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MODEL IDENTIFICATION BY GRADIENT METHODS

• DYNAMIC MODELS
– Conservation of Mass (Concentration Measurements)
– Conservation of Energy (Calorimetry)
– Beer’s Law (Spectroscopy)

• INTEGRATION OF DYNAMIC MODELS
– Euler’s Method
– Runge-Kutta’s Methods (RK)

• LINEAR REGRESSION (OLS) PROBLEMS
– Calibration-free Calorimetry and Spectroscopy

• GRADIENT-BASED NONLINEAR REGRESSION (NLR) METHODS
– Steepest Descent Method (SD)
– Newton-Raphson and Newton-Gauss Methods (NG)
– Newton-Gauss Levenberg Marquardt Method (NGLM)

• REFERENCES
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SCALAR, VECTOR AND MATRIX NOTATION

• Scalars
(1 × 1) = number of dim 1
written in lowercase/UPPERCASE italics

• Vectors
(n × 1) = n-dim array (column vector)
written in lowercase boldface

• Matrices
(n × m) = array of dimensions n (rows) by m (columns)
written in UPPERCASE BOLDFACE

ω Ω, , ,a A

ω,a

Ω,A
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SCALAR, VECTOR AND MATRIX OPERATIONS

• Scalar multiplication

• Addition

• Multiplication

• Transposition

• Inverse (identity matrix)

• Rank and null space (kernel)

• Rank-nullity theorem

+ +,  a b A B

T T,  a A

α α,  a A

,   a b A B

( ),   ( )rank =A A ker A 0

= =-1 -1A A A A I

( )= ( ) ( )dim rank nullity+A A A
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PRINCIPAL COMPONENT ANALYSIS (PCA)

• Singular Value Decomposition (SVD) is a method to 
decompose a matrix into a product of orthonormal 
column ( ) and row ( ) singular vectors weighted by 
singular values ( ).

• Principal Component Analysis (PCA) is a method to reduce 
the dimensionality of a matrix to its number of significant 
singular values.
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LAW OF CONSERVATION OF MASS

• “Nothing is lost, nothing is created, everything is transformed”
– Lavoisier (1743-1794)
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LAW OF CONSERVATION OF ENERGY

• “Any theory which demands the annihilation of energy, is 
necessarily erroneous” – Joule (1818-1889)
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BEER’S LAW

• “The absorbance of a solution is proportional to the product of its 
concentration and the distance light travels through it” 
– Beer (1825-1863), Lambert (1728- 1777) and Bouguer (1698-1758)
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NUMERICAL INTEGRATION OF ODE’S

• Euler’s method (implicit, explicit) was invented by the Swiss 
mathematician Euler (1707-1783)

h: integration stepsize

• Runge-Kutta’s methods (RK2, RK4, explicit, implicit) were 
elaborated by Runge (1856-1927) and Kutta (1867-1944)
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REGRESSION PROBLEMS

• A regression problem consists in minimizing the difference between 
measured output variables and modeled output variables
(the objective/cost function) by postulating a dynamic model              and 
an output model                          , and adjusting the parameters      (and      ).

• In least-squares problems,     is defined as the sum of squared residuals 
( with                      ) and the following matrices are 
defined:
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SYSTEMS OF LINEAR EQUATIONS

• A systems of linear equations can be written in matrix

with                                         the regressors and                    the regressands

• The number of solutions of S is: 

¥ when m < n underdetermined system
1 m = n determined system
¥ m > n overdetermined system

1,1 1 1, 1

,1 1 ,

S :                                  
n n

m m n n m

a x a x y

a x a x y

 + + =


 =
 + + =

A x y


   


 ( ),  ( 1)m n n× ×A x  ( 1)m ×y

1− =x A y
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LINEAR REGRESSION (LR, OLS)

• For univariate data (data organized in a vector y), a linear model relating 
the n independent variables (regressors, x) to the m > n dependent 
variables (regressands, y) can be constructed as:

with                                         and 

• For multivariate data (data organized in a matrix Y), the linear model 
relating the n ∙ w regressors X to the m ∙ w regressands Y is built as:

with                     and 
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LEFT OR RIGHT PSEUDO-INVERSE ?

• Left pseudo-inverse

• Right pseudo-inverse

{ }Targ mi  n* ( ) ( ) +=  − == −
X
vec AX Y vec AXY YXX AA Y
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EXPLICIT vs IMPLICIT CALIBRATION

• In explicit calibration, a static calibration set is used to 
construct a calibration model from which concentrations
are predicted for dynamic experiments.

• In implicit calibration (i.e. calibration free), dynamic 
experiments are used as an internal calibration set
to eliminate the (static) linear counter-part A.

The implicit calibration can even be used in case of rank-deficient 
data, i.e. when rank(C) < S

ˆ  ˆˆ  + +=  =  =Y C A A C Y AYC 

ˆˆ    ˆ ˆ ++=  =  =Y C A A C YY Y C C     
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NONLINEAR (LEAST SQUARES) REGRESSION (NLR)

• Unlike linear regression problems, nonlinear regression problems are
solved iteratively. Since linear parameters      can be estimated (eliminated) 
at each iteration, the optimization problem simplifies:

• The (nested) linear regression problem is solved at each iteration as:
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CONVEX SETS AND FUNCTIONS

• Convex Set: A set is said to be convex if for every points             
, the points

are also in the set .

• Convex function: A function                      defined on a convex set
is said to be convex if

for each                 and .

(1 )   [0,1],λ λ λ= + − ∀ ∈z x y

( )(1 ) ( ) (1 ) ( ),f f fλ λ λ λ+ − ≤ + −x y x y

C n⊂ 
, C∈x y

C

: Cf → 
C n⊂ 

, C∈x y [0,1]λ ∈

Courtesy of B. Chachuat

Courtesy of B. Chachuat
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NECESSARY CONDITIONS OF OPTIMALITY (NCO)

• 1st order NCO: If       is a local minimum of                    , then

• 2nd order NCO: If       is a local minimum of                    , then

Note: 1st and 2nd order NCO form a set of sufficient conditions
if          is a convex function defined on a convex set .

( *) ( *) 0φ∇ = =x J x

2 ( *) ( *) is positive semidefiniteφ∇ =x H x

*x : Cφ → 

*x : Cφ → 

( )φ x C n⊂ 

* is a stationary pointx

= ( ) ( ) 0 ' 0
n n

p sλ λ λ λ λ→ = → = = → ≥Hv v H I v 0 H I- -
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STEEPEST (GRADIENT) DESCENT METHOD

• By definition, the gradient             points out the direction of the 
maximum of         . Hence, a recurrence relation for finding the 
minimum is:

• In simple algorithms, the stepsize parameter is fixed.

• In more sophisticated algorithms, the stepsize parameter is 
adapted at each iteration so that the step in the current search 
direction is maximum.

( )φ∇ x
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NEWTON-RAPHSON’S METHOD (NR)

• The method of Newton (1642-1727) – Raphson (1648-1715)
is an algorithm for finding iteratively the zeros of a system
consisting of n equations and m unknowns:

For m = n = 1, one finds the well-known relation for f(x) = 0,

m = n, the unique solution is found as

m > n, a solution in the least-squares sense is found as
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NEWTON-GAUSS METHOD (NG)

• The 1st order NCO directly provides a procedure for finding the 
minimum of a (regression) function, which can be solved using 
the Newton-Raphson method. This leads to the method of 
Newton (1642-1727) – Gauss (1777-1855):

• Rel. convergence criterion
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NG LEVENBERG-MARQUARDT METHOD (NGLM)

• Levenberg (1919-1973) – Marquardt (1929-1997) modification allows 
interpolating between the Newton-Gauss method (NG) and the 
steepest descent method (SD):

For λi = 0  NG ; for λi ¥  SD (shorter stepsize)

The parameter λi is adapted at each iteration according to heuristic 
arguments to avoid divergence problems due to a bad choice of the 
initial guesses in the original NG method.

( ) 1 T
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NGLM ALGORITHM

Courtesy of M. Maeder and Y.-M. Neuhold
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STATISTICS PROVIDED BY GRADIENT METHODS

• Degree of freedom

• Residual variance

• Variance/covariance (correlation) matrix

• Correlation matrix
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