

Hes-so

Haute Ecole Spécialisé de Suisse occidental

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

MODEL IDENTIFICATION BY GRADIENT METHODS

Dr. Julien Billeter

Laboratoire d'Automatique Ecole Polytechnique Fédérale de Lausanne (EPFL)

MLS-S03 | 2013-2014

University of Applied Sciences Western Switzerland

MODEL IDENTIFICATION BY GRADIENT METHODS

- DYNAMIC MODELS
 - Conservation of Mass (Concentration Measurements)
 - Conservation of Energy (Calorimetry)
 - Beer's Law (Spectroscopy)

• INTEGRATION OF DYNAMIC MODELS

- Euler's Method
- Runge-Kutta's Methods (RK)
- LINEAR REGRESSION (OLS) PROBLEMS
 - Calibration-free Calorimetry and Spectroscopy
- GRADIENT-BASED NONLINEAR REGRESSION (NLR) METHODS
 - Steepest Descent Method (SD)
 - Newton-Raphson and Newton-Gauss Methods (NG)
 - Newton-Gauss Levenberg Marquardt Method (NGLM)

REFERENCES

SCALAR, VECTOR AND MATRIX NOTATION

Vectors

Scalars

 $(n \times 1) = n$ -dim array (column vector) written in **lowercase boldface**

written in *lowercase/UPPERCASE italics*

 (1×1) = number of dim 1

• Matrices

 $(n \times m)$ = array of dimensions n (rows) by m (columns) written in **UPPERCASE BOLDFACE**

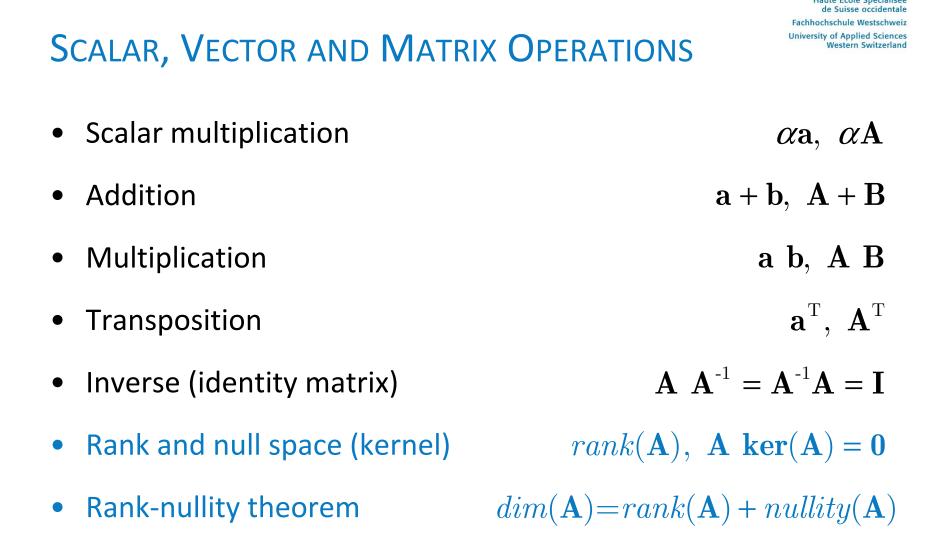
a, **ω**

Fachhochschule Westschweiz University of Applied Sciences

 $a, \boldsymbol{\omega}, A, \boldsymbol{\Omega}$

Western Switzerland

 $\mathbf{A}, \mathbf{\Omega}$



PRINCIPAL COMPONENT ANALYSIS (PCA)

 Singular Value Decomposition (SVD) is a method to decompose a matrix Y into a product of orthonormal column (U) and row (V^T) singular vectors weighted by singular values (S).

$$\mathbf{Y} = \mathbf{U} \ \mathbf{S} \ \mathbf{V}^{\mathrm{T}} \qquad \text{with } \mathbf{S}^{2} = \mathbf{\Lambda}$$

• Principal Component Analysis (PCA) is a method to reduce the dimensionality of a matrix Y to its number of significant singular values.

$$\mathbf{Y} \approx \overline{\mathbf{Y}} = \overline{\mathbf{U}} \ \overline{\mathbf{S}} \ \overline{\mathbf{V}}^{\mathrm{T}}$$
 with $\mathbf{Y} - \overline{\mathbf{Y}} = \text{noise}$

Western Switzerland

LAW OF CONSERVATION OF MASS

 "Nothing is lost, nothing is created, everything is transformed" – Lavoisier (1743-1794)

$$\dot{m}(t) = \mathbf{1}_{S}^{\mathrm{T}} \dot{\mathbf{m}}(t) = 0 \rightarrow \mathbf{1}_{S}^{\mathrm{T}} \mathbf{M}_{w} \dot{\mathbf{n}}(t) = 0$$

$$\dot{\mathbf{n}}(t) = \mathbf{N}^{\mathrm{T}} V(t) \mathbf{r}(t) \pm \mathbf{W}_{m} \boldsymbol{\zeta}_{m}(t) + \mathbf{W}_{in} \mathbf{u}_{in}(t) - \frac{u_{out}(t)}{m(t)} \mathbf{n}(t), \qquad \mathbf{n}(0) = \mathbf{n}_{0}$$
$$\dot{\mathbf{c}}(t) = \mathbf{N}^{\mathrm{T}} \mathbf{r}(t) \pm \mathbf{W}_{m} \boldsymbol{\zeta}_{c}(t) + \mathbf{W}_{in} \frac{\mathbf{u}_{in}(t)}{V(t)} - \boldsymbol{\omega}(t) \mathbf{c}(t), \qquad \mathbf{c}(0) = \mathbf{c}_{0}$$

with
$$\boldsymbol{\omega}(t) = \frac{u_{out}(t)}{m(t)} + \frac{\dot{V}(t)}{V(t)} = \frac{\mathbf{1}_{p}^{\mathrm{T}}\mathbf{u}_{in}(t)}{m(t)} \pm \frac{\mathbf{1}_{p_{m}}^{\mathrm{T}}\boldsymbol{\zeta}_{m}(t)}{m(t)} - \frac{\dot{\rho}(t)}{\rho(t)}, \quad \dot{V}(t) = V(t)\left(\frac{\dot{m}(t)}{m(t)} - \frac{\dot{\rho}(t)}{\rho(t)}\right)$$

and $\dot{m}(t) = \mathbf{1}_{p}^{\mathrm{T}}\mathbf{u}_{in}(t) - u_{out}(t) \pm \mathbf{1}_{p_{m}}^{\mathrm{T}}\boldsymbol{\zeta}_{m}(t)$

University of Applied Sciences Western Switzerland

LAW OF CONSERVATION OF ENERGY

 "Any theory which demands the annihilation of *energy*, is necessarily erroneous" – Joule (1818-1889)

$$\dot{Q}(t) = 0 \rightarrow q_{acc}(t) = \mathbf{1}^{\mathrm{T}} \mathbf{q}(t)$$

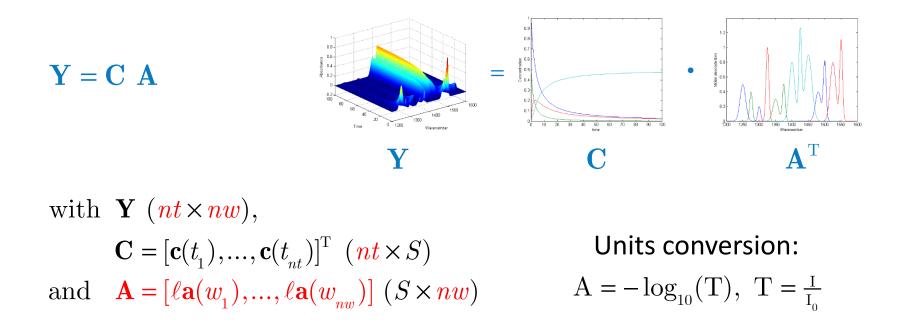
 $m(t)c_{p}(t)\dot{T}(t) = q_{r} \pm q_{m} + q_{ex} + q_{in} - q_{loss} + q_{h} - q_{out}, \quad T(0) = T_{0}$

with
$$q_r(t) = V(t)(-\Delta \mathbf{h}_r^{\mathrm{T}})\mathbf{r}(t),$$

 $q_m(t) = (-\Delta \mathbf{h}_m^{\mathrm{T}})\boldsymbol{\zeta}_m(t),$
 $q_{ex}(t) = UA(T_j - T(t)),$
 $q_{in}(t) = \mathbf{c}_{p,in}^{\mathrm{T}}\mathbf{u}_{in}(t)(T_{in} - T(t)),$
 $q_{out}(t) = c_p(t)u_{out}(t)T(t)$

BEER'S LAW

- "The absorbance of a solution is proportional to the product of its concentration and the distance light travels through it"
 - Beer (1825-1863), Lambert (1728- 1777) and Bouguer (1698-1758)



NUMERICAL INTEGRATION OF ODE'S

• Euler's method (implicit, explicit) was invented by the Swiss mathematician Euler (1707-1783)

 $\mathbf{y}_{i+1} = \mathbf{y}_i + h\dot{\mathbf{y}} + O(h^2)$ *h*: integration stepsize

• Runge-Kutta's methods (RK2, RK4, explicit, implicit) were elaborated by Runge (1856-1927) and Kutta (1867-1944)

$$\mathbf{y}_{i+1} = \mathbf{y}_i + \mathbf{h} \dot{\mathbf{y}}_{i+\frac{1}{2}} + O(h^3)$$

with $\mathbf{y}_{i+\frac{1}{2}} = \mathbf{y}_i + \frac{h}{2} \dot{\mathbf{y}}(t_i, \mathbf{y}_i)$
 $\dot{\mathbf{y}}_{i+\frac{1}{2}} = \dot{\mathbf{y}}(t_i + \frac{h}{2}, \mathbf{y}_{i+\frac{1}{2}})$

 $\mathbf{y}_{i+1} = \mathbf{y}_i + \frac{1}{6} \mathbf{h} (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4) + O(h^5)$ with $\mathbf{k}_1 = \dot{\mathbf{y}}(t_i, \mathbf{y}_i)$, $\mathbf{k}_2 = \dot{\mathbf{y}}(t_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}\mathbf{k}_1)$ $\mathbf{k}_3 = \dot{\mathbf{y}}(t_i + \frac{h}{2}, \mathbf{y}_i + \frac{h}{2}\mathbf{k}_2)$, $\mathbf{k}_4 = \dot{\mathbf{y}}(t_i + h, \mathbf{y}_i + h\mathbf{k}_3)$

REGRESSION PROBLEMS

• A regression problem consists in minimizing the difference between measured output variables $\mathbf{y}(t)$ and modeled output variables $\hat{\mathbf{y}}(t, \mathbf{p}_f, \mathbf{p}_g)$ (the objective/cost function) by postulating a dynamic model $f(t, \mathbf{p}_f)$ and an output model $g(\mathbf{c}(t, \mathbf{p}_f), \mathbf{p}_g)$, and adjusting the parameters \mathbf{p}_f (and \mathbf{p}_g).

$$\begin{split} \{\mathbf{p}_{f}, \mathbf{p}_{g}\}^{*} &= \arg \left\{ \min_{\mathbf{p}_{f}, \mathbf{p}_{g}} \ \phi \left(\mathbf{y}(t), \hat{\mathbf{y}}(t, \mathbf{p}_{f}, \mathbf{p}_{g}) \right) \right\} \\ &\text{s.t.} \ \dot{\hat{\mathbf{c}}}(t, \mathbf{p}_{f}) = f(t, \mathbf{p}_{f}) \\ &\hat{\mathbf{y}}(t, \mathbf{p}_{f}, \mathbf{p}_{g}) = g\left(\mathbf{c}(t, \mathbf{p}_{f}), \mathbf{p}_{g} \right) \end{split}$$

In least-squares problems, φ is defined as the sum of squared residuals
 (ssq = vec(R)^T vec(R) with R = Y - Ŷ) and the following matrices are
 defined:

$$\mathbf{Y} = [\mathbf{y}(t_1), \dots, \mathbf{y}(t_{nt})]^{\mathrm{T}}, \ \hat{\mathbf{Y}} = [\hat{\mathbf{y}}(t_1, \mathbf{p}_f, \mathbf{p}_g), \dots, \hat{\mathbf{y}}(t_{nt}, \mathbf{p}_f, \mathbf{p}_g)]^{\mathrm{T}}, \ \hat{\mathbf{C}} = [\mathbf{c}(t_1, \mathbf{p}_f), \dots, \mathbf{c}(t_{nt}, \mathbf{p}_f)]^{\mathrm{T}}$$

SYSTEMS OF LINEAR EQUATIONS

• A systems of linear equations can be written in matrix

$$\mathbf{S}: \begin{cases} a_{\scriptscriptstyle 1,1} \ x_{\scriptscriptstyle 1} + \ldots + a_{\scriptscriptstyle 1,n} \ x_{\scriptscriptstyle n} = y_{\scriptscriptstyle 1} \\ \vdots & \ddots & \vdots \\ a_{\scriptscriptstyle m,1} \ x_{\scriptscriptstyle 1} + \ldots + a_{\scriptscriptstyle m,n} \ x_{\scriptscriptstyle n} = y_{\scriptscriptstyle m} \end{cases} \quad \Rightarrow \quad \mathbf{A} \ \mathbf{x} = \mathbf{y}$$

with A $(m \times n)$, x $(n \times 1)$ the regressors and y $(m \times 1)$ the regressands

• The number of solutions of \boldsymbol{S} is:

∞	when	m < n	underdetermined system	
1		m = n	determined system	$\Rightarrow \mathbf{x} = \mathbf{A}^{-1}\mathbf{y}$
∞		m > n	overdetermined system	

LINEAR REGRESSION (LR, OLS)

 For univariate data (data organized in a vector y), a linear model relating the n independent variables (regressors, x) to the m > n dependent variables (regressands, y) can be constructed as:

$$\mathbf{y} = \mathbf{A} \mathbf{x} \quad \text{with } \mathbf{A} \ (m \times n), \mathbf{x} \ (n \times 1) \text{ and } \mathbf{y} \ (m \times 1)$$
$$\mathbf{x}^* = \arg \left\{ \min_{\mathbf{x}} \mathbf{vec} (\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{vec} (\mathbf{A}\mathbf{x} - \mathbf{y}) \right\} = \mathbf{A}^+ \mathbf{y} \quad \text{with } \mathbf{A}^+ = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}}$$

The left pseudo-inverse \mathbf{A}^+ exists only if $rank(\mathbf{A}) = dim(\mathbf{A}) = n$

• For multivariate data (data organized in a matrix \mathbf{Y}), the linear model relating the $n \cdot w$ regressors \mathbf{X} to the $m \cdot w$ regressands \mathbf{Y} is built as:

$$\mathbf{Y} = \mathbf{A} \ \mathbf{X} \qquad \text{with } \mathbf{X} \ (n \times w) \text{ and } \mathbf{Y} \ (m \times w)$$
$$\mathbf{X}^* = \arg \left\{ \min_{\mathbf{x}} \mathbf{vec} (\mathbf{A}\mathbf{X} - \mathbf{Y})^{\mathrm{T}} \mathbf{vec} (\mathbf{A}\mathbf{X} - \mathbf{Y}) \right\} = \mathbf{A}^+ \mathbf{Y}$$

LEFT OR RIGHT PSEUDO-INVERSE ?

- Left pseudo-inverse $\mathbf{A}^{+} = (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$ $rank(\mathbf{A}) = dim(\mathbf{A})$
 - $\mathbf{Y} = \mathbf{A} \ \mathbf{X} \implies \mathbf{X}^* = \arg\left\{\min_{\mathbf{X}} \mathbf{vec}(\mathbf{A}\mathbf{X} \mathbf{Y})^{\mathrm{T}}\mathbf{vec}(\mathbf{A}\mathbf{X} \mathbf{Y})\right\} = \mathbf{A}^+\mathbf{Y}$

Spectroscopy: $\mathbf{y} = \mathbf{C} \mathbf{a} \implies \mathbf{a}^* = \mathbf{C}^+ \mathbf{Y}$ $\mathbf{Y} = \mathbf{C} \mathbf{A} \implies \mathbf{A}^* = \mathbf{C}^+ \mathbf{Y}$ Calorimetry: $\mathbf{a} = \mathbf{R} (-\Delta \mathbf{h}) \implies -\Delta \mathbf{h}^* = \mathbf{R}^+ \mathbf{a}$ $rank(\mathbf{R}) = R$

- Calorimetry : $\mathbf{q}_r = \mathbf{R}_v(-\Delta \mathbf{h}_r) \Rightarrow -\Delta \mathbf{h}_r^* = \mathbf{R}_v^+ \mathbf{q}_r$ $rank(\mathbf{R}_v) = R$
- Right pseudo-inverse $\mathbf{X}^{+} = \mathbf{X}^{\mathrm{T}} (\mathbf{X}\mathbf{X}^{\mathrm{T}})^{-1}$ $rank(\mathbf{X}) = dim(\mathbf{X})$ $\mathbf{Y} = \mathbf{A} \ \mathbf{X} \implies \mathbf{A}^{*} = \arg \left\{ \min_{\mathbf{A}} \operatorname{vec}(\mathbf{A}\mathbf{X} - \mathbf{Y})^{\mathrm{T}} \operatorname{vec}(\mathbf{A}\mathbf{X} - \mathbf{Y}) \right\} = \mathbf{Y}\mathbf{X}^{+}$ Spectroscopy : $\mathbf{Y} = \mathbf{C} \ \mathbf{A} \implies \mathbf{C}^{*} = \mathbf{Y}\mathbf{A}^{+}$ $rank(\mathbf{A}) = S$

with \mathbf{Y} $(nt \times nw)$, \mathbf{C} $(nt \times S)$, \mathbf{A} $(S \times nw)$, $\mathbf{q}_r(nt \times 1)$, \mathbf{R}_v $(nt \times R)$, $\Delta \mathbf{h}$ $(R \times 1)$

EXPLICIT VS IMPLICIT CALIBRATION

• In explicit calibration, a static calibration set is used to construct a calibration model from which concentrations are predicted for dynamic experiments.

$$\overline{\mathbf{Y}} = \overline{\mathbf{C}} \mathbf{A} \implies \hat{\mathbf{A}} = \overline{\mathbf{C}}^+ \overline{\mathbf{Y}} \implies \hat{\widetilde{\mathbf{C}}} = \widetilde{\mathbf{Y}} \hat{\mathbf{A}}^+$$

• In implicit calibration (i.e. calibration free), dynamic experiments are used as an internal calibration set to eliminate the (static) linear counter-part **A**.

$$\tilde{\mathbf{Y}} = \tilde{\mathbf{C}} \mathbf{A} \implies \hat{\mathbf{A}} = \hat{\tilde{\mathbf{C}}}^{+} \tilde{\mathbf{Y}} \implies \hat{\tilde{\mathbf{Y}}} = \tilde{\mathbf{C}} \hat{\tilde{\mathbf{C}}}^{+} \tilde{\mathbf{Y}}$$

The implicit calibration can even be used in case of rank-deficient data, i.e. when $rank(\mathbf{C}) < S$

NONLINEAR (LEAST SQUARES) REGRESSION (NLR)

 Unlike linear regression problems, nonlinear regression problems are solved iteratively. Since linear parameters p_g can be estimated (eliminated) at each iteration, the optimization problem simplifies:

$$\mathbf{p}_{f}^{*} = \arg \left\{ \min_{\mathbf{p}_{f}} ssq \right\}$$

s.t. $\dot{\mathbf{\hat{c}}}(t, \mathbf{p}_{f}) = f(t, \mathbf{p}_{f})$

with $ssq = \mathbf{vec}(\mathbf{R})^{\mathrm{T}} \mathbf{vec}(\mathbf{R}), \ \mathbf{R} = \mathbf{Y} - \hat{\mathbf{Y}}(\mathbf{p}_{f}) = \mathbf{Y} - g_{lin}(\mathbf{C}(\mathbf{p}_{f}))g_{lin}^{+}(\mathbf{C}(\mathbf{p}_{f}))\mathbf{Y}$

• The (nested) linear regression problem is solved at each iteration as:

$$\hat{\mathbf{Y}}(\mathbf{p}_{f}) = g_{lin} \left(\mathbf{C}(\mathbf{p}_{f}), \mathbf{p}_{g} \right) = g_{lin} \left(\mathbf{C}(\mathbf{p}_{f}) \right) \mathbf{p}_{g} \implies \hat{\mathbf{p}}_{g} = g_{lin}^{+} \left(\mathbf{C}(\mathbf{p}_{f}) \right) \mathbf{Y}$$

$$\hat{\mathbf{Y}}(\mathbf{p}_{f}) = g_{lin} \left(\mathbf{C}(\mathbf{p}_{f}) \right) g_{lin}^{+} \left(\mathbf{C}(\mathbf{p}_{f}) \right) \mathbf{Y}$$

Fachhochschule Westschweiz University of Applied Sciences

Western Switzerland

• Convex function: A function $f: C \to \mathbb{R}$ defined on a convex set $C \subset \mathbb{R}^n$ is said to be convex if

$$f\left(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}\right) \leq \lambda f(\mathbf{x}) + (1-\lambda)f(\mathbf{y}),$$

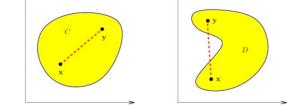
for each $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in [0,1]$.

• Convex Set: A set $C \subset \mathbb{R}^n$ is said to be convex if for every points $\mathbf{x}, \mathbf{y} \in C$, the points

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \quad \forall \lambda \in [0, 1],$$

CONVEX SETS AND FUNCTIONS

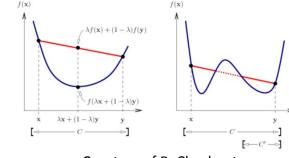
are also in the set $\ensuremath{\mathrm{C}}.$



Fachhochschule Westschweiz University of Applied Sciences

Western Switzerland

Courtesy of B. Chachuat



Courtesy of B. Chachuat

NECESSARY CONDITIONS OF OPTIMALITY (NCO)

• 1st order NCO: If \mathbf{x}^* is a local minimum of $\phi : \mathbf{C} \to \mathbb{R}$, then

 $\nabla \phi(\mathbf{x}^*) = \mathbf{J}(\mathbf{x}^*) = 0$ \mathbf{x}^* is a stationary point

• 2nd order NCO: If \mathbf{x}^* is a local minimum of $\phi: \mathbf{C} \to \mathbb{R}$, then

 $\nabla^2 \phi(\mathbf{x}^*) = \mathbf{H}(\mathbf{x}^*)$ is positive semidefinite

 $\mathbf{H}\mathbf{v} = \lambda \mathbf{v} \to (\mathbf{H} - \lambda \mathbf{I}_n) \mathbf{v} = \mathbf{0} \to p(\lambda) = |\mathbf{H} - \lambda \mathbf{I}_n| = 0 \to \lambda' s \ge 0$

Note: 1^{st} and 2^{nd} order NCO form a set of sufficient conditions if $\phi(\mathbf{x})$ is a convex function defined on a convex set $\mathbf{C} \subset \mathbb{R}^n$.

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

STEEPEST (GRADIENT) DESCENT METHOD

By definition, the gradient ∇φ(x) points out the direction of the maximum of φ(x). Hence, a recurrence relation for finding the minimum is:

 $\mathbf{x}_{i+1} = \mathbf{x}_i - \boldsymbol{\gamma} \mathbf{J}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{r}(\mathbf{x}_i)$ with $\boldsymbol{\gamma}$ a stepsize parameter $\mathbf{J}(\mathbf{x}_{i}) = \frac{\mathbf{r}(\mathbf{x}_{i} + \mathrm{d}\mathbf{x}_{i}) - \mathbf{r}(\mathbf{x}_{i})}{\mathrm{d}\mathbf{x}_{i}}$ with $\mathrm{d}\mathbf{x}_{i} = (1 + \varepsilon)\mathbf{x}_{i}$

- In simple algorithms, the stepsize parameter is fixed.
- In more sophisticated algorithms, the stepsize parameter is adapted at each iteration so that the step in the current search direction is maximum.

NEWTON-RAPHSON'S METHOD (NR)

 The method of Newton (1642-1727) – Raphson (1648-1715) is an algorithm for finding iteratively the zeros of a system consisting of n equations and m unknowns:

 $\boldsymbol{\phi}(\mathbf{x}) = 0$

For m = n = 1, one finds the well-known relation for f(x) = 0,

$$x_{i+1} = x_i - \frac{\phi(x_i)}{\dot{\phi}(x_i)}$$

m = n, the unique solution is found as

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \nabla \phi(\mathbf{x}_i)^{-1} \phi(\mathbf{x}_i)$$

m > n, a solution in the least-squares sense is found as

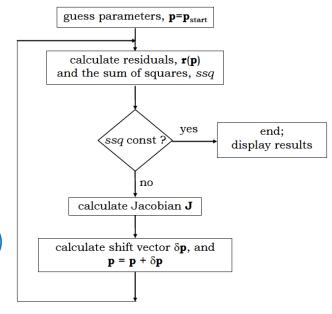
$$\mathbf{x}_{i+1} = \mathbf{x}_i - \nabla \phi(\mathbf{x}_i)^+ \phi(\mathbf{x}_i)$$

NEWTON-GAUSS METHOD (NG)

 The 1st order NCO directly provides a procedure for finding the minimum of a (regression) function, which can be solved using the Newton-Raphson method. This leads to the method of Newton (1642-1727) – Gauss (1777-1855):

NCO:
$$\nabla \phi(\mathbf{x}^*) = \mathbf{J}(\mathbf{x}^*) = 0$$

NR: $\mathbf{x}_{i+1} = \mathbf{x}_i - \nabla f(\mathbf{x}_i)^{-1} f(\mathbf{x}_i)$
with $f(\mathbf{x}_i) = \nabla \phi(\mathbf{x}_i) = 2\mathbf{J}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{r}(\mathbf{x}_i)$
 $\nabla f(\mathbf{x}_i) = \nabla^2 \phi(\mathbf{x}_i) \approx 2\mathbf{J}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{J}(\mathbf{x}_i)$
 $\mathbf{x}_{i+1} = \mathbf{x}_i - \mathbf{H}(\mathbf{x}_i)^{-1} \mathbf{J}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{r}(\mathbf{x}_i) \approx \mathbf{x}_i - \mathbf{J}(\mathbf{x}_i)^+ \mathbf{r}(\mathbf{x}_i)$
• Rel. convergence criterion $\left(\left| \frac{ssq_{i-1} - ssq_i}{ssq_{i-1}} \right| \le \mathrm{tol} \right)$



Courtesy of M. Maeder and Y.-M. Neuhold

NG LEVENBERG-MARQUARDT METHOD (NGLM)

 Levenberg (1919-1973) – Marquardt (1929-1997) modification allows interpolating between the Newton-Gauss method (NG) and the steepest descent method (SD):

$$\mathbf{x}_{i+1} = \mathbf{x}_i - \left(\mathbf{H}(\mathbf{x}_i) + \boldsymbol{\lambda}_i \mathbf{I}\right)^{-1} \mathbf{J}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{r}(\mathbf{x}_i)$$

with $\mathbf{H}(\mathbf{x}_i) \approx \mathbf{J}(\mathbf{x}_i)^{\mathrm{T}} \mathbf{J}(\mathbf{x}_i)$ and $\lambda_i \geq 0$: Marquardt parameter (mp)

For $\lambda_i = 0 \Rightarrow NG$; for $\lambda_i \rightarrow \infty \Rightarrow SD$ (shorter stepsize)

The parameter λ_i is adapted at each iteration according to heuristic arguments to avoid divergence problems due to a bad choice of the initial guesses in the original NG method.

Fachhochschule Westschweiz University of Applied Sciences

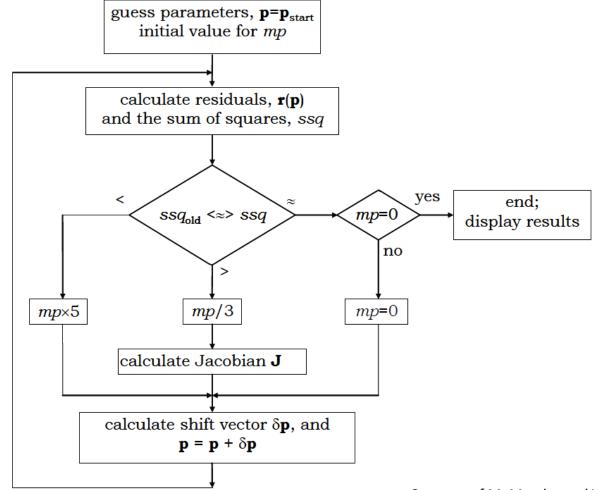
Western Switzerland

Hes.so Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

NGLM ALGORITHM



Courtesy of M. Maeder and Y.-M. Neuhold

STATISTICS PROVIDED BY GRADIENT METHODS

Degree of freedom

Residual variance

Variance/covariance (correlation) matrix

Correlation matrix

MLS-S03

 $df = \# \mathbf{Y} - \left(\# \mathbf{p}_f + \# \mathbf{p}_q \right)$

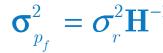
Fachhochschule Westschweiz University of Applied Sciences

Western Switzerland

 $\boldsymbol{\sigma}_{p_{f}}^{2} = \boldsymbol{\sigma}_{r}^{2} \mathbf{H}^{-1}$

 $\sigma_r^2 = \frac{ssq}{df}$

 $corr(p_{f,i}, p_{f,j}) = \frac{\sigma_{p_f}^2(i,j)}{\sigma_{p_f}(i,i) \cdot \sigma_{p_f}(j,j)} \in [0,1]$



REFERENCES

- M. Maeder, Y.-M. Neuhold, Practical Data Analysis in Chemistry, Elsevier, 2007
- M. Maeder, Y.-M. Neuhold, Chapter 7 of P. Gemperline (ed.) Practical Guide to Chemometrics, Taylor and Francis, 2006
- W.H. Press, W.T. Vetterling, S.A. Teukolsky, B.P. Flannery, Numerical Recipes in C++ – The art of Scientific Computing, 2nd Edition, Cambridge University Press, 2005
- B. Chachuat, G. François, Nonlinear Dynamic Optimization From Theory to Practice, Lecture notes, McMaster University - EPFL, 2009

University of Applied Sciences Western Switzerland

REFERENCES

- © G. Puxty, M. Maeder, K. Hungerbühler, Chemom. Intell. Lab. Syst. 81 (2006), 149
- V.M. Taavitsainen, H. Haario, J. Chemom. 15 (2001), 215
- V.M. Taavitsainen, H. Haario et al, J. Chemom. 17 (2003), 140
- M. Maeder, A.D. Zuberbühler, Anal. Chem. 62 (1990), 2220
- J. Billeter, Chemometric Methods for Prediction of Uncertainties and Spectral Validation of Rank Deficient Mechanisms in Kinetic Hard-modelling of Spectroscopic Data, Doctoral dissertation n°18311, ETH Zurich, 2009