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Detecting leak regions through model falsification
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Abstract Pressurized fluid-distribution networks are stgateelements of infrastructure. In the
case of fresh-water distribution networks, advansedsor-based diagnostic methodologies have
the potential to provide enhanced management stpgince a significant percentage of fresh
water is lost globally due to leaks in these nekspthe challenge to improve performance is
compatible with goals of sustainable developmerte Bcope of this research includes the
diagnosis of water-distribution networks and morengyally, pressurized fluid-distribution
networks through development of model-based datagretation methods to assess performance.
The strategy of model falsification is combined hwitetwork reduction techniques to obtain
reliable and computationally efficient diagnosescase study involves the detection of leaks from
an initial set of 263 leak scenarios. Preliminaegults show that this methodology has the
potential to detect leak regions, even with a smafhber of sensors.

1. Introduction

Pressurized fluid-distribution networks such asewalistribution networks are key strategic
elements of infrastructure. Drinking water is aqgiwes resource that is necessary to preserve.
Preservation involves reducing losses in the wditgribution networks. A study carried out
by the World Bank (Kingdom et al., 2006) has shdtat each year, 32 billion cubic meters
of water are lost through leaks around the world 38% of this has occurred in developed
countries. These numbers justify why efficient monng systems for the detection and
localization of leaks are needed to reduce themaelof water that is lost. Advanced sensor-
based diagnostic methodologies have the potentjidvide enhanced management support.

Leaks in fresh-water distribution are not a recdmdllenge. Water-distribution networks are

important and vulnerable elements of infrastructdte early as 1892, Hope studied water
losses in public supplies (Hope and Bircumshawg).9@xamples of leak-detection methods

were described by Babbitt et al. (1920). Descrigi@of basic inspection methods such as
visual observation and sounding through the sadih i steel rod were discussed as well as
more advanced techniques such as water-hammeliqaesrand acoustic measurements.

There are several categories of leak detectiomtgqubs. One is transient-based techniques
those use pressure measurement. These techniquédsuseasured transient signal to detect
leaks. Colombo et al. (2009) completed a reviewrafisient-based leak detection methods
and sorted them into three types: inverse-transa@atysis (Vitkovsky et al., 2000, 2007),
frequency-domain techniques and direct transieatyais. The uncertainty associated with
the system affects the results of transient-baselthiques. Therefore they are primarily used
on single, underground pipelines (Puust et al.,020TThese techniques need further
development before they can be applied to compipe petworks such as urban water-
distribution systems.

Other technics are based on the comparison of merasuats with predictions obtained from
hydraulic models. This challenge is often formuaées an optimisation task. The goal is to
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minimize the differences between the measuremeakisnt on the network and predicted
values from flow models. Such techniques are basedhinimization of least-squares and
they were developed by Pudar (1992) and LiggettAamdersen and Powell (2000). Another
methodology used to solve this problem is to usgeB@n inference. Poulakis et al. (2003)
have proposed a Bayesian system-identification odetlogy for leakage detection. Other
studies that used Bayesian inference for leak tleteevere presented by Rougier (2005),
Puust et al. (2006) and Barandouzi et al. (2012).

The applicability of these methodologies to reatwaoeks may be limited under certain

circumstances. For example, transient-based tegbsignay not appropriate for large
complex networks. Furthermore, the hypotheses matben using traditional residual

minimization and Bayesian inference techniques umeally hard to meet because of the
systematic modelling errors and unknown relatigpsietween uncertainties.

This paper presents a model-based methodologyattaimmodates systematic uncertainties
and is robust in the presence of unrecognized ledioes. Section 2 describes the diagnosis
methodology in more detail. Section 3 explains hbis methodology has been adapted to
leak detection. Section 4 illustrates the usefidrifsthe methodology through an application
to a part of the Lausanne water distribution nekwaord finally section 5 contains conclusions
and a discussion of more general impact of thikwor

2. Modd Falsification

Goulet and Smith (2012) developed a model faldibeamethodology for diagnosis called
error-domain model falsification. This methodology most useful in cases where little
information is available to describe the relatiapshbetween uncertainties at several
prediction locations. The methodology uses onlyrtfaeginal uncertainty distribution at each
location where predictions and measurements arepamd. Prior knowledge is used to
define bounds for the parameters values to ideatity to build sets of possible scenarios. A
scenario corresponds to a set of parameter valegxiding the state of the system (e.g. a
leak location). The goal is to have enough scesanocover all possible behaviours of the
system.

Figure 1 shows the principle of model falsificatidleasurementsy are compared with
predictions g(s)) from each scenarics) that have been obtained using the model of the
system g()). This comparison involves modelling errors and asugement errors.
Measurement errors are mainly due to sensor reésolgince noise and sensor bias are
usually negligible. Modelling errors are due to timedel simplification and to the errors
included in the model parameters. The parametersnat exactly known, they are based
either on the network plans or on measurements @stimations.

Modelling errors and measurement errors may beesgpted by random variables
(Umodet» Umeas)- The random variabld,. corresponds to the combined uncertainty obtained
by subtracting/ eqs from U,,.4e1- The probability density function (pdf) &f. describes the
probability for the possible outcomes of the difiece between predictions and
measurements. Threshold bound$,(, Thign) are defined using this probability density
function by taking the shortest interval includiagorobability of ¢. Threshold bounds are
used as criterion to falsify or keep a scenariothdé difference between measured and
predicted valuesg((s) — y) is outside the interval defined by the threshbtilnds, the
scenario is falsified. Otherwise, the scenariogsaiadidate solution.



In the case when multiple measurements are usedartet probability is computed using the
Sidak correction and becomes’/™ where n is the number of measurements used (Abdi,
2007).

Using error-domain model falsification, Goulet £t(2013) studied the applicability of model
falsification for the detection of leaks in watastdbution network. The study showed good
results for leak of 100 litres per minute. HoweMer, full-scale applications, the diagnostic
methodology must be able to locate leaks smallan tBS litres per minute. This paper
proposes to develop this methodology further ineortb obtain an improved and more
sensitive diagnostic methodology for water disttidn systems.
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Figure 1 - Scheme of the falsification process

3. Application to leak detection

The objective is to provide a general diagnostictho@ology -- for water distribution
networks, and more generally, for pressurized fldistribution networks -- that is able to
locate leak regions. The methodology finds an aseareas, in which the leak must be found.
The size of the region as well as the number abregdepend on the number of sensors that
are used and on the prior knowledge of the sysfesecondary goal is to have a diagnostic
methodology that is useful even when the numbeeantors is small.

The leak detection methodology that will be develbps based on comparison between flow
measurements and flow predicted by numerical sinoms. The numerical simulations are
done using the water distribution network simulatepftwvare EPANET (Rossman, 2000).
This methodology includes three steps as shownigar& 2. The first step is to obtain a
simpler equivalent configuration of the network arder to reduce the complexity of the
numerical model. Based on the similarities betwaater distribution networks and electrical
networks, Ulanicki et al. (1996) developed an athon to simplify water distribution
networks. This approach uses the Gaussian elimimg@tiocess to remove certain nodes and
to allocate their demand to the remaining nodes.
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The second step is to comparesitu flow measurements with predictions obtained from a
population of leak scenarios. For this study, & le@enario is a possible configuration of the
system in the presence of water loss at one naddel case of leak detection each scenario
represents the system through a different leak igordtion. These configurations are
obtained by varying the parameter of the leak sgchis position and its intensity.

Finally, the last step is to eliminate the scermaribat are not compatible with the
measurements. This operation is done by falsiboatScenarios are falsified using threshold
values obtained by combining measurement and mogdalincertainties. Finally, scenarios
that are not falsified show the situations thatld@xplain the measurements. Therefore, they
are considered to be candidate scenarios.

STEP 1

b

Initial network Reduced network
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STEP 2
Measurements Simulated leak
scenarios

Candidate leak
scenarios

Figure 2 - Steps of the leak detection methodology

4. Casestudy

This section presents results that have been @uaawith a study done on a part of the
Lausanne fresh-water distribution-network. Thisweogk contains 263 nodes and 295 pipes
(Figure 3). The network-reduction step of the d@gjit methodology was not applied; the
falsification process was directly applied on théial network. In this preliminary study,

measurements are simulated. Simulations of measmtsnand leak scenarios are performed
based on the minimum water demand. Analysis of maisribution networks is generally

conducted during minimum demand hours because tanues related to the consumption is

4



Node ' :
0 .

_ Pipe
O Sensor

Figure 3 - Optimized sensor location for three sexs

minimal in this time period. In this case, this imial demand is 25#h. This value was then
divided by the number of nodes to obtain the meamsemption for each node. For the
simulations, the nodal demand is described by gomential distribution. The exponential
distribution is a standard representation for th&er demand; a high probability to have a
low consumption and a low probability to have ahhbgnsumption (Goulet et al., 2013).

For this application, the number of sensors is ehds be three and they were placed using a
greedy algorithm. The principle of a greedy alduoritis to begin by searching the optimal
configuration for one sensor. The second step fstbthe best configuration of two sensors
including the optimal one found in the previouspsteithout changing its position. This
process is repeated to find the optimal configorafor the number of sensors desired. In this
case, the algorithm has been stopped once a coatfigu for three sensors has been found.
Figure 3 shows the optimized positions obtainedufg 4 shows results obtained for four
leak scenarios. White circles are the demand nol&s.links between these nodes are the
pipes. Squares represent sensor locations on th@nke The cross indicates the position of
the simulated leak. In each of these four exampies|eak intensity is 100 I/min. The nodes
in dark are the candidate leak scenarios i.e. thossibilities that have not been falsified.

The four examples in Figure 4 illustrate two sitoias$. First, in the Cases (1) and (2), the
number of candidate scenarios is important. The eizthe regions that is defined by the
candidate leak scenarios is too large to be abiddmntify precisely the leak-region. These
results show that the methodology may be usefu} tmifalsify one side of the network. In
Case (1) all candidate leak scenarios on the sglg have been eliminated and in the Case
(2) the left side is falsified. These results may useful in practice if the methodology is
combined with local leak detection techniques, saglacoustic methods. Discarding half of
the leak locations also divides by two the timeassary to cover the entire network in order
to find the leak using a local technique. Neverdhs] more accuracy is desirable. In the Cases
(3) and (4) the number of candidate leak scenasidswer than in the Cases (1) and (2). In
such situations, the region defined by the canditzdk scenarios is small enough to obtain
information related to the leak location.

Figure 5 gives information about the performanceéhaf sensor configuration. This graph is
the cumulative distribution function for the numbefr candidate leak scenarios that are
expected. The horizontal axis gives the numberaofilate scenarios as a percentage of the
total number of leak scenarios. The vertical arjgresents the probability of achieving the
percentage on the horizontal axis. This figure shtvat with these sensors, for a leak of 100



I/min, the probability to obtain a number of caratelleak scenarios less than 40% of the total
number of possible leak scenarios is equal to 95%.

(1) (2)

3) (4)
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Figure 4 - Examples of results for four cases (1-4)
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Figure 5 - Expected number of candidate leak st@néor the three sensors configuration

Table 1 illustrates, for this case study, the ingace of water-demand uncertainties in
comparison to uncertainties of other parametemefrnodel. This table gives for the flow
predictions at the sensor location, the mean amdtdndard deviation of the uncertainties due
to the model parameters. They are computed usingtd/Barlo approach. In the first line of
Table 1 the uncertainty is obtained by considethrgy uncertainties of all the parameters of
the model and in the second line by consideriny tmé uncertainties of the water demand.
This results show that the variations of water dasinaas a huge importance in comparison
with the other parameters, because the values avith the water demand are practically
equal to the values with all the parameters.

Table 1 - Mean and standard deviation of flow utaisties at the sensor position

Sensor 1 Sensor 2 Sensor 3

Mean | standard Mean |standard Mean | standarg
deviation deviation deviation

I/min] | /minl | yming | /min] | yming | [/min]

All parameter | -5.7015; 2.7636| 42.54025.9881 | 131.695012.8587

Demand -5.6646| 2.7118| 42.54556.1170 | 131.698212.3632

5. Conclusions

Network reduction combined with model falsificatibas the potential to support leak-region
identification. The results show that model fatsition has potential to identify a population
of possible leak scenarios. However, results shbat the methodology needs more
development to be able to identify leaks smallanth00 I/min.

Even a small number of sensors may lead to usegults. Although a small number of
sensors may not able to identify precisely the leagion, the results could be used in
combination with local methods, such as acoustbrigjues. The example of the Lausanne
water-distribution network shows that with onlydarsensors, it is possible to falsify more



than 40% of the total number of leak scenarios.évansors would reduce further the size of
the population of candidate scenarios.

The performance of this methodology is relatech degree uncertainty of key parameters.
Through reducing these uncertainties by increagiagknowledge of the system, the number
of falsified scenarios increases. In this situgtiorater demand is the most important
parameter of the model; variations significantlpiehe the behaviour of the system.

This research is important because advanced tawlsmieasurement-data interpretation
facilitate better management of infrastructure, #md leads to reductions in the costs of
repair, replacement, network expansion and otheniantions.
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