
Uniform Analysis for
Communicating Timed Systems

(Extended Technical Report)

Hossein Hojjat1, Philipp Rümmer2, Pavle Subotic2, and Wang Yi2

1 Swiss Federal Institute of Technology Lausanne (EPFL)
2 Uppsala University, Sweden

Abstract. Languages based on the theory of timed automata are a well
established approach for modelling and analysing real-time systems, with
many applications both in industrial and academic context. Model check-
ing for timed automata has been studied extensively during the last two
decades; however, even now industrial-grade model checkers are avail-
able only for few timed automata dialects (in particular Uppaal timed
automata), exhibit limited scalability for systems with large discrete
state space, or cannot handle parametrised systems. Leveraging recent
advances of general-purpose fixed-point engines, we present a flexible
method for translating networks of timed automata to Horn constraints,
which can then be solved via of-the-shelf solvers. The resulting analysis
method is fully symbolic and applicable to systems with large or infinite
discrete state space, can be extended to include various language fea-
tures, for instance Uppaal-style communication/broadcast channels and
BIP-style interactions, and can analyse systems with infinite parallelism.
Experiments demonstrate the feasibility of the method.

1 Introduction

With increasing complexity and ubiquity of embedded systems, verification of
functional and non-functional properties is becoming ever more vital. We con-
sider the problem of analysing properties of systems with real-time aspects, which
is commonly addressed with the help of timed automata models. By modelling
systems as timed automata, a variety of relevant properties can be analysed,
including schedulability, worst-case execution time of concurrent systems, inter-
ference, as well as functional properties. Tools and model checking techniques for
timed automata have been studied extensively during the last two decades, one
prime example being the Uppaal tool [16], which uses difference-bound matrices
(DBMs) as efficient representation of time, and explicit representation of data
(discrete state). Despite many advances, scalability of tools for analysing timed
automata remains a concern, in particular for models of industrial size.

We investigate the use of fully-symbolic model checking for the analysis of
timed systems, leveraging counterexample-guided abstraction refinement (CE-
GAR) [9, 12] to represent state space, with Craig interpolation [6] for the refine-
ment step, as well as the recently proposed framework of Horn clauses [18, 11]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147999538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

as intermediate system representation. Symbolic methods enable us to handle
timed systems that are beyond the capabilities of DBM-based model checkers,
due to the size of the discrete state space (which in realistic models can be large,
or even infinite). The flexibility of Horn constraints makes it possible to elegantly
encode language features of timed systems that are commonly considered diffi-
cult; in particular, systems with an unbounded (or infinite) number of processes
can be handled in much the same way as bounded systems.

Contributions of the paper are: 1. a uniform analysis methodology for mod-
elling languages providing (finite or infinite) concurrency, real-time constraints,
as well as inter-process communication using shared memory, synchronous mes-
sage passing, and synchronisation using barriers; instances of this framework
include Uppaal timed automata [16] and BIP [4]; 2. an experimental evaluation
using a set of (well-known) parametric timed automata models.

1.1 Related Work

We focus on work most closely related to ours; for a general overview of timed
automata analysis, the reader is referred to surveys like [22].

Our work is inspired by recent results on the use of Horn clauses for concur-
rent system analysis, in particular Owicki-Gries and Rely-Guarantee approaches
in [10]. We use Owicki-Gries-style invariants in our work, but generalise the way
how invariants can relate different processes a system (using invariant schemata),
and include systems with infinitely many processes and time. For parametric sys-
tems, we generate invariants quantifying over all processes in a system; the way
such invariants are derived has similarities to [5], where quantified invariants are
inferred in the context of datatypes like arrays. Encoding of timed automata as
Horn clauses has also been proposed in [13, 7], but only restricted to derivation
of monolithic system invariants (non-compositional reasoning).

k-Indexed invariants were introduced in [21], as an instance of the general
concept of thread-modular model checking [8], using self-reflection to au-
tomatically build environments of threads. We carry over the approach to Horn
clauses, and investigate its use for extensions of timed systems.

SMT-based full model checking (k-induction and IC3) for timed automata
has recently been investigated in [15], using the region abstraction for discretisa-
tion. In comparison, our work relies on CEGAR to handle time and data alike,
and achieves compositional and parametric analysis via Horn clauses.

The approach of backward reachability has been used for verification of
various classes of parametric systems, including timed systems [3, 2, 1], estab-
lishing decision procedures with the help of suitable syntactic restrictions. A
detailed comparison between backward reachability for timed systems and our
approach is beyond the scope of this paper, and is planned as future work. Since
our approach naturally includes abstraction through CEGAR, we expect better
scalability for systems with complex process-local behaviour (e.g., if individual
processes are implemented as software programs). On the other hand, backward
reachability gives rise to decision procedures for important classes of parametric
systems; it is unclear whether such results can be carried over to our setting.

2

p1 p2

p3
p4

y ≤ 5

n := 0

leave?
n := n− 1

appr?
[n = 0]

n := n+ 1

go!
[n 6= 0]

appr?
n := n+ 1, y := 0

stop!

(a)

q1
q2

x ≤ 5

q3
x ≤ 20

q4
q5

x ≤ 15

leave!
[x ≥ 3]
x := 0

appr!
x := 0

[x ≤ 10]
stop?

go?
x := 0

[x ≥ 7]
x := 0

[x ≥ 10]
x := 0

(b)

Fig. 1. Railway Control System [23]. a) Controller, b) Train.

2 Motivating Examples

We start be illustrating the scope of our method using two example models.

2.1 Railway Control System

Fig. 1 depicts a train controller system taken from [23], consisting of a number of
trains travelling towards a critical point that can be passed by only one train at a
time, and a controller responsible for preventing collisions. Compared to [23], the
model was simplified by removing the queue to store incoming requests from the
trains; since we only focus on safety, not fairness, this queue becomes irrelevant.
The controller randomly releases trains without considering any specific order.

The trains communicate with the controller using binary communication
channels. When a train approaches the critical point it informs the controller
via the channel appr. It then waits for 20 time units; if the controller does
not stop the train using stop, it enters its crossing state q2. As a safety prop-
erty of the system we require that at any time only one train can be in q2;
using Uppaal, the authors of [23] could successfully prove safety for up to 6
trains. In our setting, we consider the model with infinitely many instances of
the train automaton; this subsumes the parametric problem of showing safety
for an arbitrary (finite) number N of trains. We show safety of the infinite
model (automatically) by computing a quantified inductive invariant of the form
∀id1, id2, id3. I(ctrl , train(id1), train(id2), train(id3)), where ctrl is the state of
the controller, and train(id) the state of a specific train id ; in other words, the
invariant expresses a property that holds for any triplet of trains at any time.
Note that invariants of this kind can express that at most two trains are in q3.

2.2 RT-BIP Example

Figure 2 shows a temperature control system modeled in the component coordi-
nation language BIP [4]. The Controller component is responsible for keeping the

3

l1

l3

l2

cool1

cool1

when
[t1 ≥ 3600]

rest1

reset t1

cool1 rest1

l4

l6

l5

cool2

cool2

when
[t2 ≥ 3600]

rest2

reset t2

cool2 rest2

l8

l7
reset θ

heat
eager
when

[θ = 450]
reset θ

cool
eager
when

[θ = 900]
reset θ

cool heat

Rod 1 Rod 2Controller

Fig. 2. Temperature Control System [4]

value of θ between the values 450 and 900. Whenever the value of θ reaches the
upper bound of 900 the Controller sends a cooling command to the Rod 1 and
Rod 2 components using its cool port. In the lower bound of 450 the Controller
resets the Rods. The Rod components can accept a cool command again only if
3600 time units have elapsed. Compared to [4], we use the RT-BIP dialect and
model physical time using clocks θ, t1 and t2. Note that in this model all the
communications are in the form of Rendezvous so the priority layer of the BIP
glue is essentially empty. The required safety property of the system is to ensure
deadlock freedom. Deadlock happens when the value of θ reaches 900 but there
was not sufficient time (3600 time units) for the rods to be engaged again.

BIP semantics requires that all process run to an interaction point, before
interaction takes place. We model this using a basic form of synchronization
barrier (Section 7.3), together with a global variable iact to choose between
interactions. Among a set of parallel processes who share a barrier, whenever a
process reaches the barrier it stops until all the rest reach the barrier. Verification
of the model shows in fact this model has deadlock; the heating period of the
controller is faster than the required delay time of the rods.

3 Preliminaries

Constraint languages. Throughout this paper, we assume that a first-order vo-
cabulary of interpreted symbols has been fixed, consisting of a set F of fixed-arity
function symbols, and a set P of fixed-arity predicate symbols. Interpretation of
F and P is determined by a fixed structure (U, I), consisting of a non-empty uni-
verse U , and a mapping I that assigns to each function in F a set-theoretic func-
tion over U , and to each predicate in P a set-theoretic relation over U . As a con-
vention, we assume the presence of an equation symbol “=” in P, with the usual
interpretation. Given a set X of variables, a constraint language is a set Constr
of first-order formulae over F ,P, X. For example, the language of quantifier-free
Presburger arithmetic (mainly used in this paper) has F = {+,−, 0, 1, 2, . . .}
and P = {=,≤, |}), with the usual semantics.

4

We write dist(x1, . . . , xn) to state that the values x1, . . . , xn are pairwise
distinct, i.e., dist(x1, . . . , xn) ≡

(
∀i, j ∈ {1, . . . , n}. (i = j ∨ xi 6= xj)

)
.

Horn Clauses. We consider a set R of uninterpreted fixed-arity relation symbols.
A Horn clause is a formula H ← C ∧B1 ∧ · · · ∧Bn where

– C is a constraint over F ,P,X;
– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-

order terms over V,C;
– H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms,

or is the constraint false.

H is called the head of the clause, C∧B1∧· · ·∧Bn the body. In case C = true,
we usually leave out C and just write H ← B1 ∧ · · · ∧Bn. First-order variables
in a clause are implicitly universally quantified; relation symbols represent set-
theoretic relations over the universe U of a structure (U, I) ∈ S. Notions like
(un)satisfiability and entailment generalise to formulae with relation symbols.

Definition 1 (Solvability). Let HC be a set of Horn clauses over relation
symbols R. HC is called (semantically) solvable (in the structure (U, I)) if there
is an interpretation of the relation symbols R as set-theoretic relations such the
universal closure Cl∀(h) of every clause h ∈ HC holds in (U, I).

We can practically check solvability of sets of Horn clauses by means of pred-
icate abstraction [10, 20], using model checkers like Z3-Horn [13] or Eldarica [14].

4 Basic Encoding of Concurrent Systems

4.1 Semantics of Concurrent Systems

We work in the context of a simple, but expressive system model with finitely
or infinitely many processes executing concurrently in interleaving fashion; in
subsequent sections, further features like communication will be added. Each
process has its own local state (taken from a possibly infinite state space), and
in addition the system as a whole also has a (possibly infinite) global state that
can be accessed by all processes. We use the following notation:

– G is a non-empty set representing the global state space.
– P is a non-empty index set representing processes in the system.
– The non-empty set Lp represents the local state space of a process p ∈ P .
– Initp ⊆ G× Lp is the set of initial states of a process p ∈ P .

– (g, l)
p→ (g′, l′) is the transition relation of a process p ∈ P , with global

states g, g′ ∈ G and local states l, l′ ∈ Lp.

Given a set of processes defined in this manner, we can derive a system by means
of parallel composition:

5

– S = G×
∏

p∈P Lp is the system state space. Given a system state s = (g, l̄) ∈
S, we write l̄[p] ∈ Lp for the local state belonging to process p ∈ P .

– S0 = {(g, l̄) | ∀p ∈ P. (g, l̄[p]) ∈ Initp} ⊆ S is the set of initial system states.
– The transition relation of the system as a whole is defined by:

p ∈ P (g, l̄[p])
p→ (g′, l′)

(g, l̄)→ (g′, l̄[p/l′])

We write l̄[p/l′] ∈
∏

p∈P Lp for the state vector obtained by updating the
component belonging to process p ∈ P to l′ ∈ Lp.

Safety. We are interested in checking safety properties of systems as defined
above. We define (un)safety in the style of coverability, by specifying a vec-
tor (〈p1, E1〉, . . . , 〈pm, Em〉) of process-state-pairs, where the pi ∈ P are pairwise
distinct, and Ei ⊆ G× Lpi

for each i ∈ {1, . . . ,m}. System error states are:

Err =
{

(g, l̄) ∈ S | ∀i. (g, l̄[pi]) ∈ Ei

}
Intuitively, a system state is erroneous if it contains n (pairwise distinct) pro-
cesses whose state is in E1, . . . , En, respectively. Many common error properties,
for instance occurrence of local runtime exceptions or violation of mutual exclu-
sion, can be expressed using this concept of error. A system is safe if there is no
sequence s0 → s1 → . . .→ sn of transitions such that s0 ∈ S0 and sn ∈ Err .

4.2 Encoding Safety of Finite Systems

To check that a system is safe it is sufficient to find an inductive invariant, which
is a set Inv ⊆ S of states with the properties

– Initiation: S0 ⊆ Inv ;
– Consecution: for all s→ t with s ∈ Inv , also t ∈ Inv ;
– Safety: Inv ∩ Err = ∅.

The following sections define methods to derive inductive invariants with the
help of Horn constraints. We first concentrate on the case of a finite set P =
{1, 2, . . . , n} of processes, and show how an encoding in the spirit of Owicki-
Gries [19] can be done with the help of Horn constraints. In comparison to ear-
lier work [10], inductive invariants can be defined to cover individual processes,
as well as sets of processes, in order to handle required relational information
(inspired by the concept of k-indexed invariants [21]). We define this concept
formally with the help of invariants schemata.

Recall that the component-wise order < on the set Nn is a well-founded
partial order. An antichain is a set A ⊆ Nn whose elements are pairwise <-
incomparable; as a consequence of Dickson’s lemma, antichains over Nn are
finite. An invariant schema for processes P = {1, 2, . . . , n} is an antichain A ⊆
{0, 1}n ⊆ Nn. Intuitively, every vector in A represents an invariant to be inferred;
entries with value 1 in the vector indicate processes included in the invariant,
while processes with entry 0 are not visible (entries > 1 are relevant in Sect. 5.2).

6

{
Rā(g, l1, . . . , lk) ← Init i1(g, l1) ∧ · · · ∧ Init ik (g, lk)

}
ā∈A

(2){
Rā(g′, l̄[p/l′][ā])

←
(
(g, l̄[p])

p→ (g′, l′)
)
∧Rā(g, l̄[ā]) ∧ Ctxt({p}, g, l̄)

}
p=1,...,n
ā∈A

(3)

false ←
(∧
j=1,...,m

(g, l̄[pj]) ∈ Ej
)
∧ Ctxt({p1, . . . , pm}, g, l̄) (4)

Fig. 3. Horn constraints encoding a finite system. In (2), the numbers i1, . . . , ik are
the indexes of non-zero entries in ā. Symbols in sans serif are implicitly universally
quantified variables.

Example 2. Consider the RT-BIP model in Sect. 2.2, with processes P = {1, 2, 3}
(1 ∼= Rod 1, 2 ∼= Controller, 3 ∼= Rod 2). SchemaA1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
leads to fully modular safety analysis with three local invariants, each of which
refers to exactly one process. A2 = {(1, 1, 0), (0, 1, 1)} introduces two invariants,
each relating one cooling rod with the controller. The strongest invariant schema,
A3 = {(1, 1, 1)} corresponds to analysis with a single monolithic invariant.

To define the system invariant specified by a schema A, we assume that
{Rā | ā ∈ A} is a set of relation variables, later to be used as vocabulary for
Horn constraints. Further, given a local state vector l̄ ∈

∏
p∈R Lp and ā ∈ A,

we write l̄[ā] for the vector (l̄[i1], l̄[i2], . . . , l̄[ik]), where i1 < i2 < · · · < ik are
the indexes of non-zero entries in ā = (a1, . . . , an) (i.e., {i1, . . . , ik} = {i ∈
{1, 2, . . . , n} | ai > 0}). The system invariant is then defined as the conjunction
of the individual relation symbols Rā, applied to global and selected local states:

Inv(g, l̄) =
∧
ā∈A

Rā(g, l̄[ā]) (1)

Concrete solutions for the variables {Rā | ā ∈ A}, subject to the conditions
Initiation, Consecution, and Safety given in the beginning of this section, can be
computed by means of an encoding as Horn clauses. For this purpose, we assume
that a system can be represented within some constraint language, for instance

within Presburger arithmetic: the sets Initp, the transition relation s
p→ t, as well

as the error specification (〈p1, E1〉, . . . , 〈pm, Em〉) are encoded as constraints in
this language. Horn clauses can then be formulated as shown in Fig. 3. The
clauses (2) represent initiation, for each of the variables Rā; (3) is consecution,
and (4) encodes unreachability of error states.

In (3), (4), we refer to a context invariant Ctxt({p1, . . . , pk}, g, l̄), which in-
cludes those literals from Inv(g, l̄) relevant for the processes p1, . . . , pk:

Ctxt(Q, g, l̄) =
∧{

Rc̄(g, l̄[c̄]) | c̄ ∈ A and ∃q ∈ Q. c̄[q] > 0
}

However, note that different choices can be made concerning invariants Rā to
be mentioned in the body of (3), (4); it is in principle possible to add arbitrary

7

literals from Inv(g, l̄). Adding more literals results in constraints that are weaker,
and potentially easier to satisfy, but can also introduce irrelevant information.

Lemma 3 (Soundness). If the constraints in Fig. 3 are (semantically) solvable
for any invariant schema A, then the analysed system is safe.

Proof. By checking that Inv(g, l̄) in (1) is an inductive invariant of the system.

Lemma 4 (Completeness). If a system is safe, then there exists an invariant
schema A such that the constraints in Fig. 3 are (semantically) solvable.

Proof. Choose A = {(1, 1, . . . , 1)}, and interpret R(1,1,...,1) with the set of reach-
able system states.

It is important to note that Lem. 4 talks about semantic solvability. Despite
existence of such a model-theoretic solution, in general there is no guarantee that
a symbolic solution exists that can be expressed as a formula of the chosen con-
straint language. However, such guarantees can be derived for individual classes
of systems, for instance for the case that the considered system is a network of
timed automata (and a suitable constraint language like linear arithmetic).

4.3 Counterexample-Guided Refinement of Invariant Schemata

The question remains how it is practically possible to find invariant schemata
that are sufficient to find inductive invariants. This aspect can be addressed via
a counterexample-guided refinement algorithm as shown in the pseudo-code of
Fig. 4. Initially, verification is attempted using the weakest invariant schema,
A0 = {(1, 0, 0, . . .), (0, 1, 0, . . .), . . .}. If verification is impossible, a Horn solver
will produce a concrete counterexample to solvability of the generated Horn con-
straints. It can then be checked whether this counterexample points to genuine
unsafety of the system, or just witnesses insufficiency of the invariant schema.
In the latter case, a stronger invariant schema can be chosen, and verification is
reattempted.

A simple criterion to identify genuine counterexamples (function Genuine) is
to check whether the counterexample cex uses any clause (3) for parameters p, ā,
such that ā[p] = 0. If such clauses do not occur in cex, a direct translation to a
system execution leading into an error is possible.

At the moment, we use only a straightforward implementation of the Refine
operation (shown in Fig. 4), conjoining relevant vectors in the current invariant
schema according to the processes occurring in a counterexample. More sophis-
ticated refinement algorithms are possible.

5 Safety for Unbounded Systems

5.1 Encoding of Unbounded Homogeneous Systems

We now relax the restriction that the process index set P of a system is finite,
and also consider an infinite number of processes. Since our definition of safety

8

1 def SchemataCEGAR(S) {
2 A = ∅
3 for (i← 1 to |P |) {
4 ā = (0, . . . , 0) ; |ā| = |P | ; ā[i] = 1
5 A = A ∪ {ā}
6 }
7 while (true) {
8 if (!Solvable(S,A)) {
9 cex = HornSolver(S,A)

10 if(!Genuine(cex))
11 report ‘‘ERROR’’
12 else A = Refine(A, cex)
13 }
14 else
15 report ‘‘SAFE’’
16 }
17 }
18

19 def Refine(A, cex) {
20 pick i, j ∈ P from cex, and ā1, ā2 ∈ A with ā1 6= ā2, ā1[i] = 1, ā2[j] = 1
21 return (A \ {ā1, ā2}) ∪ {ā1 + ā2}
22 }

Fig. 4. The CEGAR algorithm of Invariant Schemata

only considers finite paths into potential error states, this represents the case of
systems with an unbounded number of (active) threads. Showing safety for a sys-
tem with infinitely many processes raises the challenge of reasoning about a state
vector with infinitely many entries. This can be addressed by exploiting the sym-
metry of the system, by deriving a single parametric invariant that is inductive
for each process; the corresponding system invariant universally quantifies over
all processes. Necessary relational information pertaining to multiple processes
can be captured with the help of k-indexed invariants [21]. The correctness of
parametric invariants can be encoded as a finite set of Horn constraints, which
again yields an effective method to derive such invariants automatically.

Initially we restrict attention to homogeneous systems, in which all processes
share the same initial states and transition relation; however, each process has
access to its process id (as a natural number), and can adapt its behaviour with
respect to the id.3 We assume that P = N, Initp = Init , and Lp = L for all
processes p ∈ P . Then, for any number k ∈ N>0, and given a fresh relation
variable R, a k-indexed invariant has the shape:

Inv(g, l̄) = ∀p1, . . . , pk ∈ N.
(
dist(p1, . . . , pk)→ R(g, p1, l̄[p1], . . . , pk, l̄[pk])

)
(5)

3 By exploiting the fact that the id can be accessed, in fact the model in this section
is as expressive as the (syntactically richer) one in Sect. 5.2.

9

{
R(g, pσ(1), lσ(1), . . . , pσ(k), lσ(k))

← dist(p1, . . . , pk) ∧R(g, p1, l1, . . . , pk, lk)

}
σ∈Sk

(6)

R(g, p1, l1, . . . , pk, lk) ← dist(p1, . . . , pk) ∧ Init(g, l1) ∧ · · · ∧ Init(g, lk) (7)

R(g′, p1, l
′
1, . . . , pk, lk)

← dist(p1, . . . , pk) ∧
(
(g, l1)

p1→ (g′, l′1)
)
∧R(g, p1, l1, . . . , pk, lk)

(8)

R(g′, p1, l1, . . . , pk, lk)

← dist(p0, p1, . . . , pk) ∧
(
(g, l0)

p0→ (g′, l′0)
)
∧ RConj (0, . . . , k)

(9)

false ← dist(p1, . . . , pr) ∧
(∧
j=1,...,m

(pj = pj ∧ (g, lj) ∈ Ej)
)
∧ RConj (1, . . . , r) (10)

Fig. 5. Horn constraints encoding a homogeneous infinite system with the help of
a k-indexed invariant. Sk is the symmetric group on {1, . . . , k}, i.e., the group of all
permutations of k numbers; as an optimisation, any generating subset of Sk, for instance
transpositions, can be used instead of Sk. In (10), we define r = max{m, k}.

R represents a formula that can talk about the global state g, as well as about k
pairs (pi, l̄[pi]) of (pairwise distinct) process identifiers and local process states.
R can therefore express which combinations of states of multiple processes can
occur simultaneously, and encode properties like mutual exclusion (at most one
process can be in some state at a time). For k = 1, the invariants reduce to
Owicki-Gries-style invariants (for infinitely many processes).

Fig. 5 gives the Horn clauses encoding the assumed properties of Inv(g, l̄)
for a given k. Since k-indexed invariants quantify over all permutations of k
processes, it can be assumed that R is symmetric, which is captured by (6).
Initiation is encoded in (7). Consecution is split into two cases: (8) covers the
situation that p ∈ {p1, . . . , pk} makes a transition, and (9) for transitions due to
some process p0 6∈ {p1, . . . , pk}. In (8), due to symmetry of R, it can be assumed
that p = p1. Unreachability of errors (〈p1, E1〉, . . . , 〈pm, Em〉) is specified by (10).

As shorthand notation in (9), (10), for numbers a, b ∈ N with a ≤ b the
expression RConj (a, . . . , b) represents the conjunction of all R-instances for pro-
cess ids in the range a, . . . , b (as in Sect. 4.2, it is possible to include further
literals from Inv(g, l̄) in the body of (8)–(10), resulting in weaker constraints):

RConj (a, . . . , b) =
∧

i1,...,ik∈{a,...,b}
i1<i2<···<ik

R(g, pi1 , li1 , . . . , pik , lik)

Theorem 5 (Expressiveness).

1. If the constraints in Fig. 5 are satisfiable for a given k, then they are also
satisfiable for any k′ > k (for the same system).

2. If k′ > k > 0, then there are systems that can be verified with k′-indexed
invariants, but not with k-indexed invariants.

10

Proof. 1. Given a solution Rk of the constraints, a k′-solution Rk′ is:

Rk′(g, p1, l1, . . . , pk′ , lk′) =
∧

i1,...,ik∈{1,...,k′}
dist(i1,i2,...,ik)

Rk(g, pi1 , li1 , . . . , pik , lik)

2. Consider a system defined by infinitely many copies of the process:

l1 l2
c := 0

c < k, c := c+ 1

c := c− 1

where c is a global integer variable; the property to check is that no k + 1
processes can simultaneously reside in l2. Absence of this error can be proven
with k + 1-indexed invariants, but not with k-indexed invariants.

5.2 Encoding of Unbounded Heterogeneous Systems

The encodings of Sect. 4.2 and 5.1 can be combined, to analyse systems that
contain n different types of processes, each of which can either be a singleton
process, or a process that is infinitely replicated. Compared to Sect. 5.1, process
types enable more fine-grained use of k-indexed invariants, since it is now possible
to specify which processes are considered with which arity in an invariant.

More formally, we now use the process index set P =
⋃

i=1,...n({i} × Pi),
where Pi is either {0} (singleton case) or N (replicated case). Invariant schemata
from Sect. 4.2 generalise to unbounded heterogeneous systems, and are now an-
tichains A of the partially ordered set

∏
i=1,...n({0, 1} ∪ Pi) ⊆ Nn. This means

that an invariant can refer to at most one instance of a singleton process,
but to multiple instances of replicated processes. As in Sect. 4.2, we use a set
{Rā | ā ∈ A} of relation variables, and define the system invariant as a conjunc-
tion of individual invariants, each of which now quantifies over ids of processes.
Namely, for a vector ā = (a1, . . . , an) and process type i ∈ {1, . . . , n}, ai distinct
processes pi1, . . . , p

i
ai
∈ Pi are considered:4

Inv(g, l̄) =
∧
ā∈A

ā=(a1,...,an)

∀p1
1, . . . , p

1
a1
∈ P1. . . .∀pn1 , . . . , pnan

∈ Pn.(
dist(p1

1, . . . , p
1
a1

) ∧ · · · ∧ dist(pn1 , . . . , p
n
an

)

→ Rā(g, p1
1, l̄[(1, p

1
1)], p1

2, l̄[(1, p
1
2)], . . . , pnan

, l̄[(n, pnan
)])
)

It is then possible to formulate Horn constraints about the required properties
of the invariants. The Horn clauses combine features of those in Fig. 3 and 5,
but are left out from this paper due to the notational complexity.

4 Note that if i is a singleton process, there is only a single process id (Pi = {0}), so
that the corresponding argument of Rā could be left out.

11

Example 6. Consider the railway control system in Fig. 1, which consists of
a singleton process P1 = {0}, the controller, and an infinitely replicated pro-
cess P2 = N, the trains. The system can be verified with the schema A = {(1, 3)};
this means, an inductive invariant is derived that relates the controller with a
triplet of (arbitrary, but distinct) trains.

6 Encoding of Physical Time

We now describe how our model of execution, and the encoding as Horn con-
straints, can be extended to take physical time into account. In this and the
following sections we focus on the Horn encoding of unbounded homogeneous
systems (Sect. 5.1), but stress that the same extensions are possible for hetero-
geneous systems (Sect. 5.2) and finite systems (Sect. 4.2).

In our system model, time is represented as a component of the global
state g ∈ G. As a convention, we write g[C] to access the current time, and
g′ = g[C/C ′] to update time to a new value C ′ ∈ Time, where Time = Q for a
dense model of time, and Time = Z for discrete time. Time elapse is represented
by an additional rule, augmenting the transition relation as defined in Sect. 4.1:

C ′ ∈ Time C ′ ≥ g[C] ∀p ∈ P. (g[C/C ′], l̄[p]) ∈ TInvp

(g, l̄)→ (g[C/C ′], l̄)
time-elapse

The premises state that time can only develop monotonically, and only as long as
the time invariant TInvp ⊆ G×Lp of all processes p ∈ P is satisfied. We make the
assumption that TInvp is convex with respect to time, i.e., (g[C/C1], l) ∈ TInvp

and (g[C/C2], l) ∈ TInvp imply (g[C/C3], l) ∈ TInvp for all C1 ≤ C3 ≤ C2.

Concepts like clocks or stopwatches can easily be represented by defining
local process transitions. For instance, a clock is realised by means of a Time-
valued variable x; resetting the clock is translated to the assignment x := g[C],
so that the value of the clock at any point is g[C]− x.

When the model of time is dense it is also possible to retain the global
variable C in the integer domain. Considering the value of the time to be a
fractional number the variable C can store the numerator of the time value.
We add a new global variable to the system as the dominator U which is an
arbitrary positive value. The value of U stays constant throughout the system
execution. The numerator C is then incremented by the time elapse transitions.
Positiveness is expressed by the constraint U > 0 that is part of all clauses.
The encoding of rationals using numerator and denominator makes it possible
to keep all variables integer-valued. In practice this is helpful when no rational
solver is available.

Horn constraints. On the level of inductive invariants, time just requires to
add one further clause to the constraints in Fig. 5; as before, this necessitates
sets TInvp that can be represented in the constraint language of the clauses.

12

R(g[C/C′], p1, l1, . . . , pk, lk)
← dist(p1, . . . , pk) ∧ (C′ ≥ g[C]) ∧R(g, p1, l1, . . . , pk, lk) ∧

(g[C/C′], l1) ∈ TInvp1 ∧ · · · ∧ (g[C/C′], lk) ∈ TInvpk

(11)

7 Communication and Synchronisation

At this point, our model of execution supports communication between processes
via the global state of a system (shared variables). To naturally represent timed
automata models and message passing communication, it is appropriate to in-
troduce further communication primitives, together with their encoding as Horn
constraints, which is done in the next sections.

7.1 Uppaal-style Binary Communication Channels

Binary communication channels in Uppaal implement a simple form of syn-
chronisation between pairs of processes (rendezvous). We assume that Ch is a
finite set of channel identifiers. In addition to local transitions (g, l)

p→ (g′, l′)
of a process p ∈ P (as in Sect. 4.1), we then also consider send transitions
(g, l)

p, a!−→ (g′, l′) and receive transitions (g, l)
p, a?−→ (g′, l′) for any communication

channel a ∈ Ch. Send and receive transitions are paired up in system transitions:

(g, l̄[p1])
p1, a!−→ (g′, l′1) (g′, l̄[p2])

p2, a?−→ (g′′, l′2) p1 6= p2 a ∈ Ch

(g, l̄)→ (g′′, l̄[p1/l
′
1][p2/l

′
2])

binary-comm

Note that the effect of the send transition (on global state) occurs prior to the
execution of the receive transition; this means that transfer of data can easily
be realised with the help of additional global variables.

Horn constraints. Recall that Fig. 5 contains two clauses, (8) and (9), that model
local process transitions. Since communication through a channel implies that
two process transitions take place simultaneously (say, for processes ps, pr ∈ P),
it is now necessary to distinguish four cases (and add four clauses) to characterise
how a k-indexed invariant about processes Qk = {p1, . . . , pk} ⊆ P is affected:
clause (12) for the case {ps, pr} ⊆ Qk (this case disappears for k = 1); clause (13)

13

for ps ∈ Qk, but pr 6∈ Qk; clause (14) for pr ∈ Qk, but ps 6∈ Qk; and clause (15)
for ps, pr 6∈ Qk. The clauses are instantiated for every channel a ∈ Ch:

R(g′′, p1, l
′
1, p2, l

′
2, . . . , pk, lk)

← dist(p1, . . . , pk) ∧
(
(g, l1)

p1, a!−→ (g′, l′1)
)
∧
(
(g′, l2)

p2, a?−→ (g′′, l′2)
)
∧

R(g, p1, l1, p2, l2, . . . , pk, lk)
(12)

R(g′′, p1, l
′
1, p2, l2, . . . , pk, lk)

← dist(p0, . . . , pk) ∧
(
(g, l1)

p1, a!−→ (g′, l′1)
)
∧
(
(g′, l0)

p0, a?−→ (g′′, l′0)
)
∧

RConj (0, . . . , k)
(13)

R(g′′, p1, l
′
1, p2, l2, . . . , pk, lk)

← dist(p0, . . . , pk) ∧
(
(g, l0)

p0, a!−→ (g′, l′0)
)
∧
(
(g′, l1)

p1, a?−→ (g′′, l′1)
)
∧

RConj (0, . . . , k)
(14)

R(g′′, p3, l3, p4, l4, . . . , pk+2, lk+2)
← dist(p1, . . . , pk+2) ∧

(
(g, l1)

p1, a!−→ (g′, l′1)
)
∧
(
(g′, l2)

p2, a?−→ (g′′, l′2)
)
∧

RConj (1, . . . , k + 2)
(15)

7.2 Unbounded Barrier Synchronisation

Besides rendezvous between pairs of processes, also barrier synchronisation in-
volving an unbounded number of processes can be represented naturally in our
model. Barriers turn out to be a powerful primitive to encode other forms of
communication, among others Uppaal-style broadcast channels and BIP-style
interactions (Sect. 7.3); of course, barriers are also highly relevant for analysing
concurrent software programs. We assume a finite set Ba of barriers, and de-
note process transitions synchronising at barrier b ∈ Ba by (g, l)

p, b−→ (g′, l′). For
simplicity, we require all processes in a system to participate in every barrier
synchronisation; a more fine-grained definition of the scope of a barrier can be
achieved by adding neutral transitions (g, l)

p, b−→ (g, l) to those processes that are
not supposed to be affected by b.

Barriers give rise to the following system transition:{
(g, l̄[p])

p, b−→ (g′p, l̄
′[p])

}
p∈P b ∈ Ba

(g, l̄)→ (g, l̄′)
barrier

Note that the system transition does not modify global state, but alters all local
state components simultaneously; the motivation for this definition is to avoid
potential clashes resulting from an unbounded number of global state updates.

Horn constraints. Barrier synchronisation can be represented by a simple Horn
constraint (instantiated for every barrier b ∈ Ba) stating that all processes con-
sidered by a k-indexed invariant can do a transition simultaneously:

R(g, p1, l
′
1, p2, l

′
2, . . . , pk, l

′
k)

← dist(p1, . . . , pk) ∧
(
(g, l1)

p1,b−→ (g′
1, l

′
1)
)
∧ · · · ∧

(
(g, lk)

pk,b−→ (g′
k, l

′
k)
)
∧

R(g, p1, l1, p2, l2, . . . , pk, lk)
(16)

14

7.3 BIP Interactions

BIP (Behavior, Interaction, Priority) [4] is a framework for designing component-
based systems. The BIP model of a component consists of an interface (a set of
ports) and a behavior (an automaton with transitions labeled by ports). Com-
ponents are composed by a set of connectors that determine the interaction
pattern among the components. In general, when several interactions are possi-
ble the system chooses the one which is maximal according to some given strict
partial order (priority). For sake of presentation, we concentrate on a special case
of interactions, rendezvous, for which priorities are irrelevant; the interactions in
Fig. 2 are all in the form of rendezvous. However, we stress that other forms of
interaction provided by BIP (including interaction governed by priorities, and
ports that act as triggers) can be handled in our framework as well.

To define BIP rendezvous, we assume that Port is a finite set of ports, and
I ⊆ P(Port) is a set of interactions. A transition of a process p ∈ P interacting
through port a ∈ Port is denoted by (g, l)

p, a−→ (g′, l′). The system transition for
an interaction {a1, . . . , am} ∈ I (withm distinct ports) is defined by the following
rule; as a premise of the rule, it is required that all processes of the system arrived

at a point where local (non-interacting) transitions are disabled ((g, l̄[p])
p

6→),
but m distinct processes p1, . . . , pm are available that offer interaction through
ports a1, . . . , am, respectively:{

(g, l̄[pj])
pj , aj−→ (g′j , l

′
j)
}
j=1,...,m

{a1, . . . , am} ∈ I{
(g, l̄[p])

p

6→
}
p∈P dist(p1, . . . , pm)

(g, l̄)→ (g, l̄′[p1/l
′
1] · · · [pm/l′m])

bip-comm

For the purpose of analysis within our framework, we reduce BIP rendezvous
to barrier synchronisation as in Sect. 7.2. We make two simplifying assumptions:

1. in no state (g, l) of a process p ∈ P both local transitions ((g, l)
p→ · · ·) and in-

teracting transitions ((g, l)
p, a−→ · · ·) are enabled, and 2. no two processes p1, p2 ∈

P share the same port a ∈ Port . Both assumptions can be established through
suitable transformations of a system.

We then encode BIP interaction using a single barrier {b} = Ba. To distin-
guish interactions, we choose a bijection h : I → {1, . . . , |I|} that provides a
unique integer as label for each interaction, and add a global variable iact (part
of the global state g ∈ G) ranging over {1, . . . , |I|}. In addition, we denote the
ports used by a process p ∈ P by Portp ⊆ Port . Each process p ∈ P of the
system is modified as follows:

– each interacting transition (g, l)
p, a−→ (g′, l′) is replaced with two barrier tran-

sitions. The first barrier transition is (g, l)
p, b−→ (g′, l′), and guarded with the

test a ∈ h−1(iact). The second transition is (g, l)
p, b−→ (g, l), i.e., does not

cause state changes, and is guarded with Portp ∩ h−1(iact) = ∅.
– a transition (g, l)

p→ (g[iact/∗], l) non-deterministically assigning a value to
the variable iact is added to the process p; this transition is always enabled.

15

8 Experimental Evaluation

We have integrated our technique into the predicate abstraction-based model
checker Eldarica [14], which uses Horn clauses to represent different kinds of
verification problems including networks of timed automata. In Table 6 we show
results for benchmarks5 encoding timed models, verifying natural safety prop-
erties of the models. All model but the temperature control system (Sect. 2.2)
are unbounded; finite instances of which are commonly used as benchmarks
for model checkers. Most of the benchmarks were originally specified as Uppaal
timed automata. For each benchmark we provide a correct version and an unsafe
version, to demonstrate the ability of our tool to prove correctness and provide
counter-examples for incorrect benchmarks. The Fischer benchmarks contain an
observer process, which is the second component of the invariant schema.

The results demonstrate the feasibility of our approach. Further, it can be
seen that the majority of the benchmarks require stronger invariant schemata,
highlighting the benefits of k-indexed invariants. All benchmarks are solved
within a few seconds, with the exception of the Lynch-Shavit [17] protocol.

Benchmark]Cli]Clf Nth (sec) Inv Schema Total (sec)
Temperature Control System (unsafe) 48 110 0.37 (1,1,1) 3.86

Temperature Control System 48 110 1.12 (1,1,1) 4.31

Fischer 47 221 5.62 (2,1) 12.21

Fischer (unsafe) 47 221 2.84 (2,1) 8.91

CSMA/CD 50 162 3.60 (2,1) 8.22

CSMA/CD (unsafe) 50 793 2.91 (4,1) 13.81

Lynch-Shavit 50 299 66.11 (2) 70.10

Lynch-Shavit (unsafe) 50 299 2.58 (2) 5.35

Train Crossing 28 686 2.51 (1,3) 8.84

Train Crossing (unsafe) 28 240 1.53 (1,2) 3.91

Fig. 6. Runtime for verifying the benchmarks. Experiments were done on an Intel Core
i7 Duo 2.9 GHz with 8GB of RAM. Columns]Cli and]Clf indicate the number of
clauses required to model the corresponding benchmark for the initial iteration and final
iteration of the counterexample-guided refinement of invariant schemata (Sect. 4.3),
respectively. The N th column indicates the time required to verify the benchmark on
the final iteration. The Inv Schema column contains the invariant schema required for
the final (successful) iteration and Total is the full verification time required.

References

1. A. Carioni, S. Ghilardi, S.R.: MCMT in the land of parameterized timed automata.
In: VERIFY-2010 (2010)

2. Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: LICS. pp.
345–354. IEEE Computer Society (2004)

5 Available at: http://lara.epfl.ch/w/horn-parametric-benchmarks

16

3. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed
processes. Theor. Comput. Sci. 290(1), 241–264 (2003)

4. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. In: ATVA (2008)

5. Bjørner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quantified
horn clauses. In: SAS (2013)

6. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. The
Journal of Symbolic Logic 22(3), 250–268 (September 1957)

7. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed au-
tomata. Mathematics in Computer Science 6(4), 409–425 (2012)

8. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: SPIN. pp. 213–224
(2003)

9. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV. pp.
72–83 (1997)

10. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI. pp. 405–416 (2012)

11. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for
verifying multi-threaded programs. In: POPL (2011)

12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: 31st POPL (2004)

13. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: SAT. pp.
157–171 (2012)

14. Hojjat, H., Konecný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems - tool paper. In: FM (2012)

15. Kindermann, R., Junttila, T.A., Niemelä, I.: SMT-based induction methods for
timed systems. In: FORMATS (2012)

16. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. STTT 1(1-2), 134–152
(1997)

17. Mahata, P.: Model Checking Parametrized Timed Systems. Ph.D. thesis, Depart-
ment of Information Technology, Uppsala University (2005)

18. Méndez-Lojo, M., Navas, J.A., Hermenegildo, M.V.: A flexible, (c)lp-based ap-
proach to the analysis of object-oriented programs. In: LOPSTR (2007)

19. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs i. Acta
Inf. 6, 319–340 (1976)

20. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause ver-
ification. In: CAV (2013)

21. Sánchez, A., Sankaranarayanan, S., Sánchez, C., Chang, B.Y.E.: Invariant gener-
ation for parametrized systems using self-reflection. In: SAS (2012)

22. Waez, T.B., Dingel, J., Rudie, K.: A survey of timed automata for the development
of real-time systems. Computer Science Review 9, 1–26 (2013)

23. Yi, W., Pettersson, P., Daniels, M.: Automatic verification of real-time communi-
cating systems by constraint-solving. In: FORTE (1994)

17

A Appendix

A.1 Example Clauses

In our implementation as part of the Eldarica model checker, timed systems are
translated to Horn clauses in a two-step process: first, we generate a set of local
clauses representing the transitions of each process; second, those local clauses
are combined to a global encoding, following the constraints in Fig. 3 and 5.

As an illustration, we show the local clauses for the example in Sect. 2.1 in
Fig. 7.

y = c → p1(c, n, y)

p1(c, n, y) → p2(c, 0, y)

p2(c, n, y) ∧ (n 6= 0) ∧ go! → p3(c, n, y)

p2(c, n, y) ∧ (n = 0) ∧ appr? → p3(c, n+ 1, y)

p3(c, n, y) ∧ leave? → p2(c, n− 1, y)

p3(c, n, y) ∧ appr? → p4(c, n+ 1, c)

p4(c, n, y) ∧ stop? → p3(c, n, c)

x = c → q1(c, id, x)

q1(c, id, x) ∧ appr! → q3(c, id, c)

q3(c, id, x) ∧ (c− x ≥ 10) → q2(c, id, c)

q2(c, id, x) ∧ (c− x ≥ 3) ∧ leave! → q1(c, id, c)

q3(c, id, x) ∧ (c− x ≤ 10) ∧ stop? → q4(c, id, c)

q4(c, id, x) ∧ go? → q5(c, id, c)

q5(c, id, x) ∧ (c− x ≥ 7) → q2(c, id, c)

Fig. 7. The encoding of the example in Fig. 1 into a set of recursive Horn clauses.

A.2 The Fischer Protocol

We illustrate how pair invariants (2-invariants) can be used to verify the para-
metric Fischer protocol, i.e., the Fischer protocol under participation of infinitely
many processes.

The global state of the Fischer system is defined by the following (integer)
variables:

– C, U: the numerator and denominator of the system time.

18

– idVar: a global variable used by the protocol.
– num: a global variable expressing how many processes have currently entered

the critical section. It is considered an error if num ever exceeds 1.

The local state of a process is defined by:

– x: a local clock. Resetting the clock is encoded as x := C, the time since the
last reset is computed by the expression C - x.

– t: the control state, encoded as an integer in {0, 1, . . . , 4}.

The following automaton describes the behaviour of one process:

q0
q1

x ≤ 1

q2q3

q4

q5 err

[idVar = 0]
x := 0

[x ≤ 1]
x := 0

idVar := id

[idVar = 0]
x := 0

[x > 1 ∧ idVar = id]

num := num+ 1

idVar := 0
num := 0

num > 1

Critical
Section

Fig. 8. Behaviour of a single process in Fischer’s protocol

The resulting Horn constraints are the following. Note that the protocol uses
0 as a magic process identifier, assuming that no actual process has id 0. For
reasons of simplicity, we kept this convention in the Horn clauses, which leads
to additional disequalities \+(id = 0) in all clauses.

% Symmetry

P2(C, U, idVar, num, id, x, t, id2, x2, t2) :-

P2(C, U, idVar, num, id2, x2, t2, id, x, t),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2).

% Initiation

19

P2(C, U, idVar, num, id, x, t, id2, x2, t2) :-

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(num = 0), (idVar = 0), (x = C), (x2 = C), (t = 0), (t2 = 0).

% Consecution. One clause for every transition.

P2(C, U, idVar, num, id, x1P, r1, id2, x2, t2) :-

P2(C, U, idVar, num, id, x1, r0, id2, x2, t2),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(idVar = 0), (C - x1P =< U), (x1P = C), (r1 = 1), (r0 = 0).

P2(C, U, idVar2, num, id, x1P, r2, id2, x2, t2) :-

P2(C, U, idVar1, num, id, x1, r1, id2, x2, t2),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

((C - x1) =< U), (x1P = C), (idVar2 = id), (r1 = 1), (r2 = 2).

P2(C, U, idVar, num, id, x1P, r1, id2, x2, t2) :-

P2(C, U, idVar, num, id, x1, r2, id2, x2, t2),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(idVar = 0), ((C - x1P) =< U), (x1P = C), (r1 = 1), (r2 = 2).

P2(C, U, idVar, num, id, x, r3, id2, x2, t2) :-

P2(C, U, idVar, num, id, x, r2, id2, x2, t2) ,

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(C - x > U), (idVar = id), (r2 = 2), (r3 = 3).

P2(C, U, idVar, num2, id, x, r4, id2, x2, t2) :-

P2(C, U, idVar, num1, id, x, r3, id2, x2, t2) ,

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(num2 = num1 + 1), (r3 = 3), (r4 = 4).

P2(C, U, idVar2, num2, id, x, r0, id2, x2, t2) :-

P2(C, U, idVar1, num1, id, x, r4, id2, x2, t2) ,

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(idVar2 = 0), (num2 = 0), (r4 = 4), (r0 = 0).

% Consecution. Only transitions that modify global state are considered.

P2(C, U, idVar2, num, id3, x3, t3, id2, x2, t2) :-

P2(C, U, idVar1, num, id3, x3, t3, id2, x2, t2),

P2(C, U, idVar1, num, id, x1, r1, id2, x2, t2),

P2(C, U, idVar1, num, id, x1, r1, id3, x3, t3),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id3 = 0),

\+(id = id2), \+(id2 = id3), \+(id = id3),

((C - x1) =< U), (x1P = C), (idVar2 = id), (r1 = 1), (r2 = 2).

P2(C, U, idVar, num2, id3, x3, t3, id2, x2, t2) :-

P2(C, U, idVar, num1, id3, x3, t3, id2, x2, t2),

P2(C, U, idVar, num1, id, x, r3, id2, x2, t2) ,

20

P2(C, U, idVar, num1, id, x, r3, id3, x3, t3),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id3 = 0),

\+(id = id2), \+(id2 = id3), \+(id = id3),

(num2 = num1 + 1), (r3 = 3), (r4 = 4).

P2(C, U, idVar2, num2, id3, x3, t3, id2, x2, t2) :-

P2(C, U, idVar1, num1, id3, x3, t3, id2, x2, t2),

P2(C, U, idVar1, num1, id, x, r4, id2, x2, t2) ,

P2(C, U, idVar1, num1, id, x, r4, id3, x3, t3),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id3 = 0),

\+(id = id2), \+(id2 = id3), \+(id = id3),

(idVar2 = 0), (num2 = 0), (r4 = 4), (r0 = 0).

% Time elapse.

P2(C2, U, idVar, num, id, x, t, id2, x2, t2) :-

P2(C1, U, idVar, num, id, x, t, id2, x2, t2),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(C2 >= C1), \+(t = 1), \+(t2 = 1).

P2(C2, U, idVar, num, id, x, r1, id2, x2, t2) :-

P2(C1, U, idVar, num, id, x, r1, id2, x2, t2),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(C2 >= C1), (C2 - x =< U), (r1 = 1), \+(t2 = 1).

P2(C2, U, idVar, num, id, x, t, id2, x2, r1) :-

P2(C1, U, idVar, num, id, x, t, id2, x2, r1),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(C2 >= C1), (C2 - x2 =< U), \+(t = 1), (r1 = 1).

P2(C2, U, idVar, num, id, x, r1, id2, x2, r1) :-

P2(C1, U, idVar, num, id, x, r1, id2, x2, r1),

(U > 0), \+(id = 0), \+(id2 = 0), \+(id = id2),

(C2 >= C1), (C2 - x =< U), (C2 - x2 =< U), (r1 = 1).

% Safety.

false :-

P2(C, U, idVar, num, id, x, t, id2, x2, t2),

(U > 0), (num > 1).

21

