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Abstract

Controlled nuclear fusion could provide our society with a clean, safe, and virtually

inexhaustible source of electric power production. The tokamak has proven to be

capable of producing large amounts of fusion reactions by confining magnetically the

fusion fuel at sufficiently high density and temperature, thus in the plasma state.

Because of turbulence, however, high temperature plasma reaches the outermost

region of the tokamak, the Scrape-Off Layer (SOL), which features open magnetic

field lines that channel particles and heat into a dedicated region of the vacuum

vessel. The plasma dynamics in the SOL is crucial in determining the performance

of tokamak devices, and constitutes one of the greatest uncertainties in the success

of the fusion program. In the last few years, the development of numerical codes

based on reduced fluid models has provided a tool to study turbulence in open field

line configurations. In particular, the GBS (Global Braginskii Solver) code has been

developed at CRPP and is used to perform global, three-dimensional, full-n, flux-

driven simulations of plasma turbulence in open field lines.

Reaching predictive capabilities is an outstanding challenge that involves a proper

treatment of the plasma-wall interactions at the end of the field lines, to well describe

the particle and energy losses. This involves the study of plasma sheaths, namely

the layers forming at the interface between plasmas and solid surfaces, where the

drift and quasineutrality approximations break down. This is an investigation of

general interest, as sheaths are present in all laboratory plasmas.

This thesis presents progress in the understanding of plasma sheaths and their cou-

pling with the turbulence in the main plasma. A kinetic code is developed to study

the magnetized plasma-wall transition region and derive a complete set of analytical

boundary conditions that supply the sheath physics to fluid codes. These boundary

conditions are implemented in the GBS code and simulations of SOL turbulence are

carried out to investigate the importance of the sheath in determining the equilib-

rium electric fields, intrinsic toroidal rotation, and SOL width, in different limited

configurations. For each study carried out in this thesis, simple analytical mod-

els are developed to interpret the simulation results and reveal the fundamental

mechanisms underlying the system dynamics. The electrostatic potential appears

to be determined by a combined effect of sheath physics and electron adiabaticity.

Intrinsic flows are driven by the sheath, while turbulence provides the mechanism

for radial momentum transport. The position of the limiter can modify the turbu-

lence properties in the SOL, thus playing an important role in setting the SOL width.

Keywords:

plasma physics, controlled fusion, scrape-off layer, plasma turbulence,

plasma sheaths, boundary conditions, kinetic simulations, fluid simula-

tions, intrinsic rotation, limiter configuration.
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Résumé

La fusion nucléaire controllée pourrait devenir une source de production de puis-

sance électrique propre, sûre, et virtuellement illimitée. Le tokamak a démontré

être capable de produire des quantités énormes de réactions de fusion en confinant

magnétiquement le combustible à fusion à des températures et densités suffisamment

élevées. Dans ces conditions, le combustible est dans l’état de plasma.

De façon similaire aux fluides, les plasmas sont souvent turbulents. La turbulence

dans le plasma d’un tokamak induit un transport de chaleur et de particules, du

coeur vers la couche extérieure, appellée scrape-off layer (SOL). La SOL est ca-

ractérisée par des lignes de champ magnétique ouvertes qui acheminent les particules

vers une région de la paroi conçue pour supporter des grandes quantités de chaleur,

toutefois limitées. La dynamique du plasma dans la SOL est déterminante pour ce

qui concerne la performance des tokamaks et ceci représente un des défis majeurs

pour le succès du programme de fusion.

Au cours des dernières années, des codes numériques basés sur des modèles fluides

réduits ont été développés pour étudier la turbulence dans la SOL. En particulier,

le code GBS (Global Braginskii Solver) a été développé au CRPP pour tourner

des simulations tridimensionnelles de la turbulence du plasma dans des configura-

tions magnétiques ouvertes. Cependant, pouvoir prédire le comportement du plasma

dans la SOL est un but qui nécessite, entre autres, un traitement rigoureux des

intéractions plasma-paroi pour ainsi bien décrire les pertes d’énergie et de particules.

Ceci requiert l’étude des gaines, c’est-à-dire les couches qui se forment à l’interface

entre les plasmas et les surfaces solides, où les hypothèses de quasineutralité et de

dérive sont brisées. L’étude des gaines est d’intérêt géneral car elles sont présentes

dans tous les plasmas de laboratoire.

Cette thèse présente des progrès dans la compréhension des gaines dans les plasmas,

ainsi que leur couplage avec le plasma turbulent. Un code cinétique est développé

dans le but d’étudier la transition plasma-paroi magnetisée et de dériver un ensemble

complet de conditions au bord analytiques, capables de fournir la physique des gaines

aux codes fluides. Ces conditions au bord sont implémentées dans le code GBS, puis

des simulations de la turbulence dans la SOL sont tournées pour examiner l’effet de la

gaine sur les champs électriques d’équilibre, la rotation intrinsèque du plasma, ainsi

que la largeur de la SOL, dans des configurations limitées différentes. Pour chaque

étude poursuivi dans cette thèse, des modèles analytiques simples sont développés

afin d’interpréter les résultats des simulations et de découvrir les mécanismes fonda-

mentaux à la base de la dynamique du système. Il s’avère que le potentiel électrique

dans le plasma est déterminé par la combinaison de la physique de la gaine et de la

condition d’adiabaticité des électrons. Des flux intrinsèques sont générés par la gaine

dans la direction parallèle au champ magnétique, puis sont transportés radialement
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par la turbulence. La position du limiteur peut modifier les propriétés de la turbu-

lence dans la SOL et donc représente un élément important dans la détermination

de la largeur de la SOL.

Mots-clefs:

physique des plasmas, fusion controlée, scrape-off layer, turbulence, gaines,

conditions au bord, simulations cinétiques, simulations fluides, rotation

intrinsèque, position du limiteur.
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Chapter 1

Introduction

Matter in the Universe can exist in different states. While the most common states

of matter found on planet Earth are solid, liquid, and gas, practically all the visi-

ble contents of the cosmos are in the state of plasma, the so-called fourth state of

matter [1]: stars, nebulae, the solar wind and even the matter surrounding black

holes (Figure 1). A plasma is a quasineutral gas of charged particles exhibiting

collective behavior [2]. It is obtained when a gas exceeds a temperature, typically

of the order of 10 000 ◦K. Above such temperatures, a gas becomes partially or

completely ionized. A plasma remains nevertheless electrically neutral up to very

small scales. This is ensured by the strong electric forces generated in the presence

of local charge imbalance.

Plasmas almost never arise naturally on Earth. Some spectacular exceptions are the

aurora borealis or lightning. The upper part of the atmosphere, the ionosphere, is

also maintained in the state of plasma by solar radiation. These are all low density

and low temperature plasmas, at most reaching a few eV (1 eV ≈ 11 000 ◦K). In

space, however, plasmas can reach much higher densities and temperatures. For

example, the center of the Sun is at a temperature of about 1 keV. At such high

temperatures, particles in the plasma are very energetic. In particular, two positive

nuclei can get extremely close to each other despite being repelled by the electric

force. At very short distances, nuclear attractive forces enter into play, thus allowing

the two nuclei to fuse together and form a heavier element. This reaction is called

thermonuclear fusion. It is the process through which all elements in the Universe

(except hydrogen) are created, by successive fusion of heavier and heavier elements.

The mass of the products of a fusion reaction is different than the mass of the initial

colliding nuclei. In fact, when the fusion product is lighter than iron, a lack of mass

is observed at the end of the fusion reaction. This shortage of mass has indeed

been converted into energy according to Einstein’s relation E = mc2. If such fusion

reactions occur in a plasma at a sufficient rate, this release of energy (in the form

of photons or kinetic energy of the products) can sustain the conditions for nuclear

fusion without any external supply of energy. The threshold condition above which

1
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  Figure 1: The Sun undergoing an enormous plasma ejection, much larger than the size of planet
Earth (top left). Columns of cool interstellar hydrogen gas and dust in M16, the Eagle
Nebula, where the tallest pillar is about a light-year long from base to tip (top middle).
The spiral galaxy NGC 1365, where a huge black hole lies at its center and forms
an accretion disk of matter around it that funnels gas and dust (top right). Aurora
borealis as seen from space by a satellite (bottom left) and from the ground (bottom
middle). Lightning over a city during a thunderstorm (bottom right).

a plasma undergoes self-sustained fusion reactions is refered to as ignition. Stars

are considered to be born when they reach ignition. Yet their fuel is finite and as

fusion reactions take place, their elements become heavier, until it becomes too diffi-

cult to sustain the plasma in burning conditions and the star approaches its death [3].

Humans artificially create plasmas in their everyday life: neon tubes and plasma

screens are everyday examples. Plasmas are also widely used in industry, for in-

stance to build solar panels [4] or aerospace propulsion systems [5, 6]. Since the

beginning of the 1950’s, the idea of inducing thermonuclear fusion in a controlled

manner has driven an enormous research effort in the field of plasma physics [7].

In fact, controlled fusion could provide our society with a clean, safe, and virtu-

ally inexhaustible source of electric power production [8]. However, achieving fusion

relevant conditions, e.g. ignition, requires a plasma to be confined at very high

densities and temperatures for a sufficiently long time [9]. One way of confining a

plasma is to use magnetic fields, as charged particles tend to move more easily along

than across magnetic field lines. In the last sixty years, different magnetic confine-

ment concepts have been explored: the magnetic mirror, the pinch, the stellerator,

and the tokamak, among others [7]. The most advanced concept nowadays is the

tokamak, a doughnut-shaped magnetic confinement device which has proven to be

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL
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capable of reaching very high densities (∼ 1020 m−3) and temperatures (∼ 10 keV)

for a sufficiently long time (∼ 1s) to produce large amounts of fusion reactions. In

1991, the world’s largest tokamak, the Joint European Torus (JET), achieved the

first controlled release of fusion power in history (Figure 2). In 1993, the Tokamak

Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory was the first

in the world to use 50-50 mixtures of deuterium-tritium, yielding an unprecedented

10.7 MW of fusion power. In 1997, JET reached a fusion gain of Q ≈ 65% [10],

where Q is the ratio of the energy produced by fusion reactions to the energy ex-

ternally injected into the plasma. All these achievements have led fusion science to

an exciting period where the breakeven point may be reached: fusion power output

at least as large as the total power required to run the reactor. It should be noted,

however, that achieving Q > 1 does not imply that the tokamak is producing more

net power than it consumes. Accounting for the efficiency of all the energy produc-

tion process in a fusion reactor, producing net energy may require approximately

Q = 10. This is the target of the fusion experiment ITER [11], currently under

construction in Cadarache, France. The precise goal of ITER is to ”demonstrate

the scientific and technological feasability of fusion power for peaceful purposes”.

However, some challenges that involve deepening our physics understanding of toka-

mak plasmas are still present in the adventure of making controlled fusion an energy

source for mankind.

Figure 2: Interior of the vacuum vessel of the Joint European Torus (JET), the world’s largest
tokamak. On the right we see a picture taken during a plasma discharge, where visible
light only comes from the regions where the plasma is relatively cold, namely at the
very edge of the plasma volume.

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL
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In a tokamak, the plasma is confined in a toroidal chamber by using an externally

applied toroidal magnetic field (Figure 3). As the presence of magnetic field cur-

vature and gradients makes a purely toroidal magnetic configuration unstable, a

poloidal magnetic field is also introduced [12]. Producing a poloidal magnetic field

that is toroidally symmetric is not trivial. In a tokamak, a current is induced inside

the plasma which in turn generates the desired poloidal magnetic field. Induction of

plasma current is possible since plasmas are very good conductors, with a conduc-

tivity that increases with plasma temperature [13]. Therefore the desired current

can be achieved by means of external coils which induce an electromotive force via

time-varying coil currents. The resulting magnetic configuration is such that a mag-

netic field line winds around the torus lying on a given toroidal surface called flux

surface (Figure 3). Therefore the magnetic topology consists of nested closed flux

surfaces. Finally, additional coils are used for the vertical stability and shaping of

the plasma volume.

Plasma heating in a tokamak is a consequence of resistive dissipation of the induced

plasma current (Joule effect). However, as the plasma temperature increases its

resistivity decreases and therefore the Joule heating (also called Ohmic heating) be-

comes less and less efficient. Reaching the very high temperatures required for fusion

is only possible via injection of high power microwaves or neutral particle beams,

among other methods. The plasma confinement in a tokamak is nevertheless not

perfect: transport of particles and heat takes place across the flux surfaces. Al-

though this is in part due to the finite collisionality between plasma particles, which

eventually leads to cross-field diffusion, the level of cross-field transport observed in

tokamaks exceeds by many orders of magnitude the expected collisional transport

level [14]. It is now well established that the mechanism leading to the observed

levels of cross-field transport is plasma turbulence [15].

Because of plasma turbulence, high temperature plasma reaches the outermost flux

surfaces of a tokamak, which eventually intersect parts of the vacuum vessel. This

leads to undesired heat loads caused by the motion of particles along and across the

field lines. In order to control the unavoidable outflow of plasma from the tokamak

core, a physical object called limiter can be inserted into the peripheral region of

the plasma [16] (Figure 4). This sets in a controlled manner, the separation between

the confined plasma and the region where the magnetic field lines are open and in-

tersect the vessel walls, defining the Last Closed Flux Surface (LCFS). The region

of open field lines lying outside the LCFS is called the Scrape-Off Layer (SOL).

Another strategy to control the power output of the device is to use external mag-

nets to modify the magnetic field lines in the outermost region of the plasma. It

is then possible to channel particles and heat into a dedicated region of the wall,

the so-called divertor, which is capable of handling larger heat loads than the rest

of the vessel, while keeping the plasma-facing components away from the confined

region. Moreover, the divertor configuration is well suited for the pumping of both

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL
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Figure 3: Tokamak basic principles. In blue: the toroidal field coils produce the main toroidal
magnetic field. In green: the poloidal field coils induce a current in the plasma, gener-
ating the poloidal magnetic field. In black: the resulting helical magnetic field ensures
good plasma confinement. In pink: a magnetic flux surface. In grey: additional coils
are used for the vertical stability and shaping of the plasma volume.

the impurities released by particle sputtering and the helium ”ash” produced by

fusion reactions.

The plasma dynamics in the SOL, which is present in both limited and diverted

configurations, is crucial in determining the performance of tokamak devices, and

constitutes one of the greatest uncertainties in the success of the fusion program [17].

As a matter of fact, the SOL determines the boundary conditions for the core plasma,

controls the plasma refueling, heat losses, and impurity dynamics, largely governing

the fusion power output of the entire device [18]. Therefore understanding, control-

ling and predicting the behavior of the plasma in the SOL is of crucial importance

for the success of ITER and future magnetic fusion reactors.

The dynamics of the plasma in the SOL of tokamaks is characterized by the interplay

between plasma coming from the core, cross-field turbulent transport and parallel

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL
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Limiter

Scrape­off layer

Divertor

Closed flux 
surfaces

Figure 4: Poloidal cross-sections showing the magnetic flux surfaces of a tokamak in both limited
(left) and diverted (right) configurations. Shown in orange is the SOL region, where
magnetic field lines are open and intersect the limiter or divertor.

losses at the end of the field lines [16]. Therefore the understanding of plasma tur-

bulence and plasma-wall interactions is essential for a complete description of the

SOL dynamics.

More generally, turbulence in open field line configurations is an outstanding prob-

lem. Many basic plasma physics experiments feature plasma turbulence in an open

field line configuration. These experiments include linear devices such as the Large

Plasma Device [19] (LAPD) at the University of California, or the HelCat device [20]

at the University of New Mexico. Also, simple magnetized toroidal devices such as

the Toroidal Plasma Experiment [21] (TORPEX) at the Center for Research in

Plasma Physics, Switzerland, or the Helimak device [22] at the University of Texas,

Austin, are endowed with the main ingredients of SOL turbulence, namely plasma

gradients, magnetic curvature and parallel losses.

A common feature of open field line plasma turbulence is a relatively low plasma

temperature which makes the plasma rather collisional. This is due the fact that

the plasma is not confined but instead particles are continuously lost along the field

lines. The relatively large collision rate allows local thermodynamic equilibrium to

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL
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be reached relatively quickly, and a few moments of the particle distribution func-

tions (i.e., the density, momentum, temperature) can be reasonably used to model

the plasma dynamics. This justifies the use of fluid models to describe plasma tur-

bulence in open field lines, or even in the outermost region of the confined plasma

in tokamaks, which remains reasonably cold for kinetic effects to play an important

role. A closed set of two-fluid equations describing plasma turbulence under such

conditions was summarized by Braginskii in 1965 [23]. Later, a number of reduced

models more suited for computational treatment were deduced [24], in some cases

taking into account ion gyro-motion effects or kinetic effects neglected in the original

Braginskii equations [25, 26, 27]. A number of codes have been recently developed

based on the reduced models [28, 29, 30, 31, 32, 33, 34]. Numerical simulations using

these codes have been carried out over the last years, shedding light on the origin

and nature of plasma turbulence in open magnetic field line configurations. In par-

ticular, the Global Braginskii Solver code, GBS, has been developed at CRPP and is

used to perform global, three-dimensional simulations of plasma turbulence in open

field lines [34]. Reaching predictive capabilities remains, however, an outstanding

challenge that involves a proper treatment of the plasma-wall interactions at the

end of the field lines.

The understanding of the plasma-wall transition involves the study of plasma sheaths,

namely the non-neutral layers forming at the interface between plasmas and solid

surfaces [16]. Sheaths are present in the edge of magnetically confined fusion plas-

mas, at the interface between spacecrafts and space plasmas, in the fabrication of

semiconductor devices, and wherever a plasma interacts with a solid surface. In

particular, their understanding is at the heart of electrostatic probe theory [35,36].

Plasma sheaths represent one of the oldest problems in plasma physics [37], and

yet, an enormous research effort is still ongoing [38,39]. Generally speaking, sheaths

determine the particle and energy losses in all laboratory plasmas, hence their knowl-

edge is essential to describe the dynamics of the main plasma and to predict the

particle and energy fluxes at the solid surface. This is of particular importance for

ITER and future fusion reactors [17].

In the last few years, the development of numerical codes based on reduced fluid

models has provided a tool to study turbulence in open field line configurations.

Unclear remains, however, how these codes can properly describe the physics of the

plasma-wall transition, and more importantly what is the effect of sheath physics

on the turbulence and flows that are developed far from the walls.

In this thesis, we present progress in the understanding of plasma sheaths and their

coupling with the main turbulent plasma. We develop a simple numerical tool to

study the magnetized plasma-wall transition region and derive a complete set of

analytical boundary conditions that supply the sheath physics to fluid codes. These

boundary conditions are implemented in a three-dimensional fluid code and simula-

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL
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tions of SOL turbulence are carried out to investigate the importance of the sheath

in determining the equilibrium electric fields, intrinsic toroidal rotation and scrape-

off layer width in a limited configuration. For each study carried out in this thesis,

we develop simple analytical models to interpret the simulations and reveal the fun-

damental mechanisms underlying the complexity of the system.

Chapter 2 starts with an introduction to plasma sheaths, followed by a description of

the numerical tool developed to study the magnetized plasma-wall transition. First,

simulations of non-magnetized sheaths are presented where the standard Bohm cri-

terion for the ion outflow is retrieved. We show that under certain conditions plasma

sheaths can display arbitrarily small ion flows, and an analytical formula general-

izing the standard Bohm criterion is presented. We further investigate the effect

of biasing on the plasma-wall transition and find that a plasma bound between an

ion and an electron sheath displays abrupt transitions in the plasma potential. An

analytical model supports the observed simulations results. Second, simulations of

magnetized plasma sheaths are presented where the standard Bohm-Chodura con-

dition for the ion outflow is retrieved. The structure of the magnetized sheath is

analyzed in detail and its dependence on some relevant physical parameters is dis-

cussed. An analytical model is derived in order to obtain a complete set of boundary

conditions for plasma fluid models at the magnetic presheath entrance, which are

then verified in some limits via kinetic simulations.

In Chapter 3, the Braginskii equations and their drift-reduced form are described.

We then present the GBS code, which is based on the drift-reduced Braginskii equa-

tions. The boundary conditions derived in Chapter 2 are implemented in GBS,

and as an example we present results from simulations of SOL turbulence in a lim-

ited configuration. We show that smooth profiles form at the interface between the

plasma and the limiter. Finally, examples of turbulence simulations of TORPEX

plasmas are presented.

In Chapter 4, we investigate analytically the structure of the equilibrium electro-

static potential that is expected in an open field line turbulent plasma. A simple

model based on the generalized Ohm’s law reveals the relative importance of the

sheath in setting the value of the plasma potential far from the walls. Simulations of

SOL turbulence in a sheath-limited regime confirm the analytical predictions. The

implications for different tokamak regimes are discussed.

In Chapter 5, we show that intrinsic toroidal plasma rotation is present in SOL sim-

ulations, as a consequence of poloidally asymmetric parallel flows. We investigate

analytically the origin and nature of these flows and derive an equation describing

the generation and transport of parallel momentum in the SOL of tokamaks. We

present an approximate analytical solution which reveals the contribution of the

sheath in driving intrinsic rotation in the SOL, as well as the role of turbulence in
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transporting momentum radially. We show that the two-dimensional analytical pro-

files for the parallel Mach number in a poloidal cross-section are in good agreement

with the GBS results. Finally, the analytical solution is shown to explain the ex-

perimental trends that are observed for the magnitude and direction of the parallel

Mach number in the SOL of tokamaks.

Chapter 6 explores the effect of the limiter position on the SOL equilibrium profiles.

In particular, we show that the width of the SOL varies significantly with the limiter

position and has a clear poloidal dependence which is explained qualitatively. The

limiter position also modifies substantially the equilibrium electrostatic potential

and the intrinsic rotation profiles. We show that the analytical models developed in

Chapters 4 and 5 are able to capture these dependences.

Finally, Chapter 7 summarizes the achievements of this thesis and offers an outlook

on possible future developments.
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Chapter 2

The plasma-wall transition

2.1 Introduction

The simplest way to understand the plasma-wall transition is to imagine a collision-

less, non-magnetized, fully ionized plasma with singly charged ions and in contact

with a perfectly conducting, infinite, planar wall that is grounded and absorbs all

charged particles reaching the surface. In practice, more complicated processes may

be present, such as ion-neutral collisions, recycling, secondary electron emission or

sputtering. Also the wall may be an insulator in which case it may get charged by

the plasma particles. However, let us consider the simplest situation first.

For Te ∼ Ti, the typical speed of an electron, vthe =
√
Te/me, is much larger than the

typical speed of an ion, vthi =
√
Ti/mi. Therefore electrons reach the wall at a much

higher rate than the ions. This would lead to a continuous increase of the charge

imbalance in the plasma, with ni > ne, thus breaking the quasi-neutrality condition

ne ' ni. However, the plasma generates an electric field E = −∇φ according to

Poisson’s equation,

∇2φ = −e(ni − ne)
ε0

. (2.1.1)

Since ∇2φ < 0, a drop in the electrostatic potential is established when approaching

the wall (Figure 2.1.1). This means that the electric field E points towards the sur-

face, thus preventing most of the electrons from leaving the plasma and accelerating

the ions. A quasi-steady state is then established, such that the particle outflow

from the system is ambipolar. Quasi-neutrality is therefore maintained far from the

wall, while a thin, non-neutral layer with ni > ne forms at the plasma-wall interface

and ensures the existence of this electric field. This layer is called the Debye sheath

and has a width of the order of a few Debye lengts λD =
√
ε0Te/e2ne, similarly

to the Debye shielding that occurs when a charge perturbation is introduced in a

plasma. As we show later, the potential barrier in the sheath is a few times the

electron temperature, thus repelling most of the incoming electrons. For example,

11
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a plasma with Te = 2 eV and ne = 1016 m−3 has a Debye length λD ≈ 0.1 mm and

therefore the sheath electric field is E ≈ 10 kV/m.
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Figure 2.1.1: Schematic representation of the plasma-wall transition. Top: electrostatic potential
in the plasma. Bottom: Ion (blue) and electron (red) densities. The vertical dashed
line indicates the entrance of the Debye sheath, where quasi-neutrality is broken.

The exact location of the sheath entrance cannot be defined by the breaking of quasi-

neutrality, ni 6≈ ne, as this would be somewhat arbitrary. The commonly accepted

theory to describe the sheath edge location is given by the Bohm criterion, stating

that ions need to be accelerated up to the plasma sound speed, cs =
√
Te/mi, in

order for a sheath to exist [40]. One can derive Bohm’s criterion assuming that

electrons have a constant temperature Te and follow the Boltzmann relation

ne = nse exp [e(φ− φse)/Te] (2.1.2)

where nse and φse denote the electron density and the plasma potential at the

sheath edge. Ions are assumed to be monoenergetic (Ti = 0) and collisionless, with

a velocity V∞ = 0 far from the sheath. The conservation of the ion flux, Γi = niVi,
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and energy, miV
2
i /2 = e(φ∞ − φ), where φ∞ is the potential far from the sheath,

leads to estimating the ion density as

ni = nse

√
∆φps

(φ∞ − φ)
. (2.1.3)

Here ∆φps = φ∞ − φse is the presheath potential drop (Figure 2.1.1). The Bohm

criterion is obtained by linearizing Eqs. (2.1.2) and (2.1.3) around φ = φse and

inserting them in the one-dimensional Poisson equation,

∂2φ

∂x2
≈ e2nse

[
1

Te
− 1

2e∆φps

]
(φ− φse) . (2.1.4)

A physically acceptable, non oscillatory solution for φ exists only if ∂2
xφ ≤ 0. This

gives a condition on the presheath potential drop, e∆φps ≥ Te/2, which implies

Vi,se ≥ cs, namely that ions are at least sonic when entering the sheath. On the

other hand, by treating separately the presheath region, one can show that Vi ≤ cs
before entering the sheath [16], thus implying that the sheath edge location is de-

fined by the point where Vi = cs.

The ions are pre-accelerated by the presheath electric field and enter the sheath at

the sound speed. Thus the electrons must, on average, enter the sheath with the

same velocity in order to ensure an ambipolar flow Γ = nsecs. A kinetic description

of the electrons is necessary in order to predict their average velocity. Let us assume

that their distribution function far from the wall is a Maxwellian with zero mean

velocity and a temperature Te. An electron that arrives at the sheath edge with a

velocity v reaches the wall only if it overcomes the sheath potential barrier, i.e. if v >

vcut =
√

2e(φse − φw)/me. If v < vcut, the electron is reflected in the sheath region

back into the main plasma, and thus returns to the sheath entrance with a velocity

−v. Hence the electron distribution function at the sheath edge is a Maxwellian of

temperature Te but truncated at vcut on one side. The average electron velocity at

the sheath edge, obtained from this distribution function, is approximately [35]

Ve,se = cs exp [Λ− e(φse − φw)/Te] (2.1.5)

where Λ = log
√
mi/2πme ≈ 3 for hydrogen. Therefore the ambipolarity of the

particle flow, Ve,se = Vi,se = cs, imposes the magnitude of the potential drop in the

sheath, namely e(φse−φw) = ΛTe. One therefore expects currents to the wall if the

potential at the sheath edge deviates from this value.

Sheaths have been studied since the pioneering work of Langmuir in 1929 [37],

followed by an enormous research effort [38, 16, 35], which persists still (see, e.g.,
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Refs. [41, 42, 43, 44, 45, 46]). Only recently their detailed experimental investigation

has become possible [47, 48, 49]. Many different questions are usually addressed in

studies of plasma sheaths. Some examples are: how is the Bohm criterion modified

by finite ion temperature, magnetic field, secondary electron emission, recycling,

ion-neutral collisions, or surface geometry? What is the ion distribution function at

the sheath edge and at the wall? What is the effect of multiple ion species? Are

there instabilities in the sheath? What is the effect of electrical biasing? How should

we interpret the I-V curve of an electrostatic probe immersed in a plasma?

The final purpose of this chapter is to answer the following question: what are the

boundary conditions that should be imposed in a drift-reduced fluid code in order to

properly describe the magnetized plasma-wall transition? This problem is crucial for

the modeling of plasma turbulence in open field lines. We approach it by steps of in-

creasing complexity, starting from the study of unmagnetized ion sheaths, for which

the standard Bohm criterion is generalized to non-ambipolar conditions. Then, we

look at the effect of wall biasing on the plasma potential, shedding some light on the

properties of ion and electron sheaths with finite ion temperature. Leveraging the

analysis technique developed for the case of unmagnetized sheaths, we then turn to

the study of magnetized plasma sheaths and the derivation of boundary conditions

to be applied to plasma turbulence codes. In each of these steps, we perform kinetic

simulations and analytical modeling of the plasma-wall transition region.

In the following section, the numerical tool used to carry out simulations of the

plasma-wall transition is presented.

2.2 The ODISEE code

In this section, we describe the One-DImensional Sheath Edge Explorer (ODISEE)

code, which was developed within the framework of this thesis. ODISEE is a fully

kinetic, electrostatic particle-in-cell (PIC) code akin to previous simulations [50,51].

It was originally developed to simulate a one-dimensional, source-driven, unmagne-

tized plasma bound between two perfectly conducting walls [52]. It was then used to

study the effect of strong biasing on the plasma potential [53]. Different additional

options have been added in the last years, for example the possibility of insulating

walls or electrically biased grids, which have been used to tackle the problem of

biasing in basic plasma physics experiments such as the HelCat device [20,54]. The

code is also capable of simulating a magnetized plasma with a constant magnetic

field oblique to the walls and in the presence of an external electric field [55].

ODISEE solves the Vlasov-Poisson system in one dimension in real space and three

dimensions in velocity space. Physical boundaries representing planar walls set the

extension of the system in real space (Figure 2.2.1). A quasi-steady state results
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from the balance between a plasma source and the losses at the sheaths. The code

is written in Fortran 90 and parallelized using the Message Passing Interface (MPI).

In the following, we briefly describe the model and numerical methods used in the

code.
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Figure 2.2.1: Sketch of a one-dimensional plasma bound between two walls and in the presence
of a constant magnetic field oblique to the walls at an angle α. The coordinate s
is normal to the wall surfaces.

2.2.1 Vlasov-Poisson model

In the electrostatic, collisionless limit, the dynamics of a plasma can be described

by the Vlasov-Poisson system,

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(E + v ×B) · ∂fα
∂v

= 0

∇2φ = − 1

ε0

∑
α

qα

∫
fα(x,v)d3v (2.2.1)

with α = {i, e} denoting the particle species of charge qα and mass mα. This

system (2.2.1) describes the time evolution of the distribution functions for ions and

electrons, fα(x,v, t), as well as the space-time evolution of the electrostatic potential,

φ(x, t), with E = −∇φ. In the following, we consider the magnetic field B to be

constant and externally imposed. One way of solving this system numerically is by

means of the so-called particle-in-cell (PIC) method, a powerful technique based on

the Lagrangian description of the plasma.

2.2.2 Particle-in-cell method

The fundamental assumption of the PIC method is that the distribution function

of each species can be described by a superposition of N finite elements called

superparticles or computational particles [56], which are localized in velocity space
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and have some spatial shape. The particle distribution function for a given species

is written as

f(x,v, t) =
N∑
p=1

fp(x,v, t) =
N∑
p=1

wpS(x− xp(t))δ(v − vp(t)) (2.2.2)

where S is the so-called shape function, δ is the Dirac delta function, and wp is

the weight of each superparticle p. The shape function is defined to be symmetric

and with a unitary integral. Typically, S is chosen to be either a Dirac’s delta or

a b-spline, the lowest order being a flat-top function [57]. The weight wp is the

number of physical particles present in the element of phase space represented by

the computational particle p. Thus the integral of f(x,v, t) over all phase space,

∫ ∫
f(x,v, t) dxdv =

N∑
p=1

wp (2.2.3)

corresponds to the total number of physical particles of a given species in the system.

Finally, each superparticle is characterized by two time-dependent parameters, the

superparticle position xp(t) and velocity vp(t).

We now assume that the time evolution of each superparticle is still described by a

Vlasov equation,

∂fp
∂t

+ v · ∂fp
∂x

+
q

m
(E + v ×B) · ∂fp

∂v
= 0 . (2.2.4)

where the electric field used in the Vlasov equation (2.2.4) is due to all elements,

namely the same entering the complete Vlasov equation. Taking different moments

of Eq. (2.2.4), one can show that the following equations must be satisfied by each

superparticle:

dwp
dt

= 0

dxp
dt

= vp(t)

dvp
dt

= ap(xp,vp, t) =
qα
mα

(Ep + vp ×B) , (2.2.5)

where

Ep =

∫
S(x− xp(t))E(x) dx (2.2.6)
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is the average electric field acting on a computational particle. The system (2.2.5)

represents the complete set of evolution equations for the parameters defining the

functional dependence of the distribution fp in Eq. (2.2.2). In particular, the first

of these equations describes the conservation of the number of physical particles per

computational particle.

A crucial advantage of the PIC method is that its evolution equations resemble the

Newton equation followed by the regular physical particles, with the difference that

the field is computed as the average over the particle spatial extension, as seen in

the definition of Ep.

The electric field E(x) is itself given by the Poisson equation, which is solved in a

certain grid with M cells of width ∆s and centered at xc, where c = 1,...,M . Then

the electric field is defined in each grid cell as Ec. An interpolation of the electric

field from the grid onto the particles is therefore required. Let us call T (x−xc) the

flat-top function centered at xc and equal to one within the cell span. Then

E(x) =
M∑
c=1

T (x− xc)Ec . (2.2.7)

The information can then be carried between the particles and the grid through

the so-called interpolation function, which is defined as the convolution of S and T ,

namely

I(xc − xp) =

∫
S(x− xp)T (x− xc) dx . (2.2.8)

The interpolation function allows a direct computation of both the superparticle

electric field Ep (required to evolve the superparticles) and the cell charge density

ρc (required to solve the Poisson equation) without the need for integration. In fact,

we can write

Ep =
M∑
c=1

I(xc − xp)Ec (2.2.9)

and

ρc =
1

V

∑
α

qα

Nα∑
pα=1

wpαI(xc − xpα) , (2.2.10)

where V is the volume of a grid cell (V = ∆s in one dimension). Within this frame-

work, one can pass the information of the particles onto the grid and viceversa.

These two processes will be referred to as Particle to Grid Interpolation (PGI) and
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Grid to Particle Interpolation (GPI).

The Vlasov-Poisson system (2.2.1) can thus be solved numerically by initializing the

system with a certain distribution of superparticles and repeating the following cycle:

(1) Apply PGI to get ρc,

(2) Solve the Poisson equation to get φc and then Ec,

(3) Apply GPI to get Ep and then ap,

(4) Move particles according to ap
(5) The cycle restarts.

In ODISEE, the shape function is chosen to be a Dirac’s delta, S(x−xp) = δ(x−xp).

This minimizes the number of arithmetic operations in steps (1) and (3), as well as

for the parallelization. Also, particle removal at the walls and inter-particle collisions

are easier to implement. The caveat is the strong numerical noise which requires

a large number of computational particles. We now describe the method used in

ODISEE to solve the Poisson equation (step 2) and the equations of motion of the

superparticles (step 4).

2.2.3 Poisson solver

In a one dimensional, non-periodic system, it is possible to solve the Poisson equation

by using finite differences in a uniform spatial grid with M cells of width ∆s and

centered at s = sc, with c = 2,...,M −1. The Laplacian of the electrostatic potential

can be written by using a standard second order, central difference scheme, namely

∇2φ(sc) ≈ φc+1 − 2φc + φc−1

∆s2
= σc (2.2.11)

where σc = −ρc/ε0 is the source term and φ1 and φM are imposed at the boundaries

(Dirichlet boundary conditions) or related to φ2 and φM−1 (Neumann boundary

conditions).

The system (2.2.11) is a set of M − 2 coupled linear equations which can be written

as a matrix equation Ax = b. Let us first consider the case of Dirichlet boundary

conditions. Then we have

x = (φ2, ..., φM−1) ,

b = (σ2∆s2 − φ1, σ3∆s2, ..., σM−2∆s2, σM−1∆s2 − φM) ,
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and

A =


−2 1 0 0 0 0 . . .

1 −2 1 0 0 0 . . .

0 1 −2 1 0 0 . . .

0 0 1 −2 1 0 . . .
. . . . . . . . .

 . (2.2.12)

As A is tridiagonal, the solution x = A−1b can be computed with an algorithm

for which the number of operations scales like O(M) [58]. This algorithm is imple-

mented in ODISEE to solve the matrix system at each time step.

In the case of Neumann boundary conditions, the gradient of φ is imposed at the

boundaries. This can be expressed as

φ2 − φ1 = φ′1∆s ,

φM − φM−1 = φ′M∆s ,

thus leading to a different expression for the matrix A and the vector b. These are:

b = (σ2∆s2 + φ′1∆s, σ3∆s2, ..., σM−2∆s2, σM−1∆s2 − φ′M∆s) (2.2.13)

and

A =



−1 1 0 0 0 0 . . . 0

1 −2 1 0 0 0 . . . 0

0 1 −2 1 0 0 . . . 0
. . . . . . . . .

...
. . . . . . . . .

. . . . . . . . .

1 −2 1

1 −1


. (2.2.14)

The tridiagonal matrix can again be inverted by using the same algorithm. As dis-

cussed later, both Dirichlet and Neumann boundary conditions are used in ODISEE,

depending on whether the wall is a conductor or an insulator.

Finally, we note that the grid spacing needs to resolve the electron Debye length to

avoid the so-called finite grid instability [57], i.e. ∆s < ξλD, where ξ is a constant

of order 1 whose exact value depends on the choice of the interpolation function.
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2.2.4 Particle motion

A simple algorithm to integrate the equations of motion for charged particles in the

presence of both electric and magnetic fields is the Boris algorithm [57], which is

an explicit integrator based on a leapfrog scheme. The time step to advance the

particle velocities vp from t−∆t/2 to t+ ∆t/2 and the particle positions xp from t

to t+ ∆t is composed, in the non-relativistic limit, as follows:

(1) the particle is accelerated by the electric field force, from t−∆t/2 to t,

(2) the particle velocity v undergoes a rotation due to the magnetic field force,

(3) the particle is accelerated by the electric field force from t to t+ ∆t/2,

(4) the particle position x is updated according to the new velocity.

Explicitly, it reads:

(1) v− = vt−∆t/2 + q∆t
2m

E ,

(2) v+ = v− + v′ × s where v′ = v− + v− × t ,

(3) vt+∆t/2 = v+ + q∆t
2m

E ,

(4) xt+∆t = xt + vt+∆t/2∆t .

Two vectors have been defined for the rotation of the velocity,

s =
2t

1 + t2
,

t =
q∆t

2m
B . (2.2.15)

Accurate particle trajectories require ωce∆t < 1, where ωce = eB/me is the electron

gyrofrequency, although stability within the Vlasov-Poisson model requires resolv-

ing Langmuir wave propagation, ωpe∆t < 2, which is typically more constraining.

Here ωpe =
√
e2ne/ε0me is the electron plasma frequency.

In the one-dimensional problem (Figure 2.2.1), particle positions only need to be

advanced in the s direction. However, each component of the particle velocities must

be evolved since these are coupled through the Lorentz force.

2.2.5 Particle collisions

A method to implement binary Coulomb collisions in a particle code was developed

by Takizuka and Abe in 1977 based on the Monte Carlo method, and it is described

in great detail in [59]. The model is shown to be equivalent to a collision term of

the Landau form,

∂fα
∂t

∣∣∣∣
coll

= −
∑
β

∂

∂vj

e2
αe

2
βλ

8πε20mα

∫
dv′

[
δjk
u
− ujuk

u3

] [
fα
mβ

∂fβ(v′)

∂v′k
− fβ(v′)

mα

∂fα
∂vk

]
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(2.2.16)

which enters on the right hand side of the the kinetic equation, Eq. (2.2.1). Here

λ is the Coulomb logarithm [12], u = ||v − v′|| is the relative velocity between the

two colliding particles of species α and β, and the Einstein convention is used for

the summation over the velocity components.

The main idea of the algorithm proposed by Takizuka and Abe is that at each

time step (i) particles are grouped according to the cell they belong to, (ii) pairs

of particles suffering binary collisions are determined randomly within a cell, and

(iii) the effect of the collision for each pair of colliding particles is deduced by com-

puting the scattering angle ϑ of their relative velocity. More precisely, the variable

δ ≡ tan (ϑ/2) is chosen randomly with a Gaussian distribution of zero mean and a

variance given by

〈δ2〉 =
e2
αe

2
βnLλ

8πε20m
2
αβu

3
∆t (2.2.17)

where mαβ = mαmβ/(mα + mβ) is the reduced mass and nL is the lower density

between nα and nβ. For more details about the algorithm, see Ref. [59].

This algorithm is implemented in ODISEE to model both electron-electron and ion-

ion collisions. In our simulations of the plasma-wall transition, we choose a value of

collisionality which ensures a thermalized distribution function far from the walls,

while the sheath remains essentially collisionless, λD � λmfp, where λmfp is the

mean free path for the Coulomb collisions.

2.2.6 Particle sources and sinks

Particles eventually reach one of the two walls. If a wall is a perfect conductor then

the particle is absorbed and thus removed from the system. If instead the wall is

an insulator, the particle sticks to the wall and contributes to its charge. In this

case, the contribution to the surface charge is taken into account before the particle

is removed from the system. As a matter of fact, the only practical difference be-

tween the two types of walls comes when solving Poisson’s equation. In the case of a

conducting wall, the electrostatic potential is imposed at the boundary by the wall

potential φw, which is an input parameter. If instead the wall is an insulator, the

accumulated charge on its surface imposes the boundary electric field, Ew = σw/ε0,

where σw is the wall surface charge density and the electric field Ew is normal to

the wall, namely along the s direction. Thus the boundary conditions for the elec-

trostatic potential are either Dirichlet or Neumann depending on whether the wall

is respectively a conductor or an insulator.
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Particles arriving at the boundaries are lost, thus a source of particles is needed in

order for the plasma to be in a quasi-steady state. In ODISEE, ions and electrons

are injected in the simulated domain with a chosen distribution in real space Sα(x),

and a Maxwellian distribution function in velocity space. This adds a term on the

right hand side of the the kinetic equation, Eq. (2.2.1),

∂fα
∂t

∣∣∣∣
source

= Sα(x)

(
mα

2πTα0

) 3
2

exp

(
−mαv

2

2Tα0

)
(2.2.18)

where Tα0 is the input temperature and Sα is the number of physical particles

injected per unit time and length.

2.2.7 Normalization

Quantities in the ODISEE are normalized with the natural units of the system

by using as a reference the input electron temperature Te0 and the magnetic field

strenght ||B|| = B0. Namely s→ s/ρs0 and t→ ωcit, where ρs0 = cs0/ωci is the ion

sound larmor radius, cs0 =
√
Te0/mi is the plasma sound speed and ωci = eB0/mi

is the ion gyrofrequency. Velocities are therefore normalized to the sound speed,

v → v/cs0. Finally, the electrostatic potential is normalized as φ → eφ/Te0. Using

these units, the normalized equations of motion for the computational particles only

depend on two parameters, namely the magnetic field angle α and the ion to electron

mass ratio µ = mi/me.

On the other hand, the Poisson equation in these same units,

∂2φ̃

∂s̃2
= −γ0(ñli − ñle) , (2.2.19)

introduces a new parameter γ0 = (ρs0/λD0)2, which is the ratio of the two funda-

mental scales present in the system. Here λD0 =
√
ε0Te0/(e2n3

l0) is the reference

Debye length computed from the reference electron temperature Te0 and a reference

linear density nl0. The parameter γ0 plays an important role in simulations of the

magnetized plasma-wall transition, since it measures the scale separation between

the Debye sheath and the magnetic presheath.

2.2.8 Parallelization

The ODISEE code is parallelized by using the Message Passing Interface (MPI).

The parallelization method used in ODISEE is the so-called domain decomposition

method, which consists of splitting the spatial domain into smaller subdomains and

solving the equations of the system by coordinating the solution between adjacent

subdomains. More precisely, the spatial domain is decomposed in Nproc subdomains,
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each one associated with a separate processor. At each time step, each processor

advances the particles that are present in the corresponding subdomain. Then, the

processor communicates with its neighbours the positions and velocities of the par-

ticles outflowing and inflowing in the subdomain. The solution of Poisson’s equation

is computed in each processor by gathering the information of the charge density in

the full domain.

Typically, the code runs on 64 or 128 processors and a standard simulation takes

about a day to reach a steady-state. Figure 2.2.2 shows the results of a performance

analysis carried out in the Rosa Cray XE6 supercomputer at the Swiss National

Supercomputing Center [60]. A simulation was carried out with a system size L =

10ρs0, a number of grid points M = 7071, and a number of computational particles

of the order of 106. The speed up of the simulation scales almost ideally with the

number of processors up to about Nproc = 128. For Nproc > 128, communication

between processors starts to dominate over computation, and the speed up factor

saturates.
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Figure 2.2.2: Speed up factor for the wall-clock time of a simulation for different numbers of
processors (Nprocs = 16, 32, 64, 128, 256, 512), with respect to the case Nproc =
16. The dashed line indicates the ideal situation where the speed up factor is
proportional to Nproc.

2.2.9 Diagnostics

Usually PIC codes do not save all the particle positions and velocities at each time

step because this would yield unreasonably large amounts of data. Instead, specific

diagnostics are implemented in order to extract the most important information
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about the particles and the fields.

In ODISEE, zero-dimensional diagnostics keep track of the number of ions Ni(t)

and electrons Ne(t) in the system, and of the accumulated net charge Qw(t) at the

wall surfaces. One-dimensional diagnostics compute the profiles of the electrostatic

potential φ(s, t), the ion and electron densities, ni(s, t) and ne(s, t), or the ion and

electron mean velocities in all directions, Vi(s, t) and Ve(s, t). Higher order mo-

ments of the particle distribution functions are also computed, in particular the

pressure tensor Πα(s, t), defined for a given species as

Πjk(s, t) =

∫
f(s,v, t)(vj − Vj)(vk − Vk) dv . (2.2.20)

We note that the ion and electron temperatures in each direction can be extracted

from the diagonal terms of the pressure tensor, i.e. Tj = Πjj, as a measure of the

average disordered kinetic energy. The highest order moment computed in ODISEE

is the microscopic heat flux qα(s, t), defined for a given species as

qj =

∫
f(s,v, t)(vj − Vj)(v −V)2 dv . (2.2.21)

Finally, it is possible to reconstruct the ion and electron velocity distribution func-

tions fα(s0,v, t) at a given position s0. The diagnostic essentially saves the velocities

of all particles present in the grid cell containing s0.

2.3 Unmagnetized plasma sheaths

In this section, we present the results of our investigations of the plasma-wall tran-

sition in the case of zero magnetic field. First, an example of a simulation showing

the formation of a sheath and the acceleration of ions to the sound speed is shown.

Then, the possibility of subsonic ion sheaths is explored by considering the presence

of electrical currents in the plasma. An analytical theory is developed to predict the

ion velocity at the entrance of the non-neutral sheath, and numerical simulations are

performed to verify the predictions. Finally, the effect of wall biasing on the plasma

potential is explored both analytically and numerically, shedding some light on the

properties of both ion and electron sheaths. We remark that the results presented

in this section are also valid in the case of a magnetic field perpendicular to the walls.

We start by considering the simplest case of an unmagnetized plasma with cold ions,

namely B0 = 0 and τ = Ti0/Te0 � 1. The system size is L ' 140λD0 and the mass

ratio is µ = 100. Electrons undergo Coulomb collisions with a mean free path λmfp
such that λD0 � λmfp . L. The walls are conductors with a potential φw = 0.

The initial condition is simply empty space and a uniform, neutral plasma source,
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Si = Se = S0, continuously injects particles in the system. Figure 2.3.1 shows the

time evolution of the number of ions Ni(t) and electrons Ne(t) in the system. Since

there is no magnetic field, the characteristic permanence time of a particle in the

system is L/cs0. After a few characteristic times, which corresponds to about 5×105

time steps, the number of particles in the system reaches a steady value of the order

of 107 particles. The relative charge imbalance in the system, (Ni −Ne)/Ni is also

shown in Fig. 2.3.1. It reaches a positive steady value of about 0.1%. This finite

value accounts for the non-neutral sheaths forming at both walls.

Figure 2.3.1: Left: number of computational particles in the system as a function of time, for
ions (blue) and electrons (red). Right: relative charge imbalance in the system as
a function of time.

Figure 2.3.2 shows the time-averaged spatial profiles of the ion and electron densities,

the electrostatic potential, the electron temperature in the s direction, the ion and

electron mean velocities in the s direction, and the ion and electron mean fluxes in

the s direction. These are computed in the quasi-steady state reached by the system.

As expected, the profiles are completely symmetric with respect to the center of

the system s = L/2. Also, an electrostatic potential barrier for the electrons is

formed and quasi-neutrality is satisfied almost up to the wall, where a thin, non-

neutral sheath with ni > ne is observed. As they approach the walls, both ions

and electrons are (on average) accelerated. Since the plasma source is neutral, the

ion and electron fluxes in the s direction are equal, Γi,s(s) = Γe,s(s), and their

divergence is a constant given by the source, ∂sΓs = S0, as expected from the steady

state continuity equation.

We note that the electron temperature along the s direction, Te,s, is smaller than

the input electron temperature Te0 (Figure 2.3.2). This is because the electrons

leaving the system are those with large enough energy to overcome the potential

barrier, and therefore the plasma cools down as it loses the high energy particles
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Figure 2.3.2: Time-averaged profiles of ion (blue) and electron (red) densities, electrostatic po-
tential (black), electron temperature (magenta), ion (blue) and electron (red) mean
velocities, and ion (blue) and electron (red) mean fluxes.
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injected by the source. We can nevertheless conclude that the electron temperature

is reasonably constant in the system, except inside the sheaths where it drops sub-

stantially. We remark that, as the electron velocity distribution function is not in

thermal equilibrium inside the sheaths, temperature here is meant as the measure

of the average disordered kinetic energy of the particles.

  

v / c
s0

v / c
s0

v / c
s0

Figure 2.3.3: Time-averaged profile of the electrostatic potential as the left wall is approached.
The electron velocity distribution function fe(s, v) is shown (green) at three dif-
ferent locations, namely in the bulk plasma (φ = φ∞), at the sheath entrance
(φ = φse) and at the wall (φ = φw). The vertical dashed-red line indicates the
value of vcut and the black curve is a Maxwellian with temperature Te∞.

Figure 2.3.3 shows the time-averaged electron distribution function at different lo-

cations as the left wall is approached. The distribution function in the bulk can be

well described by a Maxwellian with temperature equal to the bulk plasma temper-

ature Te∞ = Te,s(s = L/2). As the wall is approached, the distribution function is

depleted on one side and can be described by a Maxwellian with temperature Te∞
truncated at a cut-off velocity given by vcut(s) =

√
2eφ(s)/me. At the wall, vcut = 0

and the distribution function is a half-Maxwellian.

In order to interpret the physics at the plasma sheath we renormalize the plasma

properties using Te∞ as a reference temperature. In particular, the reference sound

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



page 28 Chapter 2: The plasma-wall transition

speed is cs =
√
Te∞/mi. Similarly, we shall express the sheath width in units of

λD =
√
ε0Te∞/e2n∞, where n∞ is the bulk plasma density. In fact, the plasma

density is larger than the reference density n0, thus the actual Debye length is

smaller than the reference Debye length λD0. Figure 2.3.4 shows the normalized

profiles of ion and electron densities, electrostatic potential and ion velocity in the

vicinity of the left wall. The location where ions reach the sound speed, Vi,s = cs, is

consistent with the breaking of quasi-neutrality. Therefore the Bohm criterion well

describes the entrance of the sheath, whose thickness is of the order of 10λD. Also,

the electrostatic potential at the sheath edge is eφ ≈ 1.4Te∞, which is in perfect

agreement with the ambipolar condition eφ ≈ ΛTe. In fact, Λ = log
(√

µ/(2π)
)
≈

1.4 for a mass ratio µ = 100.

2.3.1 Existence of subsonic plasma sheaths

The possibility of the existence of sheaths with subsonic ions at the edge was

widely addressed in the literature, by exploring if the presheath processes (colli-

sions, ionization) or the geometry could influence the transition to the non-neutral

region [61,62,63]. It was concluded that the Bohm criterion, Vi = cs, is a ubiquitous

property of ion sheaths in the limit Ti � Te and λD � Lps, where Lps is the scale

length of the presheath [38].

In this section we analytically derive the location of the sheath edge where quasi-

neutrality is broken, by using an appropriate kinetic description of the plasma. We

show that an ion sheath can exist with arbitrarily small ion velocity and that this

may be relevant in many situations. The standard Bohm criterion, Vi =
√
Te∞/mi,

is recovered in the case of large enough ion current through the wall (Γi � Γe) and it

is found to be a reasonable approximation in floating potential conditions (Γi = Γe).

However, in the case of predominant electron current through the wall (Γe > Γi),

the standard Bohm criterion is not able to describe the sheath edge transition. We

assume a one-dimensional plasma with a very small ion to electron temperature

ratio, Ti � Te, weakly collisional electrons with a mean free path larger than the

sheath scale, λmfp � λD, and a totally absorbing wall. The results are supported

by numerical simulations performed with the ODISEE code.

We start by writing the first two moments of Vlasov equation for ions and the first

moment for electrons, i.e. continuity and momentum equations, which in steady

state conditions are:

ni
∂Vi
∂s

+ Vi
∂ni
∂s

= Spi

ne
∂Ve
∂s

+ Ve
∂ne
∂s

= Spe

miniVi
∂Vi
∂s

= −eni∂φ
∂s

+ Smi (2.3.1)
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Figure 2.3.4: Profiles of ni (blue), ne (red), φ, and Vis in the vicinity of the left wall. The vertical
dashed line indicates the position where Vi,s = cs.

The particle and momentum sources, Sp and Sm, result from integrating the terms in

Vlasov equation related to the injection of particles, ionization processes or collisions.

The ion pressure is neglected since Ti � Te. In the following, the potential is

defined so that at the wall φw = 0, implying that φ(s) represents the potential

drop up to the wall. We now express Ve by using our knowledge of the electron
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distribution function. In fact, in the case of a monotonic ion sheath, the electron

velocity distribution function approaching a wall can be described by a truncated

Maxwellian [35, 64], as confirmed experimentally [65, 66] and by our simulations.

The cutoff velocity is due to the fact that all the electrons having an energy above

the potential barrier flow out from the system and no electrons can be reflected with

v >
√

2eφ(s)/me = vcut(s). By defining the quantity η(s) = eφ(s)/Te∞, we have

fe(v, η) =

{
1

I(η)
√

2πv2the
exp

(
− v2

2v2the

)
if v < vcut(η)

0 otherwise
(2.3.2)

where vthe =
√
Te∞/me, vcut(η) =

√
2ηvthe is the cutoff velocity, and

I(η) = [1 + erf(
√
η)] /2 (2.3.3)

is the normalization factor. We can now compute the electron fluid velocity Ve = 〈v〉,
having defined 〈a〉 =

∫
fe(v)a(v)dv. Ve increases as the Maxwellian is progressively

truncated when approaching the wall,

Ve =
cs
I(η)

eΛ−η . (2.3.4)

Equation (2.3.4) is the common expression used as a sheath boundary condition

except for the correction given by I(η). We also note that the term ∂sVe in system

(2.3.1) can be evaluated as ∂sVe = ∂φVe∂sφ, where

∂φVe = − eVe
Te∞

[
1 +

e−η

2
√
πηI(η)

]
. (2.3.5)

Thus far the system (2.3.1) together with Eq. (2.3.4) is very general and should be

satisfied within both the sheath and the presheath regions, as long as the collision-

ality is small enough for the closure to be valid. In the presheath, quasi-neutrality

is preserved and the condition ne = ni = n has to be fulfilled up to the sheath

entrance. By imposing it, we are left with three unknowns (n, Vi, φ) and their re-

spective gradients, and our system of equations can be reduced to a matrix system

M
−→
X =

−→
S , where

−→
X =

 ∂sn

∂sVi
∂sφ

 ,
−→
S =

 Spi
Spe
Smi

 , (2.3.6)

and the matrix M depends only on local quantities,

M =

 Vi n 0

Ve 0 n∂φVe
0 minVi en

 . (2.3.7)
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This reduced system is valid in the presheath up to the sheath edge. In the presheath

region, gradients are typically small and are due to the presence of the plasma source.

At the sheath edge, gradients become much steeper, i.e. |MjkXk| � |Sj| for all j, k

such that Mjk 6= 0. In other words, at the sheath edge the source terms are much

smaller than any other term in the fluid equations, and the fluid system (2.3.1)

reduces to M
−→
X ' 0. Now, the presence of non-zero gradients imposes det(M) = 0,

which defines the position of the sheath edge. We note that det(M) = 0 is also

a valid definition of the sheath edge in the particular case of a source-free system.

In fact, in this case M
−→
X = 0 is satisfied everywhere in the presheath and the

macroscopic quantities display flat profiles [50], therefore
−→
X = 0. At the sheath

edge, gradients become non zero, still requiring det(M) = 0. Hence in all cases

det(M) = 0 at the sheath entrance, which gives

Vi,se = csb

√
1

1 + κ
(2.3.8)

where

κ =
e−ηse

2
√
πηseI(ηse)

. (2.3.9)

Figure 2.3.5 shows the dependence of Vi,se and Ve,se on the sheath edge potential

ηse. The condition of ambipolar flow Γi = Γe can be found by solving Vi,se = Ve,se,

expressed by Eqs. (2.3.4) and (2.3.8). This defines the floating potential, which is

found to be at ηse ≈ Λ for the hydrogen mass ratio (µ = 1836, Λ ' 2.8) or higher.

In correspondence of the floating potential, we have Vi,se ≈ csb.

In the limit of ηse →∞, or equivalently Γi � Γe, one has that κ→ 0, thus reducing

Eq. (2.3.8) to the standard Bohm criterion. However, for ηse → 0, or equivalently

Γe � Γi, the function κ→∞ and the ion velocity Vi,se → 0. From this we conclude

that the standard Bohm criterion is not valid for non-ambipolar conditions, since it

is violated when ηse < Λ (or Γe > Γi).

In order to confirm the validity of the presented results, we perform numerical

simulations with the ODISEE code. The system size is much larger than the sheath

scale (L ' 103λD). A source of ions and electrons uniformly distributed between two

absorbing walls maintains the plasma in steady state. Ions have a temperature much

smaller than the electrons (Ti/Te ' 10−2), electrons undergo Coulomb collisions with

each other with a mean free path much larger than the sheath scale (λmfp ' 300λD),

and Poisson’s equation is solved by imposing a fixed potential at the two boundaries,

φw = 0. The mass ratio is µ = 400 (essentially the same results are obtained in tests

performed with µ = 800). Sheath currents can be driven by injecting an unbalanced

amount of ions and electrons throughout the domain, in such a way that the sheath

potential is varied and sheath edge quantities are studied as a function of ηse.
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Figure 2.3.5: Sheath edge quantities as a function of the normalized sheath edge potential ηse.
(a-c) Analytical expressions (solid blue lines) for Vi, Ve, and qe [Eqs. (2.3.4),
(2.3.8), and (2.3.10)], are compared with the simulations results (red crosses). The
sheath edge position is found according to Eq. (2.3.8). The expressions deduced
from textbook formulas are also shown (dashed magenta lines), i.e. Vi = cs, Ve =
cs exp (Λ− η), and qe = Qe − δ, where Qe = γΓeTe∞ is the macroscopic heat
flux [16], γ = ηse + ∆φps/Te∞, and δ = (mense/2)

[〈v〉3 + 3〈v〉〈(v − 〈v〉)2〉] is
evaluated according to Eq. (2.3.2). (d) The sheath length Lsh is obtained from the
simulations and normalized to the local Debye length λD =

√
ε0Te∞/(e2nse). The

only expression that depends on the mass ratio is Ve/cs, plotted here for µ = 400.
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Figure 2.3.6: Steady-state charge imbalance in the vicinity of the wall (inset: potential profiles).
Results from the simulations are shown for four different cases, with increasing
electron current: (a) ηse ≈ 2.1 (floating potential for µ = 400), (b) ηse ≈ 0.63, (c)
ηse ≈ 0.22, (d) ηse ≈ 0.05. The location of the sheath edge according to Bohm
criterion (magenta stars) and according to Eq. (2.3.8) (red crosses) are displayed.
In (d) the ion velocity never reaches cs so according to the standard Bohm criterion
there is no sheath.
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Simulations confirm that the sheath edge position is well described by Eq. (2.3.8).

Figure 2.3.6 shows, in fact, that the position of the sheath entrance defined by

(2.3.8) is always coherent with the breaking of quasi-neutrality, while the standard

Bohm criterion fails to describe the transition for small values of ηse. In particular,

for ηse . 0.25, we observe that Vi < cs everywhere, even at the wall, and yet a

significant charge imbalance with a smooth potential drop is observed, pointing out

the existence of a sheath. The numerical results for Vi, Ve, and the microscopic heat

flux, qe = neme〈(v−Ve)3〉/2, at the sheath edge are shown in Fig. 2.3.5 for different

values of ηse, and compared with the analytical predictions provided by Eqs. (2.3.4),

(2.3.8), and

qe =
nsemev

3
the√

2πI(η)

[
e−η
(
η − 1

2

)
+

3

2

√
η

π

e−2η

I(η)
+

e−3η

2πI2(η)

]
. (2.3.10)

The results for Ve and qe are in addition compared with the corresponding ana-

lytical expressions deduced from textbook formulas [16], showing disagreement for

ηse < Λ. The sheath length, Lsh, is also shown in Fig. 2.3.5 as a function of ηse. The

sheath is expanded in the region where Γi > Γe, consistent with the Child-Langmuir

model [35], whereas it is compressed when Γe > Γi, with Lsh → 0 when ηse → 0.

How can a smooth sheath exist with subsonic ion velocity at the sheath edge and yet

∂2
sφ < 0, which is impossible according to Eq. (2.1.4)? The fact is that Eq. (2.1.4)

assumes that ne decreases according to the Boltzmann factor, which accounts for

the fraction of the electron population that is reflected before reaching the wall.

However, the absorbing boundary reduces even more the electron density since it

gives rise to a truncated distribution function. The more general formula is [35]

ne = nse exp

[
e(φ− φse)

Tb

]
I(η)

I(ηse)
(2.3.11)

which reduces to the Boltzmann relation in the limit of large ηse. For small values

of ηse, this correction is important and the linearized Poisson equation with the

expression for ne given by Eq. (2.3.11) is

∂2φ

∂s2
≈ e2nse

[
1

Tb
(1 + κ)− 1

2e∆φps

]
(φ− φse) . (2.3.12)

If we impose ∂2
sφ ≤ 0 we find Vi,se ≥ csb

√
1/(1 + κ), an inequality that is compatible

with Eq. (2.3.8), showing that it is therefore possible to find smooth sheath solu-

tions with arbitrarily small ion velocity at the sheath entrance. Since the function

κ → ∞ as ηse → 0, the scaling analysis of Eq. (2.3.12) shows that Lsh → 0 in this

limit, as confirmed by Fig. 2.3.5.

We would like to remark that while the ion flow at the sheath entrance can be ar-

bitrarily small, as shown in Eq. (2.3.8), the generalized form of the Bohm criterion
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remains valid [38], in the sense that ions always enter the sheath at the local speed

of sound. As a matter of fact, the local value of the plasma sound speed at the

entrance of the sheath, computed by solving the dispersion relation of ion acous-

tic waves, is exactly given by Eq. (2.3.8). A derivation of this is given in Appendix A.

An experimental verification of these predictions could be carried out by measuring

the ion velocity in the vicinity of an ion sheath that has been biased so that the

plasma potential is only slightly above the wall potential. Such sheaths have been

recently produced and characterized, showing monotonic potential profiles [67].

The deviations from textbook formulas that we derived in this section are relevant in

a number of physical situations. As an example, we cite the Edge Localized Modes

in tokamak fusion devices, where large plasma currents to the divertor plates can

be observed [68, 69]. In the case of a transient event where Γe � Γi, corresponding

to small values of ηse, according to Eq. (2.3.8) the ion flow is strongly reduced with

respect to the standard Bohm prediction. This is important because ions determine

the plasma momentum flux, even in the case of predominant electron current. We

also mention the plasma thrusters used for spacecraft propulsion, where large elec-

tron currents are locally observed in the conducting walls [70]. As a last example,

we allude to the subsonic origin of the solar wind plasma, which has been recently

explained through a gravito-electrostatic sheath created at the surface boundary of

the Sun. This boundary acts as a negatively biased wall and thus also draws elec-

tron current [71]. In general, our results are important for setting the boundary

conditions at the sheath edge in plasma fluid models.

We conclude that in floating conditions where ηse ≈ Λ, or in the case of predominant

ion current (Γi > Γe), the usual Bohm criterion together with the commonly used

expression for the electron velocity are a reasonable approximation. However, when

the plasma sheath potential is small (Γe > Γi), the standard Bohm condition is

not consistent anymore with the breaking of quasi-neutrality. The electron kinetic

effects have a strong impact on the ion velocity and the sheath edge definition needs

to be refined according to Eq. (2.3.8). This new definition of the sheath edge is

coherent with the breaking of neutrality and other sheath edge quantities, and is

valid for all ηse > 0. It also applies if there is a magnetic field perpendicular to the

wall. Its validity breaks down if the electron mean free path becomes very small,

λmfp ∼ λD, if the source terms become large enough to strongly affect the properties

of the sheath, and for ηse < 0, since in this case Eq. (2.3.2) is not valid anymore.

Finally, Eq. (2.3.8) can also be derived by considering the general dispersion relation

of ion-acoustic waves in the limit ω/k = 0 [39] with the distribution function given

by Eq. (2.3.2).

In this respect, however, we notice that the method described here provides a new

rigorous way of deriving the sheath edge location, leading to the sheath criterion

directly in its equality form, thus avoiding the problem of matching the presheath
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and sheath regions. Moreover, as such technique makes possible to determine how

gradients are related to each other at the sheath edge, it provides a rigorous tool

to determine the boundary conditions in the more complicated case of magnetized

sheaths.

2.3.2 Potential of a plasma bound between two biased walls

Before turning to the study of the magnetized plasma sheath, let us take a detour,

and look at the potential of a plasma bound between two walls. This will allow us

to get more acquainted with the physics of the sheath, applying the technique we

have developed in Sec. 2.3.1, and shed light into a crucial problem in plasma physics.

The existence of the sheath ensures that quasi-neutrality is maintained in the plasma

bulk by a strong electric field, typically leading to no net current to the walls. A more

complicated situation is present when a region of the wall in contact with the plasma

is electrically biased with respect to the rest of the wall. Time-independent biasing

is used in plasma experiments for different purposes, namely for the measure of the

ion and electron temperatures with electrostatic probes [35,72], in plasma thrusters

for space propulsion [6], to study the effect of shear flow on turbulence [73,74,75,20],

for the study of dust particles [76], and for the control of turbulence in magnetic

fusion devices [77, 78, 79]. A bias may induce local perturbations of the plasma

potential. Electric fields are then produced and can give rise to plasma currents

which may close at the sheath. A commonly-shared feature in biasing experiments

is that the plasma potential sets its value in between two surface potentials (see, e.g.,

Ref. [72]). While in some relatively simple cases the underlying physical mechanism

has been understood [67], the exact general relation between the currents measured

at the sheaths, the applied bias and the resulting potential in the plasma bulk is

not well established, and remains to date a challenging general problem of plasma

physics [80].

In this section we address this problem in a relatively simple framework, focusing

on a one-dimensional, steady-state, plasma bound between two perfectly absorbing

walls that are biased with respect to each other. In particular, we derive an analyt-

ical expression relating the bulk plasma potential with the wall currents, showing

that the plasma potential undergoes an abrupt transition when currents cross a

critical value. This result is confirmed by numerical simulations performed with

the ODISEE code. Finally, we suggest an experimental setup that could provide a

measure of this transition and we show an example of experimental results obtained

in the TORPEX device.

The electrostatic potential established in the plasma bulk depends on the interplay

between sheaths driving different currents to the walls. Typically, sheaths are posi-

tive space-charge layers forming a potential barrier, ηse = e(φse − φw)/Te > 0, that
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prevents most of electrons from flowing out. An enormous research effort on these

sheaths, called ion sheaths, has been carried out in the past decades (see Ref. [38] for

a review), and it is the case that we have considered in Sec. 2.3.1. Standard sheath

theory shows that the sheath current I is such that Ielsat < I < I ionsat for ηse > 0, where

I ionsat = ensecs > 0 is the ion saturation current and Ielsat = −ense
√

2/πvthe < 0 is the

electron saturation current. When a strong positive bias is locally applied with a

probe or at the wall confining the plasma, the formation of negative space-charge

sheaths or electron sheaths is observed [72,67,79]. In the case of the electron sheath,

a potential barrier ηse < 0 accelerates electrons and prevents most of ions from

arriving at the wall (Figure 2.3.7). As a matter of fact, biasing experiments often

show that the plasma is bound between an ion and an electron sheath. This is the

plasma scenario that we consider in this section, which starts with the analysis of

the ion and electron sheaths, shedding new light on their properties. These results

are then used to describe the interplay between the two sheaths and their effect on

the bulk plasma potential.

0
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s
0

0

s

η

η
w

η
se

 < 0

η
w

η
se
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(a) (b)

η∞

η
∞

Figure 2.3.7: Example of potential drop η as a function of the distance to the wall for an ion
sheath (left) and an electron sheath (right). Indicated are the electrostatic potential
far from the wall (η∞), at the sheath edge (ηse), and at the wall (ηw = 0). Plots
are obtained from ODISEE simulations.

2.3.2.1 Ion and electron sheaths

The goal of the present section is to find the ion and electron velocities at the sheath

entrance in the case of perfectly absorbing walls. We consider separately the ion

and the electron sheaths, i.e. ηse > 0 and ηse < 0, respectively.
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Let us first consider a plasma in contact with an absorbing wall in the case of an ion

sheath where ηse > 0 (Fig. 2.3.7a). In this situation, the ion and electron velocities

at the sheath edge were derived in Sec. 2.3.1. We now extend the results to the

case of finite ion temperature. As we have seen in Sec. 2.3.1, in the presence of a

monotonic ion sheath, the electron fluid velocity in the direction normal to the wall

is given by

Ve =
vthe√
2πI(η)

e−η =
cs
I(η)

eΛ−η . (2.3.13)

Here η(s) = e(φ(s) − φw)/Te∞ is the normalized potential relative to the wall such

that η(0) = 0 (here we allow φw 6= 0). Notice that the spatial dependence of Ve
is contained in the potential η. We consider the steady state continuity equations

for ions and electrons and the momentum equation for ions, Eq. (2.3.1), which for

Ti 6= 0 becomes

ni
∂Vi
∂s

+ Vi
∂ni
∂s

= Spi

ne
∂Ve
∂s

+ Ve
∂ne
∂s

= Spe

miniVi
∂Vi
∂s

= −eni∂φ
∂s
− ∂(niTi)

∂s
+ Smi . (2.3.14)

As in Sec. 2.3.1, system (2.3.14) can be reduced to a matrix equation. The term

related to the ion pressure, ∂s(nTi), can be simplified by assuming that the ion fluid

expands (accelerates) adiabatically, namely without heat exchange (this is only valid

in the vicinity of the sheath, where flows are strong). This leads to d(n1−γ
i Ti)/dt = 0

and thus ∂s(niTi) = γTi∂sni, where the coefficient γ is given by the kinetic theory

of gases as γ = (ν + 2)/ν, ν being the number of degrees of freedom of the particles

(for one-dimensional flow γ = 3). Finally, we note that in the presheath and up to

the sheath entrance, quasi-neutrality is preserved and the condition ne = ni = n

has to be fulfilled. Therefore, our system of equations can be reduced to a matrix

equation M
−→
X =

−→
S , where

−→
X =

 ∂sn

∂sVi
∂sφ

 ,
−→
S =

 Spi
Spe
Smi

 , (2.3.15)

and

M =

 Vi n 0

Ve 0 n∂φVe
γTi minVi en

 . (2.3.16)
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As shown in Sec. 2.3.1, the location of the sheath entrance is given by the condition

det(M) = 0, which gives

Vi,se = cs

√
1

1 + κ(ηse)
+ fi , (2.3.17)

where the function κ, defined in Eq. (2.3.9), represents the kinetic effect of the de-

pleted Maxwellian electron distribution function [52]. This effect becomes important

when ηse → 0, while it vanishes for ηse →∞. Also, we define

fα = γ
Tα,se
Te∞

, (2.3.18)

which represents the effect of a finite-temperature fluid of species α expanding adi-

abatically. We note that fi is related to the presheath density drop. In the case

of adiabatic flow, in fact, Ti,se/Ti∞ = ñγ−1
se , where ñse = nse/n∞ is the sheath edge

density normalized to the bulk plasma density n∞. Therefore, fi = γτñγ−1
se where

τ = Ti∞/Te∞. As a consequence, fi → 0 for τ → 0, and thus Eq. (2.3.17) reduces to

the Bohm criterion, Vi = cs, in the limits ηse →∞ and τ = 0. Another well-known

result is retrieved by considering the limit ηse → ∞ for arbitrary τ , which gives

Vi,se =
√

(Te∞ + γTi,se)/mi [16].

Equations (2.3.13) and (2.3.17) provide the ion and electron velocities at the en-

trance of ion sheaths. In particular, one can obtain the so-called floating potential,

ηf , for which the flow is ambipolar, by solving Vi,se = Ve,se. For τ = 0, this gives

ηf ' Λ, consistently with the results found previously.

Let us now consider the case of an electron sheath, namely ηse < 0 (Fig. 2.3.7b).

In this case, electrons are accelerated through the sheath electric field and are all

absorbed, while ions are repelled unless they are sufficiently energetic to overcome

the sheath potential barrier, a situation that is reversed with respect to ion sheaths.

Thus the ion fluid velocity in the direction normal to the wall can be expressed as

Vi =
vthi√

2πI(|η|/τ)
e−|η|/τ =

cs
√
τ√

2πI(|η|/τ)
e−|η|/τ , (2.3.19)

where vthi =
√
Ti∞/mi and |η(x)|/τ = e(φw − φ(x))/Ti∞. In steady state, the con-

tinuity equations for electrons and ions, and the momentum equation for electrons

are
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ne
∂Ve
∂s

+ Ve
∂ne
∂s

= Spe

ni
∂Vi
∂s

+ Vi
∂ni
∂s

= Spi

meneVe
∂Ve
∂s

= ene
∂φ

∂s
− ∂(neTe)

∂s
+ Sme . (2.3.20)

The term ∂sVi in System (2.3.20) can be evaluated as ∂sVi = ∂φVi∂sφ, and ∂φVi
can be obtained from Eq. (2.3.19). The quasi-neutrality in the presheath and the

adiabaticity of the electron flow lead to a matrix equation M
−→
X =

−→
S , where

−→
X =

 ∂sn

∂sVe
∂sφ

 ,
−→
S =

 Spe
Spi
Sme

 , (2.3.21)

M =

 Ve n 0

Vi 0 n∂φVi
γTe menVe −en

 . (2.3.22)

As for the ion sheath, the condition det(M) = 0 sets the sheath entrance, namely

Ve,se = vthe

√
τ

1 + κ(|ηse/τ |) + fe . (2.3.23)

We notice that the electron velocity at the sheath entrance is of the order of the

thermal velocity, vthe, since all electrons are absorbed. In fact, in the limit τ → 0,

Eq. (2.3.23) gives Ve =
√
γTe,se/me ∼ vthe. The quantity fe can also be re-

lated to the presheath density drop by using the assumption of adiabatic flow, i.e.

Te,se/Te∞ = ñγ−1
se , which leads to fe = γñγ−1

se .

Equations (2.3.19) and (2.3.23) provide the ion and electron velocities at the entrance

of electron sheaths. As a final remark, we mention that in the limit ηse → 0 both

electron and ion sheaths disappear and the electron and ion velocities at the wall

are given by Eqs. (2.3.13) and (2.3.19), respectively.

2.3.2.2 Plasma between two biased walls

Let us now consider the situation of a one-dimensional, steady-state plasma bound

in between two perfectly absorbing walls. Let us call φlw and φrw the potentials of

the left and right walls, and denote with δ = e(φrw − φlw)/Te∞ > 0 the bias applied

between the walls. From now on we use the left wall as the reference for the nor-

malized plasma potential, namely η(s) = e[φ(s)− φlw]/Te∞. In order to maintain a
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steady-state, a source replenishes the plasma that is continuously lost at both ends

due to the sheath condition. In particular, the plasma source may be non-neutral

and currents may be established at the sheaths in order to ensure quasi-neutrality

in the plasma bulk. This situation is very common in biasing experiments, where

plasma currents feed the biased region by acting as non-neutral sources. These cur-

rents are eventually closed at the sheaths [79].

Two situations may be observed depending on the electric charge introduced by the

source, see Fig. 2.3.8. If the plasma source is such that Si ≥ Se, the plasma poten-

tial stays always above the highest wall potential φrw, and ion sheaths are present on

both sides. On the left side, the sheath edge potential is above the floating potential,

leading therefore to an ion current, |Γi| > |Γe|, where Γα = nα,seVα,se. On the right

side, the sheath edge potential is such that the current established maintains the

quasi-neutrality. If the source is negatively charged, Si < Se, the potential of the

plasma bulk approaches φrw in order for the sheath to evacuate the excess of electrons

(see Fig. 2.3.8). If the negative source is strong enough, the plasma potential sets

its value below φrw. In this regime, an ion sheath is established on one wall, while an

electron sheath is present on the other wall. This situation is found in many exper-

iments where a positive bias is applied (see, e.g., Refs. [72,67,79]). In the following,

we focus on this particularly interesting regime. We derive an expression relating

the bulk plasma potential, the bias and the wall currents, by using the results of

Sec. 2.3.2.1.

We consider the steady-state charge balance of a one-dimensional plasma bound

between two biased walls, in the presence of a non-neutral plasma source. We define

Jie as the ratio between the ion and electron sources,

Jie =

∫ L
0
Sidx∫ L

0
Sedx

(2.3.24)

where L is the size of the system. From the steady-state continuity equation for

ions and electrons, it follows that Jie is also equal to the ratio between the total ion

outflux and the total electron outflux,

Jie =
Γriw − Γliw
Γrew − Γlew

=
|Γriw|+ |Γliw|
|Γrew|+ |Γlew|

, (2.3.25)

where Γlαw = nlαwV
l
αw and Γrαw = nrαwV

r
αw are the particle fluxes at the left and right

walls. These are all outflowing, i.e. Γlαw < 0 and Γrαw > 0.

We assume that inside the sheaths the effect of Si and Se can be neglected. This

can be quantified as Sα � nseωpi, where ωpi =
√
e2nse/ε0mi is the ion plasma fre-

quency. This condition is derived by imposing Sα � Vα∂sn and taking Vα ∼ cs and

∂s ∼ 1/λD. As a consequence, the particle fluxes are conserved inside the sheaths
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0

s

η η=δ

η=0

Figure 2.3.8: Examples of plasma potential profiles η(s) for a bias δ = e(φrw − φlw)/Te∞ applied
between the two walls. The top curve is for the case of a neutral plasma source.
The middle curve is for a moderately charged negative source (Si . Se), while
the bottom curve is for a strongly charged negative source (Si � Se). Plots are
obtained from ODISEE simulations in the case of τ = 1.

and thus we can write Γlαw = Γlαse and similarly for the right wall. The fluxes in Eq.

(2.3.25) are therefore given by the fluxes at each sheath edge, and one can make

use of the ion and electron velocities at the sheath entrance derived in the previous

section, i.e. Eqs. (2.3.17) and (2.3.19) for the ions, and Eqs. (2.3.13) and (2.3.23)

for the electrons, to derive a relation between Jie and the potential in the plasma

bulk.

For this purpose, we assume L to be much larger than the sheath length, L� λD.

This allows us to consider the main plasma as infinitely far from both walls, defining

the bulk plasma potential as η∞ = η(L/2) and its density as n∞ = n(L/2). We

further assume that the normalized bias is large, namely δ = e(φrw − φlw)/Te∞ � 1,

such that the presheath potential drop can be neglected with respect to the sheath

potential drop. It follows that the sheath potential barrier at the left wall is η∞ > 0

(ion sheath) and that at the right wall is η∞−δ < 0 (electron sheath). We recall that

this situation corresponds to the bottom curve of Fig. 2.3.8. Using Eqs. (2.3.13),

(2.3.17), (2.3.19), (2.3.23), and Γl,rαw = Γl,rαse, we can write Eq. (2.3.25) as

Jie =
1√
µ

ñl

√
1

1+κ(η∞)
+ γτñγ−1

l + ñr
√
τe−(δ−η∞)/τ

√
2πI((δ−η∞)/τ)

ñl
e−η∞√
2πI(η∞)

+ ñr

√
τ

1+κ((δ−η∞)/τ)
+ γñγ−1

r

. (2.3.26)
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Here ñl = nlse/n∞ and ñr = nrse/n∞ are the sheath edge densities at the left and

right sides normalized to the bulk density, and the identity cs/vthe = 1/
√
µ has been

used. Equation (2.3.26) directly relates Jie to η∞, and it is valid for 0 < η∞ < δ,

which corresponds to the regime of an ion sheath on one wall and an electron sheath

on the other wall. Six parameters modulate the function Jie(η∞), namely µ, τ , δ,

γ, ñl and ñr. Figure 2.3.9 shows the bulk plasma potential as a function of Jie as

given by Eq. (2.3.26), for different values of τ and ñl/ñr.

It is interesting to note that in all cases there is an abrupt transition of the plasma

potential occurring around a critical value of the current ratio Jie. This can be

explained as follows. When the bulk plasma potential is η∞ ' δ, the current at

the left wall is due to ions entering the sheath at approximately the sound speed,

while the current at the right wall is fundamentally due to electrons entering at

approximately the thermal speed, thus giving Jie ' 1/
√
µ. As a matter of fact, the

right sheath draws electrons at about the thermal speed regardless of the value of

η∞, if η∞ < δ, since no potential barrier prevents them from being absorbed. On

the other hand, the left sheath draws ions at about the sound speed and electrons

at a speed that depends on the potential barrier, since Ve ∼ cs exp (Λ− η∞), see Eq.

(2.3.13). This exponential dependence explains why η∞ must approach the floating

potential ηf ' Λ in order for the left sheath to start drawing a significant amount

of electron current, therefore changing the value of Jie. Thus, for ηf . η∞ < δ the

left and right sheaths respectively draw almost the same ion and electron currents

as in the case η∞ ' δ, thus explaining the sharpness of the transition observed in

Fig. 2.3.9.

The transition in η∞ occurs at a certain current ratio Jie = Jt, which we identify

as the current ratio at which η∞ = δ/2. A general expression for Jt can be derived

from Eq. (2.3.26) by taking simultaneously the limits η∞ � 1 and δ− η∞ � 1, and

it is given by

Jt =
1√
µ

ñl
ñr

√
1 + γτñγ−1

l

τ + γñγ−1
r

(2.3.27)

A weak dependence of Jt on τ is found, as displayed in Fig. 2.3.9. Thus
√
µJt

mainly depends on the ratio of sheath edge densities. Figure 2.3.9 shows the de-

pendence of Jt on ñl/ñr. We can make a rough estimate of the expected density

ratio ñl/ñr. In the collisionless, isothermal limit, and neglecting sources and inertia,

the density drop in the presheath is given by the Boltzmann factor. Also, in order

to accelerate ions to sound speed (left presheath) and electrons to thermal speed

(right presheath), both presheath potential drops are expected to be approximately

equal to Te∞/2. As a consequence we expect ñl/ñr ' 1 for τ ∼ 1, implying that

Jt ' 1/
√
µ.
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Figure 2.3.9: Normalized main plasma potential η∞ as a function of the charge source ratio Jie
as given by Eq. (2.3.26) with δ = 20, γ = 3, and for different temperature ratios:
τ = 0.1 (top, black), τ = 1 (middle, blue), and τ = 3 (bottom, red). Different
density ratios are considered: ñl/ñr = 0.66 (left, dashed), ñl/ñr = 1 (middle,
solid) and ñl/ñr = 1.25 (right, dashed-dot).
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On the other hand, the sharpness of the transition is strongly dependent on the

temperature ratio τ . In fact, as one can see in Fig. 2.3.9, the smaller the value of τ ,

the steeper is the approach of η∞ to δ when Jie > Jt. To quantify this, we consider

the limit of Eq. (2.3.26) when η∞ → δ, which is

lim
η∞→δ

Jie = Jt

√
τ + γñγ−1

r

γñγ−1
r

+

√
2τ

µπγñγ−1
r

(2.3.28)

Equation (2.3.28) gives Jt for τ = 0, therefore a very sharp transition, and is a

monotonically increasing function of τ . This explains why the potential transition

is more abrupt for small values of τ .

We finally remark that the function Jie(η∞) does not strongly depend on the value

of γ, which is expected to lie in between γ = 5/3 (three-dimensional flow) and γ = 3

(one-dimensional flow). Therefore the value of the transition current mainly depends

on µ and ñl/ñr and the sharpness of the potential transition mainly depends on τ .

2.3.2.3 Numerical simulations

In order to confirm the validity of the analytical results presented in the previous

section, we perform numerical simulations with the ODISEE code. We simulate a

one-dimensional plasma bound between two absorbing walls at s = 0 and s = L,

where L is much larger than the sheath scale, L � λD. A source of ions and elec-

trons maintains the plasma in steady-state. Sources are located in the central region

[L/3, 2L/3] in order to avoid an influence on the sheath dynamics, and are taken to

be spatially uniform in this interval. In velocity space, ions and electrons are injected

according to a Maxwellian distribution with zero average velocity and temperatures

Ti0 and Te0 respectively. Notice that, as commonly observed in PIC simulations [16],

the steady state bulk plasma temperatures, Ti∞ and Te∞, are not necessarily equal

to the corresponding source temperatures, therefore we cannot choose a priori the

value of τ = Ti∞/Te∞. As electrons and ions undergo Coulomb self-collisions with a

mean free path λmfp smaller than the system size but much larger than the sheath

scale, i.e. L > λmfp � λD, particles present a thermalized distribution function far

from the walls, while the sheath remains essentially collisionless. Finally, Poisson’s

equation is solved by imposing the potential at the two boundaries, φ(0) = φlw and

φ(L) = φrw, such that e(φrw − φlw)/Te0 � 1. The mass ratio is set to µ = 100.

Sheath currents can be driven by varying the relative intensity of the ion and elec-

tron sources, therefore varying Jie.

Figure 2.3.10 shows time-averaged profiles of the plasma potential from simulations

performed with bias e(φrw − φlw)/Te0 = 20 and τ0 = Ti0/Te0 = 1. A number of

simulations are performed for different values of Jie around the estimated transi-

tion current ratio, namely Jt ≈ 1/
√
µ as ñl ' ñr. Clearly an abrupt transition in
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the plasma potential is observed when the charge source ratio Jie is slightly varied

around Jie = 1/
√
µ, and variations of less than 5% around this value are enough

to bring the potential of the plasma bulk from one wall potential to the other wall

potential.
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Figure 2.3.10: Time averaged profiles of the plasma potential for e(φrw − φlw)/Te0 = 20, τ0 = 1,
and for different values of Jie. Top curves are for

√
µJie = 1.05, 1.1, 1.3, 1.5.

Middle curve is for
√
µJie = 1. Bottom curves are for

√
µJie = 0.95, 0.9, 0.7.

In Fig. 2.3.11, we show the bulk plasma potential as a function of Jie for different

values of τs. The presence of a sharp transition closely recalls the analytical results

of Fig. 2.3.9. We remark that the comparison with the curves in Fig. 2.3.9 can only

be qualitative, since a curve with constant τ0 does not exactly correspond to a curve

with constant τ .

In order to accurately verify the general analytical expression in Eq. (2.3.26), we

proceed as follows. A set of simulations is performed where τ0 and Jie are varied.

Each pair of parameters (τ0, Jie) produces a certain steady state, from which φ(L/2),

ñl, ñr, Ti∞ and Te∞ are extracted. One can then obtain the following parameters:

τ = Ti∞/Te∞, η∞ = e(φ(L/2) − φlw)/Te∞, and δ = e(φlw − φrw)/Te∞. Finally, the

theoretical prediction for Jie is computed using Eq. (2.3.26) and compared with the

corresponding simulation parameter. This exercise is carried out for different values

of τ0 and Jie. Figure 2.3.12 shows the results of this comparison, which confirms the

validity of Eq. (2.3.26).
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Figure 2.3.11: Steady-state bulk potential as a function of Jie, for τ0 = 0.5 (black circles), τ0 = 1
(blue crosses), and τ0 = 3 (red stars). For all simulations e(φrw − φlw)/Te0 = 20.
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Figure 2.3.12: Comparison between the current ratio J thie predicted by Eq. (2.3.26) with γ = 3
and the corresponding current ratio Jsimie used as an input parameter in the
simulation. Labels are as in Fig. 2.3.11. Dashed line indicates J thie = Jsimie .

We now discuss the dependence of the transition current ratio Jt on the sheath edge
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Figure 2.3.13: Time averaged profiles of the ion density (solid, blue) and the electron density
(dashed, red) for e(φrw − φlw)/Te0 = 20 and Jie ' Jt. (a) τ0 = 1, (b) τ0 = 0.5, (c)
τ0 = 3. Indicated are the normalized sheath edge densities. The source is located
between the two vertical dashed lines.

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



2.3. Unmagnetized plasma sheaths page 49

densities ñl and ñr. According to Eq. (2.3.27), the value of Jt mainly depends on the

mass ratio µ and the density ratio ñl/ñr. In simulations with τ0 = 1 ' τ , the sheath

edge densities are about the same on both sides, as shown in Fig. 2.3.13a. This

explains why, in the case displayed in Fig. 2.3.11, the potential transition occurs at

Jie ' 1/
√
µ. In simulations with τ0 = 0.5, however, the sheath edge densities are

not the same on both sides, ñl . ñr (see Fig. 2.3.13b). Therefore, the potential

transition occurs at smaller values of Jie, as expected from Eq. (2.3.27). An opposite

trend is observed in simulations performed with τ0 = 3, namely ñl & ñr (see Fig.

2.3.13c). As one can observe in Fig. 2.3.13, the density ratios ñl/ñr are always

approximately equal to 1. In particular, ñl/ñr ' 0.9 for τ0 = 0.5, and ñl/ñr ' 1.2

for τ0 = 3. In Fig. 2.3.13 one can also note that the left sheath is positively charged

with ni > ne (ion sheath) and the right sheath is negatively charged with ne > ni
(electron sheath). We finally remark that, in the limit of τ = 0, simulations show an

unstable behavior of the bulk plasma potential, which oscillates between η∞ ' 0 and

η∞ ' δ. These oscillations may be due to kinetic instabilities such as the two-beam

instability [81].

2.3.2.4 Experimental implications

When a bias is locally applied with a probe or at the wall confining a plasma, and if

the bias is strongly positive with respect to the potential of the vessel wall, the result-

ing plasma potential has a value that is usually between the two surface potentials.

More precisely, the bulk potential η∞ is found to be close to either of the two wall

potentials for most values of Jie and shows an abrupt transition between these two

potentials around a value Jt ∼ 1/
√
µ. While this transition current ratio Jt mainly

depends on µ and ñl/ñr, the shape of the curve η∞(Jie) is strongly modulated by

τ . Therefore, a setup that would allow the experimental determination of the curve

η∞(Jie) could in principle provide a measure of the ion to electron temperature ratio

in the plasma and constrain the values of µ. A scheme of such experimental setup

is shown in Fig. 2.3.14. Two electrodes are immersed in a plasma and biased with

respect to each other with a constant value V1 − V2 � Te/e. The second electrode

is then biased with respect to the vessel with a value ∆V = V2− Vvessel that can be

varied. If the surface of the electrodes is small compared to that of the vessel, the

variations of ∆V are not expected to modify significantly the plasma potential [79].

Thus the value of the bulk plasma potential φ∞ with respect to the electrode poten-

tial V1 can be varied, therefore varying η∞. The corresponding current ratio Jie can

be measured by operating the electrodes as Langmuir probes (measuring the total

current) and as Grid Energy Analyzers (collecting exclusively the ion current).

This experimental scheme was further developed, designed and constructed by the

TORPEX group at CRPP, in the framework of a Master thesis [82]. Figure 2.3.15

shows an example of measurements carried out in TORPEX plasmas, showing the

presence of the predicted transition. While the position of the transition is at around
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Figure 2.3.14: An idea for an experimental setup that could provide a measure of the normalized
plasma potential η∞ as a function of the current ratio Jie. Two electrodes are
immersed in a plasma and biased with respect to each other with a constant value
V1−V2 � Te/e. The second electrode is then biased with respect to the vessel with
a value ∆V = V2−Vvessel that can be varied. Variations of ∆V = V2−Vvessel allow
varying the value of η∞. The electrodes can be operated as Langmuir probes (LP)
or Grid Energy Analyzers (GEA) to measure the corresponding current ratio Jie.
The GEA consists of at least two biased grids at V2 and VR and a collector at VC ,
repelling the electron current from the plasma and reducing the effect of secondary
electron emission at the collector. A small LP is inserted half way between the
two electrodes and measures the plasma potential and electron temperature, thus
providing the value of η∞.
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Figure 2.3.15: Experimental results obtained in the TORPEX device showing the predicted tran-
sition for the plasma potential as a function of the current ratio drawn at the bi-
ased walls. Two different methods were used to estimate the transparency of the
Grid Energy Analyzer. The first method (blue circles) was based on a calibration
curve deduced from a reference measurement, while the second one (red crosses)
assumed a transparency independent of the GEA voltage. Figure from [82].

the expected value of
√
µJie ∼ 1, the sharpness of the transition (which should

provide an estimate of τ) is hard to interpret and requires further study. First, the

GEA transparency is voltage-dependent and therefore difficult to calibrate. High

dimensional PIC simulations are probably necessary to investigate those effects.

Second, the presheath density drops ñl and ñr are not known and may depend on the

value of Jie. The measurement of these is possible, however the experimental device

needs to be modified. We can nevertheless conclude that the predicted behaviour of

the plasma potential is qualitatively well reproduced experimentally and that our

study opens the way to the development of a device capable of measuring Ti in edge

plasma conditions.

2.4 Magnetized plasma sheaths

Leveraging the analysis technique that we have developed for the case of unmag-

netized sheaths, we now turn to the study of magnetized plasma sheaths and the

derivation of boundary conditions to be applied to plasma turbulence codes.

When the magnetic field is oblique with respect to an absorbing wall, the plasma-wall
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transition consists of three subregions (see, e.g., Ref. [38] for a review): the collisional

presheath (CP), the magnetic presheath (MP), also called Chodura sheath, and the

Debye sheath (DS), which is in contact with the wall. In each of these regions a

potential drop proportional to the electron temperature is observed, ∆φ ∝ Te, but

on very different spatial scales. The CP width typically scales with the ion mean

free path, λmfp. The scale length of the MP is the ion sound larmor radius, ρs. The

DS width has a scale length of the order of the Debye length, λD. In the CP plasma

is quasineutral, ions are magnetized and accelerated towards the wall, reaching the

plasma sound speed cs at the MP entrance along the magnetic field direction. The

MP is also quasineutral but the electric field is strong enough to demagnetize the

ions, which are deflected and reach the DS entrance flowing at cs in the direction

normal to the wall. Inside the DS quasineutrality is violated.

Plasma turbulence fluid codes (see Refs. [28,83,29,31,32,33,34] for some examples)

are based on the quasineutrality approximation, which breaks down at the DS en-

trance. They are also typically based on the ion drift approximation (IDA), which

breaks down in the MP. Therefore the magnetic presheath cannot be described by a

fluid model based on the IDA. More precisely, in plasma fluid turbulence codes the

analysis of the dynamics is usually split into the direction parallel and perpendicular

to the magnetic field, i.e. by decomposing vi = v||ib + v⊥i, where b = B/B. The

drift ordering usually adopted, d/dt � ωci, where d/dt = ∂t + vi · ∇, implies that

the inertia term is small compared to the electric and magnetic forces in the ion

momentum equation, which in the cold ion limit is

min
d

dt
vi = enE + envi ×B . (2.4.1)

One can therefore write the perpendicular velocity as v⊥i = vE + vpol, where vE =

E×B/B2 is the leading order term, and vpol = (b/ωci)×dv⊥i/dt is the polarization

drift velocity which contains all terms of order one and higher in (1/ωci)d/dt. Within

the IDA, only the first order terms are retained, leading to

v⊥i = vE +
b

ωci
× d0

dt
vE (2.4.2)

where d0
t = ∂t + (v||ib + vE) ·∇. In the MP, the deflection of the sonic ion flow from

the direction parallel to the magnetic field to the direction of the electric field, which

is normal to the wall, requires that ions are demagnetized and therefore violates the

IDA. In fact, in the MP the ion inertia term is comparable to the other terms in

Eq. (2.4.1), min(vi · ∇)v⊥i ∼ env⊥i × B, which provides a scaling for the size of

the MP, λm, since mic
2
s/λm ∼ ecsB, and hence λm ∼ cs/ωci = ρs. Thus, in the MP

where the electric field varies on a scale length of the order of the ion sound Larmor

radius, the ion motion cannot be described within the ion drift approximation. As

a consequence, plasma turbulence fluid codes based on the IDA require boundary
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conditions at the MP entrance in order to account correctly for the plasma-wall

transition.

The magnetic presheath has been studied since the pioneering work of Chodura [84],

followed by an extensive research effort that has brought to light many important

aspects of this physical system, such as the effect of collisions [85, 86, 87], magnetic

field angle [84, 87, 88, 89], E × B and diamagnetic drifts [90, 91, 92, 93, 94, 95], and

finite ion temperature [84, 96]. Most of these studies provide a boundary condition

for the parallel ion velocity at the MP entrance, whereas the boundary conditions

for the other fluid quantities remain unclear.

The goal of the present section is to provide a complete set of boundary conditions to

be used at the MP entrance in IDA-based fluid codes. We target a set of boundary

conditions which can faithfully supply the sheath physics to the fluid codes and

which, at the same time, remain simple enough to be easily implemented. We work

under the assumption of a weakly collisional, steady-state plasma sheath with cold

ions and in contact with a totally absorbing wall, and we assume that gradients in the

directions parallel to the wall are on a scale much larger than ρs. In this framework

we determine rigorously the MP entrance condition and the boundary conditions for

the plasma density and temperature, the electrostatic potential, the ion and electron

parallel velocities, and the vorticity. The correctness of these boundary conditions

is verified via kinetic simulations of the magnetized plasma-wall transition carried

out with the ODISEE code.

2.4.1 The magnetic presheath entrance condition

We consider a weakly collisional, steady-state plasma in contact with an absorbing

wall, with Ti � Te and for which λD � ρs � λmfp. We assume a constant magnetic

field oblique to the wall at an angle α. For a suitable analytical description we use

a field aligned coordinate system, (x, y, z), where z is along B, x is perpendicular to

B and parallel to the wall, and y is perpendicular to both x and z, directed towards

the wall (see Fig. 2.4.1). In such geometry the magnetic field is B = (0, 0, B0). We

also define the coordinate normal to the wall surface, s = y cosα + z sinα.

We consider the presence of plasma gradients in the x direction with an ordering

ε = ρs/Ln ∼ ρs/Lφ ∼ ρs/LTe � 1, where Ln, Lφ, and LTe are the density, potential,

and temperature scale lengths in the x direction. Since the MP electric field has a

characteristic scale length of the order of ρs, it is much stronger than the electric

field present in the bulk plasma, and gradients eventually dominate along the s

direction. We remark that plasma gradients in the direction perpendicular to both

s and x do not affect the results derived herein, therefore we do not consider them

for the sake of simplicity.
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Figure 2.4.1: Schematic representation of the sheath geometry. The magnetic field B is oblique
to the wall at an angle α. The wall is indicated on the right together with the
sheath electric field E, which is along the normal direction s.

In order to simplify the notation, in the present section space and time are expressed

in the natural units of the system, using a reference electron temperature Te0, as

in Sec. 2.2.7. Namely the electron temperature and the electrostatic potential are

normalized as Te → Te/Te0 and φ → eφ/Te0, while space and time are normalized

as x→ x/ρs0 and t→ ωcit, where ρs0 = cs0/ωci, cs0 =
√
Te0/mi, and ωci = eB0/mi.

Velocities are therefore normalized to the sound speed, v → v/cs0. Finally, the den-

sity is normalized to a reference density, n → n/n0. In the following, all quantities

will be expressed in normalized units.

In order to describe the steady-state dynamics of the CP, similarly to what was done

in the case of unmagnetized sheaths, we now write a system of equations including

the ion continuity equation and the ion and electron parallel momentum equations.

We then derive the condition defining the MP entrance by following an approach

similar to that described in Sec. 2.3 in the case of unmagnetized sheaths. The steady

state continuity equation for ions is

∇ · (nvi) = Spi , (2.4.3)

where Spi is the ion particle source. Using the relation vsi = v||i sinα + vyi cosα, it

can be written as

vsi
∂n

∂s
+ n sinα

∂v||i
∂s

+ n cosα
∂vyi
∂s

+ n
∂vxi
∂x

+ vxi
∂n

∂x
= Spi . (2.4.4)

Equation (2.4.4) can be simplified by noting that the ion drift approximation, Eq.

(2.4.2), can be used in the CP to express the perpendicular velocities. At the zeroth

order in (1/ωci)d/dt, namely neglecting the ion polarization drift, Eq. (2.4.2) gives

vxi = − cosα∂sφ and vyi = ∂xφ. As a matter of fact, these expressions describe well

the perpendicular ion velocities in the CP, as shown later in the kinetic simulation

results (Section 2.4.3). Therefore the third and fourth terms in Eq. (2.4.4) cancel

each other since we have n cosα∂svyi = n cosα∂s∂xφ = −n∂xvxi, and for the fifth
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term we have vxi∂xn = −∂xn cosα∂sφ ∼ O(ε). The continuity equation, Eq. (2.4.4),

can then be rewritten in a simpler form, that is

vsi
∂n

∂s
+ n sinα

∂v||i
∂s
− cosα

∂n

∂x

∂φ

∂s
= Spi (2.4.5)

which is valid in the CP up to the MP entrance, where the polarization drift be-

comes important and the IDA breaks down.

We now consider the parallel component of the ion momentum equation, Eq. (2.4.1),

which in steady-state is

n

(
vsi

∂

∂s
+ vxi

∂

∂x

)
v||i = −n sinα

∂φ

∂s
+ S||mi , (2.4.6)

where we have introduced a source of momentum, S||mi, eventually present in the

system and due to either injection of particles, ionization or collisions. Using again

the relation vxi = − cosα∂sφ, Eq. (2.4.6) can be written as

nvsi
∂v||i
∂s

+ n

(
sinα− cosα

∂v||i
∂x

)
∂φ

∂s
= S||mi . (2.4.7)

Finally, we consider the steady-state momentum equation for electrons, that is

n(ve · ∇)ve = −µ(nE + nve × b +∇pe) + Sme , (2.4.8)

where µ = mi/me and pe = nTe. Equation (2.4.8) can be simplified since µ � 1,

and therefore the electron inertia term can be neglected almost all the way up to

the wall (electron inertia may become important only if the electric field varies on

a scale length that is comparable to the electron gyroradius ρe). Moreover, it is

reasonable to assume isothermal electrons in the CP, namely ∂sTe = 0; this consid-

erably simplifies the calculation and the expressions of the boundary conditions. A

complete calculation relaxing the hypothesis ∂sTe = 0 is presented in Appendix B,

which shows that the temperature gradient is in fact small at the MP entrance.

Hence, we have ∂spe = Te∂sn, and the parallel component of Eq. (2.4.8) is

µ sinαTe
∂n

∂s
− µ sinαn

∂φ

∂s
= S||me . (2.4.9)

The ion continuity equation, Eq. (2.4.5), and the parallel ion and electron momen-

tum equations, Eqs. (2.4.7) and (2.4.9), form a system of equations,
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vsi
∂n

∂s
+ n sinα

∂v||i
∂s
− cosα

∂n

∂x

∂φ

∂s
= Spi

nvsi
∂v||i
∂s

+ n

(
sinα− cosα

∂v||i
∂x

)
∂φ

∂s
= S||mi

µ sinαTe
∂n

∂s
− µ sinαn

∂φ

∂s
= S||me (2.4.10)

containing three unknowns (n, v||i, φ) and their respective gradients. The system of

equations (2.4.10) can also be written as a matrix system M
−→
X =

−→
S , where

−→
X =

 ∂sn

∂sv||i
∂sφ

 ,
−→
S =

 Spi
S||mi
S||me

 , (2.4.11)

and

M =

 vsi n sinα −∂xn cosα

0 nvsi n(sinα− ∂xv||i cosα)

µ sinαTe 0 −µn sinα

 . (2.4.12)

The system of equations (2.4.10) is valid in the CP up to the MP entrance, where

the IDA breaks down. In the CP, gradients are small and due to the presence of the

sources. At the MP entrance, gradients become large, ∂s ∼ 1, and the source terms

are much smaller than any other term in the fluid equations, i.e. |MijXj| � |Si|
for all i, j such that Mij 6= 0. In other words, nonzero gradients can be sustained

without sources at the MP entrance, which leads to M
−→
X ' 0 at this location. Now,

the presence of nonzero gradients imposes det(M) = 0, which defines the position

of the MP entrance. This condition can be written as

vsi = cs sinα

(
ρs

2 tanα

∂xn

n
±
√

1 +
( ρs

2 tanα

∂xn

n

)2

− ∂xv||i
tanα

)
. (2.4.13)

Notice that there are two solutions corresponding to the two opposite ends of the

field line; we keep the positive solution for which the coordinate s increases moving

towards the wall, as in Fig. 2.4.1. Recalling that vsi = v||i sinα + vyi cosα and that

vyi = ∂xφ ∼ O(ε), we can deduce that ∂xv||i sinα = ∂xvsi + O(ε2). Therefore from

Eq. (2.4.13) we have that ∂xv||i = ∂xcs + O(ε2), with ∂xcs = ∂xTe/(2
√
Te). We can

thus write Eq. (2.4.13) as

vsi = cs sinα
(
θn +

√
1 + θ2

n − θTe
)

(2.4.14)
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where

θn =
ρs

2 tanα

∂xn

n
, (2.4.15)

θTe =
ρs

2 tanα

∂xTe
Te

. (2.4.16)

Retaining only first order terms in θn ∼ θTe ∼ ε/ tanα, we obtain

vsi = cs sinα (1 + θn − θTe/2) . (2.4.17)

2.4.2 Boundary conditions at the magnetic presheath entrance

We now derive the boundary conditions for fluid turbulence codes at the MP en-

trance for the parallel ion and electron velocities, the plasma density, the electron

temperature, the electrostatic potential, and the vorticity.

2.4.2.1 Parallel ion velocity

Recalling that vsi = vyi cosα + v||i sinα and vyi = ∂xφ, the parallel ion velocity at

the MP entrance can be obtained by using Eq. (2.4.17). This leads to

v||i = cs

(
1 + θn − 1

2
θTe

)
− 1

tanα

∂φ

∂x

= cs

(
1 + θn − 1

2
θTe −

2φ

Te
θφ

)
(2.4.18)

where

θφ =
ρs

2 tanα

∂xφ

φ
. (2.4.19)

In the limit θn = θTe = θφ = 0, Eq. (2.4.18) retrieves the so-called Bohm-Chodura

criterion v||i = cs [16]. In the presence of plasma gradients in the x direction, the

main correction in Eq. (2.4.18) is typically due to the potential gradient. In fact,

assuming θn ∼ θTe ∼ θφ and φ ≈ 3Te, the correction related with the potential

gradient is six times larger than the density gradient correction, and twelve times

larger than the temperature gradient one. We note that the correction given by the

E × B drift, namely the last term in Eq. (2.4.18), is valid at any order in ε. As

a matter of fact, v||i may become negative at the MP entrance when θφ becomes

large, as shown later in the kinetic simulations presented in Sec. 2.4.3. Finally, we

note that in Ref. [94] the case θφ 6= 0 was studied, neglecting the fourth term on the

left hand side of Eq. (2.4.4). This leads to a different expression for v||i than in Eq.

(2.4.18).
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2.4.2.2 Density and potential

The density and potential gradients at the MP entrance can be obtained by observing

that, being det(M) = 0, the system M
−→
X = 0 allows us to relate among themselves

the components of
−→
X , namely the gradients of n, v||i and φ in the s direction. In

particular, we choose to express ∂sφ and ∂sn as a function of ∂sv||i. The second and

third equations of the system M
−→
X = 0 provide

∂φ

∂s
= − vsi

sinα− cosα∂xv||i

∂v||i
∂s

, (2.4.20)

∂n

∂s
=

n

Te

∂φ

∂s
. (2.4.21)

Using Eq. (2.4.17) to express vsi and again retaining only first order terms in θn
and θTe , we obtain

∂φ

∂s
= − (1 + θn + θTe/2) cs

∂v||i
∂s

, (2.4.22)

∂n

∂s
= − (1 + θn + θTe/2)

n

cs

∂v||i
∂s

. (2.4.23)

2.4.2.3 Temperature

The MP entrance condition was derived assuming no temperature gradient in the s

direction. For consistency,

∂Te
∂s

= 0 (2.4.24)

can be used as a boundary condition for the electron temperature. A more de-

tailed calculation that takes into account temperature variations is presented in

Appendix B and shows that the temperature gradient at the MP entrance is indeed

small.

2.4.2.4 Vorticity

The vorticity represents the curl of the E ×B drift in the parallel direction, being

defined as ω =
[∇ × (E × b)

] · b = ∇2
⊥φ, and it measures the frequency of the

plasma rotation in the plane perpendicular to the magnetic field. In the system

under consideration, we can write ∇2
⊥φ = ∂2

xφ+ ∂2
yφ = ∂2

yφ+O(ε2), and the term of

order ε2 can be neglected. Moreover, we have ∂2
yφ = cos2 α∂2

sφ, and ∂2
sφ at the MP

entrance can be estimated by computing the derivative of Eq. (2.4.20) along the s

direction and then using again Eq. (2.4.17) to express vsi. This leads to

ω = − cos2 α
[

(1 + θTe)

(
∂v||i
∂s

)2

+ cs

(
1 + θn +

1

2
θTe

)
∂2v||i
∂s2

]
. (2.4.25)
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2.4.2.5 Parallel electron velocity

While in the MP electrons are always magnetized since ρe � ρs, in the DS the

electron dynamics depends on the relative magnitude between λD and ρe. We focus

on the ρe � λD regime, where electrons remain magnetized all the way up to

the wall, and the value of v||e at the MP entrance essentially depends on ηm =

(φMPE − φW )/Te, the normalized potential drop from the MP entrance to the wall.

A detailed kinetic treatment of the electron trajectories, taking into account the

presence of gradients in the x direction, leads to the following result [90]:

v||e = cs exp (Λ− ηm)− 1

tanα

∂φ

∂x
+

1

n tanα

∂pe
∂x

(2.4.26)

where Λ = log
√
µ/2π, and ∂xpe/n is the diamagnetic drift velocity. Using the

definition of θn, θTe and θφ, Eqs. (2.4.15), (2.4.16), and (2.4.19), we can write Eq.

(2.4.26) as

v||e = cs
[

exp (Λ− ηm)− 2φ

Te
θφ + 2(θn + θTe)

]
(2.4.27)

which shows that both potential and diamagnetic corrections are comparable. We

remark that if ρe & λD, electron trajectories may become rather complex in the

Debye sheath [97,98], and it is not possible to find a simple expression for v||e as in

Eq. (2.4.26).

Equation (2.4.27) together with Eqs. (2.4.18), (2.4.22), (2.4.23), (2.4.24) and (2.4.25),

constitute the boundary conditions to be implemented in plasma fluid turbulence

codes at the MP entrance.

2.4.3 Particle simulations of the magnetic presheath

In order to confirm the validity of the analytical results presented in Secs. 2.4.1 and

2.4.2, we perform numerical simulations with the ODISEE code. In this case we

consider two absorbing walls at s = 0 and s = L, with L ' 20ρs ' 103λD, a source

of ions and electrons uniformly distributed in space, Ti/Te ' 10−2, electron-electron

Coulomb collisions, φw = 0 at the two boundaries, and a magnetic field constant

and tilted with respect to the wall at an angle α, as shown in Fig. 2.4.1. Parameters

are chosen such that the scaling

ρe . λD � ρs � λmfp < L (2.4.28)

is ensured. In particular, to guarantee ρs/ρe =
√
µ � 1, the realistic mass ratio

µ = 1836 is used in the simulations. We first show that the main features of the

CP, MP, and DS are retrieved by the simulations, and then we verify the boundary
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conditions presented in Sec. 2.4.2.

In order to describe the main features of the plasma-wall transition, we start by

considering floating conditions, namely no net current to the walls, and no gradients

in the x direction, i.e. θn = θTe = θφ = 0. This is achieved by setting equal ion

and electron particle sources, Spi = Spe. Figures 2.4.2a and 2.4.2b show the time-

averaged profiles of the plasma potential and the ion velocity vsi, in proximity of

the s = L wall (exactly the same consideration can be made for the s = 0 wall).

In the CP (black region in Fig. 2.4.2a), ions are accelerated and, according to the

analytical derivation of Sec. 2.4.1, the entrance of the MP is defined by the point

where vsi = cs sinα, corresponding to the point where the IDA is expected to break

down. This is confirmed by Figs. 2.4.2c and 2.4.2d, where one observes that in the

MP the ion perpendicular dynamics can no longer be described by the IDA, Eq.

(2.4.2). In Fig. 2.4.2a one can see that the thickness of the MP (green region in Fig.

2.4.2a) is of the order of ρs. In this region, ions are accelerated from vsi = cs sinα

to vsi = cs, as evident from Fig. 2.4.2b. The entrance of the DS corresponds to the

point where ions reach the sound speed along the s direction, vsi = cs, and inside the

DS (red region in Fig. 2.4.2a) quasineutrality is violated, as visible in Fig. 2.4.2e.

The results shown in Fig. 2.4.2 are all relative to the α = 30◦ case; the effect of the

angle α on the plasma potential in the different regions of the plasma-wall transition

is now discussed. Since in the MP ions are accelerated from vsi = cs sinα to vsi = cs,

the potential drop from the MP entrance to the DS entrance, ∆φMP , depends on

α. We can estimate ∆φMP by observing that the ion flux is approximately constant

throughout the sheath. Therefore the ratio between the ion velocities at the DS

entrance and at the MP entrance is inversely proportional to the ratio between the

densities at the same locations. Assuming that the ratio of densities is given by the

Boltzmann factor, we deduce e∆φMP/Te = − log (sinα), as confirmed by Fig. 2.4.3.

On the other hand, ∆φDS, the potential drop in the DS, has the opposite trend (see

Fig. 2.4.3), in such a way that the total drop from the MP entrance to the wall is

always equal to the floating potential, ηm = Λ. Finally, ∆φCP , the potential drop

in the CP, depends on the specific presheath process present in the plasma, such

as collisions or sources. Since those are independent of α in our simulations, ∆φCP
does not depend on α, as shown in Fig. 2.4.3, being e∆φCP/Te ≈ 0.7, as predicted

in Ref. [16].

Turning now to the validity of the boundary conditions derived in Sec. 2.4.2, we

note that a constant electric field Ex can be included in the one-dimensional model

considered by ODISEE, whereas plasma scenarios with θn 6= 0 and θTe 6= 0 cannot

be simulated. We thus limit ourselves to the analysis of the finite Ex effect, which

corresponds to a finite θφ in the boundary conditions. Figure 2.4.4 shows that the

ion parallel velocity at the MP entrance is, within a good approximation, indepen-

dent of α when Ex = 0, while it follows rather well Eq. (2.4.18) when Ex 6= 0. We
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Figure 2.4.2: Time-averaged profiles in proximity of the s = L wall, obtained from ODISEE
simulations, with α = 30◦: (a) electrostatic potential, (b) ion velocity in the s

direction, (c) ion velocity in the x direction (bottom, black) and the corresponding
velocity as given by the IDA (top, blue), in this case vxi = − cosα∂sφ according to
Eq. (2.4.2), (d) ion velocity in the y direction (bottom, black) and the correspond-
ing velocity as given by the IDA (top, blue), in this case vyi = −v||i sinα cosα∂2

sφ

according to Eq. (2.4.2), (e) normalized charge imbalance. Vertical dashed lines
indicate the location of the MP entrance and the DS entrance. Horizontal dashed
lines indicate Mach numbers M = 1 and M = sinα = 0.5.
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Figure 2.4.3: Potential drop in the CP (black crosses), MP (green crosses), DS (red crosses),
for different values of α. Results are obtained from PIC simulations carried out
with the ODISEE code. The total potential drop is also indicated (blue crosses).
The horizontal black dashed line indicates the value e∆φ/Te = 0.7, while the green
dashed line represents the function e∆φ/Te = − log (sinα) and the red dashed line
is e∆φ/Te = Λ + log (sinα).

note that the small discrepancy observed in the Ex = 0 case with respect to Eq.

(2.4.18), v||i = cs, is due to the contribution of the polarization drift (see Fig. 2.4.2d)

which is not taken into account in the derivation of the boundary conditions. For the

case Ex 6= 0, it is interesting to notice that, for sufficiently large E×B correction,

one has v||i < 0, thus indicating that particles are flowing, in the parallel direction,

from the wall into the main plasma. As a matter of fact, the flow in the direction

normal to the wall is given by the MP entrance condition, vsi = cs sinα, which is

independent of Ex. Since vsi = v||i sinα + vyi cosα, particles that are convected in

the y direction at the E×B velocity must travel backwards, into the main plasma,

along the magnetic field in order to ensure that vsi = cs sinα, from which v||i < 0.

The electron parallel velocity at the MP entrance is also shown in Fig. 2.4.4 as

a function of α, showing good agreement with Eq. (2.4.27) in both the Ex = 0

and the Ex 6= 0 cases. In order to verify the dependence of the boundary condi-
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tion for the parallel electron velocity on the potential barrier ηm, which in the limit

θn = θTe = θφ = 0 is v||e = cs exp (Λ− ηm), we explore the steady-state of the system

in non-ambipolar conditions. A non-neutral particle source is considered, Spi 6= Spe,

inducing a net current to the walls and therefore modifying the value of the potential

at the MP entrance. Figure 2.4.5 shows the value of v||e at the MP entrance, as a

function of the potential at this same position. The results are compared with the

analytical prediction, showing a fairly good agreement. Moreover Fig. 2.4.5 shows

that v||i at the MP entrance is independent of ηm.

Finally, we verify the expressions for the gradients of potential and density at the

MP entrance, Eqs. (2.4.22) and (2.4.23), and for the vorticity, Eq. (2.4.25), by com-

paring those with the numerical values from the simulations. This is shown in Fig.

2.4.6. The agreement is very good for the potential gradient and for the vorticity,

and reasonable for the density gradient. The difference between simulation results

and the analytical expressions is mainly due to the effect of Spi 6= 0 and Spe 6= 0 in

the MP.

2.4.4 Conclusion

We have provided a complete set of analytical boundary conditions at the MP en-

trance for plasma fluid turbulence codes based on the IDA. These are summarized

below for convenience, for both sides of the field line:

v||i = cs

(
±1 + θn ∓ 1

2
θTe −

2φ

Te
θφ

)
(2.4.29)

v||e = cs

(
± exp (Λ− ηm)− 2φ

Te
θφ + 2(θn + θTe)

)
(2.4.30)

∂φ

∂s
= −

(
±1 + θn ± 1

2
θTe

)
cs
∂v||i
∂s

(2.4.31)

∂n

∂s
= −

(
±1 + θn ± 1

2
θTe

)
n

cs

∂v||i
∂s

(2.4.32)

∂Te
∂s

= 0 (2.4.33)

ω = − cos2 α
[

(1 + θTe)

(
∂v||i
∂s

)2

+ cs

(
1 + θn +

1

2
θTe

)
∂2v||i
∂s2

]
(2.4.34)

where the upper signs apply if the magnetic field is directed towards the wall, and

the lower signs apply in the opposite case. We now make a few comments on the

newly derived boundary conditions.

For the parallel ion and electron velocities, Eqs. (2.4.29) and (2.4.30), the correc-

tions due to E×B and diamagnetic drifts might have a significant impact. In fact,
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Figure 2.4.4: Ion (top) and electron (bottom) parallel velocities at the MP entrance as a function
of α, for Ex = 0 (red crosses) and Ex/B = −0.2cs (blue circles). Results are
obtained from PIC simulations performed with ODISEE. Dashed line on the top
panel is the function f(α) = 1− 0.2/ tanα, which denotes the expected value from
the proposed set of boundary conditions. Black stars on the bottom panel denote
g(α) = exp (Λ− ηm)−0.2/ tanα, the expected value, being ηm the potential barrier
at the MP entrance observed in the simulations for each value of α.
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Figure 2.4.5: Ion (green stars) and electron (magenta crosses) parallel velocities at the MP en-
trance as a function of ηm, for α = 45◦. Results are obtained from PIC simulations
carried out with the ODISEE code. The dashed curve represents the function
exp (Λ− ηm).
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in the presence of strong radial gradients, the parallel velocities may display an in-

flowing character, as already discussed in Sec. 2.4.2 and observed in Fig. 2.4.4. To

our knowledge, while this effect has already been suggested in the literature [16],

these corrections to the parallel velocities have never been implemented in plasma

turbulence codes. The potential gradient in Eq. (2.4.31), ∂sφ, is proportional to

∂sv||i. Since ions are accelerated towards the wall, we typically have ∂sv||i > 0, and

therefore ∂sφ < 0, which is consistent with the potential drop expected in the vicin-

ity of the wall. Similarly for the density gradient, Eq. (2.4.32): we expect ∂sn < 0,

consistent with the conservation of ion particle flux. The vorticity, Eq. (2.4.34), is

also expected to be negative, ω < 0, setting the direction of rotation of the E ×B

flow at the edge. This is consistent with the fact that the sheath electric field, which

induces an E × B flow parallel to the wall, increases when approaching the MP

entrance.

We remark that in the limit of α → π/2, namely when the magnetic field is per-

pendicular to the wall, the MP disappears and the plasma-wall transition region is

reduced to the presence of the DS. In this limit, θn, θT , θφ → 0, and the boundary

conditions for v‖i and v‖e reduce to the Bohm boundary conditions at the DS en-

trance.

With the set of boundary conditions at the MP entrance presented here, it becomes

possible to describe the plasma dynamics in an open magnetic field line geometry

with a model based on the IDA, still taking into account properly the sheath physics.

2.5 Summary and outlook

In this chapter, we have investigated a certain number of basic aspects of the plasma-

wall transition region. First, we have described the ODISEE code, a numerical tool

that has been developed to gain insights on the physics of the plasma-wall transition

and to guide the derivation of analytical models describing this region. Second, we

have presented simulations of unmagnetized plasma sheaths, showing both numer-

ically and analytically that the ion flow at the sheath entrance becomes arbitrarily

small in the presence of electron currents. Also the effect of wall biasing on the

plasma potential has been investigated in a simple framework. An analytical model

predicts an abrupt transition of the plasma potential when the ratio of ion to elec-

tron wall currents exceeds a certain treshold. This transition is observed both in

simulations and experimentally. Finally, we have presented a study of magnetized

plasma sheaths. Leveraging our experience on the unmagnetized sheath, we have

developed a simple mathematical framework from which one can derive a complete

set of boundary conditions at the entrance of the magnetic presheath, where the

ion drift approximation breaks down. Simulations of the magnetized plasma-wall

transition support the analytical results.

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



2.5. Summary and outlook page 67

These boundary conditions can be used in drift-reduced fluid models for the simula-

tion of plasma turbulence in open field lines. The implementation of these boundary

conditions on the GBS code is the subject of Chapter 3.
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Chapter 3

Simulations of open field line

plasma turbulence

3.1 Introduction

A common feature of open field line plasmas is a relatively low temperature which

makes the plasma rather collisional. This is due the fact that the plasma is not

confined but instead particles are continuously lost along the field lines. The rel-

atively large collision rate allows local thermodynamic equilibrium to be attained

relatively quickly. Therefore a few moments of the particle distribution functions

can be reasonably used to model the plasma dynamics. This justifies the use of fluid

models to describe open field line plasma turbulence.

The lowest three moments of the particle distribution functions fα(x,v, t), where

α = {i, e}, can be identified with the particle density, the mean velocity and the

temperature,

nα(x, t) =

∫
fα(x,v, t)dv , (3.1.1)

Vα(x, t) =
1

nα

∫
vfα(x,v, t)dv , (3.1.2)

Tα(x, t) =
1

nα

∫
mi,j

3
(v −Vα)2 fα(x,v, t)dv . (3.1.3)

The spatio-temporal evolution of these quantities is described by a set of fluid equa-

tions derived by taking successive moments of the Boltzmann equation,

∂fα
∂t

+ v · ∂fα
∂x

+
Fα

mα

· ∂fα
∂v

=

(
∂fα
∂t

)
coll

, (3.1.4)
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where Fα = qα(E + v × B) is the Lorentz force given by the large scale electric

and magnetic fields, and the term on the right hand side accounts for the scattering

due to binary Coulomb collisions. The fluid equations obtained from moments of

Eq. 3.1.4 are coupled and the time evolution of each moment depends on one higher

order moment, leading to an infinite hierarchy of moments. This is generally refered

to as the closure problem.

A closed set of two-fluid equations describing plasma turbulence in strongly col-

lisional, strongly magnetized plasmas was summarized by Braginskii in 1965 [23].

Later, a number of reduced models more suited for computational treatment were

deduced [24], in some cases taking into account ion gyro-motion effects or kinetic

effects neglected in the original Braginskii equations [25,26,27]. A number of codes

have been recently developed based on this reduced model [28, 29, 30, 31, 32, 33, 34].

Numerical simulations using these codes have been carried out over the last years,

shedding light on the origin and nature of plasma turbulence in open magnetic field

line configurations. In particular, the GBS code has been developed at CRPP and is

used to perform global, three-dimensional simulations of plasma turbulence in open

field line configurations [34]. Reaching predictive capabilities remains, however, an

outstanding challenge that involves a proper treatment of the plasma-wall interac-

tions at the end of the field lines.

In this chapter, we first present the Braginskii equations and then we derive their

drift-reduced limit. We then present the GBS code, which is based on the drift-

reduced Braginskii equations. The implementation in GBS of the boundary con-

ditions derived in Chapter 2 is described and, as an example, we present results

from simulations of tokamak SOL turbulence in a limited configuration. We discuss

the equilibrium profiles and the parallel currents present at the interface between

the plasma and the limiter, and we briefly describe the main features of plasma

turbulence. Finally, we show two examples of turbulence simulations in a simple

magnetized toroidal geometry: the first aiming to describe TORPEX plasmas, the

second focused on the simulation of three-dimensional seeded blobs.

3.2 Braginskii equations

It is a general result of statistical mechanics that the particles of any gas in thermal

equilibrium are characterized by a Maxwellian velocity distribution,

f0(v) = n
( m

2πT

)3/2

exp

(
−m(v −V)2

2T

)
. (3.2.1)

Moreover, if the distribution function evolves only by virtue of collisions, then no

matter what the initial conditions are the distribution function will approach a
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Maxwellian in a time of the order of the collision time.

In a strongly collisional plasma, the characteristic time τ for energy exchange under

collisions between like particles is smaller than the characteristic time T for the

variation of the macroscopic quantities,

τα � T . (3.2.2)

Here τi and τe are respectively the ion and electron collision times, defined as

τi =
3
√
miT

3/2
i

4
√

2πλZ4e4ni
, τe =

3
√
meT

3/2
e

4
√

2πλZ2e4ni
, (3.2.3)

and represent the characteristic times for isotropization and thermalization within a

given species population. Also, in a collisional plasma, the macroscopic quantities do

not change significantly over distances comparable to that traversed by the particles

between collisions. For a strongly magnetized plasma, ωcατα � 1, this condition is

L|| � λαmfp , L⊥ � ρα , (3.2.4)

where L|| and L⊥ are the typical plasma scale lengths parallel and perpendicular to

the magnetic field, λαmfp = vthi,eτα is the mean free path for momentum exchange

and ρα = vthα/ωcα is the Larmor radius. In fact, the motion of particles across the

magnetic field is bound by the Larmor radius, which is smaller than the mean free

path by a factor ωcατα � 1. Therefore in a strongly collisional, strongly magnetized

plasma satisfying (3.2.2) and (3.2.4), the local distribution of each species is always

very close to a Maxwellian.

As the solution of the Boltzmann equation for a given species approximates a

Maxwellian in a strongly collisional plasma, we can write

f(x,v, t) = f0(x,v, t) + f1(x,v, t) (3.2.5)

where

f0(x,v, t) = n(x, t)

(
m

2πT (x, t)

)3/2

exp

(
−m(v −V(x, t))2

2T (x, t)

)
(3.2.6)

and |f1|/f0 � 1 is treated as a small perturbation on the zeroth-order distribution

function f0. The idea behind the Braginskii closure is to plug the expression (3.2.5)

into the Boltzmann equation (3.1.4), and then find an expression for f1 as a function
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of the Maxwellian parameters n, V and T, and their spatio-temporal derivatives.

Then the temporal derivatives can be expressed in terms of the spatial derivatives

by using the not-yet-closed fluid equations, e.g. ∂tn = −∇ · (nV). Finally, the

gradients of f1 are neglected and the Coulomb collision operator is linearized in f1.

This procedure leads to a linear integro-differential equation for the function f1 in

velocity space (see, e.g., Ref. [99]). Solving this equation provides an expression for

f1(v) that is linear in the factors that disturb the Maxwellian distribution function,

e.g. ∇T , ∂Vj/∂xk, etc. The fluid equations can then be closed by substituting

f1 in the expression for the higher order fluid moments, namely the heat flux, the

momentum flux, etc. The resulting closed set of fluid equations was summarized by

Braginskii in 1965 and is given by

∂nα
∂t

+ ∇ · (nαVα) = 0 (3.2.7)

mαnα
dαVα

dt
= −∇pα −∇ · πα + eαnα (E + Vα ×B) + Rα (3.2.8)

3

2
nα
dαTα
dt

= −pα∇ ·Vα −∇ · qα +Qvisc
α +Qα (3.2.9)

where pα = nαTα is the scalar pressure and πα is the stress tensor. The complete

pressure tensor for a given species is then Πjk = pδjk+πjk. Also, dα
dt

= ∂
∂t

+Vα ·∇ is

the Lagrangian derivative, and ei = +Ze and ee = −e are the electric charges. The

density equation is a standard continuity equation without sources. The equation

for Vα is a Newton equation and results into a balance between inertia, the pressure

gradient force, the stress tensor force, the electromagnetic Lorentz force and the

collisional friction force R, such that R = Re = −Ri. The equation for Tα is a heat

equation and includes the heat flux divergence ∇ · qα, the viscous heat losses Qvisc
α

and the collisional heat exchange Qα. The Braginskii equations are closed and thus

provide analytical expressions for the terms related to disturbances from thermal

equilibrium, namely R, πe, πi, qe, qi, Q
visc
e , Qvisc

i , Qe, and Qi. We now give their

expressions and discuss their meaning. A qualitative description of the origin of

each term is presented in great detail in [23].

The friction force term is R = Ru + RT , with

Ru = −mene
τe

(0.51u‖ + u⊥) ≡ ene

(
j‖
σ‖

+
j⊥
σ⊥

)
, (3.2.10)

RT = −0.71ne∇‖Teb− 3

2

ne
ωceτe

b×∇Te , (3.2.11)

where σ‖ = 1.96σ⊥ and σ⊥ = e2neτe/me are the parallel and perpendicular conduc-

tivities, b = B/B is the unitary magnetic field vector, and j‖ = ene(V‖i− V‖e)b and

j⊥ = ene(V⊥i − V⊥e) are the parallel and perpendicular current densities. Ru is
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the friction force due to the existence of a relative velocity u = Ve − Vi and RT

is the friction force due to an electron temperature gradient. The first term in RT

arises as a consequence of electrons losing momentum on ions through collisions,

even though it does not contain τe explicitly. The second term in RT is due to finite

electron Larmor motion.

The electron heat flux is defined in a similar way, qe = qeu + qeT , with

qeu = 0.71neTeu‖ +
3

2

neTe
ωceτe

b× u , (3.2.12)

qeT = −χ‖e∇‖Teb− χ⊥e∇⊥Te − 5

2

neTe
eB

b×∇Te , (3.2.13)

where χ‖e = 3.16neTeτe/me and χ⊥e = 4.66neTe/meω
2
eτe are the parallel and perpen-

dicular electron heat diffusivities. The meaning of each of these terms is nontrivial

but they all arise from electron-electron or electron-ion collisions. In particular, the

first term in qeu can be related to the Onsager symmetry with respect to RT [23].

For the ion species, qiu can be neglected since the characteristic time for ions losing

momentum on electrons is very large, therefore qi = qiT , with

qiT = −χ‖i∇‖Tib− χ⊥i∇⊥Ti +
5

2

niTi
ZieB

b×∇Ti . (3.2.14)

For a strongly magnetized plasma, the components of the stress tensor πjk for a

given species have the following form (with the z axis parallel to the magnetic field):

πzz = −η0Wzz (3.2.15)

πxx = −η0
1

2
(Wxx +Wyy)− η1

1

2
(Wxx −Wyy)− η3Wxy (3.2.16)

πyy = −η0
1

2
(Wxx +Wyy)− η1

1

2
(Wyy −Wxx) + η3Wxy (3.2.17)

πxy = πyx = −η1Wxy + η3
1

2
(Wxx −Wyy) (3.2.18)

πxz = πzx = −η2Wxz − η4Wyz (3.2.19)

πyz = πzy = −η2Wyz + η4Wxz (3.2.20)

where Wjk is the so-called rate-of-strain tensor and is given by

Wjk =
∂Vj
∂xk

+
∂Vk
∂xj
− 2

3
δjk∇ ·V (3.2.21)

and the viscosity coefficients η are different for ions and electrons. For electrons,
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η0e = 0.73neTeτe , (3.2.22)

η1e = 0.51
neTe
ω2
ceτe

, η2e = 4η1e , (3.2.23)

η3e = −1

2

neTe
ωce

, η4e = 2η3e , (3.2.24)

while for ions,

η0i = 0.96niTiτi , (3.2.25)

η1i =
3

10

niTi
ω2
ciτi

, η2i = 4η1i , (3.2.26)

η3i =
1

2

niTi
ωci

, η4i = 2η3i . (3.2.27)

The heat Qi, acquired by ions through collisions with electrons, is given by

Qi = 3
me

mi

ne
τe

(Te − Ti) , (3.2.28)

and it is responsible for the equilibration of the ion and electron temperatures. The

heat Qe lost by the electrons through collisions with the ions is

Qe = −R · u−Qi =
j2
‖

σ‖
+
j2
⊥
σ⊥

+
1

ene
j ·RT − 3

me

mi

ne
τe

(Te − Ti) (3.2.29)

where the heat loss due to the work of the friction force R is the dominant term.

The viscous heat losses Qvis for a given species is given by

Qvis ≡ −π : ∇V = −πjk ∂Vj
∂xk

= −1

2
πjkWjk (3.2.30)

where A : B is the Frobenius inner product between two tensors.

Equations (3.2.7)-(3.2.9), together with the expressions for R, πe, πi, qe, qi, Q
visc
e ,

Qvisc
i , Qe, and Qi, represent a closed set of two-fluid equations called the Braginskii

equations. They describe the dynamics of a strongly collisional, strongly magnetized

plasma and are derived entirely from first principles.
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3.3 Drift-reduced Braginskii equations

The Braginskii equations, Eqs. (3.2.7)-(3.2.9), describe the plasma dynamics at time

scales ranging from the electron Larmor scale, ω−1
ce ∼ 10−11 s, to the confinement

time scale of order 1 s, with the turbulent fluctuations occurring at intermediate time

scales. It is therefore of crucial importance for a suitable computational treatment

to eliminate the fast time scales from the equations. In this section, we describe the

drift-reduced Braginskii equations derived by Zeiler in 1997 [24]. We consider the

electrostatic, cold ion limit, which yields the reduced model equations used in the

framework of this thesis to perform tokamak SOL turbulence simulations.

We start by simplifying the terms in the Braginskii equations that are related to

disturbances from thermal equilibrium, namely the friction force R, the stress ten-

sors πα, the heat fluxes qα, and the collisional heating terms Qα and Qvisc
α . First,

since Ti = 0 in the cold ion limit, the ion temperature is not evolved and the ion

pressure terms in the momentum equation vanish, i.e. pi = 0 and πi = 0. Second,

we can assume ωceτe � 1 and neglect terms of order (ωceτe)
−1. The friction force

then becomes

R =
(
eneν‖j‖ − 0.71ne∇‖Te

)
b , (3.3.1)

where ν‖ = 1/σ‖ is the parallel plasma resistivity. The resulting friction force has

only a parallel component, since the perpendicular component is smaller than the

Lorentz force by a factor ωceτe. Similarly, the electron heat flux becomes

qe = − (0.71Tej‖/e+ χ‖e∇‖Te
)

b− 5

2

neTe
eB

b×∇Te . (3.3.2)

The viscosities η1 and η2 vanish in the limit of a strongly magnetized plasma, and

the electron stress tensor πe can be written as

πe = πe
visc + πe

FLR , (3.3.3)

where the viscous part contains the terms proportional to η0 and the finite Larmor

radius part contains the terms proportional to η3. Finally, the heat acquired by the

electrons through collisional processes, Qvisc
e +Qe, is dominantly given by the term

arising from the thermal force [24],

Qvisc
e +Qe ' 1

ene
j ·RT = −0.71j‖∇‖Te/e . (3.3.4)
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3.3.1 Drift-reduced approximation

We now proceed in removing the fastest time scales from the fluid equations by

splitting the perpendicular dynamics into the fast gyro motion and the cross-field

drifts. Since the gyro motion averages to zero only the drifts will persist in the final

equations.

The idea of the drift-reduction is to solve the electron and ion momentum equations,

Eq. (3.2.8), in the limit

d

dt
� ωci , (3.3.5)

which is based on the assumption that ρs/L⊥ � 1 and on the estimate

∂

∂t
∼ V ·∇ ∼ VE

L⊥
∼
(
ρs
L⊥

)2

ωci � ωci . (3.3.6)

Here VE is the equilibrium E × B drift with E ∼ φ/L⊥ ∼ Te/(eL⊥), and ρs is

the ion sound larmor radius. An estimate of the convective term as given by the

fluctuations of the E×B drift, ṼE, is also compatible with Eq. (3.3.5) if one assumes

(k⊥ρs)
2 � 1, namely

∂

∂t
∼ V ·∇ ∼ k⊥ṼE ∼ (k⊥ρs)

2 ωci � ωci , (3.3.7)

where k⊥ is the perpendicular wavenumber of the fluctuations and we have assumed

that φ̃ ∼ φ. Therefore in the ion momentum equation, Eq. (3.2.8), the ratio of the

inertia term to the Lorentz force term is of the order of ω−1
ci (d/dt)� 1, and similarly

for the electrons since ωci � ωce. This implies that we do not need to time evolve

the momentum equations to evaluate the ion and electron perpendicular velocities.

In fact, by crossing Eq. (3.2.8) with B/(enαB
2), we can express V⊥i and V⊥e as

V⊥i = VE + Vpol,i , (3.3.8)

V⊥e = VE + Vde + Vpol,e + Vvisc + VFLR , (3.3.9)

where
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VE =
E×B

B2
, (3.3.10)

Vde =
∇pe ×B

eneB2
, (3.3.11)

Vpol,i =
b

ωci
× d

dt
V⊥i , (3.3.12)

Vpol,e =
d

dt
V⊥e × b

ωce
, (3.3.13)

Vvisc = ∇ · πevisc × b

eneB
, (3.3.14)

VFLR = ∇ · πeFLR × b

eneB
. (3.3.15)

The velocities given by Eqs. (3.3.12) and (3.3.13) are the so-called polarization drifts

(or inertia drifts) and account for the effect of finite inertia. Within the drift-reduced

assumption, Eq. (3.3.5), the polarization drifts are small compared to the E × B

drift. Keeping only terms of order one in ω−1
ci (d/dt), we can write

Vpol,i =
b

ωci
× di0
dt

VE +O(
[
ω−1
ci (d/dt)

]2
) ' b

ωci
× di0
dt

VE (3.3.16)

where

di0
dt

=
∂

∂t
+
(
VE + V‖ib

) ·∇ (3.3.17)

is the Lagrangian derivative at the zeroth order in ω−1
ci (d/dt). While the electron

diamagnetic drift is comparable to the the E ×B drift, Vde ∼ VE, we can neglect

the electron polarization drift since Vpol,e/Vpol,i ∼ me/mi. The electron drifts that

are due to the stress tensor force are also negligible. In fact, the dominant term in

the divergence of πe
FLR is

∇ · πeFLR ' −mene (Vde · ∇) Ve , (3.3.18)

where the definition of the gyroviscosity η3e = −pe/(2ωce) has been used. It is

then easy to show that VFLR/Vpol,i ∼ me/mi by substituting Eq. (3.3.18) into

Eq. (3.3.15). Similarly, using the dominant term in the divergence of πe
visc, together

with the definition of the viscosity η0e = 0.73peτe, one can show from Eq. (3.3.14)

that Vvisc/Vpol,i ∼
√
me/mi(λmfp/L||)(k⊥ρs)

−2, which is negligible for sufficiently

large collisionality.

The drift-reduction procedure thus leads to

V⊥i = VE + Vpol,i , (3.3.19)

V⊥e = VE + Vde , (3.3.20)

where VE, Vde and Vpol,i are given by Eqs. (3.3.10), (3.3.11) and (3.3.16).
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3.3.2 Quasi-neutrality

The Braginskii equations are further simplified by assuming quasi-neutrality. In

fact, using Poisson’s equation we see that the charge imbalance scales as

ne − Zini
ne

=
ε0∇2φ

ene
∼
(
λD
L

)2

� 1 (3.3.21)

where λD =
√
ε0Te/e2ne is the Debye length, L is the typical scale length for the

variation of the potential, and we have assumed eφ ∼ Te. We can therefore assume

Zini ' ne ≡ n . (3.3.22)

3.3.3 Continuity and vorticity equations

Under both the drift-reduced and the quasi-neutrality approximations, the electron

and ion continuity equations, Eq. (3.2.7), become

∂n

∂t
+ ∇ · [n(VE + Vde + V‖eb)

]
= 0 , (3.3.23)

∂n

∂t
+ ∇ · [n(VE + Vpol,i + V‖ib)

]
= 0 . (3.3.24)

As Eqs. (3.3.23) and (3.3.24) must yield the same time evolution of the plasma den-

sity n, by substracting the two equations we deduce the so-called vorticity equation,

∇ · (enVpol,i) +∇‖j‖ −∇ · (enVde) = 0 (3.3.25)

which is equivalent to a current continuity equation ∇ · j = 0. In fact, Eq. (3.3.25)

is a balance between the divergence of the polarization current, the parallel current,

and the electron diamagnetic current. We notice that ∇ · (j‖b) = ∇‖j‖ has been

assumed, which corresponds to assuming ∇ · b = 0 or ∇||B = 0. In a tokamak, this

corresponds to neglecting finite aspect ratio effects. We now rewrite Eq. (3.3.25) by

using the definition of the ion polarization drift, Eq. (3.3.16). This gives

∇ ·
(

en

Bωci

di0
dt

∇⊥φ
)

= ∇‖j‖ −∇ · (enVde) , (3.3.26)

which describes the time evolution of the vorticity, ω = ∇2
⊥φ, a measure of the

frequency of rotation of the plasma eddies in the plane perpendicular to the mag-

netic field. For the expression of the polarization current in Eq. (3.3.26), we have

neglected variations of the magnetic field.

The electron continuity equation, Eq. (3.3.24), and the vorticity equation, Eq. (3.3.26),

are part of the set of drift-reduced Braginskii equations.
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3.3.4 Motion along the magnetic field

The parallel component of the electron momentum equation, Eqs. (3.2.8), is

men
deV‖e
dt

= −∇‖pe −
(
∇ · πe

)
‖

+ en∇‖φ+R‖ (3.3.27)

where (
∇ · πevisc

)
‖

=
2

3
∇‖Ge , (3.3.28)(

∇ · πeFLR
)
‖

= −men (Vde · ∇) V‖e , (3.3.29)

and

Ge = −3η0e

(
∇‖V‖e − κ ·Ve − 1

3
∇ ·Ve

)
. (3.3.30)

Here κ = (b · ∇)b is the field line curvature. The FLR term, Eq. (3.3.29), leads to

the so-called diamagnetic cancellation, namely the cancellation of the diamagnetic

convection term in the Lagrangian derivative. Using the expression for the parallel

component of the friction force R,

R‖ = eneν‖j‖ − 0.71ne∇‖Te , (3.3.31)

we can write Eq. (3.3.27) as

men
de0V‖e
dt

= −∇‖pe + en∇‖φ− 0.71ne∇‖Te + eneν‖j‖ − 2

3
∇‖Ge . (3.3.32)

where

de0
dt

=
∂

∂t
+
(
VE + V‖eb

) ·∇ (3.3.33)

is the Lagrangian derivative without the diamagnetic drift. Eq. (3.3.32) is a gener-

alized Ohm’s law and belongs to the set of drift-reduced Braginskii equations.

The parallel component of the ion momentum equation, Eq. (3.2.8), is given by

min
diV‖i
dt

= −en∇‖φ−R‖ . (3.3.34)

Adding up the ion and electron parallel momentum equations, Eq. (3.3.34) and

(3.3.32), leads to

min
di0V‖i
dt

= −∇‖pe . (3.3.35)

Here we have neglected the electron inertia, the electron viscosity and the ion po-

larization drift. Eq. (3.3.35) describes the time evolution of the parallel ion velocity

and is part of the set of drift-reduced Braginskii equations.
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3.3.5 Electron temperature equation

The time evolution of the electron temperature, Eq. (3.2.9), is

3

2
n
deTe
dt

= −pe∇ ·Ve −∇ · qe +Qvisc
e +Qe . (3.3.36)

Using the simplified expressions for the electron heat flux, Eq. (3.3.2), and for the

viscous and frictional electron heating, Eq. (3.3.4), we can write

3

2
n
deTe
dt

= −pe∇ ·Ve+0.71
Te
e
∇‖j‖+χ‖e∇2

‖Te+∇ ·(5

2

nTe
eB

b×∇Te) (3.3.37)

where we have assumed χ‖e to be constant.

3.3.6 Summary

The drift-reduced Braginskii equations are summarized below for convenience:

∂n

∂t
= −∇ · [n(VE + Vde + V‖eb)

]
, (3.3.38)

∇ ·
(

en

Bωci

di0
dt

∇⊥φ
)

= ∇‖j‖ −∇ · (enVde) , (3.3.39)

men
de0V‖e
dt

= −∇‖pe + en∇‖φ− 0.71ne∇‖Te + eneν‖j‖ − 2

3
∇‖Ge , (3.3.40)

min
di0V‖i
dt

= −∇‖pe , (3.3.41)

3

2
ne
deTe
dt

= −pe∇ ·Ve + 0.71
Te
e
∇‖j‖ + χ‖e∇2

‖Te + ∇ · (5

2

nTe
eB

b×∇Te)

(3.3.42)

which form a self-consistent set of two-fluid equations, evolving the plasma density

n, the electrostatic potential φ, the parallel electron velocity V‖e, the parallel ion

velocity V‖i, and the electron temperature Te.

3.4 The GBS code

In this section, we present the GBS code, which is based on the drift-reduced Bra-

ginskii equations, Eqs. (3.3.38)-(3.3.42). After a brief summary of the past devel-

opments and achievements of the GBS code, we describe the model equations and

summarize their numerical implementation. In particular, we desribe the implemen-

tation of the magnetic presheath boundary conditions derived in Chapter 2.
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3.4.1 Introduction

In the last few years, the Global Braginskii Solver code, GBS, has been developed

with the goal of simulating plasma turbulence in the tokamak SOL by evolving the

full profiles of the various quantities with no separation between “perturbations”

and “equilibrium”. These simulations can explore the self-consistent evolution and

structure of the plasma profiles in the presence of (i) plasma density and heat input

from the core of the fusion machine, (ii) cross-field transport produced by plasma

instabilities (interchange instability or drift waves, for example), and (iii) parallel

losses at the sheaths where the magnetic field lines terminate on the walls.

In order to progressively approach the complexity of tokamak edge simulations, the

GBS code was initially developed and used to simulate turbulent dynamics in basic

plasma physics devices of increasing complexity [100,101,102,103,104,105,106,107,

75, 108]. Containing some of the main elements of SOL plasma dynamics, some of

these devices offer a simple and well-diagnosed testbed to study the basic physics

of plasma edge turbulence and the associated transport of heat and particles in a

simplified setting. In particular, the initial GBS simulations were focused on linear

devices, such as LAPD [19], and on the simple magnetized toroidal configuration

(SMT), such as the TORPEX device [21], in which a vertical magnetic field Bv,

superimposed on a toroidal field Bφ, creates helicoidal field lines with both ends

terminating on the torus vessel.

The first version of the code was able to follow the two-dimensional plasma dynam-

ics in the plane perpendicular to the magnetic field [100,102,103,104,107,108], and

was developed from ESEL [28], a code that implements the algorithm described in

Ref. [109]. The two-dimensional code was used for the simulation of ideal inter-

change SMT turbulence, based on the fact that in this regime k‖ = 0. GBS was

then extended to the third dimension, in order to describe the dynamics in the

direction parallel to the magnetic field. Starting from flux-tube simulations [103],

GBS reached the capability of performing global simulations of SMT and linear de-

vices [105, 106, 107, 75], and was eventually updated to perform global simulations

of the tokamak SOL [110]. We would like to remark that a fluid description of

the SOL dynamics with a model based on the Braginskii equations may be limited

to low-temperature regimes such as the L-mode. In fact, high-temperature events

such as the Edge Localized Modes (ELMs) observed in H-mode plasmas [111], may

require more sophisticated fluid closures [112].

Following the study on sheath physics presented in Chapter 2, we have implemented

in GBS the complete set of boundary conditions supplying the sheath physics at the

end of the field lines [55]. This has allowed a detailed study of the turbulent regimes

present in the SOL [113,114,115] and a comparison with experimental results from a

number of tokamaks [116]. Also, the effects of the sheath on the plasma turbulence
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and flows have been investigated [117, 118]. In particular, the role of the limiter

position in determining the SOL poloidal asymmetries has been elucidated [119].

Finally, a dedicated study of blob dynamics has been possible via three-dimensional

simulations of seeded blobs in a simple magnetized configuration [120].

Within the GBS development, a validation project of the GBS data has been carried

out [102,107]. In general, validation of edge turbulence codes is challenging because

of the difficult diagnostic access in tokamak plasmas and the complexity of the

interpretation of the experimental measurements. Being applied to a well-diagnosed

basic plasma physics experiment such as TORPEX, we have been able to compare

the GBS results to experimental data in great detail. We have also established

a rigorous framework to compare quantitatively simulations and experiments and

unravel the missing mechanisms in the physical model.

3.4.2 Model equations

In the electrostatic limit, the GBS code evolves the drift-reduced Braginskii equa-

tions, Eqs. (3.3.38)-(3.3.42), where the vorticity equation is further simplified by

using the Boussinesq approximation [121],

∇ ·
(

en

Bωci

di0
dt

∇⊥φ
)
' en

Bωci

di0
dt

∇2
⊥φ , (3.4.1)

which is a common approximation in the fluid community that considerably sim-

plifies the vorticity equation. Also, GBS is a flux-driven code, i.e. the equilibrium

gradients are not imposed but result from the balance between density and tem-

perature sources, Sn and ST , included in the density and temperature equations,

and the parallel and perpendicular transport of particles and heat. This allows to

follow the self-consistent evolution of both the plasma profiles and their fluctuations.

In order to better capture the structure of the equations and the meaning of each

term, we define the Poisson bracket {f, g} and the curvature operator C(f),

{f, g} ≡ b · (∇f ×∇g) , (3.4.2)

C(f) ≡ B

2

(
∇× b

B

)
·∇f . (3.4.3)

With these definitions, the GBS model equations are:
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∂n

∂t
=− 1

B
{φ, n} − ∇‖

(
nV‖e

)
+

2

eB
[C(pe)− enC(φ)] + Sn , (3.4.4)

en

Bωci

∂ω

∂t
=− en

Bωci
{φ, ω} − en

Bωci
V‖i∇‖ω +∇‖j‖ +

2e

B
C(pe) , (3.4.5)

men
∂V‖e
∂t

=−men
1

B
{φ, V‖e} −menV‖e∇‖V‖e −∇‖pe

+ en∇‖φ− 0.71ne∇‖Te + eneν‖j‖ − 4

3
η0e∇2

‖V‖e

− 2η0e

3eB
∇‖
(

5C(Te) + 5
Te
n
C(n) + eC(φ)

)
, (3.4.6)

min
∂V‖i
∂t

=−min
1

B
{φ, V‖i} −minV‖i∇‖V‖i −∇‖pe , (3.4.7)

∂Te
∂t

=− 1

B
{φ, Te} − V‖e∇‖Te − 2

3
Te∇‖V‖e

+ 0.71
2

3

Te
en
∇‖j‖ +

2

3n
χ‖e∇2

‖Te

+
4

3

1

eB

[
7

2
TeC(Te) +

T 2
e

n
C(n)− eTeC(φ)

]
+ ST , (3.4.8)

which are coupled to the Poisson equation ∇2
⊥φ = ω. We remark that the Poisson

brackets are all of the form {φ, f} and represent the convection of the quantity f

with the E×B drift. The terms containing the curvature operator C(f) arise from

the divergence of the E×B and diamagnetic drifts, which is non-vanishing for finite

magnetic field curvature.

Finally, GBS works with normalized quantities defined through a reference temper-

ature Te0, a reference density n0, and a magnetic field B0. In particular, the electron

temperature and the electrostatic potential are normalized such that Te → Te/Te0
and φ → eφ/Te0, and analogously for the density, n → n/n0. The perpendicular

coordinates are normalized with respect to ρs0 = cs0/Ωci0, where cs0 =
√
Te0/mi

and Ωci0 = eB0/mi. In the parallel direction, the macroscopic length R is used (for

SMT and tokamak simulations it corresponds to the major radius). Finally, time is

normalized such that t → t/(R/cs0). The normalized system of equations evolved

by GBS can be found in Ref. [34].

3.4.3 Geometry

The curvature operator, C(f), the perpendicular Laplacian operator, ∇2
⊥, the par-

allel gradient, ∇‖, and the Poisson bracket, {f, g}, that appear in the model equa-

tions, have to be specified for each particular geometry; this is made easy by the

GBS modular coding. We now provide the expressions for the operators in two
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different geometries: the SMT geometry (Figure 3.4.1) and the tokamak SOL geom-

etry (Figure 3.4.2). In both geometries, we consider a coordinate system where we

denote the perpendicular coordinates with x and y, being x the radial coordinate,

and y the coordinate perpendicular to both x and the magnetic field. We define

z as the parallel coordinate and we use zϕ for the periodic toroidal direction, such

that 0 < zϕ < 2πR. We also remark that in both geometries the coordinate system

is such that (y, x, z) is right-handed. Also, the magnetic field is dominantly along

the toroidal direction, thus the magnetic field lines intersect the vessel walls at very

shallow angles.

  

Figure 3.4.1: Sketch of the SMT geometry. The magnetic field has a dominant toroidal compo-
nent and a small vertical component. The resulting helical field lines start at the
bottom of the vessel and wind around the torus N times before intersecting the
top of the vessel (here N = 3). The dashed square indicates the actual simulation
boundary, which is toroidal symmetric.

In the SMT, the expressions for the operators are

C =
1

R

∂

∂y
, (3.4.9)

{f, g} =
∂f

∂y

∂g

∂x
− ∂g

∂y

∂f

∂x
, (3.4.10)

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
, (3.4.11)

∇‖ =
∂

∂z
=

∂

∂zϕ
+

Lv
2πNR

∂

∂y
, (3.4.12)

where N is the number of field line turns in the SMT, R its major radius, and Lv
is the height of the device. The quantity α = Lv/(2πNR) is the pitch angle of

the magnetic field lines with respect to the toroidal direction. Since α � 1, the y
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x

y

z



Figure 3.4.2: Sketch of the SOL geometry. The magnetic field has a dominant toroidal compo-
nent and a small poloidal component. The resulting helical field lines start at the
bottom side of the limiter and wind around the torus q times before intersecting
the top of the limiter. Here q = 1 and θl = π.

direction almost coincides with the vertical direction (Figure 3.4.1).

On the other hand, for tokamak SOL electrostatic turbulence, herein we consider

configurations with circular magnetic flux surfaces, no magnetic shear, and a large

aspect ratio (we remark that work is being done to remove these approximations

[115]). A toroidal limiter at a given poloidal location θl defines the boundaries of

the system along the poloidal direction (Figure 3.4.2). In this case we have

C =
1

R

(
sin θ

∂

∂x
+ cos θ

∂

∂y

)
, (3.4.13)

{f, g} =
∂f

∂y

∂g

∂x
− ∂g

∂y

∂f

∂x
, (3.4.14)

∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
, (3.4.15)

∇‖ =
∂

∂z
=

∂

∂zϕ
+

a

Rq

∂

∂y
(3.4.16)

where q is the safety factor, R is the tokamak major radius, a is the tokamak minor

radius, and θ = θl + y/a is the poloidal angle defined so that θ = 0 at the low-field-

side midplane and y = 0 and y = 2πa at the two sides of the limiter. In this case,

the pitch angle is α = εa/q where εa = a/R is the tokamak inverse aspect ratio.
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Since α� 1, the (x, y) plane almost coincides with the poloidal plane (x, θ).

3.4.4 Boundary conditions

The GBS model equations, Eqs. (3.4.4)-(3.4.8), are solved in a domain that cov-

ers the full toroidal angle but is bound in the x and y directions. Therefore the

set of fluid equations must be completed with a set of boundary conditions in the

radial direction and at the end of the field lines. The latter are given by the mag-

netic presheath entrance condition [55] and have been derived in Chapter 2. We

summarize them here for convenience,

V||i = cs

[
±1 + θn ∓ 1

2
θTe − 2

eφ

Te
θφ

]
(3.4.17)

V||e = cs

[
± exp (Λ− eφ/Te)− 2

eφ

Te
θφ + 2(θn + θTe)

]
(3.4.18)

∂φ

∂y
= −mics

e

[
±1 + θn ± 1

2
θTe

]
∂V||i
∂y

(3.4.19)

∂n

∂y
= − n

cs

[
±1 + θn ± 1

2
θTe

]
∂V||i
∂y

(3.4.20)

∂Te
∂y

= eκT
∂φ

∂y
(3.4.21)

∇2
⊥φ = −mi

e

[
(1 + θTe)

(
∂V||i
∂y

)2

+ cs (±1 + θn ± θTe/2)
∂2V||i
∂y2

]
(3.4.22)

where the upper signs apply if the magnetic field is directed towards the wall, the

lower signs apply in the opposite case, and in the GBS geometry

θf = − ρs
2 tanα

∂xf

f
. (3.4.23)

We remark that the electrostatic potential φ in Eq. (3.4.18) is measured with respect

to the wall potential, which is assumed to be zero. Also, the temperature gradient

is very small since κT ≈ 0.1 (see Appendix B). The numerical implementation of

these boundary conditions is given in Sec. 3.4.6.

In the radial direction, ad-hoc boundary conditions are implemented. In the SMT

geometry, the radial boundaries correspond to the radially inner and outer parts

of the toroidal vessel where the magnetic field is parallel to the wall surfaces. In

this case, the plasma-wall transition is singular as particles can only reach the wall

through collisions, drifts, or orbit losses [16]. However, the radial boundaries are

not expected to affect much the plasma dynamics since most of the plasma is lost

along the field lines at the top and bottom of the device. In the tokamak SOL

geometry, on the inner side, the radial boundaries correspond to an artificial core-

edge separation. The tokamak vessel wall corresponds to the outer side. Since most
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of the plasma is lost at the limiter plates before it can reach the outer vessel wall

through cross-field turbulent transport, the same argument presented for the SMT

applies to the tokamak SOL, and therefore the boundary conditions at this wall do

not affect turbulence much. At the core-edge separation, however, plasma comes

from the core and thus one must be more careful when treating this boundary. In

GBS the density and heat sources are radially localized to mimic the outflow from

the core (see Fig. 3.4.3), and thus when analyzing the simulation results only the

region lying radially outwards from the source is considered. The peak of the source

thus acts as the effective separatrix, defining the SOL region, and the region lying

radially inwards is akin to a buffer region.

  

Figure 3.4.3: Sketch of the SOL source in a poloidal cross-section. The source (orange annulus)
is toroidally and poloidally symmetric and is radially localized to mimic the outflow
of plasma from the core. The region of interest to study SOL turbulence is that
lying radially outwards from the source.

3.4.5 Initial conditions

When a new GBS simulation is started, each quantity A is initialized according to

A(t0) = A0 + Ã(x, y, z), where A0 is a constant value, and Ã(x, y, z) is a random

field whose amplitude can be chosen. Sources inject plasma particles and heat,

increasing the plasma gradients and triggering a number of instabilities. After a

transient phase, a quasistationary state is reached in which the plasma, generated

by the source and transported by turbulence, is eventually removed from the system

by losses at the vessel walls. Our analysis is typically focused on this quasi-stationary

phase.

3.4.6 Numerics

In GBS, a cartesian grid is used to discretize the domain in the radial, poloidal (or

vertical in the SMT geometry), and toroidal directions, (x, θ, zϕ). We note that since

α� 1, the grid coordinate θ almost coincides with the model coordinate y, and we

thus use the same labels. The domain is discretized with Nx, Ny, Nzϕ intervals, and
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we define the grid point xi = (i− 1/2)∆x, for i = 0, .., Nx + 1, the width of intervals

being ∆x = Lx/Nx, and the points corresponding to i = 0 and i = Nx + 1 therefore

representing the ghost cells. Analogous expressions are valid in the y and zϕ direc-

tions, with ∆y = Ly/Ny and ∆zϕ = 2πR/Nzϕ . Regarding the toroidal direction, the

grid is defined for the n, Te, φ, and ω variables as zϕk = k∆zϕ while, for numerical

reasons, it is shifted by half a cell for V‖i and V‖e, i.e. zϕk = (k − 1/2)∆zϕ. Each

physical quantity A(x, y, zϕ) is written as Aijk ≡ A(xi, yj, zϕk).

The derivatives in the x, y directions are performed with a standard centered finite-

difference scheme, e.g.

∂A

∂x

∣∣∣∣
i,j,k

' Ai+1,j,k − Ai−1,j,k

2∆x
(3.4.24)

except for the Poisson bracket terms, which are discretized according to the Arakawa

scheme [122]. The parallel gradient has to be approached with particular care. The

discretization of the operator in Eqs. (3.4.12) and (3.4.16) has to take advantage of

the fact that turbulence is mostly aligned with the field lines in order to reduce the

computational cost of the simulations. For the SOL, we choose the number of grid

points, Ny and Nzϕ , in such a way that ∆j = Ny/(qNzϕ) is an integer (an analogous

expression is valid for the SMT). This means that for a field line the shift ∆j of grid

points along the y direction, in correspondence of a zϕ shift of one grid point, is an

integer. The resolution along zϕ can then remain low and we can approximate the

parallel derivative as

(b ·∇)A|i,j,k '
1

2∆zϕ
(Ai,j+∆j,k+1 − Ai,j−∆j,k−1) . (3.4.25)

In doing this, care must be taken in considering that the parallel velocities are evalu-

ated in correspondence of a different zϕ grid with respect to the density, temperature

and potential.

The Laplacian operator in the Poisson equation is discretized using a standard

second-order finite difference scheme. Depending on the geometry, the obtained

matrix can be solved by direct matrix inversion or can be reduced to the solution

of a set of tridiagonal systems, by applying the Fast Fourier Transform (FFT) al-

gorithm in one direction. In order to time advance the fluid equations we use a

standard fourth order Runge-Kutta scheme. For numerical stability reasons, small

diffusive terms are introduced for all quantities. Finally, we note that the equations

implemented in GBS are rewritten in terms of Θn = log n and te = log Te, to ensure

the positivity of n and Te.

GBS is parallelized with a domain decomposition technique using MPI. The physical

domain in the x direction is equally divided into NPx parts and the physical domain
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in the z direction is equally divided into NPz parts; the total number of processes

is therefore NP = NPxNPz . In each process, in the x and z directions, one ghost

cell must be added to both sides of the domain. For a more detailed description

of the parallelization method and of the convergence properties of GBS, see Ref. [34].

We now describe the numerical implementation of the magnetic presheath boundary

conditions, Eqs. (3.4.17)-(3.4.21). We start by considering the case where no radial

corrections are applied to the boundary conditions, namely when the limit θf → 0

is taken. In this case, Eqs. (3.4.17)-(3.4.21) in normalized units reduce to

V||i = ±
√
Te (3.4.26)

V||e = ±
√
Te exp (Λ− φ/Te) (3.4.27)

∂φ

∂y
= ∓

√
Te
∂V||i
∂y

(3.4.28)

∂Θn

∂y
= ∓ 1√

Te

∂V||i
∂y

(3.4.29)

∂te
∂y

=
κT
Te

∂φ

∂y
(3.4.30)

ω = −
[(∂V||i

∂y

)2

±
√
Te
∂2V||i
∂y2

]
(3.4.31)

The expressions for V‖i, V‖e and ω, are in the form of Dirichlet boundary conditions.

We apply those at j = 0 and j = Nj + 1. As the V‖i and V‖e grid is shifted by half

a cell with respect to the n, Te, and φ grid, the boundary conditions are applied by

interpolating the two nearest grid points in the toroidal direction. For example, for

the ion parallel velocity at y = 0 we write

V‖i
∣∣
i,0,k

= −1

2

(√
Te|i,0,k +

√
Te|i,0,k+1

)
. (3.4.32)

The expressions for n, φ and Te, are in the form of Neumann boundary conditions.

These are rewritten as Dirichlet boundary conditions by using a standard first-order

finite difference between the last two grid points in the y direction. For example,

for the electrostatic potential at y = 0, we write

φ|i,0,k = φ|i,1,k −
1

2

√
Te|i,0,k

(
V‖i
∣∣
i,1,k
− V‖i

∣∣
i,0,k

+ V‖i
∣∣
i,1,k+1

− V‖i
∣∣
i,0,k+1

)
(3.4.33)

where we still interpolate the two nearest grid points in the toroidal direction. We

note that this implies that the Neumann boundary conditions are not exactly ap-

plied at the last grid point (j = 0 and j = Nj + 1) but half a cell away (j = 1/2 and
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j = Nj + 1/2).

We now focus on the implementation of the θf terms as given by Eq.(3.4.23). Since

θf ∼ ∂xf/f ∼ 1/L⊥, these terms require the calculation of the equilibrium radial

scale lengths of density, Ln, temperature, LTe , and potential, Lφ, at the plasma-wall

interface. For this purpose, a spatial smoothing of each quantity is first carried

out by suppressing oscillations having radial scale lengths shorter than 10ρs0. More

precisely, we evolve an artificial diffusion equation,

∂f

∂t
= D

∂2f

∂x2
, (3.4.34)

for a given amount of artificial time steps, with f = n, Te, φ and using as initial

conditions the profiles of n, Te, φ resulting from the GBS simulation. In Fourier

space, this corresponds to a damping of the high kx modes f̂(kx, t),

∂f̂

∂t
= −Dk2

xf̂ , (3.4.35)

and from this expression one finds that the number of iterations required to suppress

oscillations with kx > kcut is given by Nit ≈ 1/(kcut∆x)2. Then, a standard second-

order finite difference scheme is applied to the smoothed profile of f in order to

extract the radial scale length and compute θf . Finally, for numerical reasons the

value of θf is time-averaged over a time window of the order of 1 R/cs0, which is the

typical time scale of the turbulence. Tests were performed to verify that the results

do not depend much on the value of the time window over which θf is averaged. We

remark that values of order θf ∼ 0.1 are typically obtained. This implies that the

ion parallel velocity, Eq. (3.4.17), may deviate substantially from the sound speed

as 2(eφ/Te)θφ ∼ 0.5.

3.5 Turbulence simulations in SOL conditions

In this section, we present an example of global, three-dimensional, full-n, flux-

driven simulations of plasma turbulence in open field lines carried out with the GBS

code. We focus here on tokamak SOL simulations with circular magnetic flux sur-

faces, no magnetic shear, and a toroidal limiter located on the equatorial plane, at

the high-field side.

We use the following model parameters: major radius R = 500ρs0, aspect ratio

a/R ≈ 0.25, radial extension Lx = xmax − xmin = 100ρs0, safety factor q = 4,

mass ratio mi/me = 200, sheath coefficient Λ = 3, parallel resistivity ν‖ = 0.1ν0,

where ν0 = mics0/(e
2nR) is the reference resistivity, and viscosity η0e = η00, where

η00 = n0Te0(R/cs0)(me/mi) is the reference viscosity. The angle between the mag-

netic field and the limiter is such that tanα = a/qR ≈ 0.0625, corresponding to
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α ≈ 3.6◦. The particle and heat outflow from the core is modeled by density and

temperature Gaussian sources that are radially-localized at x = xs = xmin + 30ρs0
and have a width of 5ρs0. We apply the MP boundary conditions at the limiter

plates, i.e. at y = 0 and y = 2πa = 800ρs0, and we note that Neumann boundary

conditions are imposed at xmin and xmax for all fields, except for φ, which is set to

φ = ΛTe.

Figure 3.5.1 shows snapshots of the different fields in a poloidal cross-section of the

torus. Here we note, from a qualitative point of view, that smooth profiles form

at the limiters, suggesting that the set of boundary conditions for the plasma-wall

transition is compatible with the GBS model equations. In fact, this is confirmed by

Figure 3.5.2, which shows time-averaged poloidal profiles of n, φ and Te, at different

radial locations. We note that in the previous version of the code, Bohm boundary

conditions were applied to the parallel velocities, while ad hoc boundary conditions

were applied to the other fields. This was leading to the formation of non-physical

boundary layers at the plasma-wall interface, thus hampering the interpretation of

the simulation results.

The different turbulent regimes present in the SOL of limited tokamaks have been

studied in detail with the GBS code, both linearly [123] and nonlinearly [114, 113].

Typically, turbulence is field aligned with k‖ � k⊥, as shown in Fig. 3.5.3. For

example, in the simulation results shown in this section, we have kyρs ' 0.2 and

k‖ ' 1/qR, which gives k‖/ky ∼ 10−3. According to Ref. [114], the turbulent trans-

port in this particular simulation is the result of two competing instabilities: the

resistive ballooning mode and the resistive drift-wave.

Finally, we notice that according to the magnetic presheath boundary conditions,

the plasma potential φ can fluctuate at the limiter and thus allows for finite parallel

currents, as typically observed at the edge of basic plasma physics experiments [108]

and at the limiters or divertors of tokamaks [124]. Figure 3.5.4 shows a snapshot of

the parallel currents that form at both sides of the limiter.

3.6 Turbulence simulations in SMT conditions

In this section, we present two examples of turbulence simulations carried out with

the GBS code in the SMT configuration: the first aiming to describe turbulence in

the SMT configuration, the second focused on the simulation of three-dimensional

seeded blobs.

In the SMT configuraion, see Fig. 3.4.1, a small vertical magnetic field Bv, superim-

posed on a toroidal field Bφ, creates helicoidal field lines that wind around N times

in the toroidal direction, with both ends terminating on the torus vessel. Thanks to

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



page 92 Chapter 3: Simulations of open field line plasma turbulence

the curvature of the open field lines, and the radial gradient of B, the SMT features

the main elements of the SOL but in a simplified setting that facilitates experimen-

tal measurements and theoretical understanding. Our simulations aim at describing

typical parameters of the TORPEX experiment.

For the first example, we use the following model parameters: major radius R =

500ρs0, minor radius a = 100ρs0 (which implies a radial and vertical extension of

the poloidal cross-section Lx = Ly = 200ρs0), number of field line turns N = 4,

mass ratio mi/me = 200, sheath coefficient Λ = 3, parallel resistivity ν‖ = 0.1ν0 and

viscosity η0e = η00. The angle between the magnetic field and the limiter is such

that tanα = Ly/(2πRN) ≈ 0.016, corresponding to α ≈ 1◦. The plasma produc-

tion in TORPEX results from an Electron Cyclotron (EC) and an Upper Hybrid

(UH) resonance, the latter being more efficient [21]. Therefore in order to mimic the

plasma production in TORPEX, the density and temperature sources are chosen to

have a Gaussian radial profile, centered at xEC = 35ρs0 and xUH = 90ρs0, uniform

in the vertical direction and with different relative amplitudes, SUH = 1.5SEC . The

MP boundary conditions, here in the limit of θφ = θn = θT = 0, are applied at the

bottom and top of the domain, i.e. at y = 0 and y = Ly, and we note that Neumann

boundary conditions are imposed in the radial direction for all fields, except for φ,

which is set to φ = ΛTe.

Figure 3.6.1 shows snapshots of density and potential in a cross-section of the torus.

According to the turbulence phase space of SMT plasmas, which is described in de-

tail in Ref. [105], the turbulent transport in this particular simulation is the result

of an ideal interchange instability with k‖ = 0 and ky = 2πN/Ly. As in the case of

the SOL, smooth profiles are observed in proximity of the vessel walls, confirming

the consistency of the boundary conditions with the plasma dynamics described by

the drift-reduced Braginskii equations.

In the framework of a Master thesis [120], a dedicated study of blob dynamics [125]

was carried out via three-dimensional simulations. In particular, seeded blobs in

a SMT configuration have been considered, by initializing GBS simulations with a

localized gaussian distribution of density and temperature, elongated in the direc-

tion of the magnetic field [120]. Figure 3.6.2 shows an example of a seeded blob

simulation with the number of field line turns N = 2. One can observe, in a poloidal

cross-section of the torus, the propagation and deformation of the blob density, the

associated parallel currents, as well as the evolution of the dipolar potential struc-

ture responsible of the E×B velocity driving the blob motion.
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3.7 Summary and outlook

In this chapter, we have first presented the Braginskii equations, which describe the

dynamics of a strongly collisional, strongly magnetized plasma. We have then de-

rived the drift-reduced Braginskii equations, which are suitable for the description

of low frequency turbulence in open field lines. Third, we have presented the GBS

code, which is based on the drift-reduced Braginskii equations. We have described

the implementation of the model equations and that of the boundary conditions

derived in Chapter 2. Finally, we have shown examples of GBS simulations in both

SOL and SMT conditions. Results indicate compatibility of the boundary condi-

tions with three-dimensional global fluid turbulence simulations.

Simulations of plasma turbulence with a proper treatment of the plasma-wall tran-

sition, now possible with the GBS code [55], have allowed a detailed study of the

turbulent regimes present in the SOL [113, 114, 115] and a comparison with exper-

imental results from a number of tokamaks [116]. Simulation of turbulence in the

SMT configuration has been made possible, as well as a dedicated study of blob

dynamics, which has been carried out via three-dimensional simulations of seeded

blobs [120].

In the next chapters, we investigate the different effects the sheath has on the tur-

bulence and flows, with simple analytical models and through GBS simulations.

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



page 94 Chapter 3: Simulations of open field line plasma turbulence

(a) (b)

(c) (d)

(e) (f)

Figure 3.5.1: Snapshots in a poloidal cross-section of (a) density, (b) electron temperature, (c)
ion parallel velocity, (d) electron parallel velocity, (e) electrostatic potential, and (f)
vorticity. Results are obtained from GBS simulations of a limited tokamak SOL.
Boundary conditions at the MP entrance are implemented at the limiter plate,
located at θl = π. The snaphot covers the radial extension (xs, xmax).
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(a)

(b)

(c)

Figure 3.5.2: Time-averaged poloidal profiles of (a) density, (b) electrostatic potential, and (c)
electron temperature. Different colors indicate different radial positions, from the
source location x = xs (black) to x = xs + 50ρs0 (red).
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Figure 3.5.3: Snapshot of the density n in a plane covering the full toroidal and poloidal angles,
at a given radial position x = xs + 20ρs0. Turbulence is cleary aligned with the
magnetic field, which has q = 4. Results are obtained from the GBS simulations.

Figure 3.5.4: Snapshot of parallel currents j|| = en(V||i−V||e) flowing to the top (left panel) and
bottom (right panel) sides of the limiter. The coordinate ϕ denotes the toroidal
angle. Results are obtained from the GBS simulations.
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(a)

(b)

Figure 3.6.1: Snapshots in a poloidal cross-section of the torus, for (a) the plasma density, and
(b) the electrostatic potential. Results are obtained from GBS simulations in SMT
conditions, with N = 4. Boundary conditions at the MP entrance are implemented
at the bottom and at the top of the domain.

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



page 98 Chapter 3: Simulations of open field line plasma turbulence

  

Figure 3.6.2: An example of a three-dimensional seeded blob simulation. The blob density (left
column), the blob potential (middle column) and the blob parallel current (right
column) are shown at four different simulation times, from t = 0 (first row) to
t = 0.72 (last row). Here N = 2.
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Chapter 4

Electrostatic potential in open

field lines

4.1 Introduction

The origin of a high-confinement regime, where turbulence is suppressed and the

formation of a plasma pedestal is observed, is still not fully understood and is the

subject of intense theoretical and experimental research. There is nonetheless an in-

creasing experimental evidence for the role of the SOL in regulating the low-to-high

(L-H) confinement mode power threshold as well as the toroidal rotation profiles of

the entire plasma volume [126,127].

An essential quantity for the understanding of mean flows and pedestal formation

during the L-H transition in a magnetically confined plasma is the self-generated

radial electric field. Typically, the relation eφ ∼ 3Te is invoked for the SOL [16],

thus leading to an estimate of the radial electric field as

Er ∼ −3∂rTe/e . (4.1.1)

This relation is based on the assumption that φ in the SOL is governed by its value

at the sheath, the region where the plasma interacts with the wall. More precisely,

if one uses Bohm’s law for the sheath parallel current [16],

j|| = ensecs [1− exp (Λ− eφ/Te)] , (4.1.2)

then an ambipolar outflow in the parallel direction imposes eφ = ΛTe at the sheath

edge. Here nse is the plasma density at the sheath edge, cs is the plasma sound speed

and Λ = log
[√

mi/(2πme)
]
≈ 3 for hydrogen plasmas. Unclear remain, however,

the generality and correctness of this result. As we show later, in fact, the parallel

dynamics far from the walls can also determine the value of φ, e.g. through the

99



page 100 Chapter 4: Electrostatic potential in open field lines

electron adiabaticity condition. As a matter of fact, the question of which mech-

anism sets the value of the plasma potential in the SOL of magnetic confinement

devices is a very general issue, as it arises in all open field line magnetized plasma

configurations, including linear devices and simple magnetized toroidal devices.

In this chapter we address this question by means of an analytical model that de-

scribes the electrostatic potential in an open field line configuration. We provide a

general analytical relation between the equilibrium electrostatic potential and the

equilibrium electron temperature and plasma density,

φ̄ = φ̄(T̄e, n̄) , (4.1.3)

which includes the combined effect of both the sheath and the main SOL plasma

dynamics (overbar denotes time-averaged values). The analytical results suggest

that, depending on the density and temperature drops established between the two

regions, one mechanism can dominate over the other. This implies that the radial

electric field in the SOL may be determined by different mechanisms depending on

the particular regime of operation, i.e. the sheath-limited regime as opposed to

the detached regime. In order to confirm our analytical predictions, we perform

numerical simulations of SOL turbulence using the GBS code [34], with the set of

boundary conditions described in Chapter 2.

4.2 Analytical model

Within a drift-reduced fluid model [24], the momentum equation for the electrons

in the parallel direction leads to a generalized Ohm’s law,

men
dV‖e
dt

= en∇‖φ−∇‖pe − 0.71n∇‖Te + enν‖j‖ (4.2.1)

where V‖e is the electron parallel velocity, d/dt = ∂t + V‖e∇‖ + VE · ∇⊥ is the

Lagrangian derivative, VE is the E × B velocity, pe = nTe is the electron scalar

pressure, j‖ = en(V‖i − V‖e) is the parallel current and ν‖ is the plasma resistivity.

The absence of the electron diamagnetic drift in the Lagrangian derivative is due to

the so-called diamagnetic cancellation, which arises from the lowest order term in

the pressure tensor. A detailed derivation of Eq. (4.2.1) is given in Sec. 3.3. Higher

order terms in the pressure tensor, which correspond to the effect of finite electron

viscosity, are smaller than the other terms by a factor λe/L‖ � 1 and thus are

neglected here.

While the electron inertia and the resistivity terms in Eq. (4.2.1) can play an im-

portant role in the plasma dynamics (e.g., they can make drift waves unstable by
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breaking the electron adiabaticity), the equilibrium profiles do not depend signifi-

cantly upon those. In fact, the ratio of the inertia term to the parallel electric field

term is of the order of the mass ratio me/mi � 1. Similarly, the resistive term is

negligible as long as the electron mean free path is not too small, namely if

√
me/mi � λe/L‖ � 1 . (4.2.2)

Time-averaging Eq. (4.2.1) and neglecting inertia and resistivity, we are led to an

equation balancing the parallel electric field force with the parallel pressure and

thermal forces,

e∇‖φ̄− T̄e
n̄
∇‖n̄− 1.71∇‖T̄e ' 0 (4.2.3)

where we have assumed that (Te/n)∇‖n ' (T̄e/n̄)∇‖n̄. While Eq. (4.2.3) is valid

along each magnetic field line in the SOL, it breaks down at the magnetic presheath

entrance, where the drift-reduced approximation is violated. Integrating Eq. (4.2.3)

along the parallel direction z, from z = −L‖/2 to z (where L‖ is the parallel con-

nection length, and z = 0 is defined half way between the two ends of a field line),

we can write

eφ̄(z) = eφ− + 1.71
[
T̄e(z)− T−e

]
+

∫ z

−L‖/2

T̄e
n̄

∂n̄

∂z′
dz′ (4.2.4)

where we denote φ± = φ̄(±L‖/2) the electrostatic potential at the magnetic presheath

entrance at both ends of a field line. Analogously, φ̄(z) can be obtained by integrat-

ing Eq. (4.2.3) from z = +L‖/2 to z, i.e.

eφ̄(z) = eφ+ + 1.71
[
T̄e(z)− T+

e

]
+

∫ z

+L‖/2

T̄e
n̄

∂n̄

∂z′
dz′ . (4.2.5)

We can estimate φ̄(z) as the average of the values given by Eqs. (4.2.4) and (4.2.5),

eφ̄(z) =
1

2
(eφ+ + eφ−) + 1.71

[
T̄e(z)− 1

2
(T+

e + T−e )

]
+

1

2

[
I+(z) + I−(z)

]
(4.2.6)

where we have defined

I±(z) =

∫ z

±L‖/2

T̄e
n̄

∂n̄

∂z′
dz′ . (4.2.7)
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In order to progress analytically, we write

I±(z) = σ0

∫ z

±L‖/2

∂n̄

∂z′
dz′ , (4.2.8)

where

σ0 =

∫ z
±L‖/2

σ(z′) ∂n̄
∂z′
dz′∫ z

±L‖/2
∂n̄
∂z′
dz′

(4.2.9)

and we have introduced the function σ(z) = T̄e(z)/n̄(z). In the case that σ(z) does

not vary significantly along the field line, the value σ0 can be estimated, for example,

as σ0 ' 〈σ〉z where 〈·〉z denotes the average along the field line. Equation (4.2.6)

thus becomes

eφ̄(z) =
1

2
(eφ++eφ−)+1.71

[
T̄e(z)− 1

2
(T+

e + T−e )

]
+σ0

[
n̄(z)− 1

2
(n+ + n−)

]
.

(4.2.10)

We now use the boundary conditions at the magnetic presheath entrance in order to

determine the value of φ±. We shall assume that the time-average current towards

the wall at the magnetic presheath entrance, jm, is approximately zero, so that quasi-

neutrality is ensured in the main plasma. This current is jm = j‖ sinα + j⊥w cosα,

where j‖ = en(V‖i− V‖e) is the parallel current at the magnetic presheath entrance,

α is the angle between the magnetic field line and the wall, and j⊥w = en(V⊥w,i −
V⊥w,e) is the component of the perpendicular current at the magnetic presheath

entrance that is directed towards the wall. Imposing the condition jm = 0 at the

magnetic presheath entrance by using the boundary conditions derived in Chapter 2,

Eqs. (2.4.29)-(2.4.34), we find that the electrostatic potential at both ends of the

field line must satisfy

eφ± '
(

Λ± θTe
2
− θn

)
T±e , (4.2.11)

where for a generic quantity A we define θA = ρs/(2LA tanα), ρs is the ion sound

larmor radius, and LA is the radial equilibrium scale length of A. Taking typical

SOL parameters, e.g. ρs/LT ' 10−2 and α = 0.03 ' 2◦ [126], we have that θTe ' 0.1,

and similarly for θn. We therefore expect that the electrostatic potential at both

ends of a magnetic field line will be approximately given by

eφ± ' ΛT±e . (4.2.12)
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We remark that the electrostatic potential is measured with respect to the wall

potential, which is assumed to be zero. We can thus write Eq. (4.2.10) as

eφ̄(z) =
1

2
Λ(T+

e +T−e )+1.71

[
T̄e(z)− 1

2
(T+

e + T−e )

]
+σ0

[
n̄(z)− 1

2
(n+ + n−)

]
.

(4.2.13)

Equation (4.2.13) is an analytical relation between the equilibrium electrostatic

potential and the equilibrium electron temperature and density in the SOL, φ̄ =

φ̄(T̄e, n̄). The first term on the right hand side of Eq. (4.2.13) represents the effect

of the sheath in determining the value of φ̄, while the second and third terms corre-

spond to the effect of the plasma dynamics far from the walls.

We now discuss a few interesting limits of Eq. (4.2.13). First, in the limit of constant

density and temperature along the field line, T̄e(z) ≡ T0 and n̄(z) ≡ n0, Eq. (4.2.13)

implies that φ̄ is constant as well, more precisely

eφ̄(z) = ΛT0 (4.2.14)

and therefore, in this particular limit, the electrostatic potential is exclusively deter-

mined by the sheaths. Eq. (4.2.14) is the widely used relation justifying the estimate

of the radial electric field as Er = −3∂rTe/e. However, this is a slightly unrealistic

limit, since even in the sheath-limited regime, where the temperature is about con-

stant along the field lines, the density always drops when approaching the wall due

to the sink action of the sheaths [16].

Second, another interesting limit of Eq. (4.2.13) is the case T+
e = T−e = 0 and

n+ = n− = 0, namely the case where both the temperature and density drop

substantially when approaching the walls. This corresponds to the detached regime,

where the plasma strongly recombines and cools down before interacting with the

walls [16]. In this particular limit, Eq. (4.2.13) gives

eφ̄(z) = 1.71T̄e(z) + σ0n̄(z) (4.2.15)

and therefore the electrostatic potential is exclusively determined by the value of

density and temperature far from the walls.

Third, we may assume arbitrary density and temperature profiles with a constant

ratio σ(z) ' σ0. This is a reasonable assumption at least if the particle and heat

sources in the SOL have similar locations, a situation that is encountered in low-

recycling regimes where most of the plasma in the SOL is refueled by the core.
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Under this assumption, Eq. (4.2.13) gives

eφ̄(z) =
1

2
Λ(T+

e + T−e ) + 2.71

[
T̄e(z)− 1

2
(T+

e + T−e )

]
. (4.2.16)

Equation (4.2.16) is a simple relation between the equilibrium electrostatic potential

and the equilibrium electron temperature in the SOL. As in Eq. (4.2.13), the value of

φ̄ is determined by the combined effect of the sheath and the bulk dynamics. Their

relative importance depends on the magnitude of the temperature drop established

between the bulk and the sheaths. More precisely, we can write Eq. (4.2.16) as

eφ̄(z) = [Λfsh + 2.71(1− fsh)]Te(z) (4.2.17)

where we have defined

fsh(z) =
T+
e + T−e
2Te(z)

. (4.2.18)

If the temperature is constant along the field line then fsh = 1, whereas fsh → 0 if

the temperature drops substantially when approaching the walls. These two limits

are roughly representative of the sheath-limited and detached regimes, respectively.

In fact, Eq. (4.2.14) is retrieved in the limit fsh = 1, while Eq. (4.2.15) is retrieved

for fsh → 0 in the case where σ(z) ' σ0.

We would like to remark that, since Λ is very close to 2.71 for hydrogen, Eq. (4.2.17)

approximately gives φ̄(z) = 3T̄e(z). This means that the widely invoqued relation

Er ∼ −3∂rTe should be used carefully. For example, strongly varying temperature

profiles along the field line imply that the radial electric field varies accordingly, and

thus it must be computed by using the local values of temperature.

4.3 Simulations in SOL conditions

The validity of the analytical prediction for the equilibrium electrostatic potential in

the SOL, Eq. (4.2.13), is assessed in the present section by means of global, three-

dimensional fluid simulations of SOL turbulence performed with the GBS code.

As GBS evolves the plasma dynamics with no separation between equilibrium and

fluctuating quantities, it is an adequate tool to assess the validity of the analytical

predictions for the equilibrium electrostatic potential derived in the previous section.

We remark that, at the moment, GBS simulations do not describe ionization, recom-

bination, or radiative processes. Thus we can only expect to access sheath-limited

regimes where convection is the dominant mechanism for particle and heat transport
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Figure 4.3.1: Snapshots in a poloidal cross-section of the electrostatic potential φ, electron tem-
perature Te, density n, and parallel current j‖. Results are obtained from GBS
simulations of a limited tokamak SOL. The limiter plate is located at θl = π. The
snaphot covers the radial extension (xs, Lx).
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along the field lines, and parallel gradients are relatively small. Simulations capable

of describing high-recycling and detached regimes, where heat conduction becomes

important and parallel gradients are larger, are planned and will represent a testbed

of the analytical predictions in these regimes.

The system of equations evolved by GBS to study SOL turbulence is given in Chap-

ter 3. We note that while the boundary condition for the electrostatic potential,

Eq. (2.4.31), does not impose φ = ΛTe, the latter is expected to fluctuate around

this value to ensure that the average current to the wall is essentially zero.

For the simulations presented below, a toroidal limiter is located on the high field

side midplane, and we use the same model parameters as in Sec. 3.5. In particular,

the resistivity ν‖ is such that the electron mean free path satisfies λe/L‖ ' 1/50� 1.

We notice that even at such high collisionality, a limited SOL is still in the sheath-

limited regime as heat conduction cannot build significant parallel gradients of tem-

perature. This is because in the considered limiter configuration the density source

is uniformly distributed in the poloidal direction and thus convection plays a crucial

role in flattening the parallel temperature gradients. For a detailed proof of this, see

Appendix C. In a diverted configuration, however, convection is mainly active near

the target where most of the plasma is refueled, and conduction-limited regimes are

therefore more easily accessible [16].

Figure 4.3.1 shows typical snaphots of plasma turbulence in a poloidal cross-section

for the fields of interest here. For this particular simulation, we have used Λ = 3

for the sheath boundary conditions, approximately corresponding to the value for

hydrogen. Also, the time-averaged Ohm’s law is fairly well described by the balance

given by Eq. (4.2.3). In fact, Fig. 4.3.2 shows that the first term in Eq. (4.2.3),

namely the parallel electric field force, is almost perfectly balanced by the sum

of the pressure and thermal forces. Also, the difference between the two can be

explained by the finite effect of the resistivity. This is due to the fact that the

condition
√
me/mi � λe/L‖ is not exactly satisfied. We can nevertheless conclude

that Eq. (4.2.3) is a very reasonable approximation. Finally, the expected value of

the plasma potential at both ends of the field lines, φ±, as given by Eq. (4.2.12), is

in rather good agreement with the simulation results, as shown in Fig. 4.3.3.

We now assess the validity of the analytical prediction for the equilibrium electro-

static potential, Eq. (4.2.13). Since the system is toroidally symmetric, the equilib-

rium quantities only depend on x and y and thus the results are shown in a poloidal

cross-section. Figure 4.4.1 (left column) shows the time-averaged electrostatic po-

tential as given by the GBS simulation, and compares it with the prediction of

Eq. (4.2.13). Also, the widely used expression φ̄ = ΛT0, Eq. (4.2.14), is shown for

comparison. The prediction of Eq. (4.2.13) agrees rather well with the simulation

result, as it is able to capture both the magnitude and the radial and poloidal struc-
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Figure 4.3.2: Balance of the dominant terms in the time-averaged Ohm’s law at a given radial
location x = 50ρs0, as a function of the poloidal coordinate. The parallel electric
field force term e∇‖φ̄ (black) is almost balanced by the sum of the terms related
to pressure and thermal forces, T̄e∇‖n̄/n̄ + 1.71∇‖T̄e (red). The difference of the
two is shown in dashed-violet. The resistivity term ν‖j̄‖/n̄ (solid-violet) accounts
for this difference.

  

Figure 4.3.3: Radial profile of the time-averaged electrostatic potential normalized to the time-
averaged electron temperature, eφ̄/T̄e, at the top side of the limiter (blue) and at
the bottom side of the limiter (red). The dashed-black line shows, as a reference,
the value eφ̄/T̄e = Λ. The vertical shaded area indicates the location of the source.
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ture of the electrostatic potential. The relation φ̄ = ΛT0 does not capture so well

the poloidal structure of the potential, but it gives nevertheless the correct order of

magnitude. We note that this could be due to the fact that Λ is comparable to 2.71,

thus the agreement being a simple coincidence. However, as shown in Fig. 4.4.1

(middle and right columns), simulations with an artificially high value of Λ show

that φ̄ = ΛT0 is also a reasonable prediction for the order of magnitude of φ̄. In

fact, in the sheath-limited simulations presented herein, the parallel gradients are

not very large and fsh ≈ 0.8, thus the effect of the sheath is expected to play a

dominant role in setting the value of φ̄ in the SOL.

4.4 Summary and outlook

The electrostatic potential in an open field line plasma configuration, e.g. in the

SOL of tokamaks, is set by the combined effect of two different mechanisms. On

the one hand, the sheath physics regulates the value of φ at the end of the field

lines to ensure quasi-neutrality in the main plasma. On the other hand, the electron

adiabaticity sets the parallel electric field far from the walls. We have provided a

general analytical relation between the equilibrium electrostatic potential and the

equilibrium electron temperature and density, φ̄ = φ̄(T̄e, n̄), which implies that the

relative importance of the two mechanisms in setting the value of φ depends on the

density and temperature drops that are established between the bulk plasma and

the sheaths. This suggests that one must be careful when estimating the radial and

poloidal electric fields in the SOL of tokamaks, as it may depend on the particular

regime of operation: sheath-limited regime, low and high recycling regimes, or de-

tached regime. The validity of Eq. (4.2.13) has been assessed via SOL turbulence

simulations in the sheath-limited regime. Future simulations of high-recycling and

detached regimes will be a good testbed of our analytical predictions.
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Figure 4.4.1: Equilibrium profiles of the electrostatic potential φ̄ in a poloidal cross-section as
given from GBS simulations (top row), from Eq. (4.2.13) (middle row), and from
the widely used estimate φ̄ = ΛT0 (bottom row) with T0 = (T+

e + T−e )/2. Here
Λ = 3 (left column), Λ = 6 (middle column), and Λ = 10 (right column).
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Chapter 5

Intrinsic toroidal rotation in the

tokamak SOL

5.1 Introduction

Tokamak plasmas have been observed to spontaneously rotate toroidally even in

the absence of momentum injection [128, 129, 130]. As sufficiently large rotation

has been shown to stabilize MHD instabilities [131,132] and reduce turbulent trans-

port [133], understanding the origin and nature of intrinsic toroidal rotation is of

special importance for future fusion devices such as ITER where the effective de-

position of momentum is expected to be small [134, 135]. While the experimental

and theoretical research effort has mostly focused on toroidal rotation inside the

LCFS [136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147], there is strong experi-

mental evidence for the role of the SOL in determining core rotation profiles [126].

Recently it was also found that strong flows in the SOL set the boundary conditions

on the confined plasma and can even determine the low-to-high confinement mode

power treshold [127]. While some theoretical and numerical studies have focused

on SOL rotation driven by classical flows [148, 149], a revealing description of the

phenomena that takes into account the fundamental elements of the SOL, such as

turbulent momentum transport and plasma sheaths, is still lacking. This is partic-

ularly important since, as experimental data reveals [126], explaining parallel flows

requires a detailed description of turbulent transport.

In this chapter, the origin and nature of intrinsic toroidal plasma rotation in the

SOL of tokamaks is investigated both analytically and through numerical simula-

tions. We start by showing that there is a net volume-averaged toroidal flow in

GBS simulations of SOL turbulence despite the fact that no momentum is injected,

therefore implying that there are intrinsic toroidal flows established in the SOL. In

order to understand the origin of such flows, we provide an analytical description

of the generation and transport of intrinsic toroidal plasma rotation in the SOL,

based on the plasma momentum balance, the turbulent transport and the sheath
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boundary conditions. Results suggest that the equilibrium poloidal E×B flow, the

sheath physics, and the presence of poloidal asymmetries in the pressure profile act

as sources of parallel flow, while turbulence provides the mechanism for the radial

momentum transport. We first derive an equation describing the radial and poloidal

dependence of the equilibrium parallel flow by providing, for the first time, a first-

principle based estimate of the turbulent momentum transport in the SOL. Second,

we present an approximate analytical solution of the equation that describes the

toroidal rotation profile in the poloidal plane. Then, the result of global, three-

dimensional turbulence simulations of a limited SOL are presented, showing good

agreement with our theory. Finally, a first attempt to compare the theoretical pre-

dictions with experimental measurements is presented. We show that the analytical

solution fairly reproduces experimental trends for the direction and magnitude of

toroidal rotation. In particular, results indicate that intrinsic rotation is co-current

most of the time, but can be reversed due to pressure asymmetries under certain

conditions that are consistent with those observed in tokamaks.

5.2 Intrinsic flows in SOL simulations

In Chapter 3, we have presented results from GBS simulations of SOL turbulence in

a limited configuration. According to the drift-reduced Braginskii equations solved

by GBS, Eqs. (3.4.4)-(3.4.8), no momentum is injected into the system. However, a

careful inspection of the equilibrium parallel ion velocity reveals the existence of a

net volume-averaged parallel flow.

Figure 5.2.1: Snapshot (left) and time-average (right) of the parallel ion velocity in a poloidal
cross-section of the tokamak SOL. Results are obtained from GBS simulations. The
simulation parameters are given in Sec. 3.5.

Figure 5.2.1 shows a snaphot of V‖i and its time-average V̄‖i in a poloidal cross-

section. Since the system is toroidally symmetric, the equilibrium quantities only
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depend on the radial and poloidal coordinates and thus we show the equilibrium pro-

files in a poloidal cross-section. As expected from the magnetic presheath boundary

conditions, V‖i is positive on the top side of the limiter, where the magnetic field is

directed towards the wall, and negative on the bottom side of the limiter, where the

opposite situation applies (Figure 5.2.2). However, the zero of V̄‖i is not half way

between the two faces of the limiter, namely at θ = 0. Instead, the SOL region where

V̄‖i < 0 is larger than the V̄‖i > 0 region, and a volume-average of V̄‖i gives a value

of approximately −0.3cs. Since the pitch angle α of the magnetic field is very small,

α � 1, V̄‖i represents to a very good approximation the toroidal rotation. Given

the direction of the toroidal and poloidal components of the magnetic field, we con-

clude that the negative, net parallel flow corresponds to a toroidal plasma rotation in

the co-current direction, i.e. in the direction of the plasma current Ip (see Fig. 5.2.2).
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Figure 5.2.2: Sketch of the SOL geometry with its magnetic topology. The directions of the
toroidal magnetic field Bϕ, the poloidal magnetic field Bθ, and that of the cor-
responding plasma current Ip are indicated. Also the expected direction of the
equilibrium E×B flow is shown.

We now give a qualitative explanation for the origin of this net co-current flow,

based on the effect that the sheath has on the parallel ion velocity. Since the radial

electric field in the SOL is positive, Ex > 0, the poloidal E×B flow is directed from

the bottom side of the limiter to its top side (Fig. 5.2.2). As already discussed in

Chapter 2, Sec. 2.4, the poloidal E×B flow is recirculated at the magnetic presheath

entrance in the parallel direction, in such a way that the ion flow perpendicular to the

wall does not depend on the value of the E×B flow. More precisely, the boundary

condition for the parallel ion velocity, Eq. (2.4.29), is approximately given by

V||i ' cs

[
±1− 2

eφ

Te
θφ

]
∼ cs

[
±1− Λ

α

ρs
Lφ

]
, (5.2.1)
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Figure 5.2.3: Poloidal profiles of the equilibrium parallel Mach number, M|| = V̄‖i/c̄s, at different
radial locations: at the source position xs = 30ρs0 (black), and at x = 50ρs0
(blue), x = 70ρs0 (magenta), and x = 90ρs0 (red). Results are obtained from GBS
simulations. The simulation parameters are given in Sec. 3.5.

  

Figure 5.2.4: Radial profile of the time-averaged electrostatic potential in code units, eφ̄/Te0, at
the top side of the limiter (blue) and at the bottom side of the limiter (red). The
vertical shaded area indicates the location of the source.
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where the terms θn and θTe have been neglected, as they lead to smaller corrections

than θφ, and we have assumed eφ ∼ ΛTe at the magnetic presheath entrance. The

deviation from the sound speed in Eq. (5.2.1) is of order one, Λρs/(αLφ) ≈ 0.5,

since Λ = 3, α = 3.6◦ and Lφ ≈ 100ρs. Namely, the parallel flows at the bottom

and top sides of the limiter are expected to be supersonic and subsonic, respectively.

This is confirmed by Fig. 5.2.3, which shows the poloidal profiles of the equilibrium

parallel Mach number, M‖ = V̄‖i/c̄s, at different radial locations. We observe that

the profiles are fairly linear and thus almost entirely determined by the boundary

conditions. This implies the presence of a negative, net parallel flow as given by

the deviation from the sound speed at the boundaries. We remark that there is

an asymmetry in the deviation of V̄‖i from c̄s, if one compares the two sides of the

limiter. This is due to the different radial profiles of φ̄ established at the top and

bottom sides of the limiter, as shown in Fig. 5.2.4.

In general, the simple picture of the sheath boundary condition shifting the poloidal

profile of V̄‖i cannot be used to describe intrinsic flows in the SOL. Figure 5.2.5

shows the results of a simulation carried out with the limiter at the bottom of the

tokamak, i.e. with θl = −π/2. For this configuration, the volume-average of V̄‖i
gives a value of approximately −0.05cs, hence the net flow is almost zero. This is

despite the fact that the parallel flows at the left and right sides of the limiter are, as

before, respectively subsonic and supersonic, with deviations from the sound speed

comparable to the previous case. The reason is that the poloidal profiles of M‖ are

no longer linear, as shown in Fig. 5.2.6. This means that there must be another

mechanism, competing with the effect of the sheath and determining the rotation

profile, such that the resulting net flow is close to zero.

Altogether these results motivated the analytical study of SOL intrinsic flows in

a more general framework that includes, in particular, the description of turbulent

momentum transport. This study is presented in the reminder of the present chapter.

5.3 Theory of intrinsic rotation in the SOL

In this section, we provide an analytical description of the generation and trans-

port of intrinsic toroidal plasma rotation in the SOL, based on the conservation of

plasma momentum, the turbulent transport, and the sheath boundary conditions.

We derive an equation describing the radial and poloidal dependence of the equilib-

rium parallel flow by providing, for the first time, a first-principle based estimate of

the turbulent momentum transport. Electrostatic low-frequency turbulence at small

wave number, ω � ωci, k⊥ρs < 1, and k||L|| ∼ 1, mainly driven by interchange-like

modes such as resistive ballooning modes [150], is believed to dominate the cross-

field transport of particles and heat in the SOL. Such modes are also responsible for

the turbulent momentum transport that arises from the presence of sheared parallel
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Figure 5.2.5: Snapshot (left) and time-average (right) of the parallel ion velocity in a poloidal
cross-section of the tokamak SOL. Results are obtained from GBS simulations. The
simulation parameters are the same as in Fig. 5.2.1 but with θl = −π/2.

Figure 5.2.6: Poloidal profiles of the equilibrium parallel Mach number, M|| = V̄‖i/c̄s, at different
radial locations: at the source position xs = 30ρs0 (black), and at x = 50ρs0
(blue), x = 70ρs0 (magenta), and x = 90ρs0 (red). Results are obtained from GBS
simulations. The simulation parameters are the same as in Fig. 5.2.1 but with
θl = −π/2, namely with the limiter located on the bottom of the vessel.

flows, namely when ∂xM‖ 6= 0.

Also, we would like to remark that, for the sake of generality, the model presented

herein does not assume cold ions. We include the effect of finite ion temperature

without accounting for finite Larmor radius effects.
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5.3.1 2D equation for the equilibrium toroidal flow

Let us describe the SOL of a tokamak of major radius R by using a right-handed

system of coordinates (y, x, ϕ), where ϕ is the toroidal coordinate (counterclockwise

direction when looking from the top) and (x, y) define the plane perpendicular to

the magnetic field B. The coordinate x is a flux coordinate and extends over the

full SOL width, with x = 0 at the separatrix. The coordinate y is perpendicular

to x and B and follows the open flux surfaces, with y = 0 half way from the two

limiter sides or divertor plates, going from y = −Ly/2 to y = Ly/2 (Figure 5.3.1).

In a circular plasma with infinite aspect ratio, x and y correspond to the radial and

poloidal coordinates, respectively. The equilibrium magnetic field can be written

as B = |Bϕ| (σϕêϕ + ασθêθ), where α = |Bθ/Bϕ| is the pitch angle and σϕ,θ = ±1

gives the orientation of the magnetic field in the toroidal and poloidal directions.

For simplicity, we consider the large aspect ratio limit, therefore the plane (x, y)

coincides with the poloidal plane. We also assume that the SOL width is much

smaller than the tokamak minor radius.

  

x

y
φ

x

y
φ

Figure 5.3.1: Coordinate system (y, x, ϕ) in limited (left) and diverted (right) configurations.
The coordinate y follows the open flux surfaces. The red dot indicates the location
y = 0 half way between the two limiter sides or divertor plates.
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Within a drift-reduced fluid model, the evolution of the parallel ion velocity can

be obtained by summing the ion and electron parallel momentum equations and

neglecting electron inertia,

∂V||i
∂t

+ V||i∇||V||i + (VE ·∇⊥)V||i +
1

min
∇||p = 0 (5.3.1)

where p = pe + pi is the total scalar plasma pressure and VE is the E×B velocity.

Equation (5.3.1) represents the conservation of plasma parallel momentum and has

been derived in Chapter 3 in the limit of cold ions (see Eq. (3.3.35)). A detailed

derivation of Eq. (5.3.1) can be found, e.g., in Ref. [24]. The absence of the ion

diamagnetic drift in the convection of parallel momentum is due to the so-called

diamagnetic cancellation which arises from the lowest order term in the pressure

tensor. Also, we have neglected terms of order ρi/L⊥ � 1, (k⊥ρs)
2 � 1, and

τi � L||/cs. Here cs =
√

(Te + Ti)/mi and τi is the characteristic time for mo-

mentum exchange under ion-ion collisions. Since the pitch angle is typically small,

α� 1, V||i represents to a very good approximation the toroidal rotation.

We now deduce from Eq. (5.3.1) an equation for the equilibrium parallel flow V̄||i in

the SOL. We will denote fluctuations with a tilde, and equilibrium with an overbar,

e.g. V||i = V̄||i + Ṽ||i. Time-averaging Eq. (5.3.1) leads to

V̄||i∇||V̄||i + ∇⊥ · Γ +
1

min̄
∇||p̄ = 0 (5.3.2)

where the cross-field momentum transport term has been written as a divergence of

a flux, i.e. (VE ·∇⊥)V||i = ∇⊥ · Γ, where

Γx =
σϕ
|Bϕ|

∂φ

∂y
v||i (5.3.3)

and

Γy = − σϕ
|Bϕ|

∂φ

∂x
v||i (5.3.4)

correspond to, respectively, the radial and poloidal fluxes of parallel ion velocity.

In Eq. (5.3.2) we have assumed that Ṽ||i∇||Ṽ||i � V̄||i∇||V̄||i and similarly for the

pressure term. This is justified because the ratio of the fluctuating and equilibrium

terms is at most (if fluctations correlate perfectly) of the order of k||L||(Ṽ||i/cs)
2,

which is small in typical SOL conditions where k||L|| ∼ 1 and Ṽ||i/cs ∼ 0.1−0.5 [151].

Assuming toroidal axisymmetry, equilibrium quantities only depend on x and y, thus

we can replace ∇|| with ασθ∂y and, therefore,

ασθV̄||i
∂V̄||i
∂y

+ ∇⊥ · Γ +
ασθ
min̄

∂p̄

∂y
= 0 . (5.3.5)
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The time-average of the radial momentum flux is the sum of a turbulent and an

equilibrium term,

Γx = ΓTx + ΓEx =
σϕ
|Bϕ| Ṽ||i

∂φ̃

∂y
+

σϕ
|Bϕ| V̄||i

∂φ̄

∂y
, (5.3.6)

and an analogous expression is valid for Γy. We first evaluate ΓTx , by starting with

the estimate of the fluctuations of the parallel ion velocity. Linearizing Eq. (5.3.1)

around the equilibrium, and keeping the leading order terms, we have

γṼ||i ∼ σϕ
|Bϕ|

∂V̄||i
∂x

∂φ̃

∂y
(5.3.7)

where γ is the linear growth rate of the dominant mode. From Eq. (5.3.7) it follows

ΓTx ∼ (∂yφ̃)2; we are thus led to estimate the amplitude of the poloidal electric

field fluctuations. Linearizing the pressure continuity equation, and keeping the

dominant terms, we have

γp̃ ∼ σϕ
|Bϕ|

∂φ̃

∂y

∂p̄

∂x
. (5.3.8)

It is possible to relate the pressure fluctuations p̃ with its equilibrium value p̄ by

assuming that the mode growth saturates when the fluctuations are able to remove

the instability drive, which is provided by the pressure gradient, i.e. when ∂xp̃ ∼
∂xp̄. Numerical simulations show that this saturation mechanism can be used to

accurately describe the properties of SOL turbulence [110]. Equation (5.3.8) can

thus be written as

σϕ
|Bϕ|

∂φ̃

∂y
∼ γ

kx
(5.3.9)

where kx gives the radial extension of the saturated turbulent eddies. This can be

estimated using non-local linear theory as kx =
√
ky/Lp [101]. Combining Eqs.

(5.3.7) and (5.3.9) we get an expression for the turbulent part of the time-averaged

radial momentum flux,

ΓTx = − γ

ky
Lp
∂V̄||i
∂x

. (5.3.10)

At this point we need to give an estimate of the ratio γ/ky, which should be com-

puted by using the values of γ and ky of the modes that play the dominant role

in the transport. As transport in the SOL is typically dominated by resistive bal-

looning modes [150, 114], one can use the corresponding ballooning growth rate
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γb = cs
√

2/RLp and wavenumber kb =
√
ωciB/γbq2R2enν‖ [123]. However, it is also

possible to use the more general relation (see Appendix D for a derivation)

Lp ∼ qR

cs

(
γ

ky

)
max

, (5.3.11)

to express the ratio γ/ky as a function of Lp. This relation results from a pressure

balance between parallel streaming and perpendicular turbulent transport, and has

been shown to predict with high accuracy the pressure scale length Lp in global

simulations of SOL turbulence [114]. Also, Eq. (5.3.11) has been used to express

Lp as a function of the SOL operational parameters, showing good agreement with

experimental data from a number of tokamaks [116]. By using Eq. (5.3.11) we can

finally write the turbulent part of the time-averaged radial momentum flux, valid

for all SOL turbulent regimes, as

ΓTx = −Dturb

∂V̄||i
∂x

, (5.3.12)

where

Dturb =
L2
pcs

qR
(5.3.13)

has units of a diffusion coefficient and results from the net momentum transport

arising from saturated turbulence. An estimate of the order of magnitude of Dturb

for typical SOL parameters gives Dturb ∼ 1 m2s−1. Notice that Eq. (5.3.12) is an

expression that only involves equilibrium quantities, and that Dturb can be written

as a function of the tokamak operational parameters. From Eq. (5.3.12) we can

also evaluate the relative importance of the equilibrium and turbulent parts of the

radial momentum transport. A rough estimate gives ΓEx /Γ
T
x ∼ ρs/Lp, thus the ra-

dial momentum transport is mainly turbulent and we shall neglect the equilibrium

contribution.

We now focus our attention on the time-average of the poloidal momentum turbulent

flux. From Eq. (5.3.7) we have that ΓTy ∼ ∂yφ̃∂xφ̃ which is expected to average

to approximately zero. In fact, if the potential perturbation has the form φ̃ =

φ̃0(x) exp [i(kyy − ωt)] where φ̃0(x) describes the radial envelope of the mode, then

∂yφ̃∂xφ̃ = 0. It follows that Γy ' ΓEy and Eq. (5.3.5) can finally be written as

− ∂

∂x

(
Dturb

∂V̄||i
∂x

)
− σϕ
|Bϕ|

∂φ̄

∂x

∂V̄||i
∂y

+ ασθV̄||i
∂V̄||i
∂y

+
ασθ
min̄

∂p̄

∂y
= 0 . (5.3.14)

When taking the divergence of the flux, we have neglected the curvature term that

arises from the variation of the magnetic field, as R/L⊥ � 1 in the SOL, and V̄||i∂
2
xyφ̄
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has been neglected with respect to ∂yV̄||i∂xφ̄.

Equation (5.3.14) is a differential equation for the equilibrium parallel ion flow

V̄||i(x, y), which describes the balance between radial diffusion due to the time-

averaged turbulent transport (first term), poloidal convection (second term), paral-

lel convection (third term) and momentum generation by the pressure force (fourth

term). Equation (5.3.14) can in principle be solved once φ̄(x, y) and p̄(x, y) are

known. We remark that the radial dependence of Dturb leads to a term that acts

as an effective radial convection with velocity vturb = Dturb/2LT > 0, thus directed

radially outwards. Here L−1
T = |∂x(Te + Ti)/(Te + Ti)|−1 corresponds to the radial

scale length of the temperature profile.

5.3.2 1D equation for the equilibrium toroidal flow

The solution of Eq. (5.3.14) requires boundary conditions for V̄||i in the radial direc-

tion, at the separatrix and at the vessel wall, and in the poloidal direction, at the

limiter or divertor plates. The latter are given by the magnetic presheath entrance

condition, see Eq. (2.4.29),

V ±||i = ±σθc±s +
σθσϕ
α|Bϕ|

∂φ

∂x

∣∣∣∣± (5.3.15)

at y = ±Ly/2 respectively (the θn and θT corrections to Eq. (5.3.15) are neglected

here for simplicity). We note that, as already discussed in Sec. 5.2, the E×B drift

correction in Eq. (5.3.15) introduces an asymmetry in the ion parallel flow between

the two limiter sides or divertor plates, thus providing a mechanism for net toroidal

flow generation.

We now make some further assumptions on the equilibrium profiles in order to

progress analytically and find a solution V̄||i(x, y) that satisfies Eq. (5.3.14) with

boundary conditions given by Eq. (5.3.15). Let us assume that the equilibrium

profiles can be Taylor expanded in the y direction, so that

V̄||i(x, y) = u0(x) + u1(x)y + u2(x)y2. (5.3.16)

and similarly for φ̄, n̄ and T̄e. This choice is justified by the following argument. In

the limit of no turbulence, the ion continuity equation, ∇‖(nV‖i) + ∇⊥(nV⊥i) = 0,

implies that the poloidal profile of V̄||i follows the Pfirsch-Schluter ion current [16,

152], V̄ PS
||i ∼ 2qVE cos θ. However, the contribution of turbulence in the continuity

equation is larger by a factor

Turbulence

Pfirsch-Schluter
∼ Dturb n̄/L

2
n

cos θ n̄VE/R
∼ 1

q cos θ

cs
VE
∼ 1

q cos θ

L⊥
ρs
� 1 . (5.3.17)
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Therefore if turbulence in the SOL does not have a strong poloidal dependence,

as has been revealed by numerical simulations of ballooning turbulence [113], the

continuity equation gives ∇‖(nV‖i) ∼ const and thus a poloidal profile of V̄||i close

to linear, as taken into account in Eq. (5.3.16). Imposing the sheath boundary

conditions, Eq. (5.3.15), we find the following constraints for the Taylor coefficients:

u1(x) =
(
V̄ +
||i − V̄ −||i

)
/Ly (5.3.18)

u2(x) = 4 (ush − u0(x)) /L2
y (5.3.19)

where

ush(x) =
(
V̄ +
||i + V̄ −||i

)
/2 (5.3.20)

represents the asymmetry in the poloidal profile of V̄||i that is introduced by the

sheath boundary conditions. The only unconstrained Taylor coefficient is then u0(x).

An equation for u0(x) can be obtained by inserting Eq. (5.3.16) into Eq. (5.3.14),

which leads to

−λ2∂
2u0

∂x2
+

λ2

2LT

∂u0

∂x
= u∞0 − u0 , (5.3.21)

where

u∞0 =
σθσϕ
α|Bϕ|

∂φ0

∂x
− σθp1

min0|u1| (5.3.22)

and

λ =
√
Dturb/α|u1| . (5.3.23)

Here we have used the fact that the sign of u1(x) is at the leading order given by

the sign of the poloidal magnetic field, i.e. u1 = σθ|u1|, as implied by Eq. (5.3.15).

We are thus left with a one-dimensional differential equation for u0(x), Eq. (5.3.21),

which represents the momentum balance at the zeroth order in y.

5.3.3 Approximate analytical solution

Equation (5.3.21) can be solved analytically assuming that both u∞0 and λ remain

about constant along x. Under these assumptions, the solution of Eq. (5.3.21) that

is regular at x→∞ is

u0(x) = (us0 − u∞0 )e−x/l + u∞0 (5.3.24)

where we impose us0 = u0(0) at the separatrix, and

l =
λ2

4LT
+

√
λ2 +

(
λ2

4LT

)2

. (5.3.25)
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For typical SOL parameters, λ ∼ LT and therefore l ∼ LT . Equations (5.3.18),

(5.3.19), and (5.3.24), provide the expression of u0, u1, and u2 in Eq. (5.3.16), and

thus of the function V̄||i(x, y), once us0, u∞0 , and ush are known.

An estimate of ush can be obtained by writing Te ≡ T and Ti = τT , and assuming

a potential of the order of the sheath potential barrier eφ0 ≈ ΛT0. This gives

ush ∼ −σθσϕ Λ

(1 + τ)α

ρs0
LT

cs0 , (5.3.26)

where cs0 =
√
T0(1 + τ)/mi and T0 ∼ e−x/LT is the lowest order coefficient in the

Taylor expansion of T , akin to that in Eq. (5.3.16).

An estimate of u∞0 can be obtained as follows. The pressure poloidal asymmetry

term in Eq. (5.3.22) is σθp1/(min0|u1|) = σθcs0(δn + δT )/2, where δn = (n1/n0)Ly
and similarly for δT . We recall that p1 is the first order coefficient in the Taylor

expansion of the pressure profile, and similarly for n and T . Assuming for example

that n1 ∼ (n+ − n−)/Ly, we can estimate δn as the normalized density difference

between the two divertor legs or limiter sides, namely δn = (n+ − n−)/n0, and

similarly for δT . This gives

u∞0 ∼ ush − σθ
2

(δn+ δT )cs0 . (5.3.27)

On the other hand, the value of us0 cannot be justified solely from SOL physics; a

consistent choice should arise from the matching of the solution of Eq. (5.3.14) with

the toroidal rotation profile in the closed-flux surface region. We remark that an

equivalent situation is encountered when studying rotation in the closed flux surface

region [153,154]. In the following, we explicit the solution of Eq. (5.3.14) and discuss

a number of implications that are independent of the choice of us0.

In order to easily interpret the toroidal plasma rotation resulting from Eq. (5.3.14),

we consider the function

M = −σθσϕ V̄||i
cs0

, (5.3.28)

which is the parallel Mach number projected in the toroidal direction along the

plasma current Ip, such that M > 0 always means co-current toroidal rotation. The

approximate solution of Eq. (5.3.14) gives

M(x, y) = Mse
−x/l + (Msh +Ma)

(
1− e−x/l)

− 2σθσϕ
y

Ly

+ 4
[
(Msh +Ma −Ms) e

−x/l −Ma

] y2

L2
y

(5.3.29)
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where Ms = M(0, 0) = −σθσϕus0/cs0 is the separatrix condition half way between

the two limiter sides or divertor legs, Msh = Λρs0/(α(1 + τ)LT ) ∼ e−x/2LT repre-

sents the effect of the sheath on plasma rotation, and Ma = σϕ(δn + δT )/2 is due

to the pressure poloidal asymmetry. We remark that the sheath physics determine

the value of Msh by setting both the ion flow V̄||i at the boundaries and the radial

electric field ∂xφ in the main plasma.

Equation (5.3.29) is an analytical expression for the toroidal Mach number in the

poloidal plane. We would like to notice that since we did not solve the ion continuity

equation, our prediction requires the knowledge of the density and temperature at

the end of the field lines, i.e. δn and δT . However, these are typically measured

in tokamaks [127] and hence it is possible to compare the prediction of Eq. (5.3.29)

with experimental measurements. But first, let us make a comparison with the GBS

simulation results, in order to assess the validity of the theoretical model derived

herein.

5.4 Comparison with SOL turbulence simulations

In this section, we compare some of the main assumptions and theoretical predic-

tions derived in Sec. 5.3 with the results of GBS simulations carried out with the

limiter at four different positions, namely on the high field side (θl = π), on the low

field side (θl = 0), on the top (θl = π/2) and on the bottom (θl = −π/2).

We start by considering the time-averaged radial and poloidal momentum fluxes, Γ̄x
and Γ̄y, as defined in Eq. (5.3.6). In Sec. 5.3 we assume that the radial flux is mainly

due to turbulence while the poloidal flux is mainly due to equilibrium convection,

namely Γ̄x ' ΓTx and Γ̄y ' ΓEx .

Figure 5.4.1 shows the profile of Γ̄x in the unfolded poloidal plane, together with

its components ΓTx and ΓEx , for the case θl = π (limiter on the high field side). The

largest contribution to Γ̄x clearly comes from ΓTx , except for the region close to the

limiter plates, where the presheath electric field, which is in the poloidal direction,

produces an E×B flow in the radial direction. We can nevertheless conclude that

the assumption Γ̄x ' ΓTx is reasonable in most of the domain.

Figure 5.4.2 shows the profile of Γ̄y in the unfolded poloidal plane, together with

its components ΓTy and ΓEy , for the same simulation. The turbulent component is

negligible and hence the assumption Γ̄y ' ΓEy is very good. Figures 5.4.3 and 5.4.4

show that the same conclusions apply to the case θl = −π/2 (limiter on the bottom).

We now focus on the estimate of the turbulent momentum flux, ΓTx , which we as-

sumed to result from the net transport arising from saturated turbulence, Eq. (5.3.12).

Figure 5.4.5 shows the theoretical prediction for ΓTx as given by Eq.(5.3.12) and

compares it to the value obtained from GBS simulation results with θl = π. The
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agreement is rather good, and the same conclusion applies to the case θl = −π/2,

as shown in Fig. 5.4.6.

Finally, we consider the equilibrium Mach number M(x, y) as defined in Eq. (5.3.28).

Figures 5.4.7, 5.4.8, 5.4.9 and 5.4.10, show the corresponding profile of M(x, y) and

its analytical prediction given by Eq. (5.3.29), for the four limiter positions. The

agreement is generally rather good, as the prediction captures both the magnitude

and the radial and poloidal structure of the Mach number. For comparison, the

profile of M(x, y) as given by Eq. (5.3.29) in the limit of no turbulence, i.e. tak-

ing Dturb → 0, is also shown. This emphasizes the importance of the turbulent

momentum transport in the description of the equilibrium rotation profiles. In par-

ticular, the volume-averaged Mach number, 〈M〉x,y, is only well reproduced when

using Eq. (5.3.29) with the appropriate value of Dturb, as shown in Table 5.1.

〈Msim〉x,y 〈Mth〉x,y 〈Mth,noturb〉x,y
θl = 0 0.12 0.08 0.02

θl = π 0.30 0.32 0.53

θl = π/2 0.26 0.36 0.65

θl = −π/2 0.05 0.05 -0.06

Table 5.1: Volume-averaged Mach number, 〈M〉x,y, for different limiter positions and as given
by the simulation results (left column), from Eq. (5.3.29) (middle column), and from
Eq. (5.3.29) in the limit Dturb → 0.

We conclude this section by discussing the main possible sources of discrepancy be-

tween the simulated Mach number and its theoretical prediction given by Eq. (5.3.29).

First, the equilibrium component of the radial momentum flux, Eq. (5.3.6), has been

neglected. However, as shown in Fig. 5.4.3, its contribution may become important

in the vicinity of the limiter. Second, the Taylor expansion of the equilibrium

ion parallel velocity, Eq. (5.3.16), is not always very accurate, especially when the

poloidal asymmetries are strong. Considering higher order terms in the expansion

may require to solve the continuity equation and to take into account the poloidal

dependence of the turbulence drive, e.g. considering that Dturb = Dturb(θ). Third,

Eq. (5.3.21) has been solved analytically by assuming that its right hand side is

about constant, although it has a radial dependence. Finally, the term related to

the effect of the sheath, Eq. (5.3.21), has been computed by assuming that the radial

electric field has no poloidal dependence. However, as discussed in Chapter 4, this is

in general not true. In fact, strong poloidal asymmetries yield significantly different

radial electric fields at the two sides of the limiter.
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(a) (b) (c)

Figure 5.4.1: Time-averaged radial momentum flux in the unfolded poloidal plane, computed
from GBS simulation results with θl = π. (a) Γ̄x as defined in Eq. (5.3.6), (b) its
turbulent component ΓTx , and (c) its equilibrium component ΓEx .

(a) (b) (c)

Figure 5.4.2: Time-averaged poloidal momentum flux in the unfolded poloidal plane, computed
from GBS simulation results with θl = π. (a) Γ̄y as defined in Eq. (5.3.6), (b) its
turbulent component ΓTy , and (c) its equilibrium component ΓEy .
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(a) (b) (c)

Figure 5.4.3: Time-averaged radial momentum flux in the unfolded poloidal plane, computed
from GBS simulation results with θl = −π/2. (a) Γ̄x as defined in Eq. (5.3.6), (b)
its turbulent component ΓTx , and (c) its equilibrium component ΓEx .

(a) (b) (c)

Figure 5.4.4: Time-averaged poloidal momentum flux in the unfolded poloidal plane, computed
from GBS simulation results with θl = −π/2. (a) Γ̄y as defined in Eq. (5.3.6), (b)
its turbulent component ΓTy , and (c) its equilibrium component ΓEy .
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(a) (b)

Figure 5.4.5: Time-average of the turbulent radial momentum flux ΓTx in the unfolded poloidal
plane, computed from (a) GBS simulation results with θl = π, and (b) the theo-
retical prediction as given by Eq.(5.3.12).

(a) (b)

Figure 5.4.6: Time-average of the turbulent radial momentum flux ΓTx in the unfolded poloidal
plane, computed from (a) GBS simulation results with θl = −π/2, and (b) the
theoretical prediction as given by Eq.(5.3.12).
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(a)

(b)

(c)

Figure 5.4.7: Poloidal profile of the time-averaged Mach number M(x, y). (a) From GBS simu-
lations with θl = π. (b) As given by the prediction of Eq. (5.3.29). (c) As given by
Eq. (5.3.29) in the limit of Dturb → 0.
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(a)

(b)

(c)

Figure 5.4.8: Poloidal profile of the time-averaged Mach number M(x, y). (a) From GBS simu-
lations with θl = 0. (b) As given by the prediction of Eq. (5.3.29). (c) As given by
Eq. (5.3.29) in the limit of Dturb → 0.
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(a)

(b)

(c)

Figure 5.4.9: Poloidal profile of the time-averaged Mach number M(x, y). (a) From GBS simu-
lations with θl = π/2. (b) As given by the prediction of Eq. (5.3.29). (c) As given
by Eq. (5.3.29) in the limit of Dturb → 0.
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(a)

(b)

(c)

Figure 5.4.10: Poloidal profile of the time-averaged Mach number M(x, y). (a) From GBS sim-
ulations with θl = −π/2. (b) As given by the prediction of Eq. (5.3.29). (c) As
given by Eq. (5.3.29) in the limit of Dturb → 0.
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5.5 Comparison with experimental trends

In this section, we show that the estimate of the toroidal Mach number profile given

by Eq. (5.3.29) can explain the observed experimental trends for the toroidal rota-

tion in the SOL of tokamaks.

First of all, the direction of the toroidal rotation is typically measured to be in the

co-current direction, even when the toroidal magnetic field [155] or the total mag-

netic field [127] is reversed. This is captured by the term Msh > 0 in Eq. (5.3.29)

which always contributes to co-current flow regardless of the sign of B. Moreover,

we can estimate the magnitude of the toroidal rotation, which is typically measured

to be M . 1. Taking typical SOL parameters, e.g. Λ = 3, α = 0.03 ' 2◦ and

ρs/LT = 10−2 [126], we get Msh ' 0.5.

It has been observed, nevertheless, that the magnitude and direction of toroidal

rotation are not always exactly the same when reversing the magnetic field: rotation

can become stronger or weaker in the co-current direction [155, 127], and under

certain conditions it can even become counter-current [150]. We now show that this

can be explained by the term Ma ∼ σϕδn in Eq. (5.3.29), which represents the effect

of a pressure poloidal asymmetry. Far from the two divertor legs, y/Ly � 1, Ma gives

a co-current contribution if σϕδn > 0 and a counter-current contribution if σϕδn < 0.

The effect of this term is illustrated in Fig. 5.5.1 where the function M(x, 0) is

shown for different values of σϕδn, and for two different values of Ms, showing

that the choice of the latter does not affect the trends explored here. This effect

explains the differences in the net toroidal flow observed between SOL simulations

with different limiter positions. As Table 5.2 shows, in fact, the net co-current

toroidal flow is stronger when δn > 0 and weaker when δn < 0 (σϕ = 1 in all cases).

The mechanism responsible for the sign of δn is, as a matter of fact, the ballooning

character of turbulent transport, which leads to a larger plasma pressure around

the low field side, where the turbulence drive is the largest, with a peak that may

be shifted poloidally by an equilibrium E×B flow, as sketched in Fig. 5.5.2. Thus

the sign of δn depends on the position of the limiter with respect to the poloidal

location of the pressure peak.

〈Msim〉x,y δn

θl = 0 0.12 < 0

θl = π 0.30 > 0

θl = π/2 0.26 > 0

θl = −π/2 0.05 < 0

Table 5.2: Time and volume-averaged Mach number, 〈M〉x,y, for different limiter positions and
the corresponding sign of δn. For all cases σϕ = 1.
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Figure 5.5.1: Profile of M(x, 0) for σϕδn = 0.25 (red), σϕδn = 0 (blue), and σϕδn = −0.25
(green). Top is for Ms = Msh(0) and bottom is for Ms = 0. Here α = 2◦ and
l = LT = 50ρs.
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Figure 5.5.2: The effect of the ballooned transport on the poloidal pressure asymmetry. The
maximum of the density is always around the LFS. Depending on the limiter or
divertor position, this gives δn ∼ (n+ − n−) < 0 (left) or δn ∼ (n+ − n−) > 0
(right).
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In a tokamak, if the plasma is diverted with a single null, one thus expects δn < 0 for

a lower X-point and δn > 0 for an upper X-point, two configurations that have been

explored in Alcator C-Mod [150]. As summarized in Fig. 5.5.3, in this tokamak it was

concluded that favourable co-current situations in the SOL are those with normal

B, lower single null (σϕ < 0, δn < 0) and reversed B, upper single null (σϕ > 0,

δn > 0). Similarly, favourable counter-current situations are those with normal

B, upper single null (σϕ < 0, δn > 0) and reversed B, lower single null (σϕ > 0,

δn < 0). Therefore these observations are all consistent with the contribution of

the term Ma. Similarly, this model may be used to explain the trends observed

in the SOL of other tokamaks, e.g. the TCV tokamak [155] or the Tore Supra

tokamak [156].

  
Figure 5.5.3: Cartoon drawings of X-point topologies, field directions, and poloidal projections of

the parallel flows measured in the high field side SOL. From [127], with permission
from the author.

5.6 Summary and outlook

In this Chapter, we have presented a first-principle based analytical theory to de-

scribe the generation and transport of toroidal plasma rotation in the SOL. The

presence of the sheath, equilibrium poloidal E × B flows and pressure poloidal

asymmetries can explain the origin of intrinsic rotation, which is radially trans-

ported by turbulence. The sheath physics leads to a co-current toroidal rotation,

while the effect of the poloidal pressure asymmetry can explain the flow reversals

observed in tokamaks. Such flow reversals may occur when either the magnetic field

or the limiter/divertor position are reversed, and this is explained by the balloon-

ing character of the turbulence. Our theoretical predictions agree rather well with

three-dimensional simulations of SOL turbulence.

The main limitation of our model is that ionization and recombination processes,

which may affect the poloidal profile of V̄||i, are not taken into account. This may
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restrict the validity of the presented results to low-recycling regimes. Also, the the-

ory derived herein ceases to be valid in regimes where turbulence is significantly

suppressed and Pfirsch-Schluter ion flows play an important role, in particular in

modulating the poloidal profile of the parallel ion velocity.

Finally, we would like to notice that the rotation theory presented here is also ap-

plicable to other open field line configurations, e.g. in simple magnetized toroidal

devices such as TORPEX [21], where significant net toroidal flows have been ob-

served [157]. Thanks to the two-dimensional Mach probe measurements performed

in different magnetic configurations, TORPEX is a very good testbed in which to

validate the theoretical predictions for the two-dimensional profile of the toroidal

Mach number.
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Chapter 6

Effects of the limiter position on

the SOL equilibrium profiles

6.1 Introduction

The plasma start-up in ITER will be in a limited configuration [158], using either

the inner or outer vessel wall as limiting surface (Figure 6.1.1). Since this part

of the tokamak vessel is not designed to handle large particle and heat fluxes, the

start-up scenario must be carefully tailored to minimize its power load. In the

last years, dedicated experiments have been conducted in a number of tokamaks

in order to characterize the fluctuations and equilibrium profiles in the SOL of

limited plasmas [159, 160, 161, 162, 163, 164]. Substantially large asymmetries have

been observed between the different explored configurations, e.g. for inner wall lim-

ited (IWL) versus outer wall limited (OWL) [163]. A common conclusion is that

poloidally asymmetric parallel flows are both a cause and a symptom of these dif-

ferences [165]. Along with these experimental studies, numerical models have been

used to get insights on the underlying physical mechanisms that lead to such asym-

metries [166, 167, 168]. The common conclusion is that the inclusion of anomalous,

ballooning-like cross-field transport is required in order to reproduce the general

qualitative behaviour observed in the experiments. However, such models included

the anomalous transport in an ad hoc manner, namely via transport coefficient

asymmetries or arbitrary unphysical forces [160].

In this chapter, we present the results of global, three-dimensional simulations of

SOL turbulence carried out with the GBS code, which self-consistently contain, in

particular, the physics of ballooning modes. Four different limiter positions are

considered: high field side (HFS), low field side (LFS), top and bottom. We focus

on the effect of the limiter position on the SOL width, the electrostatic potential

and the toroidal rotation. For each case we give a qualitative explanation for the

differences observed in the simulation results, by invoking the ballooning character

of the turbulent transport and the effect that the limiter has on it.
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We would like to notice that the SOL configuration considered herein is oversimpli-

fied with respect to the experiments (circular magnetic flux surfaces, no magnetic

shear, cold ions, electrostatic, infinite aspect ratio, etc.). Therefore we do not target

a quantitative comparison with experimental measurements. Yet, for the first time

we provide global, flux-driven, full-n, three-dimensional simulations of plasma turbu-

lence in different limited SOL configurations, with first-principle turbulent transport

and self-consistent sheath boundary conditions.

  

Figure 6.1.1: Simulated evolution of the plasma boundary in ITER, from the plasma initiation
to the X-point formation. With permission from [158].

6.2 Effect on the scrape-off layer width

The peak heat load onto the plasma facing components of tokamak devices depends

on the SOL width [169,164], which results from a balance between plasma injection

from the core region, turbulent transport, and losses to the divertor or limiter plates

[116]. Typically, the operational definition for the SOL width is the scale length

λq of the radial profile of the parallel heat flux, q‖, at the location of the limiter

or divertor. Here we define the SOL width as the radial scale length of the plasma
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pressure,

Lp =

(
1

p̄

∂p̄

∂x

)−1

, (6.2.1)

which is computed from the simulation results by fitting, at each poloidal location,

the equilibrium pressure profile with a radially decaying exponential function. We

note that this simple fitting procedure has been recently questioned as some experi-

mental measurements show two different scale lengths in the near and far SOL [164].

Our simulations do not show evidence of such phenomena. An example of a pressure

radial profile resulting from a GBS simulation, together with its exponential fit, are

shown in Fig. 6.2.1.
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Figure 6.2.1: Example of equilibrium pressure profile on the low field side mid-plane (θ = 0), for
a simulation with the limiter on the high field side mid-plane (θl = π). The source
radial extension is approximately 10ρs0. In the source-free region, a reasonable fit
of the radial profile can be obtained with an exponential function (dashed red line),
leading to Lp ' 45ρs0.

Figure 6.2.2 shows the equilibrium pressure profiles in a poloidal cross-section,

for the four limiter configurations. The corresponding value of Lp(θ) is shown in

Fig. 6.2.3. Clearly the value of Lp has a poloidal dependence, Lp = Lp(θ), which de-

pends on the limiter configuration. We remark that the effect of the flux expansion

is not present in these simulations, thus the poloidal dependence of Lp is only due

to the poloidal asymmetries in the plasma turbulence and flows.

First of all, we observe that the value of Lp in the HFS-limited case (red curve

in Fig. 6.2.3) is larger than in the LFS-limited case (blue curve in Fig. 6.2.3), as

observed experimentally [163]. However there is less than a factor of 2 difference,

while factors of 3 and higher have been obtained experimentally [161,164]. Second,
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(a) (b)

(c) (d)

Figure 6.2.2: Equilibrium pressure profiles in a poloidal cross-section, with the limiter (a) on the
HFS equatorial mid-plane, (b) on the LFS equatorial mid-plane, (c) on the top of
the vessel, and (d) on the bottom of the vessel.

  

LFSHFS HFS

Figure 6.2.3: SOL width Lp as a function of the poloidal angle, for a limiter on the HFS (red),
on the LFS (blue), on the top (magenta), and on the bottom (black).
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in the four configurations considered, the values of Lp tend to be larger on the LFS

than on the HFS, consistent with the ballooning character of the turbulent transport.

We note that Lp(θ) is not only modulated by a ballooned transport localized around

θ = 0. As a matter of fact the function Lp(θ) depends on the limiter configura-

tion. Figure 6.2.4 shows the time-averaged turbulent radial flux of plasma pres-

sure, Γp = p̃∂yφ̃, in a poloidal cross-section and for the four limiter positions. In

the HFS-limited, top-limited, and bottom-limited configurations, the transport is

clearly ballooned on the LFS. However, in the LFS-limited configuration, the trans-

port is almost poloidally symmetric, consistent with the week dependence of Lp on

the poloidal angle, as shown in Fig. 6.2.3.

(a) (b)

(c) (d)

Figure 6.2.4: Time-averaged turbulent radial flux of plasma pressure, p̃∂yφ̃, in a poloidal cross-
section and with the limiter (a) on the HFS mid-plane, (b) on the LFS mid-plane,
(c) on the top, and (d) on the bottom.

These observations suggest that ballooning modes may become less efficient when

the limiter is at the location of their maximum drive, thus steepening the pressure

profiles, and that the tranport may become drift-wave dominated, thus yielding

more symmetric poloidal profiles. To confirm this hypothesis, we proceed as follows.
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As discussed in Chapter 5, the value of Lp satisfies Eq. (5.3.11), namely

Lp ∼ qR

cs

(
γ

ky

)
max

. (6.2.2)

The linear growth rate γ of the unstable mode present in the system that maximizes

the ratio γ/ky is evaluated by using a linear code described in Ref. [123]. Since

the linear code requires Lp as an input value, the resulting value of (γ/ky)max de-

pends on Lp. We can then find numerically the value of Lp that is consistent with

Eq. (6.2.2). This procedure, described in detail in Ref. [114], provides an estimate for

the value of the pressure scale length Lp expected in nonlinear simulations. Table 6.1

shows the result of this procedure, which has been carried out for both HFS-limited

and LFS-limited configurations. A reduction from Lp ≈ 40ρs0 to Lp ≈ 30ρs0 is

expected when going from the HFS-limited configuration to the LFS-limited config-

uration, which is in good agreement with the nonlinear simulations results shown

in Fig. 6.2.3. Moreover, Table 6.1 also shows the results obtained by following the

same procedure but with the ballooning drive turned off (i.e., the curvature term

in the vorticity equation, Eq. (3.4.5), is zeroed out). From the fact that turning off

the ballooning drive only affects the value of Lp in the HFS-limited case, we can

deduce that transport in the HFS-limited configuration is dominated by ballooning

modes, while in the LFS-limited configuration transport is dominated by drift-waves.

Limiter position Lp [ρs0] predicted Lp [ρs0] from GBS
HFS 40.2 44.2

HFS (no interchange drive) 27.5 -

LFS 29.9 29.4

LFS (no interchange drive) 28.0 -

Table 6.1: Values of the poloidally averaged pressure scale length Lp predicted by the gradient
removal theory (middle column) and obtained from nonlinear simulations (right col-
umn), for the HFS-limited and LFS-limited cases. The prediction of Lp in the case of
no interchange drive is also shown.

6.3 Effect on the electrostatic potential

The equilibrium profile of the electrostatic potential in a poloidal cross-section is

shown in Fig. 6.3.1 for the four different limiter configurations. Strong poloidal

asymmetries are clearly visible in each configuration, which means that the radial

electric field varies significantly in the poloidal direction. As shown in Chapter 4,

the equilibrium electrostatic potential can be related to the equilibrium density and

temperature by means of the analytical relation given by Eq.(4.2.13), as shown in

Fig. 6.3.2 for the four limiter configurations.
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(a) (b)

(c) (d)

Figure 6.3.1: Equilibrium electrostatic potential profiles in a poloidal cross-section, with the
limiter (a) on the HFS mid-plane, (b) on the LFS mid-plane, (c) on the top, and
(d) on the bottom. Results are obtained from GBS simulations.
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(a) (b)

(c) (d)

Figure 6.3.2: Equilibrium electrostatic potential profiles in a poloidal cross-section, with the
limiter (a) on the HFS mid-plane, (b) on the LFS mid-plane, (c) on the top, and
(d) on the bottom. Results are obtained from Eq. (4.2.13).

6.4 Effect on intrinsic rotation

In Chapter 5, we have investigated the generation and transport of intrinsic parallel

flows both analytically and through the use of numerical simulations. Fig. 6.4.1

summarizes the effect of the limiter position on the equilibrium profile of the Mach

number in a poloidal cross-section. These profiles can be fairly well reproduced

analytically by means of Eq. (5.3.29). The more favourable co-current configura-

tions are those with a limiter on the HFS and on the top. However, according to

Eq. (5.3.29) this situation reverses if the direction of the toroidal magnetic field is

reversed. Including the possibility of changing the direction of the magnetic field in

GBS would allow to test this prediction.
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(a) (b)

(c) (d)

Figure 6.4.1: Equilibrium Mach number profiles (M > 0 means co-current) in a poloidal cross-
section, with the limiter (a) on the HFS mid-plane, (b) on the LFS mid-plane, (c)
on the top, and (d) on the bottom.
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6.5 Summary and outlook

In this chapter, the effect of the limiter position on the SOL equilibrium profiles

has been investigated via GBS simulations of four different limiter configurations: a

limiter on the high field side, low field side, top and bottom.

The width of the SOL varies significantly with the limiter position and has a clear

poloidal dependence which is explained qualitatively by the ballooning character of

the turbulent transport. Consistent with experimental measurements in a number

of tokamaks, the SOL width is reduced when going from a LFS-limited configuration

to a HFS-limited configuration, although the reduction is not as large as observed

experimentally. In GBS simulations, this reduction is explained by a change in the

turbulence regime. Transport in the HFS-limited configuration is dominated by

ballooning modes, while in the LFS-limited configuration transport is dominated by

drift-waves.

The limiter position also modifies substantially the equilibrium electrostatic poten-

tial and the intrinsic rotation profiles. The analytical models developed in Chapters

4 and 5 are able to capture these dependences.

In the future, it would be interesting to study how the flux expansion affects the

poloidal variation of the SOL width for the different limiter configurations. This

should be possible with the recent GBS developments [115].
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Conclusions

A number of questions related to plasma sheaths and their effect on magnetized

plasma turbulence and flows have been addressed throughout the present thesis. As

sheaths are present in all laboratory plasmas, these questions are of general interest

in plasma physics, in particular for fusion energy research. Below, the main results

of this thesis are summarized and possible future studies are proposed.

The ODISEE code has been developed as a numerical tool to gain insights on the

physics of the plasma-wall transition and to guide the derivation of analytical mod-

els describing this region. Simulations of an unmagnetized plasma in contact with a

conducting wall revealed the existence of subsonic sheaths in the presence of electron

currents. An analytical model based on a kinetic description of the plasma predicts

this behavior and generalizes the Bohm criterion.

The effect of wall biasing on the plasma potential has been investigated in a simple

framework. An analytical model describing the dynamics of a plasma bound be-

tween two biased walls predicts an abrupt transition of the plasma potential when

the ratio of ion to electron wall currents exceeds a certain threshold. The predicted

behaviour of the plasma potential is retrieved in ODISEE simulations and has been

qualitatively well reproduced in a dedicated experiment carried out in the TORPEX

device. This study opens the way to the development of a device capable of mea-

suring Ti in edge plasma conditions.

Leveraging the acquired experience on the unmagnetized sheath, a simple mathemat-

ical framework is developed from which one can derive a complete set of boundary

conditions at the entrance of the magnetic presheath, where the ion drift approxi-

mation breaks down. ODISEE simulations of the magnetized plasma-wall transition

support the analytical results. This set of boundary conditions can supply the sheath

physics to fluid codes that are based on the drift-reduced approximation. Future

studies should look at the generalization of the magnetic presheath boundary con-

ditions to the case of finite ion temperature.

Starting from the Braginskii equations, which describe the dynamics of a strongly

collisional, strongly magnetized plasma, the drift-reduced Braginskii equations are

147



page 148 Chapter 7: Conclusions

derived in the cold ion limit, for the description of low frequency plasma turbu-

lence in open field lines. Then, the GBS code is presented, which is based on the

drift-reduced Braginskii equations. The implementation of the model equations and

that of the magnetic presheath boundary conditions are described. Examples of

GBS simulations in both SOL and SMT conditions are shown. Results indicate

compatibility of the boundary conditions with three-dimensional global fluid turbu-

lence simulations. Simulations of plasma turbulence with a proper treatment of the

plasma-wall transition, now possible with the GBS code, have allowed a detailed

study of the turbulent regimes present in the SOL, a comparison with experimental

results from a number of tokamaks, simulation of turbulence in the SMT configura-

tion, as well as a dedicated study of blob dynamics, which has been carried out via

three-dimensional simulations of seeded blobs. In the remaining of the thesis, the

role of the sheath in determining the electrostatic potential, the equilibrium flows,

as well as the SOL width has been thoroughly investigated.

The electrostatic potential in an open field line plasma configuration, e.g. in the

SOL of tokamaks, is set by the combined effect of two different mechanisms. On

the one hand, the sheath physics regulates the value of φ at the end of the field

lines to ensure quasi-neutrality in the main plasma. On the other hand, the electron

adiabaticity sets the parallel electric field far from the walls. A general analytical

relation between the equilibrium electrostatic potential and the equilibrium electron

temperature and density, φ̄ = φ̄(T̄e, n̄), has been provided, which implies that the

relative importance of the two mechanisms in setting the value of φ depends on the

density and temperature drops that are established between the bulk plasma and

the sheaths. This suggests that one must be careful when estimating the radial

and poloidal electric fields in the SOL of tokamaks, as the mechanism setting φ

depends on the particular regime of operation: sheath-limited regime, low and high

recycling regimes, or detached regime. The validity of the analytical predictions has

been assessed via SOL turbulence simulations in the sheath-limited regime. Future

simulations of high-recycling and detached regimes will be a good testbed of our

analytical predictions.

Intrinsic toroidal flows are observed in GBS simulations of SOL turbulence. In order

to unravel the mechanisms leading to such flows, a first-principle based analytical

theory has been developed to describe the generation and transport of toroidal

plasma rotation in the SOL. The presence of the sheath, equilibrium poloidal E×B

flows and pressure poloidal asymmetries can explain the origin of intrinsic rotation,

which is radially transported by turbulence. The sheath physics leads to a co-current

toroidal rotation, while the effect of the poloidal pressure asymmetry can explain the

flow reversals observed in tokamaks. Such flow reversals may occur when either the

magnetic field or the limiter/divertor position are reversed, and this is explained by

the ballooning character of the turbulence. Our theoretical predictions agree rather

well with three-dimensional simulations of SOL turbulence.
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The main limitation of our model is that ionization and recombination processes,

which may affect the poloidal profile of V̄||i, are not taken into account. This may

restrict the validity of the presented results to low-recycling regimes. Also, the the-

ory derived herein ceases to be valid in regimes where turbulence is significantly

suppressed and Pfirsch-Schluter ion flows play an important role, in particular in

modulating the poloidal profile of the parallel ion velocity.

The rotation theory presented in this thesis is also applicable to other open field line

configurations, e.g. in simple magnetized toroidal devices such as TORPEX, where

significant net toroidal flows have been observed. Thanks to the two-dimensional

Mach probe measurements performed in different magnetic configurations, TOR-

PEX is a very good testbed in which to validate the theoretical predictions for the

two-dimensional profile of the toroidal Mach number.

The effect of the limiter position on the SOL equilibrium profiles has been inves-

tigated via GBS simulations of four different limiter configurations: a limiter on

the high field side, low field side, top and bottom. The width of the SOL varies

significantly with the limiter position and has a clear poloidal dependence which is

explained qualitatively by the ballooning character of the turbulent transport. Con-

sistent with experimental measurements in a number of tokamaks, the SOL width

is reduced when going from a LFS-limited configuration to a HFS-limited configu-

ration, although the reduction is not as large as observed experimentally. In GBS

simulations, this reduction is explained by a change in the turbulence regime. Trans-

port in the HFS-limited configuration is dominated by ballooning modes, while in

the LFS-limited configuration transport is dominated by drift-waves.

Finally, the limiter position also modifies substantially the equilibrium electrostatic

potential and the intrinsic rotation profiles. The analytical models developed in this

thesis are able to capture these dependences.
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Appendix A

Phase velocity of ion-acoustic

waves at the sheath entrance

Let us consider the general dispersion relation of electrostatic waves in a one-

dimensional, cold ion plasma,

ω2
pe

∫
L

dfe
dv

v − ω/kdv + ω2
pi

∫
L

dfi
dv

v − ω/kdv = k2 (A.0.1)

which is obtained from the linearized Vlasov-Poisson model. The distribution func-

tions are defined such that

∫ +∞

−∞
fe,i(v)dv = 1 . (A.0.2)

For ion-acoustic waves in a cold ion plasma, we assume quasineutrality, namely

ne ' ni and thus k2λ2
D � 1. This allows us to neglect the term on the right hand

side of Eq. (A.0.4). Also, we assume

vthi � ω/k � vthe , (A.0.3)

and therefore we can simplify the Landau integrals by Taylor expanding the denom-

inators and using vk/ω as an ordering parameter. This leads to

ω2
pe

∫
L

dfe
dv

v
dv − ω2

pi

k2

ω2

∫
L

dfi
dv
vdv = 0 (A.0.4)

Considering an electron distribution function given by a truncated Maxwellian,

Eq. (2.3.2), we have

dfe
dv

=


− v
v2the

fe(v) v < vcut(η)

−δ(v − vcut)fe(v) v = vcut(η)

0 v > vcut(η)

(A.0.5)
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which is inserted in Eq. (A.0.4). One finally finds the expression for the phase

velocity

vsound =
ω

k
= csb

√
1

1 + κ
. (A.0.6)

Equation (A.0.6) corresponds to Eq. (2.3.8). Since κ → ∞ for η → 0, the sound

speed at the sheath entrance goes to zero in this limit.
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Magnetic presheath entrance with

non-isothermal electrons

Here we present the derivation of the MP entrance condition when the assumption

of isothermal electrons is relaxed. For the sake of simplicity, we consider the case

of no gradients in the x direction. Therefore, according to the IDA one has vyi = 0

and thus vsi = v||i sinα. Considering non-isothermal electrons requires the use of a

heat equation, such as Eq. (3.4.8), which in steady-state conditions and neglecting

curvature and diffusion, can be written as

nv‖e sinα
∂Te
∂s

+
2Te
3

[
1.71n sinα

∂v‖e
∂s
− 0.71n sinα

∂v‖i
∂s

− 0.71(v‖i − v‖e) sinα
∂n

∂s

]
= ST .

(B.0.1)

For non-isothermal electrons, the parallel electron momentum equation, Eq. (2.4.8),

gives

µ sinαTe
∂n

∂s
+ 1.71µn sinα

∂Te
∂s
− µn sinα

∂φ

∂s
= S||me (B.0.2)

where we have included the contribution of the thermal force, 0.71µn sinα∂sTe, in

GBS Ohm’s law, Eq. (3.4.6).

We now assume that the parallel electron velocity can be expressed as v||e = v||e(φ, Te)

in the proximity of the MP entrance. It follows that

∂v||e
∂s

= cφ
∂φ

∂s
+ cTe

∂Te
∂s

(B.0.3)

where cφ = ∂φv||e and cTe = ∂Tev||e are assumed to be known functions. Equa-

tion (B.0.1) can then be written as a linear combination of ∂sn, ∂sv||i, ∂sφ, and
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∂sTe. Equations (2.4.5), (2.4.7), (B.0.2) and (B.0.1) describe the plasma dynam-

ics in the CP and they can be written as a matrix system, M
−→
X =

−→
S , where−→

X = (∂sn, ∂sv||i, ∂sφ, ∂sTe) and
−→
S = (Spi, S||i, S||e, ST ), with

M =


vsi n sinα 0 0

0 nvsi n sinα 0

µ sinαTe 0 −µn sinα 1.71µn sinα
2
3
0.71Te(v||e − v||i) sinα −2

3
0.71nTe sinα 2

3
1.71cφnTe sinα (nv||e + 2

3
1.71cTenTe) sinα

 .

(B.0.4)

We note that, discarding the last row and column of the matrix M, related to

temperature fluctuations, one retrieves the matrix obtained in Eq. (2.4.12). The

condition defining the MP entrance is obtained by imposing det(M) = 0, that is

v||i = cs

√
1 + 2

3
1.71(ĉTe − 0.71)

1 + 2
3
1.71(ĉTe + 1.71ĉφ)

, (B.0.5)

where ĉφ = cφTe/v||e, ĉTe = cTeTe/v||e, and we have used the relation vsi = v||i sinα.

Analytical progress can be achieved by using Eq. (2.4.26), v||e =
√
Te exp (Λ− φ/Te),

which gives ĉφ = −1 and ĉTe = 0.5 + φ/Te ' 0.5 + Λ. Equation (B.0.5) thus gives

v||i ≈ 1.17cs for Λ = 3. Finally, one can get an expression for the temperature

gradient,

∂sTe =

[
1 + 0.71(1− Te/v2

||i)
3
2

+ 1.71(0.5 + Λ)

]
∂sφ ≈ 0.15 ∂sφ (B.0.6)

which is an order of magnitude smaller than the gradient of the potential, therefore

justifying the assumption (∂sTe = 0) made in Sec. 2.4.
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Appendix C

Parallel heat transport in limited

plasmas

Let us consider the one-dimensional (along the field line), steady-state, particle and

energy balance equations in a limited SOL,

d
dz

Γ = Sn (C.0.1)
d
dz
qconv + d

dz
qcond = SQ (C.0.2)

where Sn is the volumetric density source (in s−1m−3), SQ is the volumetric heat

source (in Wm−3), Γ is the particle flux (in s−1m−2), qconv is the total heat flux

due to convection (in Wm−2) and qcond is the total heat flux due to conduction (in

Wm−2). Since the electron parallel heat conductivity is much larger than the ion

parallel heat conductivity, qcond is essentially given by the electron contribution.

We now make the following assumptions: the system is symmetric with respect to

z = 0, which defines the position half way between the two targets, which are located

at z = ±L. The heat and particle sources are uniform along z, namely SQ = const

and Sn = const. The flow is ambipolar, i.e. vi = ve = v. Finally, the expressions

for qconv and qcond are given by

qconv = ec0nvTe (C.0.3)

qcond = −χ0T
5/2
e

dTe
dz

(C.0.4)

where Te is the electron temperature (in eV), e is the electron charge (in Coulombs),

z is expressed in meters, χ0 ≈ 2000 is the part of the electron heat diffusivity χe
that does not depend on the temperature [16], and c0 ≈ 2.5− 5.5 is a constant that

depends on the ion temperature and the ion flow strength [16]. We remark that the

only free parameters are the source strenghts Sn and SQ.

We now solve Eqs. (C.0.1) and (C.0.2) in order to find an expression for the temper-

ature profile, Te(z), and its dependence on the source parameters. By integrating

Eq. (C.0.1) from z = 0 to z, we find

Γ = nv = Snz , (C.0.5)
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where we have used the fact that v(0) = 0 by symmetry. Then, by integrating

Eq. (C.0.2) from z = 0 to z, and using Eq. (C.0.5), we find

ec0SnzTe − χ0T
5/2
e

dTe
dz

= SQz (C.0.6)

where we have imposed T
′
e(0) = 0 because of symmetry. Equation (C.0.6) can be

written as

zdz = −1

a

T
5/2
e dTe

1− bTe , (C.0.7)

where a = SQ/χ0 measures the strength of the heat source, and b = ec0(Sn/SQ)

measures the relative strength of the particle and heat sources. Equation (C.0.7)

can be integrated from z to z = L to give

1

2
(L2 − z2) = −1

a
(F [Te(L)]− F [Te(z)]) , (C.0.8)

where

F [T ] = − 2

15b7/2

(√
bT (3b2T 2 + 5bT + 15)− 15tanh−1(

√
bT )
)
. (C.0.9)

We notice that in the limit of negligible particle source, b → 0, which corresponds

to neglecting qconv in Eq. (C.0.6), we have

lim
b→0

F [T ] =
2

7
T 7/2 (C.0.10)

retrieving the Te(z) profile obtained in Ref. [16] for a conduction-limited regime. The

general solution for Te(z) as given by Eq. (C.0.8) can be found numerically, imposing

the value of the target temperature, Te(L), as a boundary condition. An expression

for Te(L) can be found by noting that all the heat injected into the system must

be carried out at the target. At this location, the heat flux is essentially given by

eγn(L)cs(L)Te(L), where γ ≈ 5− 7 is the sheath heat transmission coefficient [16].

Therefore we have that

SQL = eγn(L)cs(L)Te(L) = γSnLTe(L) , (C.0.11)

where we have used Eq. (C.0.5) to express the particle flux. Equation (C.0.11)

reduces to

Te(L) =
1

eγ

SQ
Sn

=
c0

γ

1

b
, (C.0.12)

and thus the value of Te(L) is uniquely determined by the parameter b. We can

finally solve numerically Eq. (C.0.8) and find the profile Te(z) for a given set of

parameters (a, b). In all cases, the maximum of Te(z) occurs at z = 0 and its
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minimum at z = ±L. Figure 1 shows the ratio Te(0)/Te(L) as a function of the

two independent parameters a and b. We remark that this ratio is always close

to one, regardless of the values of a and b. This can be understood as follows: in

the limit of large b, the particle source is large and so is the particle flow, thus the

convection of heat is important and the profiles of temperature are flattened. On

the other hand, if the particle source becomes negligible (b→ 0), convection of heat

is reduced but the target temperature Te(L) increases according to Eq. (C.0.11) in

order to ensure that all the injected heat can be dissipated at the sheath. Therefore

in this case the profiles are also flattened. We notice that these results are valid

under the assumption of uniform particle and heat sources, which is reasonable for

limited tokamak plasmas. If the particle source becomes localized near the target

(as assumed in Ref. [16]), which is common in diverted tokamak plasmas, then the

result for Te(0)/Te(L) is quite different (essentially because Eq. (C.0.11) is modified),

allowing large temperature gradients to build up and thus the establishment of the

conduciton-limited regime.
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Figure 1: Te(0)/Te(L) as a function of the two independent parameters a and b. Results obtained
from the solution of Eq. (C.0.8), with γ = 7.
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Appendix D

Scaling of the equilibrium pressure

scale length

Within the drift-reduced fluid model, a pressure continuity equation can be obtained

by combining the density and temperature equations, Eqs. (3.3.38) and (3.3.42).

Assuming that the dominant terms are the parallel convection and the radial tur-

bulent transport, we are left with an approximate pressure balance

∂p

∂t
+
∂Γp
∂x

+∇‖(pV‖e) = 0 , (D.0.1)

where Γp = p̃∂yφ̃/B is the turbulent radial flux of plasma pressure. Writing

〈∂xΓp〉t ∼ Γ̄p/Lp (D.0.2)

and

〈∇‖
(
pV‖e

)〉t ∼ p̄cs/qR , (D.0.3)

the time-average of Eq. (D.0.1) leads to

Lp ∼ qR

cs

Γ̄p
p̄
. (D.0.4)

An estimate of Γ̄p = 〈p̃∂yφ̃〉t/B can be obtained as follows. Linearizing Eq. (D.0.1)

and keeping the dominant terms, one has

γp̃ ∼ 1

B

∂φ̃

∂y

∂p̄

∂x
, (D.0.5)

thus relating the electric field fluctuations with the pressure fluctuations. Therefore

we have Γ̄p ∼ (γLp/p̄) 〈p̃2〉t. Finally, we can relate p̃ with p̄ by using the gradient
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removal hypothesis, namely by assuming that the mode growth saturates when

the fluctuations are able to remove the instability drive, which is provided by the

pressure gradient, i.e. when

∂p̃

∂x
∼ ∂p̄

∂x
. (D.0.6)

This condition can be written as kxp̃ ∼ p̄/Lp, where kx gives the radial extension of

the saturated turbulent eddies. This can be estimated using non-local linear theory

as kx =
√
ky/Lp [101]. We can therefore write

〈p̃2〉t ∼ p̄2

kyLp
. (D.0.7)

Hence we are left with an expression for the radial pressure flux, Γ̄p, as a function

of equilibrium quantities,

Γ̄p ∼ p̄

(
γ

ky

)
max

, (D.0.8)

where the linear growth rate γ and the wavenumber ky must be chosen in order to

maximize the ratio of γ/ky, thus maximizing the transport. Finally, we can replace

this expression into Eq. (D.0.4), leading to

Lp ∼ qR

cs

(
γ

ky

)
max

. (D.0.9)
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David Pfefferlé, Julien, Jonathan, Falk, Josef, and all the others. I learned a lot

from each of you, not only about physics but also about the meaning of life.

Thanks to all my friends in Lausanne and Switzerland, Paula, Diego, Eden, Carmen,

Lucia, Benoit, Teresa, Kate, Karin, Antoine, Bernhard, and all the others. I have

many great memories with each of you.

A special thanks to my dear soul-friends from Barcelona, Edu, Pau, Adria Argemi,

Adria Llairo, Tito, and Julieta. You are part of my life and you will always be.

I would like to thank all my family, in particular my parents and brothers, to which

I owe most of what I am today. And thanks for the love of cooking.

Finally, and most importantly, I would like to thank Susana. You are the best

that ever happened to me. My everyday enthusiasm is born in your smile, in your

tears, in your imagination, in your dreams, and in the passion you show when you

appreciate the tiny little pleasures of life.

The role of the sheath in magnetized plasma turbulence and flows Joaquim LOIZU, CRPP/EPFL



 
 
 
Joaquim Loizu Cisquella                                                                 
Date of birth: 25/11/1986  
Email: joaquim.loizu@a3.epfl.ch  

 

EDUCATION 
• PhD candidate at the Swiss Federal Institute of Technology Lausanne (EPFL)                                    since 09/2009  

- PhD  defense                                                                                                                                           10/2013           

- PhD  in plasma physics: “The role of the sheath in magnetized plasma turbulence and flows” 
       at the Centre de Recherches en Physique des Plasmas (CRPP). 

- Work description: Development of a PIC code for studying plasma-wall interactions;    
       analytical theory to derive boundary conditions for drift-fluid models and implementation  
       in a global fluid code; study of the effect of the sheath on scrape-off-layer physics. 

- Supervisor:  Prof.  Paolo Ricci 

• Diploma in physics, Swiss Federal Institute of Technology Lausanne (EPFL)                             10/2004 – 03/2009 

- Exchange year  in London, UK, at Imperial College London                                                        10/2006 – 06/2007 

- Diploma thesis: “Biophysics of light sensitive neurons: Quantum bump in Drosophila” at      
    the Center for Bio-Inspired Technology, Imperial College London  

• Baccalaureat (French university entrance qualification), Lycée Français de Barcelone                                            07/2004  

TEACHING EXPERIENCE AND REFEREEING ACTIVITIES 
• Teaching assistant for different Bachelor and Master courses:  

       General Physics with Prof.  Ansermet, General Physics with Prof. Baldereschi, Numerical Physics  
       with Prof. Villard, Plasma Physics II with Prof. Ricci, General Physics with Prof. Ricci                           during MSc & PhD                                             

• Prize for exceptional assistantship work at EPFL                                                                                          during PhD 

• Supervision of two student projects on sheath simulations                                                                                   during PhD 

• Co-supervision of one Master thesis on experimental sheath physics in the TORPEX device                             during PhD 

• Refereeing papers for different Journals: Physics of Plasmas, Contributions to Plasma Physics,  
      European Physical Journal D, Journal of Plasma Physics                                                                                      during PhD  summer 2005 

LANGUAGE KNOWLEDGE 
Spanish mother tongue 
French mother tongue     
Catalan mother tongue   
English fluent    

CONFERENCE CONTRIBUTIONS AND INVITED TALKS (1ST AUTHOR)  
•  “The role of the sheath in magnetized plasma fluid turbulence”, invited talk presented at the 40th EPS conference 

in plasma physics, 2013, Espoo, Finland 

• “Intrinsic toroidal plasma rotation in the Scrape-Off-Layer”, poster presented at the US-EU Joint Transport Task 
Force conference, 2013, Santa Rosa, California 

• “Tokamak SOL fluid simulations with self-consistent boundary conditions at the magnetic presheath edge”, 
poster presented at the 54th APS conference on plasma physics, 2012, Providence, Rhode Island 

 

179



 
 
 

• “Review and perspectives of electrostatic turbulence and transport studies in the basic plasma physics device 
       TORPEX”, poster presented at the 54th APS conference on plasma physics, 2012, Providence, Rhode Island 

• “The validation project on the TORPEX basic plasma physics device”, talk presented at the US-EU Joint 
Transport Task Force conference, 2011, San Diego, California 

• “Boundary conditions for plasma fluid models at the magnetic presheath entrance”, poster presented at the US-
EU Joint Transport Task Force conference, 2011, San Diego, California 

• “Sheath boundary conditions for plasma fluid models”, poster presented at the Varenna Fusion Theory conference, 
2010, Varenna, Italy 

 
PUBLICATIONS 
• First Author  

- J. Loizu, Paolo Ricci, S. Jolliet, F.D. Halpern and A. Mosetto, “Intrinsic toroidal plasma rotation in the scrape  
      off-layer of tokamaks”, submitted to Nucl. Fusion (2013) 

- J. Loizu, Paolo Ricci, S. Jolliet, F.D. Halpern and A. Mosetto, “Effects of the limiter position on the scrape-off    
       layer width, radial electric field, and intrinsic flows”, submitted to Nucl. Fusion (2013) 

- J. Loizu, Paolo Ricci, S. Jolliet, F.D. Halpern and A. Mosetto, “On the electrostatic potential in the Scrape  
    Off-Layer of magnetic confinement devices”, in press, Plasma Phys. Control. Fusion (2013) 

- J. Loizu, P. Ricci, F. D. Halpern and S. Jolliet, “Boundary conditions for plasma fluid models at the magnetic  
    presheath entrance”, Phys. Plasmas 19, 122307 (2012) 

- J. Loizu, J. Dominski, P. Ricci and C. Theiler, “Potential of a plasma bound between two biased walls”, Phys.    
    Plasmas 19, 083507 (2012) 

- J. Loizu, Paolo Ricci and C. Theiler, “Existence of subsonic plasma sheaths”, Phys. Rev. E 83, 016406 (2011) 

• Co-author 

- F. D. Halpern, A. Cardellini, P. Ricci,  S. Jolliet, J. Loizu and A. Mosetto, “Three-dimensional similations of blob 
      dynamics in a simple magnetized torus”, to be submitted, Phys. Plasmas (2013) 

- I. Furno, C. Theiler, V. Chabloz, A. Fasoli and J. Loizu, “Pre-sheath density drop induced by ion-neutral friction  
      along plasma blobs and implications for blob velocities”, submitted to Phys. Plasmas (2013) 

- S. Jolliet, F. D. Halpern, J. Loizu, A. Mosetto and P. Ricci, “Aspect ratio effects on plasma turbulence in scrape- 
      off layer limited plasmas”, submitted to Phys. Plasmas (2013) 

- F. D. Halpern, P. Ricci, B. Labit, I. Furno, S. Jolliet, J. Loizu, et al., “Theory-based scaling of the SOL width in  
      circular limited tokamak plasmas”, Nucl. Fusion 53, 122001 (2013) 

- A. Mosetto, F. D. Halpern, S. Jolliet, J. Loizu and P. Ricci, “Turbulence regimes in the tokamak scrape-off layer”,  
      Phys. Plasmas 20, 092308 (2013) 

- A. Fasoli, F. Avino, A. Bovet, I. Furno, K. Gustafson, S. Jolliet, J. Loizu et al., “Basic investigations of electrostatic  
      turbulence and its interaction with plasma and suprathermal ions in a simple magnetized toroidal plasma”, Nucl.  
      Fusion 53, 063013 (2013) 

- F. D. Halpern, S. Jolliet, J. Loizu, A. Mosetto and P. Ricci, “Ideal ballooning modes in the tokamak scrape-off  
      layer”,  Phys. Plasmas 20, 052306 (2013) 

- P. Ricci, F. D. Halpern, S. Jolliet, J. Loizu, A. Mosetto, A. Fasoli, I. Furno and C. Theiler, “Simulation of plasma  
      turbulence in scrape-off layer conditions: the GBS code, simulation results and code validation”, Plasma Phys.   
      Control. Fusion 54, 124047 (2012) 

- C. Theiler, J. Loizu et al., “Properties of convective cells generated in magnetized toroidal plasmas”, Phys.  
       Plasmas 19, 082304 (2012) 

- C. G. Theiler, I. Furno, J. Loizu and A. Fasoli, “Convective cells and blob control in a simple magnetized  
       plasma”, Phys. Rev. Lett. 108, 065005 (2012) 

180



 
 
 

- P. Ricci, C. Theiler, A. Fasoli et al., “Methodology for turbulence code validation: Quantification of simulation- 
    experiment agreement and application to the TORPEX experiment”, Phys. Plasmas 18, 032109 (2011) 

- A. Fasoli, A. Burckel, L. Federspiel et al., “Electrostatic instabilities, turbulence and fast ion interactions in the  
    TORPEX device”, Plasma Phys. Control. Fusion 52, 124020 (2010) 

- K. Nikolic, J. Loizu et al., “A stochastic model of the single photon response in Drosophila photoreceptors”,  
      Integrative Biology 2, 354-370 (2010) 

- K. Nikolic and J. Loizu, “Noise reduction in analogue computation of Drosophila photoreceptors”, J. Comput.  
      Electr. 7, 458-461 (2008) 
 

 
 

181


	Cover page

	Abstract

	Table of Contents

	Introduction
	The plasma-wall transition
	Introduction
	The ODISEE code
	Vlasov-Poisson model
	Particle-in-cell method
	Poisson solver
	Particle motion
	Particle collisions
	Particle sources and sinks
	Normalization
	Parallelization
	Diagnostics

	Unmagnetized plasma sheaths
	Existence of subsonic plasma sheaths
	Potential of a plasma bound between two biased walls

	Magnetized plasma sheaths
	The magnetic presheath entrance condition
	Boundary conditions at the magnetic presheath entrance
	Particle simulations of the magnetic presheath
	Conclusion

	Summary and outlook

	Simulations of open field line plasma turbulence
	Introduction
	Braginskii equations
	Drift-reduced Braginskii equations
	Drift-reduced approximation
	Quasi-neutrality
	Continuity and vorticity equations
	Motion along the magnetic field
	Electron temperature equation
	Summary

	The GBS code
	Introduction
	Model equations
	Geometry
	Boundary conditions
	Initial conditions
	Numerics

	Turbulence simulations in SOL conditions
	Turbulence simulations in SMT conditions
	Summary and outlook

	Electrostatic potential in open field lines
	Introduction
	Analytical model
	Simulations in SOL conditions
	Summary and outlook

	Intrinsic toroidal rotation in the tokamak SOL
	Introduction
	Intrinsic flows in SOL simulations
	Theory of intrinsic rotation in the SOL
	2D equation for the equilibrium toroidal flow
	1D equation for the equilibrium toroidal flow
	Approximate analytical solution

	Comparison with SOL turbulence simulations
	Comparison with experimental trends
	Summary and outlook

	Effects of the limiter position on the SOL
	Introduction
	Effect on the scrape-off layer width
	Effect on the electrostatic potential
	Effect on intrinsic rotation
	Summary and outlook

	Conclusions
	Phase velocity of ion-acoustic waves
	MP entrance with non-isothermal electrons
	Parallel heat transport in limited plasmas
	Scaling of the pressure scale length
	Acknowledgements
	Curriculum Vitae




