by a

tail of resonances which permit enhancing EQE. For the thin plasmonic cell (Fig. 6.7b), EQE

is larger in TM polarization than in TE polarization except at around 650 nm where there is

well-pronounced guided-mode resonance in TE-polarized EQE. Also at around 540 nm, there

is a peak in the TE-polarized EQE which may be attributed to optical interference. The cell
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Figure 6.6: (a) Comparison of EQE of the plasmonic cell with two i-Si thicknesses of 230 and 80 nm
and a cell which has ZnO (60 nm) and n-Si (20 nm) on top of Ag. The rest of the layers are identical.
(b) Intensity profile at 595 nm for the plasmonic cell. (c) Intensity profile at 595 nm for the cell with
buffer. (d) Intensity profile at 595 nm for the thin plasmonic cell (i-Si = 80 nm). The results are plotted
for TE polarization

with buffer layer behaves similarly to the thick plasmonic cell: TE-polarized light results in

lower EQE at short wavelengths and in higher EQE at longer wavelengths. Specifically, the

TE-polarized EQE is significantly larger than the TM-polarized one at around 650 nm where

a number of guided-mode resonances improve absorption in Si. Corresponding resonances

seem to be shifted to slightly longer wavelengths in TM polarization. Also at around 550 nm,

the TE polarized illumination results in higher absorption in silicon. To ease the comparison,

we divide the EQE obtained from the two different polarizations for each cell.

r (λ) = EQET M

EQET E
. (6.1)

Fig.6.7d shows the values of r as a function of incident wavelength. For all cells r is slightly

above unity at short wavelengths. At wavelengths longer than 670 nm, the thin plasmonic

cell can provide larger r . Fig. 6.7 reveals different messages. First, at short wavelengths, TM

119



Chapter 6. Suggested alternative structures

polarized EQE is slightly higher than the TE polarized one. This can be attributed to the differ-

ence of the electromagnetic boundary conditions in the two polarizations. Second, as a cell

becomes very thin, TM-polarized light can enhance the EQE more than TE-polarized light.

However, this does not mean that absorption is high in TM polarization at long wavelengths.

EQE is very low in both polarizations but their ratio, r , can be large.
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Figure 6.7: (a) TE- and TM-polarized EQE for the plasmonic cell with 230 nm i-Si, (b) TE- and TM-
polarized EQE for the plasmonic cell with 80 nm i-Si, (c) TE- and TM-polarized EQE for the cell with
the ZnO buffer layer. (d) The EQE ratio ( r = EQET M

EQET E
) for the three cells.

One problem with the mentioned unbuffered geometry can be lack of a strong electric field

inside the i-layer to collect the generated carriers. To prevent these problems, it can be useful

to deposit an n-Si layer on top of the Ag back-reflector before the deposition of the i-Si layer.

While keeping in mind that it is required to check the validity of these guesses in experiment,

it is interesting to investigate the impact of deposition of an n-Si layer on the Ag grating at

least from the optical point of view.

Fig. 6.8 shows the effect of the presence of the n-Si layer between the Ag back-reflector and

the i-Si active layer in both TE and TM polarizations. The horizontal lines show the short cir-

cuit current density (Jsc ) at the presence of a 60 nm ZnO buffer layer. Overall, Jsc is larger for
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TE polarized light. Elimination of the buffer layer improves the photocurrent regardless of

polarization. As the thickness of the n-Si layer is increased the photocurrent drops. The rea-

son is that as depicted in the field profiles of Fig. 6.6 and Fig. 6.3, the maximum of intensity

occurs close to the metallic interface. Therefore, if carriers generated in the very close prox-

imity of this interface cannot be collected efficiently because of recombination, photocurrent

should decrease. At a n-Si layer thickness of about 9 nm, the photocurrent of the cells with

and without buffer layer become equal. For thicker n-Si layers, the cell with ZnO buffer re-

sults in higher photocurrent.
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Figure 6.8: Comparison of the Jsc of the cells with and without buffer layer. For the cell without buffer,
an n-Si layer with variable thickness is assumed between the i-Si layer and the Ag back-reflector. The
rest of the layers are identical. The results are plotted for TM polarization

6.2 Embedded nano-particles or nano-wires

In typical amorphous silicon cells, all the layers are considered continuous and almost con-

formal. As a result, a cell’s scattering properties depend tightly on the growth template design.

It is true that fabrication of a cell with uniform conformal layers may be easier, however, it

seems that these condition do not allow optimal absorption enhancement in a solar cell. By

adding other degrees of freedom to the design criteria, it can be possible to scatter light more

efficiently and thus increase the photocurrent of a cell.

To change the conformality condition, an idea is to put nano-particles in the layers of a cell.

These particles can be put in different layers of a cell as depicted in Fig. 1.6. Let us consider a

typical a-Si solar cell based on a metallic substrate. These particles can be put in any of ZnO,

i-Si or ITO layers. Special care must be taken not to destroy the electronic properties of a cell.

To comply with this, the choice of material for the nano-particles and the fabrication process

should be done carefully. We assume that these points can be addressed properly and we

focus on the optics of these solar cells including dielectric nano-particles.
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Assume a thin film amorphous silicon (a-Si) solar cell with a geometry similar to the one

depicted in Fig. 6.9. We study the optical impact of the nano-particles on light absorption in

the cell with RCWA calculations. To simplify the calculations, we assume a two-dimensional

(2D) geometry. Besides, we consider ZnO nano-spheres, which in 2D means nano-wires with

cylindrical cross-section. We take into account the layers in the intrinsic silicon (i-Si) layer.

Furthermore. we assume in-plane incidence which helps separating the problem into two

distinguished polarizations. The TE/TM polarization is the case where the electric/magnetic

field is along the geometrical invariance direction. Finally we consider that the particles are

arranged into a 1D periodic form with a period of 500 nm.

Figure 6.9: An a-Si cell with nano-particles inside the i-Si layer. The particles also introduce a texture
in the front layers. Back-reflector is on top.

Fig. 6.9 shows schematically a cell with a nano-particles inside its i-Si layer. The nano-

particles are put at a certain distance from the bottom which can be obtained based on their

particle radius. This distance is considered here according to the following equation.

t1 =
(
di−Si +De f f ,par t i cle

)
/2 (6.2)

where di−Si is the i-Si layer thickness, Npar t i cle is the number of embedded nano-particles

in each period, and De f f ,par t i cle is the effective diameter of this particle- layer which can be

expressed as

De f f ,par t i cle = Npar t i cle ×πr 2
par t i cle . (6.3)

In other words, De f f ,par t i cle is the volume that the particles occupy inside the cell. The top

layers are considered to be textured as depicted in Fig. 6.9. To form these texture, we consider

them initially to be flat and with a distance imposed by the layer thicknesses as depicted in
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Fig. 6.9. Then we assume that the nano-particles shift the layers to a radius equal to

rt = rpar t i cle +

⎧⎪⎨
⎪⎩

di−Si /2+dp−Si +dI T O first interface

di−Si /2+dp−Si second interface

di−Si /2 third interface

(6.4)

Finally, we shift these three top layers such that the whole volume of ITO- p-Si and i-Si re-

mains constant in the cell. This latter constraint is applied to guarantee that the amount of

material in each layer remains constant. This is important to ensure that the probably ab-

sorption enhancement is not because of physically thicker layers.

Assuming a flat back-reflector, embedding the nano-wire changes the optical properties of

the cell due to at least two different effects: introduction of surface texture which changes

reflection from the cell, and appearance of new optical modes in the dispersion diagram of

the cell. To distinguish these two effects as far as possible, we consider also a cell with the

same surface texture in the top layers. The bottom layers are flat in both cases with and

without nano-particles.

Fig. 6.10 shows the Jsc (mA/cm2) in the cases with and without nano-wires, for both TE and

TM polarizations. The vertical and the horizontal axes show the diameter of the nano-wires

and the number of the nano-wires respectively. The center of all of the nano-wires is consid-

ered to be on the same horizontal plane for each case. Fig. 6.10a shows the Jsc of the cells

without nano-wires in TE polarization; increasing the number of particles (wires) in this case

means changing the front texture correspondingly. This reduces the photocurrent based on

Fig. 6.10a. When the nano-wires are present (Fig. 6.10b), this situation changes and a higher

number of wires may result in higher photocurrent, for example for a diameter of 100 nm. In

TM polarization, a similar trend is observed for the cases with and without nano-wires (Fig.

6.10c and Fig. 6.10c). An interesting point is that the presence of nano-wires improves the

photocurrent in TM polarization even for small diameter of wires, regardless their number.

Since the highest Jsc is observed when only one wire is present per period, we focus on this

case here. Figs. 6.11a and 6.11b show the effect of presence of the wires on Jsc in TE and TM

polarization respectively. In TE, the presence of the wires improves the photocurrent for all

diameters. In TM, the presence of the wire enhances the Jsc only when its diameter is close

to 300 nm, or very large, close to 500 nm. However, the most prominent enhancement is at

around 300 nm, which is close to 1 mA/cm2.

Because of the difference of effect of the nano-wires on the Jsc in the TE and TM polarizations,

and also because sunlight is not naturally polarized, we consider the unpolarized case too. In

the latter case Jsc can be obtained by taking the average of the TE and TM results. Fig. 6.12a

and Fig. 6.12b show the Jsc under unpolarized light respectively for when the wires are not

and are present. Almost regardless of the number and diameter of wires, the presence of wires

enhances the Jsc . The highest Jsc is obtained for only one wire per period, and a diameter of
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Figure 6.10: Jsc (mA/cm2) as a function of the number and the diameter of the nano-wires (a): TE
without nano-wires, (b): TE with nano-wires, and (c): TM without nano-wires, (d): TM with nano-
wires.
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Figure 6.11: Jsc (mA/cm2) for only one particle per period in (a): TE polarization, (b): TM polariza-
tion.
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Figure 6.12: Unpolarized Jsc (mA/cm2) as a function of the number and the diameter of the nano-
wires (a): without nano-wires, (b): with nano-wires. (c): Jsc (mA/cm2) for only one particle per period
under unpolarized light.

around 300 to 350 nm. Fig. 6.12c shows the Jsc for only one wire per period, in the absence

and presence of wires. The most significant improvement is obtained for a diameter of 300

nm, which also brings the largest Jsc . For small wires, the Jsc remains almost unchanged.

To give the reader a feeling of the enhancement introduced by the nano-wires, the EQE of

the cell with d = 300 nm and P = 500 nm is plotted in both polarizations for the two cases of

with and without nano-wires in Fig. 6.13. In both polarizations, the presence of nano-wires

enhances the EQE over the almost whole wavelengths from 550 to 700 nm.

One possible concern about the nano-particles or nano-wires is that they may interfere with

carrier collection. This can happen in different scenarios. First, formation of voids around

the particle and the improper material quality at the particles interface may form defects

an thus cause problems for carrier collection. Second, they can reduce the influence of the

internal electric field on the generated carriers and deviated carrier transform inside the cell
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Figure 6.13: Comparison of the EQE of the cells with and without nanowires. Nanowire diameter
is 300 nm and period of the nano-wire array is 500 nm. (a): TE polarization, (b): TM polarization.
Normal illumination is considered.

from its desired form. Third, the nano-particles increase the cell thickness and thus, it seems

that a stronger internal field will be needed to collect the carriers. One should pay attention at

these points in the fabrication of these cell. Finally, it should be possible to find an optimum

point where the nano-particles enhance absorption in an a-Si cell optically without changing

its electronics that much.

In summary two types of unconventional structures were studied in this chapter. First an

a-Si cell without a buffer layer was investigated. The existence of this buffer layer can avoid

appearance of a plasmon which is absorbed strongly in the metallic back-reflector. Despite

this positive effect, the buffer layer has a disadvantage: it attracts the electromagnetic energy

towards itself, thus reduces confinement of the wave to the Si layer. This eventually reduces

the EQE. In this chapter we have shown by rigorous calculation that elimination of this buffer

layer in a-Si cells can increase photocurrent. The second structure which was studied in this

chapter is an a-Si cell in which a periodic array of ZnO nano-wires are embedded. It is shown

that considering the same interface texture for the different layers of the cell, and also assum-

ing that the total volume of different layers (except the added ZnO wires) is preserved, the

wires can enhance Jsc . Optimization of nano-wire radius and period of the nano-wire array

shows that under normal incidence, for a period of 500 nm and for a nano-wire diameter of

300 nm, the Jsc becomes maximal.
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7 Conclusions and outlook

In this thesis, absorption enhancement in thin-film solar cells is studied from an optical per-

spective. Both approximate and exact simulations are used for the physical understanding

and optimization of thin-film amorphous silicon (a-Si) solar cells. The simulations are done

mainly with the codes which I developed during the PhD.

Optical properties of a-Si cells depend tightly on the their interaction with light at nanoscale.

This means that ray optics approximation is no longer valid for the optical analysis of these

cells and rigorous calculation is a necessity, especially when it comes to metallic structures

and plasmonics. In the literature, different numerical methods and software packages are

used for this purpose. Unfortunately, most of these methods are either memory-hungry or

time-consuming. Often, the mentioned problems are bypassed by applying coarse computa-

tional grids, which results in numerical error and produces unreliable results. Unfortunately,

the results of such simulations are very rarely benchmarked in the literature. A method which

can simulate thin-film solar cells in a fast and accurate way is thus of interest for understand-

ing, design and optimization of solar cells.

First, I implemented codes based on the rigorous coupled-wave analysis (RCWA) method.

Chapter 2 and 3 of the thesis explain briefly the electromagnetic theory for the analysis of

thin-film solar cells and the basics and some details of the implemented methods. I applied

different variants of RCWA which are explained in chapter 3. Finally it seems that a combina-

tion of the finite element method (FEM) and the RCWA can be an (almost) optimal method

for the optical simulation of solar cells. The eigenvalue problem can be solved in each slice

by a FEM solver, and the boundary conditions can be applied as in the conventional RCWA.

Since the mesh generated by the FEM in each two slices may be different, a common basis

is required to link the modes of the slices, for example trigonometric functions as in Fourier

expansion.

In chapter 4 of the thesis, the limits of light absorption enhancement and efficiency increase

in thin-film solar cells are investigated. The limits were obtained for both idealized struc-

tures, for example a dielectric slab, and more realistic cases such as a full stack of layers of
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an a-Si cell over broad angular and wavelength range. The considered textures were periodic

in one or two directions. Hexagonal gratings were found to enhance absorption more signif-

icantly than gratings with square geometry. It was also found that depending on the period

of the texture, the optimal incidence angle can change. For these studies, the coupled-mode

theory (CMT) was used, which is a common approach for the physical understanding of res-

onant systems. I have extended the application of this method to thin-film solar cells with

wavelength-scale periodic texture. Based on the summary of the existing literature regarding

the limits of light absorption and efficiency in solar cells, which is presented in chapter 4, it

seems that light absorption in a solar cell may be enhanced by excitation of surface modes,

for example surface plasmons, a wavelength-scale periodic coupler, and small thickness of

the cell. Complying with these requirements may result in boosting cell efficiencies beyond

the present values.

Guided modes are studied in chapter 5. Guided modes of a-Si cells are extracted in an equiva-

lent planar model. The effect of spacer material and thickness are studied. Furthermore, the

impact of back-reflector geometry on the photocurrent of a-Si cells in n-i-p configuration is

investigated over a broad angular range. It is observed that a texture which seems optimal

under normal incidence of light can be non-optimal for other incident angles. Thus, it is

necessary to conduct studies of solar cells also under oblique incidence; unfortunately this

is often neglected in the literature. Three dimensional simulations of solar cells based on 2D

periodic gratings (chapter 5) reveal that using asymmetric back-reflectors can enhance EQE

similarly to increasing the i-Si layer thickness.

Chapter 6 discusses two non-conventional configurations for thin-film a-Si cell. In the first

geometry, which is an a-Si plasmonic cell, the buffer layer is removed and the thickness of

the n-doped Si layer is changed. It is observed that for n-Si thicknesses below 10 nm, the

plasmonic cell can excel a conventional a-Si cell from the optical point of view. From the

electronic point of view, this should be sufficient to create the internal field that is necessary

for the collection of photogenerated charge carriers. In our experiments, a-Si thickness can-

not be less than 80 nm. Thinner a-Si layers will result in shunts. However, a very thin cell may

have a high efficiency, potentially higher than the efficiency of thick cells. It seems interesting

to investigate the efficiency of solar cells with an absorber which is very thin, in the range of

a few nanometers.

The methods and results that were used and developed in this thesis to find the upper bounds

of light absorption can be applied to a vast variety of opto-electronics devices. Primarily

they have been used to study various types of solar cells, with different cell thickness and

light absorber materials. The applicability of these methods goes far beyond Si cells; some

examples are III-V cells, polymer cells, dye synthesized cells, CIGS cells, etc.

As it was mentioned in section 1.4, making a solar cell very thin may reduce its parasitic

effects and thus increase its efficiency. From an electronic point of view, this may happen

thanks to the reduction in the amount of non-radiative recombination e.g. Auger recombina-
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tion. Such very small cell thicknesses may also support strong light absorption if the device is

designed properly. To obtain the absorptive capabilities of such thin-film devices, a discrete

model similar to the one presented in this thesis can be helpful, especially if the scale of the

applied texture is in the order of wavelength. By considering the mechanisms responsible for

non-radiative recombination in a cell, it can be possible to extend the method to obtain the

limits of the cell efficiency.

Applicability of the mentioned methods is not restricted to solar cells. Electromagnetic reci-

procity reveals that in the same way that light can couple into the optical modes of a device,

the electromagnetic energy of these modes can couple to outside radiation. The second case

is related to devices which radiate electromagnetic waves, for example Light Emitting Diodes

(LEDs). A difference of solar cells and LEDs is that the operation wavelengths of a solar cell

and an LED are not the same. Furthermore, economical and technical constraints of their fab-

rication can be different. Nevertheless, there are intrinsic resemblances between the efficient

absorption of light in a solar cell and emission of light from an LED, and similar methods can

be applied to increase quantum efficiency in both cases. More specifically, an appropriate

choice of texture morphology and device thickness can increase an LEDs efficiency. To un-

derstand the influence of such parameters, and to be able to propose structures which can

improve the efficiency of an LED, the methods used in this thesis can be adapted to the cor-

responding case. It should be mentioned that efficient absorption or emission of electromag-

netic energy covers a much wider domain of research than solar cells or LEDs; different types

of radar systems, radiative cooling, and radiators of electromagnetic energy at non-optical

wavelengths are some example. The innate similarities between these diverse applications

make the methods that were used in this thesis applicable to a broad domain of research and

application.

Despite the studies on solar cell design and fabrication, there seem to be a remarkable poten-

tial to boost light absorption in solar cells. At present, parasitic absorption is a bottleneck to

exploiting sunlight energy to the full extent. Making more transparent doped layers is thus of

critical importance, especially when very thin films are desired. It seems worth investigation

whether it is possible to enhance absorption at short wavelength geometrically, without using

highly-transparent doped layers. TCO layers are another limiting parameter of the present

solar cells. Even if these TCO layers are completely transparent, they reduce energy confine-

ment to the Si layer. If the cell is very thin, this effect can have a remarkable effect on the EQE.

Thus engineering the opto-electronic properties of these TCO layers seems of importance for

Si solar cells. Another major constraint is that for high-energy photons with an energy above

the band gap energy of the absorber semiconductor, the excess energy is mainly lost in the

form of heat. Finding ways to harness this excess energy can be interesting.

Scattering of light by interface textures is still a topic of ongoing research. Independent of the

type of the cell, efficient scattering of light can increase light absorption in the cell. Although

this has driven both theoretical and experimental research, there are still a lot of questions to

respond. One problem to investigate is that associating experiments and simulations seems

129



Chapter 7. Conclusions and outlook

difficult especially when the size of the geometrical features goes down. For this purpose, us-

ing numerical methods which can model multi-scale structures efficiently seems important.

It may be true that for relatively thick cells an exact solution of Maxwell’s equations may not

be needed, however, as the thickness of the cell goes under several hundreds of nanometers,

exact solution of Maxwell’s equations may be required to understand the optical properies of

the cell.

Plasmonics is a main topic which needs more investigation. At present, it seems that the

nanoscale roughness which occurs in practice at the metal/semiconductor interface is a bot-

tleneck of plasmonic and leads to strong absorption of light by the metal. A complementary

idea is to harvest the energy which is absorbed by the textured metal in other ways; captur-

ing hot electrons and water-splitting are some examples of the latter choice which are not

directly related to photovoltaics but are still in the domain of energy harvesting. If the inter-

face between the metal and the semiconductor can be fabricated with very high quality, then

the interesting properties of surface plasmons may become accessible. For the high-quality

fabrication of the metallic interface, planar geometry seems preferred. While this appears

contradictory to strong coupling of light to the modes of the structure, usually it is observed

that at long-wavelength regime, the sum of reflection and absorption in the metal is almost

constant. This means that texturing the metal can reduce reflection but the corresponding

absorption occurs in the metal, not in the Si layer. Thus to use the surface plasmons in a thin-

film solar cell, it seems that (at least primarily) one should try to focus on the fabrication of a

very high-quality planar metal-semiconductor interface.

Finally, it seems that there is a large room to improve light trapping in thin-film photovoltaics.

To approach the high efficiencies that are predicted theoretically, physics of the different

types of thin-film solar cells should be investigated in more detail. Also, related fabrication

methods and technologies should be improved. This motivates a global effort to provide

abundant, widely-accessible, cost-effective and green enegy in an international scale.
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A Radiance definition

Radiance is the amount of electromagnetic power that an emitting surface radiates into a

specific solid angle. The unit for radiance is W· sr−1· m−2. It should not be mistaken for

spectral radiance which has a unit of W· sr−1· m−2· Hz−1 or intensity which has a unit of W·
m−2. Radiance is a density function and measures the angular dependence of light intensity

emitted, absorbed or scattered by an object.

Let us consider d 2Φ be the power emitted into a solid angle dΩ by a source with an infinites-

imal surface area d A. The radiance L is defined as [140, 141, 142]

L = d²Φ

d A cosθdΩ
(A.1)

A Lambertian scatterer scatters light isotropically, which means that it has the same radiance

independent of the angle from which it is viewed. Thus, according to Eq. A.1 its emitted

power into the solid angle dΩ is proportional to cosθ. This is known as Lambert’s cosine law,

after the name of Johann Heinrich Lambert.

Figure A.1: Power is emitted from the source with the surface area d A into the solid angle dΩ at an
angle θ.
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B Silicon optical data

In this appendix, optical data of amorphous and microcrystalline silicon are compared.
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Figure B.1: Optical data of a-Si:H (solid )and μc-Si (dashed). (a): refractive index, n, (b): extinction
coefficient, k.
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