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Abstract Pressurized fluid-distribution networks are strategic elements of infrastructure. In the 
case of fresh-water distribution networks, advanced sensor-based diagnostic methodologies have 
the potential to provide enhanced management support.  Since a significant percentage of fresh 
water is lost globally due to leaks in these networks, the challenge to improve performance is 
compatible with goals of sustainable development. The scope of this research includes the 
diagnosis of water-distribution networks and more generally, pressurized fluid-distribution 
networks through development of model-based data-interpretation methods to assess performance. 
The strategy of model falsification is combined with network reduction techniques to obtain 
reliable and computationally efficient diagnoses. A case study involves the detection of leaks from 
an initial set of 263 leak scenarios. Preliminary results show that this methodology has the 
potential to detect leak regions, even with a small number of sensors.  

1. Introduction 

Pressurized fluid-distribution networks such as water distribution networks are key strategic 
elements of infrastructure. Drinking water is a precious resource that is necessary to preserve.  
Preservation involves reducing losses in the water distribution networks. A study carried out 
by the World Bank (Kingdom et al., 2006) has shown that each year, 32 billion cubic meters 
of water are lost through leaks around the world and 30% of this has occurred in developed 
countries. These numbers justify why efficient monitoring systems for the detection and 
localization of leaks are needed to reduce the volume of water that is lost. Advanced sensor-
based diagnostic methodologies have the potential to provide enhanced management support.  

Leaks in fresh-water distribution are not a recent challenge. Water-distribution networks are 
important and vulnerable elements of infrastructure. As early as 1892, Hope studied water 
losses in public supplies (Hope and Bircumshaw, 1996). Examples of leak-detection methods 
were described by Babbitt et al. (1920). Descriptions of basic inspection methods such as 
visual observation and sounding through the soil with a steel rod were discussed as well as 
more advanced techniques such as water-hammer techniques and acoustic measurements. 

There are several categories of leak detection techniques. One is transient-based techniques 
those use pressure measurement. These techniques use the measured transient signal to detect 
leaks. Colombo et al. (2009) completed a review of transient-based leak detection methods 
and sorted them into three types: inverse-transient analysis (Vítkovský et al., 2000, 2007), 
frequency-domain techniques and direct transient analysis. The uncertainty associated with 
the system affects the results of transient-based techniques. Therefore they are primarily used 
on single, underground pipelines (Puust et al., 2010). These techniques need further 
development before they can be applied to complex pipe networks such as urban water-
distribution systems. 

Other technics are based on the comparison of measurements with predictions obtained from 
hydraulic models. This challenge is often formulated as an optimisation task. The goal is to 
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minimize the differences between the measurements taken on the network and predicted 
values from flow models. Such techniques are based on minimization of least-squares and 
they were developed by Pudar (1992) and Liggett and Andersen and Powell (2000). Another 
methodology used to solve this problem is to use Bayesian inference. Poulakis et al. (2003) 
have proposed a Bayesian system-identification methodology for leakage detection. Other 
studies that used Bayesian inference for leak detection were presented by Rougier (2005), 
Puust et al. (2006) and Barandouzi et al. (2012).  

The applicability of these methodologies to real networks may be limited under certain 
circumstances. For example, transient-based techniques may not appropriate for large 
complex networks. Furthermore, the hypotheses made when using traditional residual 
minimization and Bayesian inference techniques are usually hard to meet because of the 
systematic modelling errors and unknown relationships between uncertainties. 

This paper presents a model-based methodology that accommodates systematic uncertainties 
and is robust in the presence of unrecognized correlations. Section 2 describes the diagnosis 
methodology in more detail. Section 3 explains how this methodology has been adapted to 
leak detection. Section 4 illustrates the usefulness of the methodology through an application 
to a part of the Lausanne water distribution network and finally section 5 contains conclusions 
and a discussion of more general impact of this work.  

2. Model Falsification 

Goulet and Smith (2012) developed a model falsification methodology for diagnosis called 
error-domain model falsification. This methodology is most useful in cases where little 
information is available to describe the relationships between uncertainties at several 
prediction locations. The methodology uses only the marginal uncertainty distribution at each 
location where predictions and measurements are compared. Prior knowledge is used to 
define bounds for the parameters values to identify and to build sets of possible scenarios. A 
scenario corresponds to a set of parameter values describing the state of the system (e.g. a 
leak location). The goal is to have enough scenarios to cover all possible behaviours of the 
system. 

Figure 1 shows the principle of model falsification. Measurements (�) are compared with 
predictions (����) from each scenario (�) that have been obtained using the model of the 
system (��	�). This comparison involves modelling errors and measurement errors. 
Measurement errors are mainly due to sensor resolution since noise and sensor bias are 
usually negligible. Modelling errors are due to the model simplification and to the errors 
included in the model parameters. The parameters are not exactly known, they are based 
either on the network plans or on measurements or on estimations.  

Modelling errors and measurement errors may be represented by random variables 
(��	
��, �����). The random variable ��  corresponds to the combined uncertainty obtained 
by subtracting �����	 from ��	
��. The probability density function (pdf) of �� describes the 
probability for the possible outcomes of the difference between predictions and 
measurements. Threshold bounds (��	�, �����) are defined using this probability density 
function by taking the shortest interval including a probability of		�. Threshold bounds are 
used as criterion to falsify or keep a scenario. If the difference between measured and 
predicted values (���� − �) is outside the interval defined by the threshold bounds, the 
scenario is falsified. Otherwise, the scenario is a candidate solution.  
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In the case when multiple measurements are used, the target probability is computed using the 
Šidák correction and becomes ��/�	 where n is the number of measurements used (Abdi, 
2007).  

Using error-domain model falsification, Goulet et al. (2013) studied the applicability of model 
falsification for the detection of leaks in water distribution network. The study showed good 
results for leak of 100 litres per minute. However, for full-scale applications, the diagnostic 
methodology must be able to locate leaks smaller than 25 litres per minute. This paper 
proposes to develop this methodology further in order to obtain an improved and more 
sensitive diagnostic methodology for water distribution systems.  

 

Figure 1 - Scheme of the falsification process 

3. Application to leak detection 

The objective is to provide a general diagnostic methodology -- for water distribution 
networks, and more generally, for pressurized fluid distribution networks -- that is able to 
locate leak regions. The methodology finds an area, or areas, in which the leak must be found. 
The size of the region as well as the number of regions depend on the number of sensors that 
are used and on the prior knowledge of the system. A secondary goal is to have a diagnostic 
methodology that is useful even when the number of sensors is small.  

The leak detection methodology that will be developed is based on comparison between flow 
measurements and flow predicted by numerical simulations. The numerical simulations are 
done using the water distribution network simulation software EPANET (Rossman, 2000). 
This methodology includes three steps as shown in Figure 2. The first step is to obtain a 
simpler equivalent configuration of the network in order to reduce the complexity of the 
numerical model. Based on the similarities between water distribution networks and electrical 
networks, Ulanicki et al. (1996) developed an algorithm to simplify water distribution 
networks. This approach uses the Gaussian elimination process to remove certain nodes and 
to allocate their demand to the remaining nodes.  
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The second step is to compare in situ flow measurements with predictions obtained from a 
population of leak scenarios. For this study, a leak scenario is a possible configuration of the 
system in the presence of water loss at one node. In the case of leak detection each scenario 
represents the system through a different leak configuration. These configurations are 
obtained by varying the parameter of the leak such as its position and its intensity.  

Finally, the last step is to eliminate the scenarios that are not compatible with the 
measurements. This operation is done by falsification. Scenarios are falsified using threshold 
values obtained by combining measurement and modelling uncertainties. Finally, scenarios 
that are not falsified show the situations that could explain the measurements. Therefore, they 
are considered to be candidate scenarios.  

 

Figure 2 - Steps of the leak detection methodology 

4. Case study 

This section presents results that have been obtained with a study done on a part of the 
Lausanne fresh-water distribution-network. This network contains 263 nodes and 295 pipes 
(Figure 3). The network-reduction step of the diagnostic methodology was not applied; the 
falsification process was directly applied on the initial network. In this preliminary study, 
measurements are simulated. Simulations of measurements and leak scenarios are performed 
based on the minimum water demand. Analysis of water distribution networks is generally 
conducted during minimum demand hours because uncertainties related to the consumption is 
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minimal in this time period. In this case, this minimal demand is 25m3/h. This value was then 
divided by the number of nodes to obtain the mean consumption for each node. For the 
simulations, the nodal demand is described by an exponential distribution. The exponential 
distribution is a standard representation for this water demand; a high probability to have a 
low consumption and a low probability to have a high consumption (Goulet et al., 2013). 

For this application, the number of sensors is chosen to be three and they were placed using a 
greedy algorithm. The principle of a greedy algorithm is to begin by searching the optimal 
configuration for one sensor. The second step is to find the best configuration of two sensors 
including the optimal one found in the previous step without changing its position. This 
process is repeated to find the optimal configuration for the number of sensors desired. In this 
case, the algorithm has been stopped once a configuration for three sensors has been found. 
Figure 3 shows the optimized positions obtained. Figure 4 shows results obtained for four 
leak scenarios. White circles are the demand nodes. The links between these nodes are the 
pipes. Squares represent sensor locations on the network. The cross indicates the position of 
the simulated leak. In each of these four examples, the leak intensity is 100 l/min. The nodes 
in dark are the candidate leak scenarios i.e. those possibilities that have not been falsified. 

The four examples in Figure 4 illustrate two situations. First, in the Cases (1) and (2), the 
number of candidate scenarios is important. The size of the regions that is defined by the 
candidate leak scenarios is too large to be able to identify precisely the leak-region. These 
results show that the methodology may be useful only to falsify one side of the network. In 
Case (1) all candidate leak scenarios on the right side have been eliminated and in the Case 
(2) the left side is falsified. These results may be useful in practice if the methodology is 
combined with local leak detection techniques, such as acoustic methods. Discarding half of 
the leak locations also divides by two the time necessary to cover the entire network in order 
to find the leak using a local technique. Nevertheless, more accuracy is desirable. In the Cases 
(3) and (4) the number of candidate leak scenarios is lower than in the Cases (1) and (2). In 
such situations, the region defined by the candidate leak scenarios is small enough to obtain 
information related to the leak location. 

Figure 5 gives information about the performance of this sensor configuration. This graph is 
the cumulative distribution function for the number of candidate leak scenarios that are 
expected. The horizontal axis gives the number of candidate scenarios as a percentage of the 
total number of leak scenarios. The vertical axis represents the probability of achieving the 
percentage on the horizontal axis. This figure shows that with these sensors, for a leak of 100 

 

Figure 3 - Optimized sensor location for three sensors 
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l/min, the probability to obtain a number of candidate leak scenarios less than 40% of the total 
number of possible leak scenarios is equal to 95%. 
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Figure 4 - Examples of results for four cases (1-4) 
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Table 1 illustrates, for this case study, the importance of water-demand uncertainties in 
comparison to uncertainties of other parameter of the model. This table gives for the flow 
predictions at the sensor location, the mean and the standard deviation of the uncertainties due 
to the model parameters. They are computed using Monte-Carlo approach. In the first line of 
Table 1 the uncertainty is obtained by considering the uncertainties of all the parameters of 
the model and in the second line by considering only the uncertainties of the water demand. 
This results show that the variations of water demand has a huge importance in comparison 
with the other parameters, because the values with only the water demand are practically 
equal to the values with all the parameters.  

Table 1 - Mean and standard deviation of flow uncertainties at the sensor position 

 Sensor 1 Sensor 2 Sensor 3 

 

Mean 

 

[l/min] 

Standard 
deviation 

[l/min] 

Mean 

 

[l/min] 

Standard 
deviation 

[l/min] 

Mean 

 

[l/min] 

Standard 
deviation 

[l/min] 

All parameter -5.7015 2.7636 42.5402 5.9881 131.6950 12.8587 

Demand -5.6646 2.7118 42.5455 6.1170 131.6982 12.3632 

5. Conclusions 

Network reduction combined with model falsification has the potential to support leak-region 
identification. The results show that model falsification has potential to identify a population 
of possible leak scenarios. However, results show that the methodology needs more 
development to be able to identify leaks smaller than 100 l/min.  

Even a small number of sensors may lead to useful results. Although a small number of 
sensors may not able to identify precisely the leak region, the results could be used in 
combination with local methods, such as acoustic techniques. The example of the Lausanne 
water-distribution network shows that with only three sensors, it is possible to falsify more 

 

Figure 5 - Expected number of candidate leak scenarios for the three sensors configuration 
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than 40% of the total number of leak scenarios. More sensors would reduce further the size of 
the population of candidate scenarios.  

The performance of this methodology is related to the degree uncertainty of key parameters. 
Through reducing these uncertainties by increasing the knowledge of the system, the number 
of falsified scenarios increases. In this situation, water demand is the most important 
parameter of the model; variations significantly change the behaviour of the system.  

This research is important because advanced tools for measurement-data interpretation 
facilitate better management of infrastructure, and this leads to reductions in the costs of 
repair, replacement, network expansion and other interventions. 
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