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ABSTRACT
The execution of spatial range queries is at the core of many
applications, particularly in the simulation sciences but also in
many other domains. Although main memory in desktop and
supercomputers alike has grown considerably in recent years,
most spatial indexes supporting the efficient execution of range
queries are still only optimized for disk access (minimizing
disk page reads). Recent research has primarily focused on
the optimization of known disk-based approaches for mem-
ory (through cache alignment etc.) but has not fundamentally
revisited index structures for memory.

In this paper we develop BLOCK, a novel approach to exe-
cute range queries on spatial data featuring volumetric objects
in main memory. Our approach is built on the key insight that
in-memory approaches need to be optimized to reduce the
number of intersection tests (between objects and query but
also in the index structure). Our experimental results show
that BLOCK outperforms known in-memory indexes as well as
in-memory implementations of disk-based spatial indexes up
to a factor of 7. The experiments show that it is more scalable
than competing approaches as the data sets become denser.
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1 INTRODUCTION
For many applications the efficient execution of spatial range
queries is pivotal to extract subsets of spatial models. Executing
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range queries quickly, for example, is of importance in the sim-
ulation sciences where scientists analyze and visualize models
through the execution of spatial range queries. Other examples
are geographical systems, computational neuroscience [20] or
similar applications where objects are retrieved from a model.

Spatial datasets in the past oftentimes were too big to be
stored in main memory and consequently had to be stored and
analyzed on disk. Main memory in desktop, server systems
and in supercomputers, however, has grown considerably in
recent years and can store many spatial partially or entirely
today. For the purpose of analysis and visualization, scientists
in numerous domains today thus load entire models into the
main memory of their desktops and execute spatial range
queries (and other spatial queries).

More formally, given volumetric objects d ∈ dataset D stored
in main memory, the result R of executing an axis-aligned
range query q defined as a three dimensional interval q =
[l1,u1]× [l2,u2]× [l3,u3] will be R(q) = d|q ∩ d, i.e., all objects
d ∈ D intersecting with q. Like most approaches to spatial
indexing [8] we also assume that all objects d can be approxi-
mated with an axis-aligned minimum bounding box.

The numerous approaches developed for spatial indexing in
the past [8] have primarily been developed for disk and, given
that access to disk dominates execution time, mostly target to
reduce the number of disk pages read. In memory, however,
the cost of computation is fully exposed as retrieving data is
substantially faster. The main motivation of this paper conse-
quently is that in memory testing objects for intersection with
the query and traversing index structures dominates overall
query execution time.

Most current approaches, however, have not yet fully taken
the cost shift to computations into account and optimize disk-
based approaches for main memory. Current in-memory range
query execution approaches consequently adopt a similar strat-
egy like disk-based indexes and primarily optimize perfor-
mance by reducing data read (e.g., through cache alignment).
Our in-memory spatial index, on the other hand, is designed
for volumetric objects and thus reduces intersection tests con-
siderably (in the index structure and testing objects for inter-
section with the query).

BLOCK, the approach we develop, uses indexes based on
space-oriented partitioning without complex hierarchical in-
dex structure to reduce intersection tests. BLOCK uses multiple
indexes (several uniform grids each with a different resolu-
tion), splits the query and executes each part on the best suited
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index, i.e., the one needing the fewest intersection tests, to
further reduce intersection tests.

While grids have been used before to index spatial data,
the main contribution of BLOCK lies in using several grids to
substantially reduce the number of intersection tests - the major
overhead for in-memory spatial indexes. More particularly,
the contributions of BLOCK are threefold: first, BLOCK splits
every query Q into several parts p ∈ Q and, second, chooses
the grid with the best suited resolution to execute each part p
on to reduce intersection tests. Third, while indexing a dataset
with several indexes typically incurs overhead, we develop
a novel, space-efficient storage layout for the index structure.
Our experiments on real neuroscience data show a speedup
of up to 700% compared to existing spatial indexes.

2 RELATED WORK
Decades of research in spatial indexing have produced numer-
ous index structures for the execution of spatial range queries
on disk but only a few in memory [8]. Many disk-based spatial
indexes, however, can also be used in memory and we thus
discuss both types. We classify them as space- or data-oriented
indexes where the former are mostly used in memory and the
latter on disk.

2.1 Space-oriented Partitioning
Indexes based on space-oriented partitioning decompose hy-
perspace independent of the data distribution. Doing so makes
the indexing process comparatively fast but has two major dis-
advantages: (a) if volumetric objects are indexed, objects (or
their reference) intersecting several partitions need to be repli-
cated and (b) skew in the dataset may lead to an uneven (po-
tentially extreme) distribution of objects to partitions. When
used on disk, the object replication leads to a bigger index
and to random access on disk. Similarly, extreme distributions
can lead to unevenly filled disk pages as well as unbalanced
trees (if organized hierarchically). Both effects are detrimen-
tal to query execution performance on disk and consequently
space-oriented indexes are mainly used in memory.

The KD-Tree [5] and the Quadtree [12, 26] (along with its
variant for 3D, the Octree [15]) are today predominantly used
in memory. All three recursively partition space, the Quad-
and Octree split an overflowing cell in the (spatial) middle
whereas the KD-Tree splits the cell so that the resulting two
cells contain the same number of objects. The split, however,
leads to an unbalanced tree and to unevenly filled cells. Fur-
thermore, to index volumetric objects, the object or a reference
to it has to be replicated to all partitions an object intersects
with. All three indexes are broadly used mostly because of
their rather straightforward implementation. To alleviate the
problem of replication, the loose Octree [30] does not partition
space precisely, but permits to make partitions bigger (leading
to overlap), thereby curbing replication.

The UB-Tree [25] uses space-oriented partitioning but man-
ages to build a balanced tree: it sorts points according to the
z-order [23] and builds a B+-Tree on the points. To execute
a range query, it finds the intersection of the z-order curve
with the range query and scans through all z-values inside the

range. Calculating the next z-value within the range, however,
is a costly operation that degrades UB-Tree performance. A
much simpler space-oriented index is the grid [6] used for
static but also moving objects datasets [28]. Instead of building
a hierarchy of decomposed space, the grid defines a uniform
grid in space and assigns each object to all partitions it in-
tersects. Doing so speeds up indexing but choosing the best
resolution of the grid is difficult for datasets with volumetric
objects: if the resolution is too fine grained, each object will
be replicated to numerous partitions. Replicated objects lead
to (a) a bigger memory footprint, (b) extra intersection tests
(of replicated objects) and (c) potential deduplication over-
head because of intersections detected multiple times (due to
replicated objects).

To store data on disk using space-oriented partitioning, the
grid file [21] defines a grid with non-overlapping cells of vari-
able size. The objects in each cell are stored in one disk page. If a
cell overflows (the disk pages overflow), it is split into two and
if the cell underflows, several cells are stored on one disk page.
Because the cells are not uniform, a directory mapping cell to
disk pages needs to be maintained in memory. The disadvan-
tage of the grid file is the superlinear growth of the directory:
one disk page may require several directory entries if the cells
are sparsely filled. For improved memory efficiency the twin
grid file [13] improves the grid file by constant overflows but
it does not offer a scalable solution.

The KDB-Tree [6] and the Bkd-Tree [24] are both based on
the KD-Tree [5], a space-oriented partitioning index used in
memory. Both are designed to maximize space utilization,
i.e., filling disk pages as much as possible. Both approaches,
however, are designed to index point datasets and cannot be
used for volumetric objects.

To index imaging data, the pyramid tree [1] uses a tree to
hierarchically organize uniform grids with different resolution.
On the most fine-granular grid G1 the image is indexed in
detail, whereas on more coarser grained grids Gn with n > 1
only a summary of the finer level is stored, i.e., by combining
several cells of Gn into one cell of Gn+1. Querying on higher
levels requires less data to be retrieved and fewer comparisons
need to be made.

The ST2B-Tree [7] is designed for indexing moving objects.
It indexes all spatial objects in a B-Tree based on the object’s
ID assigned by using a space filling curve. At query time, the
index is adapted by changing the resolution of the space filling
curve in a subtree depending on how objects move. If, for
example, many objects move into one area, the resolution of
the space filling curve in this area is increased. With this the
index becomes fully tunable, reacting to the workload. ST2B,
however, is solely designed for point datasets and cannot easily
be extended to volumetric objects.

2.2 Data-oriented Partitioning
Access methods based on data-oriented partitioning, decom-
pose hyperspace into partitions such that each partition con-
tains approximately the same number of objects. This lends
itself perfectly for use on disk as the number of objects in a
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partition can be chosen to fill disk pages. A directory struc-
ture needs to be used to execute range queries because the
decomposition of space is irregular in all dimensions. Several
data-oriented indexing approaches use a hierarchical directory
structure that leads to the problem of overlap.

Based on data-oriented partitioning, arguably the seminal
data structure developed for the execution of spatial range
queries is the R-Tree [10]. Widely used today, the R-Tree has
been designed as a disk-based multidimensional generaliza-
tion of the B-Tree [3]. The R-Tree packs the objects on disk pages
using data-oriented partitioning and organizes the data in a
hierarchical structure. Introducing a hierarchical tree structure,
however, also introduces the problem of overlap that degrades
R-Tree performance.

Several strategies have been devised to tackle the overlap
problem. The R*-Tree [4] and the R+-Tree [27] are designed
for the case where the tree is built by inserting objects consec-
utively. The former addresses overlap through an improved
node split algorithm and the latter through object duplication.

To reduce overlap, several packing methods for the R-Tree
have been proposed to bulkload datasets which are known a
priori. The Hilbert R-Tree [16], Sort-Tile-Recursive (STR) [19],
Top down Greedy Split (TGS) [9] as well as the Priority R-Tree
(PR-Tree) [2] all use different sort and split strategies to build
an R-Tree from the dataset. While Hilbert and STR build effi-
cient R-Trees on many real-world datasets, TGS and PR-Tree do
so for extreme, mostly synthetic datasets (extreme skew and
aspect ratio). Despite the numerous improvements to the basic
R-Tree the fundamental problems of overlap and dead space
remain. The CR-Tree [17] essentially is an optimized R-Tree for
the memory hierarchy. The optimizations target at reducing
cache misses (through alignment of the nodes for the cache
line) and at reducing the index size (through quantizing the
MBRs as well as compressing the nodes). The optimizations
reduce size by 60% and thus improve performance by a con-
stant factor over the regular R-Tree but do little to address the
problem of overlap (in fact, quantization of the MBRs leads
to more overlap and more computations). An extensive eval-
uation [14] compares variants of the R-Tree (R*-Tree, Hilbert
R-Tree and others) in memory to the CR-Tree. The CR-Tree
generally outperforms other variants on range queries.

3 POTENTIAL FOR IMPROVEMENT
The major motivation for BLOCK is that most of today’s spatial
indexes are not adequately designed for memory. Approaches
developed in the past are primarily optimized to retrieve as
little data as possible. For disk-based indexes this is crucial as
the vast majority of time is spent on retrieving data from disk.
In memory, however, data access is more efficient.

The biggest potential for improving today’s indexes for use
in memory lies in further reducing computation. We demon-
strate this with an experiment where we index a dataset of 200
million spatial objects with an R-Tree and execute 200 queries
with a selectivity of 5 × 10−4% at random locations (the exper-
imental setup is described in Section 6). As the result in Figure
1 shows, only 3.3% of the time is spent on reading data when

Figure 1: Query execution breakdown in memory R-Tree.
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Figure 2: A range query intersecting with narrow partitions
(shaded) leads to unnecessary tests of objects.
using the R-Tree in memory. Computations, on the other hand,
take the overwhelming majority or 95.3% of the total time.

As the breakdown of the query execution time in the same
experiment shows, most of the time spent for computations is
used to perform intersection tests. Analyzing the time spent
on intersection tests further reveals that the majority of inter-
section tests (and 55% of the total time) is performed in the tree
structure of the R-Tree. The considerable time spent on inter-
section tests within the tree structure degrades performance
and indicates overlap of the bounding boxes, a well known
problem of the R-Tree [10] and data-oriented tree structures.
With increasing density of the spatial datasets, the overlap will
also increase in future datatsets [29], thereby further increasing
the intersection tests in the tree structure.

Recent work like the CR-Tree [17] optimizes the R-Tree for
memory (by aligning the data structures for the cache line,
quantization and compressioen) manages to reduce the ex-
ecution time by a constant factor, but does little address the
fundamental problem of overlap. Optimizing indexes based on
data-orientation for use in memory leads to indexes which still
require excessive reads of the index structure and an excessive
number of intersection tests.

Even without overlap the number of intersection tests ac-
counts for a considerable share of the overall time: 25% of the
time is spent on testing individual objects for intersection with
the query. Many of these tests are unnecessary: using indexes
based on data-oriented partitioning can lead to partitions of
which only a small fraction indeed intersects with the query.
Still, all objects in the partition need to be tested for intersec-
tion, leading to many unnecessary tests. Figure 2 illustrates
this problem as objects in the narrow partitions need to be
tested for intersection although they are far from the query.

The problem of excessive comparisons, however, does not
only affect data-oriented indexes. Space-oriented approaches
like the KD-Tree or the Octree that avoid overlap do not per-
form substantially better as a further experiment with an Oc-
tree (50K objects per node, replicating objects to all intersecting
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Figure 3: Performance impact of resolution.
partitions) indexing the same dataset shows. The tree is un-
balanced and has a depth of up to 90 levels, meaning that in
the worst case 90 nodes need to be retrieved before the result
can be computed, resulting in pointer chasing and comparison
tests that increase the execution time of range queries.

4 THE BLOCK APPROACH
Motivated by a scientific application — the analysis of brain
models in neuroscience — we design BLOCK a novel in-memory
index for the efficient execution of two types of range queries
q, (i) window queries, i.e., all objects intersecting with q and
(ii) containment queries, i.e., all objects fully contained in q [8].

In designing BLOCK, we are driven by the insights of Sec-
tion 3 and draw inspiration from previous work, building on
the benefits and drawbacks of past work in space- and data-
oriented spatial indexing. Since our motivating application
only requires the efficient range queries execution on static
datasets, we do not design BLOCK to support updates.

4.1 Rationale & Contributions of BLOCK
To minimize the number of intersection tests and avoid the
inherent problem of overlap we refrain from using hierarchical
structures or unbalanced directory trees and base BLOCK on
uniform grids. In a uniform grid the partitions are quadratic
and thus lead to fewer unnecessary intersection tests (e.g., no
narrow partitions). The biggest challenge in using uniform
grids, however, is finding the best configuration, i.e., the reso-
lution or cell width. The best configuration primarily depends
on the size of the queries which generally is not known a priori.

The results of an experiment shown in Figure 3 with a grid
illustrate this problem. We use the same dataset as in the moti-
vation and a workload with five queries of size 500 space units
per dimension randomly placed. We measure the total time to
execute all queries. If there are too many cells, i.e., the cells are
too small, then too much time is spent on calculations. If we
chose the granularity too coarse (bigger cells), a considerable
share of the time is used on unnecessarily testing objects for in-
tersection with the query. Not knowing the size of the queries
a priori makes it difficult to chose the best configuration.

To address the issue of unneeded intersection tests when
configuring a uniform grid, BLOCK features the novel idea of
using several uniform grids (each with a different resolution)
to reduce intersection tests. Queries are executed on several
grids with different resolutions: a query Q is split into several
parts p ∈ Q and each part p is executed on the grid where the
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Figure 4: A query is executed on several uniform grids of
different resolution.

least number of cells needs to be retrieved, therefore reducing
the data retrieved and hence also reducing intersection tests.

While both, the idea of using grids of different resolution [18]
and splitting a query [1] have been used in the past for spatial
joins and for imaging data respectively, their application to
execute range query on arbitrary spatial data (featuring volu-
metric objects) in general and to reduce the intersection tests
in memory in particular, is novel and is BLOCK’s main contri-
bution. An additional key contribution of BLOCK is the novel
space- and time-efficient indexing using several grids.

4.2 BLOCK Overview
BLOCK indexes the same dataset with a hierarchy of grids
where each level is a uniform grid with different resolution.
To execute range queries, BLOCK starts with the grid with the
coarsest resolution and finds all cells completely contained in
the range query. Objects in these cells do not need to be tested
for intersection because they are by definition contained in the
query. The remaining parts of the query, i.e., parts not covered
by cells completely contained in the query, are subsequently
executed as queries either on the same or the next finer grained
grids based on the benefit it may provide.

Figure 4 illustrates the query execution process with BLOCK
on three different grids. Query execution starts on the coarsest
level and tests to what degree cells overlap with the range
query. Fully contained cells are retrieved from the current level.
For partially overlapping cells, BLOCK computes whether it
is beneficial to execute the overlapping parts on the same or
on a finer level. If splitting is beneficial, the query is split into
several smaller queries which are then recursively executed
on a more fine grained level based on the same idea.

The approach reduces the number of intersection tests in
two ways. First, by primarily retrieving cells that are com-
pletely contained in the query, none of the cells’ objects needs
to be tested for intersection. Second, BLOCK ensures that the
cells only intersected by the query but not fully contained in
it are small. Consequently, they contain substantially fewer
irrelevant (and therefore unnecessarily retrieved and tested)
objects. As we will demonstrate in the evaluation, doing so
considerably reduces the number of intersection tests.

4.3 Index Structure
The index is built with L levels where each level li ∈ L has
a resolution ri defined as the number of cells. A level lk is
more fine-grained than level lj if it has a higher resolution, i.e.,
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more cells and we say j < k (consequently l0 has the fewest
cells). The granularity of each grid on every level can be chosen
independently of each other as long as the grids use uniform
space partitioning ensuring that on two subsequent levels j &
k (with j < k and k − j = 1) each cell in lj will entirely cover
several cells on lk. BLOCK chooses the configuration based on
a cost model described in Section 5.

Each object is indexed using the grid on every level. To
avoid replication of objects each object is only stored once,
and on each level only a pointer to the object is stored. BLOCK
maintains two basic data structures to accomplish this: first the
object store that holds all objects and second, for each level, one
directory storing the pointer to the object. Figure 5 illustrates
the correlation of BLOCK’s components.

4.3.1 Object Store. The object store stores all objects sequen-
tially in an array-like data structure. To preserve spatial locality
and to improve cache coherence, the objects are stored in z-
order [22], i.e., based on the z-value of their center. Storing
objects according to their z-order in the object store ensures
spatial locality across different levels: all objects with their
center contained in any cell on any level are stored next to
each other in the object store. Other orders (e.g., Hilbert [11]
or Peano [23]) could be used but we found the z-order to be
the most efficient for coordinate to z-value transformations.

4.3.2 Level Directory. Each level has a directory that stores
pointers to objects in the object store. The directory is organized
according to the cells of each level, i.e., each cell Cl on level l
has an entry that stores a containment list and intersection list.

Containment list. The containment list stores all pointers
(location in the object store) to objects that have their center
in the cell. Because the objects are stored in the object store
consecutively, i.e., ordered on the z-value of their center, we
can compress the containment list and only store the offset
and the number of objects which have their center in this cell.

Intersection list. Only storing pointers to the objects which
have their center in the cell, however, will not guarantee that
BLOCK retrieves all objects intersecting with the cell. A volu-
metric object o may overlap with a cell c but o’s center may be
in a cell neighboring c. We thus maintain an intersection list for
every cell c and store in it pointers (location in the object store)
to all volumetric objects intersecting with c (but not containing
the center of the object). These objects are typically not stored
consecutively in the object store and thus we store pointers
to individual objects in a linked list. Nevertheless, if at least
two objects in the list are stored adjacent in the object store we
compress them into pairs of offset and size.

Figure 5 shows the data structures of BLOCK. Based on the
dataset and the two levels each with a uniform grid, BLOCK
builds the objects store sorting the objects based on the z-order
value of their center. Subsequently it builds the directories
based on the grids, one directory per grid. The intersection
list is shown with dashed lines whereas the containment list is
illustrated with solid lines. The directory entries of the cells in
this example are named/addressed on the z-value of the cells.
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Figure 5: Data structures of BLOCK: the object store and the
level directories.

4.4 Building the Index
To build the index structures for dataset D, BLOCK (i) builds
the object store and (ii) builds the grid levels.

When building the object store, BLOCK sorts all objects
oi ∈ D based on the z-value of their center and stores them in
an array. Subsequently, BLOCK builds the directory of each
level li ∈ L by iterating over the object store and testing for
each object oi in which cell ci oi’s center falls in and with what
cells C oi intersects.

For a cell ci that contains the center of the object oi, BLOCK
appends to ci’s containment list a pointer to object oi. For cells
c ∈ C that object oi intersects with, a pointer to oi is inserted
into the intersection list of each c. All objects having centers
in the same cell are adjacent to each other in the object store
as they are ordered by their z-value and we thus only to store
the offset and the number of objects of this group, thereby
effectively compressing the pointers.

Accelerated building. Depending on the number of levels
(as well as the size and number of the objects), indexing can
take considerable time. When using uniform space partition-
ing, i.e., a cell on lcoarse exactly contains several cells on level
l f ine (with coarse < f ine), we can optimize the indexing pro-
cess by building the directory of a coarse grained level based
on the directory of a fine-grained level. To do so BLOCK builds
the directory of the finest-grained granularity level first. Then,
to compute the directory of a coarser-grained level lcoarse from
a finer-grained level l f ine, the directory entries of cells C f ine of
l f ine contained in a cell ccoarse of lcoarse are combined.
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More precisely, all the containment lists of C f ine are merged
to obtain the containment list of ccoarse. To obtain the inter-
section list of ccoarse the intersection lists of C f ine are merged
equally. The intersection list, however, needs to be updated:
an object oi may have been in the containment list of any of
the cells cj ∈ C f ine and in the intersection list of a different cell
ck ∈ C f ine. oi is thus contained in both lists of ccoarse and has
to be removed from the intersection list (because it already is
in the containment list).

Pointer compression. As the objects in the object store are
sorted based on the z-value of their center, the objects in a cell
on a coarser level will still be stored consecutively. The pointers
to the object store can consequently be stored compressed and
the level directory for each coarser level will shrink in size as
on the coarser level more objects are contained in each cell. The
novel storage approach of BLOCK enables to store multiple
grids space- and time-efficient.

4.5 Query Execution
To execute a range query rq on a single level BLOCK com-
putes all cells Crq intersecting rq. The cells are divided into
two categories (i) fully contained and (ii) intersecting.

Fully contained. Initially, BLOCK computes all cells con-
tained entirely in the query (ccontained ∈ Crq) and retrieves their
intersection and containment lists. As the cells ccontained are
fully contained in rq, the objects on either list do not need to
be tested for intersection with the query. All objects referenced
by the containment lists are thus returned immediately and
because the containment list is contiguous in the object store,
reading it will be very quick due to good spatial locality (and
thus reduced cache misses).

The list resulting from merging the intersection lists of all
cells ccontained may contain duplicates (the same object may
intersect with several cells) and BLOCK therefore removes du-
plicates based on the hash value of objects. Duplicates are thus
already removed at this stage of query execution and further
deduplication is not needed. Access to the objects intersecting
with the cells ccontained is more random, i.e., no contiguous
blocks of objects can be read. To reduce cache misses, BLOCK
sorts the objects according to their z-order value (their linear
order in memory).

Partial intersection. BLOCK uses a similar approach to re-
trieve the cells cintersect which are only intersecting (but are not
contained) in rq. The difference is that all objects need to be
tested for intersection before they are reported. To minimize
reading objects multiple times from memory (and to avoid
filtering of duplicate objects), BLOCK keeps a compressed
bit array storing per query what objects have already been
returned. Using the bit array ensures that duplicate results
found on different levels can be filtered so that only unique
results are reported. Specifically, the bit array stores a bit for
every object in the dataset, the bit is set when an object is re-
turned. To reduce the required space and provide high access
and update efficiency, the bit array uses run length encoding.

Multi-level execution. Key to our approach, however, is to
execute range queries on several levels. To do so, BLOCK first
uses the coarsest level to find all cells ccontained and retrieves the

Figure 6: Cost vs Benefit balance.
objects in these cells as described before. For the cells cintersect,
BLOCK decides dynamically whether to retrieve the cells ci ∈
Cintersect on the current level or to execute the part of rq not
yet retrieved on a finer-grained level. The execution of the
remainder of rq on a finer level proceeds as before and may
recursively execute remainders of the query on all levels.

Executing a query on multiple levels can lead to an object
being considered multiple times. As discussed before, BLOCK
maintains a compressed bit array containing already returned
results to avoid the overhead of retrieving and testing an object
multiple times. BLOCK thus only returns unique results early
in the query execution and no further deduplication is needed.

BLOCK bases the decision when to split and where to exe-
cute the query on the cost and benefits of using a given level.
The most significant cost factor is the random memory accesses
used to retrieve objects from the intersection list. Objects in this
list are not stored consecutively in memory. Clearly, the more
fine-grained a level is, the longer the intersection lists become
due to smaller cells and consequently the cost of accessing the
objects is higher. The benefit of executing parts of the query on
finer-grained level, on the other hand, is avoiding intersection
tests due to more fully contained cells by the query.

We demonstrate the cost/benefit trade-off with an exper-
iment where we execute the same queries on grids with in-
creasingly fine resolution and measure fully enclosed objects
as well as the query execution time. As the results in Figure 6
show, there is indeed a trade-off in using finer-grained levels:
more fully contained objects decrease the execution time but
there is a tipping point where the cost of retrieving smaller
cells starts to slow down query execution.

BLOCK therefore uses a cost model ensuring that finer-
grained levels are only used if the benefit (avoiding unnec-
essary intersection tests) of their use is bigger than the cost
(random memory accesses). Equation 1 captures the cost model
on a high level (Table 1 provides a description of the variables
used). Query execution has three major cost factors: (1) calcu-
lation of the execution plan, (2) scanning a number of cells on
each level that are fully contained within the query and (3)
scanning a number of cells on each level that the objects have
to be tested for intersection with the query.

Qcost = Calc + L
i=1

(Di · Scani + NDi · (Scani + Testi)) (1)

Equation 2 further breaks down the cost of scanning the
objects contained in a cell. The cost of object retrieval from a
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Variable Description
L The set of level granularities
X Size of the universe dimensions
N Number of objects in the dataset
ow Average object width

Qcost Query cost
Calc Calculation of execution strategy
Scani Cost of scanning a cell on level i
Testi Cost of testing a cell on level i
cwi Cell width on level i
Di Number of fully covered cells on level i

NDi Number of not fully covered cells on level i
Ii Number of objects only intersecting a cell
Ci Number of objects having center in a cell
Oi Average number of objects in cell on level i

Intersection
TestCost Average cost of intersection test

SeqMem
AccessCost

Average sequential memory access cost in
seconds

RandomMem
AccessCost

Average random memory access cost in
seconds

Table 1: Variables used in the cost model.

cell has two major components: (1) SeqAccessScani, the cost
for the sequential memory access to read all objects whose
centers are in the cell, and (2) RandAccessi, the cost random
memory access to retrieve the objects that intersect but center
is not in the cell.

Scani = SeqAccessScani + RandAccessi (2)

Sequential Access. Assuming Ci the number of objects in a
cell on level i and SeqMem AccessCost the average sequential
memory access cost in seconds is as follows:

SeqAccessScani = Ci ∗ SeqMemAccessCost (3)

Random Access. Assuming Ii the number of objects intersect-
ing a cell but their center being in a different cell on level i and
RandomMemAccessCost the average random memory access
cost in seconds.

RandomAccessScani = Ii ∗ RandomMemAccessCost (4)

The benefit, on the other hand, is avoiding unnecessary inter-
section test through fully contained cells. Equation 5 gives the
idea of calculating the benefit by using the average cost of a
single intersection test and the total number of objects in a cell
as all objects in the cell will have to be tested.

Testi = NumberO f Objectsi ∗ IntersectionTestCost (5)

When executing a query, BLOCK has access to all parame-
ters (size of intersection or containment list of all cells involved,
cost of intersection test, cost of random/sequential memory
access) and computes cost and benefit of executing part of a
query (or a whole query) on two different layers. Through
calculating the total cost for executing the query on a cell on
level i and over the cells in the same area in level i + 1, BLOCK
decides whether the query should be split and executed on
the next level or not.

5 BLOCK CONFIGURATION
The configuration of BLOCK centers around two factors, the
number of levels and their granularity. The number of levels
corresponds to the number of different granularities BLOCK
will use and the granularity is the number of cells a level uses.

Both factors primarily depend on the distribution of query
location, query size as well as the distribution of the location
and size of objects in the dataset. Even if the distribution of size
and location of the queries is not known a priori BLOCK can
still be configured for efficient performance as we discuss in the
following. Crucially, however, even if not configured optimally,
BLOCK adjusts itself at runtime and by collecting information
of object distribution and size it chooses the most efficient
set of granularity levels. In the following we first discuss the
granularities (finest and coarsest) and then further discuss
how many levels should be used.

5.1 Grid Granularity
For BLOCK to execute queries as efficient as possible, it needs
to be configured with the appropriate number of levels and
the optimal grid resolutions. The grid resolution depends on
the distribution of query size and location and the distribution
of object size and location. In this discussion we focus on the
query size and assume the distribution of their positions as
well as the distribution of the objects to be uniform. As we will
see in the experiments, even when using extreme distributions,
configurations based on reasoning with uniform distributions
are very efficient.

Coarsest Granularity Level. As discussed in Section 4.5,
key to make BLOCK efficient is to reduce intersection tests
while balancing the cost of retrieving objects. Reducing inter-
section tests directly translates into ensuring that queries will
completely enclose several cells, thereby avoiding any inter-
section tests for objects in the enclosed cells.

If the query size is known a priori, we consequently argue to
choose the granularity of the coarsest grained grid such that a
query encloses cells as big as possible. Using as resolution the
query size is not optimal. In the best possible case this will ex-
actly retrieve one cell if the query position is perfectly aligned
with the uniform grid. In all other cases, however, 4 cells are
retrieved in 2D and 8 in 3D, leading to many unnecessary in-
tersection tests. We therefore argue that the best resolution for
the coarsest grid (on level 0), or more precisely its cell width
is cw0 =

widthquery
2 with widthquery being the width of the query

in each dimension. With this cell width we can ensure that at
least one cell will be enclosed in the query and in the optimal
case 8 cells in 3D.

In case the query size is not known a priori, we argue that
the best resolution is such that a query can enclose at least one
grid cell. In case we use three cells in each dimension, at least
the center cell can be enclosed by a query that is not aligned.

Finest Granularity Level. Finding the finest granularity fol-
lows similar reasoning as the trade off BLOCK strikes when
deciding what levels to use when querying (Section 4.5): if the
granularity is too fine, the benefit of avoiding intersection tests
is smaller than the cost of randomly accessing memory for
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intersection lists retrieval. Crucially, the more fine-grained a
level is, the smaller the cells are and consequently the number
of cells an object intersects with grows. This leads to increasing
random memory accesses thus increasing the cost of query
execution on a level. We thus argue that the finest level is cho-
sen so that the benefit of using one of its cells is bigger than
the cost to access it. In the following we develop the model to
determine the finest granularity (cf. Table 1 for the variables).

As cost we take into account the additional cost introduced
by retrieving objects from smaller cells (with longer intersec-
tion lists). The benefit is the saved cost resulting from avoiding
intersection tests. For this discussion we only consider immedi-
ately neighboring levels i and i + 1 of BLOCK (with cell width
cwi and cwi/2 respectively) and focus on the case where the
finer-grained level avoids all intersection tests. Cost and bene-
fit then lead to the inequality in 6. The finest-grained level for
BLOCK is chosen so that (6) applies.

Scani+1 − Scani ≤ Oi ∗ IntersectionTestCost (6)

To decide on the resolution of the finest-grained without infor-
mation about the data we use an anlytical model to determine
Scani cost for each level. In the following analysis we assume
that the distribution of objects is uniform. Based on the equa-
tions used to calculate Scani (2, 3, 4) and the assumption of
uniform distribution, we can assume that the number of objects
that have their center in each cell is as described in Equation 7
(with Gi being the number or cells in a level).

Ci =
N
Gi

(7)

If we further assume that cwi is the width of a cell on a level i
and X the size of one dimension of the universe, (7) becomes:

Ci =
N ∗ cwi

3

X3 (8)

which instead of the number of cells takes into account the
object width and thus shows clearer that on finer-grained levels
the number of object per cell becomes smaller.

To determine analytically the length of the intersection list
we calculate the number of objects that only intersect a cell
(while their center is in another cell). To only intersect, the
object either has to be positioned close to the neighboring
cell or it has to be of substantial size. Analytically, every cell
is surrounded by an area filled with potentially intersecting
objects. This area is calculated as follows:

Iareai = ((cwi + ow)3 − cwi
3) (9)

Multiplying Iareai with the average area per object, we obtain:

Ii =
((cwi + ow)3 − cwi

3) ∗ N
X3 (10)

Thus by connecting these equations we obtain the object scan
cost or one cell on level i:

Scani =
N
X3 ∗ (cwi

3 ∗ SeqMemAccessCost

+((cwi + ow)3 − cwi
3) ∗ (RandomMemAccessCost))

(11)

Based on this cost model and on the measured cost for mem-
ory access and for intersection tests we can precisely set the
finest-granular level of BLOCK.

5.2 Number of Levels
The number of levels has direct impact on performance of
BLOCK. As shown in the experiments additional levels do not
require substantial additional memory and we thus argue to
use as many levels as the memory allows between the finest
and coarsest level. The granularities of the levels added be-
tween the coarsest and the finest, on the other hand, depend
on the size of the objects in the dataset. As we argued, the
biggest cost factor for BLOCK is random memory access. If
the input dataset contains large objects it is important to avoid
adding multiple fine-grained levels as this increases indexing
time unduly. Instead, levels with coarser resolutions (closer to
the coarsest resolution) should be used for the levels added.
Similarly, for very small objects finer-grained levels should be
added to reduce intersection tests as random access is unlikely.

6 EXPERIMENTAL EVALUATION
In this section we describe the experimental setup & method-
ology and compare BLOCK against state-of-the-art indexing
approaches in terms of time to build the index, memory over-
head and, most importantly, query execution time. To this end
we use synthetic datasets with different configurations (distri-
bution, number of objects, object size) as well as real spatial
datasets from neuroscience.

6.1 Setup
Hardware: The experiments are conducted in a Sandy Bridge
server with a dual socket Intel(R) Xeon(R) CPU E5-2660 (8
cores per socket @ 2.20 Ghz), equipped with 64 KB L1 cache
and 256 KB L2 cache per core, 20 MB L3 cache shared, and 128
GB RAM running Red Hat Enterprise Linux 6.5 (Santiago - 64
bit) with kernel version 2.6.32. The server is equipped with a
RAID-0 of 7 250GB 7500 RPM SATA disks.
Software: For all the experiments the OS can use the remain-
ing memory to buffer disk pages. For a fair comparison the
implementations of all approaches are single threaded. All
approaches are implemented in C++.
Settings: We use a parameter sweep to find the best possible
configuration for every index. In the experiments we compare
BLOCK against the Octree with node size of 50’000 objects, a
loose Octree with overlap factor of 0.5, a MX-CIF tree, an in-
memory implementation of STR-bulkloaded R-Tree (superior
performance compared to the R*-Tree [19]) using a page size
of 4KB and a fanout of 111 and a CR-Tree with 30 bit quan-
tization and fanout of 20 for both inner and leaf nodes. The
resolution/granularity BLOCK uses on a level is denoted by
the number of cells on the level. The maximum resolution is
242. In all experiments, BLOCK uses the query execution cost
model developed in Section 4.5 (Query Execution) to decide
what part of the query to execute on what level. We use the
configuration cost model developed in Section 5 (Block Config-
uration) to set the configuration of BLOCK, i.e., to determine
the configuration of the levels.
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Figure 7: Index build time for 30M uniformly distributed
objects of size [0,1].

6.2 Experimental Methodology
Datasets: To demonstrate the general applicability of our ap-
proach and to stress that we do not exploit any particularity
of the datasets, we primarily use 3D synthetic spatial datasets
to evaluate BLOCK. In the synthetic datasets we create cubes
and vary the length of the edges (either uniformly distributed
between 0 and 1, 0 and 5 or between 0 and 50) and the distribu-
tion of the object’s location (normal distribution with µ = 500,
σ = 220 and uniform). To emulate increasingly large spatial
model datasets we also vary the spatial objects in the datasets
between 5M and 240M resulting in a size on disk between
229MB and 12GB. All synthetic datasets cover 1500 space units
in each dimension of three-dimensional space.

In addition to synthetic datasets we use real spatial datasets
from the motivating neuroscience application. The dataset
models a part, i.e., the neurons, of the neocortex. The structure
of each neuron is represented by thousands of small cylinders.
The size of the data spans from 50 up to 450 million cylin-
ders, or more precisely their bounding box. The size of the
neuroscience models ranges from 2.3GB to 22GB on disk.
Queries: Driven by the neuroscience motivation, we have de-
signed BLOCK to perform efficiently in face of queries of vary-
ing sizes. Inspired by a visualization use case in neuroscience
we consequently use six microbenchmarks with queries of
different sizes: (A) covering 50 space units per dimension, (B)
covering 300 space units and (C) covering 750 space units.

To test the performance of the BLOCK multi-level grid struc-
ture as well as the query execution cost model (Section 4.5)
based on which BLOCK decides what levels to execute the
query on, we also experiment with single level grids.

6.3 Building the Index
Although indexing is a one off operation, the time to index
as well as the memory overhead are crucial. In the follow-
ing section we compare the index building time and memory
footprint of BLOCK, the STR-bulkloaded R-Tree and Octree.
Futhermore, we study the efficiency of BLOCK’s multi-layer
grid building algorithm and finally, we measure the effect of
object size on BLOCK’s index building time.

Building Time. In a first experiment we measure the time
to build the index for the different approaches with files of
increasing size where the object locations are normally dis-
tributed and each object has a uniformly distributed size be-
tween 0 and 1. We first compare the STR R-Tree, the Octree,

Figure 8: Memory footprint of different index approaches.

BLOCK with a single level with 230 cells and, to show the
impact of additional levels, with three levels with 230 cells,
224 cells and 218 cells. For clarity, we neither include the MX-
CIF and Loose Octree as they are identical to Octree nor the
CR-Tree as it uses the same indexing like the R-Tree.

As the result in Figure 7 shows, BLOCK outperforms the
other approaches for either configuration. Indexing with a
grid is straightforward: only the overlap of each object with
the grid has to be calculated. The indexing process therefore
is linear in the number of objects. Clearly, indexing a dataset
with any more than one grid level takes longer than with just
one level as the corresponding structures have to be computed.
Building any levels with BLOCK beyond the first one, however,
increases the build time only minimally as Figure 7 shows.
BLOCK takes advantage of the relationship between grids
on different levels: it builds only the most fine-grained grid
and then summarizes this recursively into coarser levels as
discussed in Section 4.4. This is possible because bigger cells
on a coarser level always contain several smaller cells from
a finer level and consequently no calculations of the element
intersections with the grid are necessary.

The indexing process of the R-Tree is more complex as the
dataset needs to be sorted in each dimension, resulting in
a higher indexing time. Surprisingly, however, is the almost
exponential growth of the Octree’s indexing time. This can be
explained by frequent node splits due to the dense regions in
the dataset. Indexing 120 million objects takes 10× longer for
the Octree than for the R-Tree as can be seen in Figure 7.

Memory Footprint. All indexing approaches need addi-
tional data structures requiring space beyond the dataset. Fig-
ure 8 shows the memory usage of the indexes with increasing
dataset size. We use two different configurations of BLOCK to
show the impact of multiple levels.

The level directories of BLOCK are very efficient in mini-
mizing the overhead of the pointers by compressing the con-
tainment list into two integers: offset and size of the block
of consecutive objects in the object store. Objects intersecting
with multiple cells, on the other hand, cannot be efficiently
compressed, thus increasing the memory footprint. Adding
additional levels to BLOCK does not considerably increase
its memory footprint as most of the memory is used for the
object store. When adding coarser levels, more objects are en-
tirely contained in cells, and therefore the easily compressible
containment lists become longer and the harder to compress
intersection lists become shorter. Each additional coarser level
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Figure 9: Breakdown of Index build time for Normally dis-
tributed objects of size [0,5]

Figure 10: Index build time for file size of 30M uniformly
distributed objects.
thus requires less memory than the previous one. As Octree
needs to replicate data, i.e., objects intersecting several cells, it
requires considerably more memory. With its data-oriented
organization, the R-Tree avoids replication (of objects or point-
ers) completely and, although it organizes the index with a
hierarchical structure, it requires the least memory.

Build Time Breakdown. To analyze where time is spent in
BLOCK’s indexing process, we index a dataset with normally
distributed objects with different static configurations (both
single level and multiple levels). The major parts of the in-
dex build time are: (1) insertion into the object store (2) find
covering cells, i.e., calculation of the cells that the object has
to be inserted into and (3) insertion into the level directories.
Figure 9 shows the build time breakdown of these operations.
The finer the grid granularity, i.e., the more cells, the longer
indexing takes because an object will intersect with more cells.
Calculating the overlap of objects with cells is particularly ex-
pensive because it requires to calculate the z-order value of
all the overlapping cells. On the other hand, adding the cell to
the index, i.e., to the level directories, as well as to the object
store takes insignificant time.

Object Size Effect. Figure 10 shows the effect of object size
on the efficiency of BLOCK’s index building time. We use four
static configurations two single layer, one two layer and one
three-layer. The build time of BLOCK depends both on the
object size and the granularity of the most fine-grained grid
layer. The three layer BLOCK configuration requires nearly the
same index building time as the single layer with 230 cells.

6.4 Query Execution
In this section we evaluate BLOCK and compare it to the STR-
bulkloaded R-Tree, the CR-Tree, the Octree, the loose Octree

Figure 11: Comparing BLOCK, STR R-Tree, CR-Tree, loose
and MX-CIF Octree. Uniform data, size [0,1], bench. B.

Figure 12: Comparison of BLOCK, STR R-Tree, loose Octree,
Octree on neuroscience data for queries of benchmark B.
and the MX-CIF Octree on synthetic and neuroscience data.
BLOCK uses the query execution cost model (see Section 4.5)
to decide on what levels to execute which parts of the query.
Thanks to the use of the query execution cost model, no pa-
rameters need to be set.

Synthetic Dataset. We first compare the approaches on uni-
formly distributed data using benchmark B (300 units). As
Figure 11 shows, although the Octree is very efficient on point
data, it does not scale in case of objects with spatial extent. The
loose Octree improves performance but because a consider-
able share of the tree has to be traversed for a range query, the
improvement is barely noticeable. The R-Tree as well as the
CR-Tree perform better despite of overlap but BLOCK proves
to be the most efficient approach. The quantization of MBR’s in
the CR-tree incurs more overlap thus reducing the benefits of
its smaller size. Furthermore testing for intersection in the CR-
Tree, i.e., testing the quantized queries against the quantized
MBR’s, is computationally more complex than in the R-Tree.

Neuroscience Dataset. As a test to demonstrate BLOCK’s
usefulness for real world applications, we experiment with a
dataset from neuroscience featuring up to 450 million cylin-
ders which model the spatial structure of one neuron. In this
experiment we use benchmark B (300 units), modeled after a
visualization use case from neuroscience with comparatively
big queries. The results in Figure 12 show that BLOCK is 7×
faster than the STR-bulkloaded R-Tree. BLOCK also clearly out-
performs the loose Octree and the Octree. We do not include
the results for either Octrees for 450 million object dataset as
the query execution takes longer than 500 seconds.

The super-linear increase in R-Tree execution time is due
to the dataset density which creates large overlapping MBR’s
in the R-Tree. As we will also see in more detail in the next
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Figure 13: Comparison of BLOCK, STR-bulkloaded R-Tree
and Octree on different object sizes.

experiment, due to the comparatively large objects, the Octree
needs to traverse multiple paths to answer a query and is thus
less efficient. The loose Octree is similarly inefficient when
indexing large spatial objects despite the reduction in object
replication based on the loose branch borders.

Object Size Effect. Spatial data can scale both in density
(more objects) as well as in size. By indexing large objects
on the coarser grids BLOCK avoids scanning through many
cells in order to deduplicate results in contrast to the R-Tree
structures where bigger objects lead to increasing overlap.

In a final experiment we thus test different approaches (we
only take the fastest representative from the R-Tree as well
as Octree family of approaches) for 30 million uniformly dis-
tributed objects with different sizes (from 0 to 1, from 0 to 5
and from 0 to 50). As the results in Figure 13 show, BLOCK
indeed outperforms the R-Tree which suffers from overlap.

7 BLOCK ANALYSIS
In the following we analyze BLOCK in more detail. We study
the impact of different configurations for indexing on query ex-
ecution performance. BLOCK has two different configuration
parameters for indexing: the number of levels and their respec-
tive granularity. Configuring BLOCK optimally depends on
the distribution of size, location of the objects in the dataset
as well as of the queries. While the former can be determined
before configuring the index, the queries are not known a
priori, making optimal configuration challenging. Considera-
tions discussed in Section 5 can be used to choose an efficient
configuration as we demonstrate with experiments.

In the following we consequently test different configura-
tions for indexing (number of levels as well as their resolution).
During query execution BLOCK uses the configuration cost
model (see Section 5) to decide how to split the queries and
on what levels to execute the parts of the query.

In a first experiment we test different BLOCK configurations
on a uniform dataset using microbenchmark C (300 units). We
set the grid resolution of the level with the finest granularity
according to the cost model (discussed in Section 5) to 227 cells
because for an average object size of 5, the finest granularity
that does not degrade performance uses 227 cells. We compare
the performance of this configuration with the immediately
finer and with coarser grained configurations as well as with
a configuration with two levels.

Figure 14: Compare multi-level configurations on Uni-
formly distributed objects with size [0,5] for benchmark B.

Figure 15: BLOCK compared single to multi-level grids on
uniform distributed objects of size [0,5] for benchmark B.

As the results in Figure 15 show, the single level grid with
granularity 227 performs best. Using any other configuration
results in degraded performance. For coarser granularities
(fewe cells) performance degrades due to unnecessary inter-
section tests because of bigger cells and for finer granularities
(more cells), e.g., 230, due to the longer intersection lists and
random memory access. The BLOCK configuration using two
levels outperforms all single level configurations, including
the one with 227 cells. The addition of the coarser level with 221

cells to the configuration allows some queries (or at least parts
of them) to be executed on it as they may enclose entire cells.
Clearly, adding one level improves performance and as we
have shown previously, the memory and build time overhead
of additional levels is minimal.

Figure 14 shows a comparison between multi-level BLOCK
configurations over uniform data using benchmark B (300
units). Using the configuration cost model for BLOCK devel-
oped in Section 5 (and given measured parameters for cost of
intersection test and for memory access) suggests a three level
configuration with levels 227,224,221. As this experiment con-
firms, the configuration suggested by the cost model indeed
proves to be the most efficient.

The performance of configuration 227, 221, 215 is slower be-
cause with this query size, the level with granularity 215 cannot
be used as its cells are bigger than the query. Configurations
with larger steps than the one chosen (such as 227,221) have
poorer performance as well because of the small size of objects.
A configuration with a more fine-grained top level of granular-
ity (233,227,221) finally crosses over the trade-off point shown
in the cost model and thus executes inefficiently.
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Figure 16: Query execution breakdown.

7.1 BLOCK Query Execution Breakdown
We break the query execution operation into three major parts:
(1) execution plan calculation, i.e., the calculation of the cells
covering the query, (2) object retrieval, the iteration through the
index and gathering the objects within the query and finally, (3)
object check and return, the validation that objects read indeed
intersect with the query range and then return them to the user.
As the result of the experiment with the benchmark C (750
units) on normally distributed files and an object size between
0 and 5 in Figure 16 shows, the object retrieval part dominates
the overall time. In the object retrieval part, the objects both
from the containment and intersection lists are retrieved.

In our experiments, multiple levels with properly chosen
granularities always outperform single level configurations of
BLOCK. The breakdown shows that the configurations with
multiple levels save time on the execution plan calculation and
on the object intersection tests. Time in the intersection tests is
saved because on multiple levels, more cells are fully enclosed
in the range query. Depending on the query position the in-
tersection tests can be reduced by approximately 50% when
using multiple levels as this experiment demonstrates. As dis-
cussed, enclosing more cells fully when using multiple levels
also reduces the overhead of object retrieval: on coarser levels
the intersection lists are smaller and therefore less random
main memory access is required.

8 CONCLUSIONS
The bottlenecks of spatial indexing have shifted in recent years
when an increasing number of datasets started to fit into mem-
ory. While disk-based approaches were disk-bound and hence
optimized to reduce (particularly random) access to the slow
disk, in-memory approaches are CPU-bound and need to re-
duce computations in general and the number of objects tested
for intersection with the query range in particular.

Clearly, as the bottlenecks have shifted, indexes should be
adapted for the new medium as well. With BLOCK we have de-
veloped an efficient approach for the execution of spatial range
queries in memory. By effectively reducing the number of in-
tersection tests needed in the index structure, BLOCK executes
queries up to 7 times faster than competing approaches.

As we demonstrated with the experiments in Figure 15 the
multilevel grid scales better than the single level and from
Figure 11 follows that it performs better than the state-of-the-
art. Despite the multiple levels and the added complexity, the
build time scales on object size, number of objects and number

of levels. Similarly the memory overhead is lower than the
Octree and it does not grow substantially with more levels.
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