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Abstract—This paper proposes a novel algorithmic framework
to solve image restoration problems under sparsity assumptions.
As usual, the reconstructed image is the minimum of an objective
functional that consists of a data fidelity term and an `1
regularization. However, instead of estimating the reconstructed
image that minimizes the objective functional directly, we focus
on the restoration process that maps the degraded measurements
to the reconstruction. Our idea amounts to parameterizing the
process as a linear combination of few elementary thresholding
functions (LET) and solve for the linear weighting coefficients
by minimizing the objective functional. It is then possible to
update the thresholding functions and to iterate this process (i-
LET). The key advantage of such a linear parametrization is
that the problem size reduces dramatically—each time we only
need to solve an optimization problem over the dimension of the
linear coefficients (typically less than 10) instead of the whole
image dimension. With the elementary thresholding functions
satisfying certain constraints, global convergence of the iterated
LET algorithm is guaranteed. Experiments on several test images
over a wide range of noise levels and different types of convolution
kernels clearly indicate that the proposed framework usually
outperform state-of-the-art algorithms in terms of both CPU time
and number of iterations.

Index Terms—Image restoration, sparsity, majorization mini-
mization (MM), iterative reweighted least square (IRLS), thresh-
olding, linear expansion of thresholds (LET).

I. INTRODUCTION

A. Problem Description

Consider the standard image restoration problem: find a
good estimation of the original image x from the degraded
measurements y = Hx + n. Here H is an M ×N matrix,
which models the linear mapping between the original image
x ∈ RN and the measurements y ∈ RM , and n ∈ RM is an
additive noise corruption. Specifically, H can model the point
spread function (PSF) in an optical lens system, the Radon
transform in tomographic reconstruction, or missing pixels
for inpainting problems, etc. For many practical problems,
H is ill-conditioned or non-invertible, which precludes the
possibility to apply direct inverse filtering to the measure-
ments. Therefore prior knowledge of the image is required
to regularize the restoration problem [2], [3]. An often used
recent approach is to regularize the inverse problem with
the sparse-promoting `1 norm in some transformation domain
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(see [4]–[6]), giving rise to the constrained formulation of the
problem as:

min
c∈RD

‖c‖1 s. t. ‖y −HWc‖2 ≤ ε, (1)

where c ∈ RD is the transformation coefficients and the image
x = Wc. Specifically, for wavelet-based image restoration
problems, W ∈ RN×D represents the orthogonal or tight
frame wavelet synthesis, WT is the corresponding wavelet
analysis, and ε is a non-negative parameter that is related to the
noise variance (e.g. ε =

√
Mσ for an M -pixel distorted image

with noise variance σ2). When ε = 0, (1) reduces to the well-
known basis-pursuit [7]. Another closely related constrained
formulation of the problem optimizes the data-fidelity term
‖y − HWc‖22 under the constraint that the `1 norm of the
corresponding transformation coefficients is bounded:

min
c∈RD

‖y −HWc‖22 s. t. ‖c‖1 ≤ ε, (2)

which is known as least absolute shrinkage and selection
operator (LASSO [8]). Detailed survey of various algorithms
to solve LASSO and its relationships with basis-pursuit can
be found in [9]–[11]. Arguably, instead of addressing the
constrained problems (1) and (2) directly, most algorithms deal
with the Lagrangian of the constrained problem:

J(c) =

J0(c)︷ ︸︸ ︷
‖y −HWc‖22 +λ‖c‖1, (3)

ĉ = arg min
c∈RD

J(c), (4)

where λ ≥ 0 is the regularization weight, which balances
the data fidelity and the sparsity of the reconstruction. The
restored image is reconstructed as x̂ = Wĉ. Alternatively but
not equivalently, the regularization is directly applied to the
image:

x̂ = arg min
x∈RN

{
‖y −Hx‖22 + λ‖WTx‖1

}
, (5)

which is known as the analysis formulation. The most popular
analysis formulation is probably the total-variation (TV) based
image restoration [12], [13]. When redundant transformation
W, WT is used, solutions to the synthesis and analysis formu-
lation problems are generally different [5], [6], [14], [15]. We
are not going to discuss which formulation is preferable in this
paper but will focus on the minimization of the unconstrained
problem (3) in the following sections. Yet, we give a very
efficient algorithm in Section IV-D that allows to solve for
problem (1) (i.e. find λ in problem (3)) within the iterations
of our proposed approach.
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B. Approaches to solve the problem

Notice that minimization of (3) can be cast as least square
programming with linear constraints. Thus, in principle it can
be solved via standard convex optimization algorithms, such
as interior point (IP) method. However, the computational
complexity for most image processing problems rules out
complicated interior point methods, which require explicit
access to each components of H and HT matrix. However,
see [16] for a recent development that deploys interior point
method with preconditioning and makes it applicable to image
processing. Other approaches that are able to handle large
scale problems are investigated and developed, including gra-
dient methods [17], [18], parallel coordinate descend (PCD)
methods [5], fixed-point continuation methods [19], gradient
projection methods [20], proximal methods [21]–[25] and
iterative shrinkage thresholding (IST) methods [4], [26].

The IST is probably one of the most popular algorithms to
solve (4) because of its simplicity. It requires one matrix mul-
tiplication of H and HT, which can be efficiently implemented
in most practical image restoration problems, followed by the
shrinkage:

c(n+1) = θλτ/2

(
c(n) − τWTHT

(
HWc(n) − y

))
,

where θT (t) = sign(t)max (|t| − T, 0) is the soft- threshold
function and τ is the IST step-size. IST was first introduced
in the framework of expectation maximization (EM) [27].
It was then reinterpreted in the more general majorization
minimization (MM) settings [28] by majorizing the Hessian
of the quadratic data-fidelity term in the objective functional.

However, it is also recognized that IST is a slow-converging
algorithm. In [29], [30], it is proven that IST has a linear
global convergence rate and that under certain conditions, it
can converge arbitrarily slowly. Another drawback of IST-
like algorithms is that they require a warm start for faster
convergence: if the algorithm is poorly initialized such that it
is too far away from the final solution, then it may require
much more iterations to converge. Typically, IST is initialized
with arbitrarily small values that are different from zeros. Such
an initialization is based on the prior knowledge that the final
solution is sparse and hence many coefficients are close to
zero. Another way to better initialize IST is related to the
continuation scheme [19], [20] that speeds up the convergence
rate, which first solves the minimization problem for a larger
λ in (3) before gradually decreasing it to the desired λ in the
subsequent steps.

Recent efforts to speed up IST has led to the emergence
of algorithms like TwIST [31], FISTA [29], and NESTA [17],
[18]. The strategy of these algorithms is to use smartly-chosen
descent directions, that are combinations of the previous
two iterates’ results. This strategy can be generalized with
the sequential subspace optimization (SESOP) [32], [33] for
further accelerations, e.g. PCD-SESOP [11], [33] and PCD-
SESOP-MM [34]. Variable splitting technique [35], [36] (also
known as separable surrogate functionals (SSF) [33]) provides
yet another powerful tool to minimize functions that consist of
summation of two terms which are of different nature, e.g. the
`2+`1 objective functional in (3). Several fast algorithms were

derived by deploying variable splitting strategy [37]–[41].
Another class of algorithms, which is related to iterated re-
weighted least square (IRLS), has attracted significant amount
of attention, e.g. iterative re-weighted shrinkage [28], which
exhibits much faster convergence rate compared with IST.

C. Proposed approach

In this paper, we present a general framework to solve the
optimization problem (4) iteratively with a Linear Expansion
of Thresholds (LET). Our previous work in image denoising
showed that it is possible to have a good approximation of the
“optimal” denoising process by performing several elementary
thresholding processes—which do not need to be chosen
particularly carefully—and summing them up with optimized
weights [42], [43]. This approximation point of view may be
judged similar to a subspace approach [11], [32]–[34], with
the philosophical difference that the representation basis may
be chosen quite arbitrarily: it is the number of elements that
ensure the approximation quality.

The same strategy can be applied to solve the minimization
problem (4) here—our idea amounts to approximating the
restoration results that minimize (3) with a linear combination
of elementary thresholding functions (LET bases) weighted
by unknown coefficients (LET coefficients). The original opti-
mization problem, thus, reduces to finding the optimal weights
such that the objective functional is minimized. Because of the
linearity of the LET expansion, this boils down to solving
an `1-regularized minimization problem but with a much
smaller dimension. The problem size is determined by the total
number of LET bases used. Hence, many conventional convex
optimization tools are at our disposal to handle such a small
scale problem.

Once we have the optimal linear coefficients, then the
reconstruction may be re-synthesized and updated accordingly.
We prove that with the elementary thresholding functions
satisfying certain properties, convergence to the minimum
of (3) is always guaranteed. Experimentally, the proposed
iterative LET restoration framework is efficient in solving im-
age reconstruction problems and requires much less iterations
before it reaches convergence compared with the state of the
art algorithms, such as, FISTA [29], SALSA [40], and PCD-
SESOP [11] over a wide range of convolution kernels and
noise levels. Although each iteration may be more costly than
other algorithms, the final computation time is usually still
significantly smaller.

D. Organization of the paper

The paper is organized as follows. The basic ingredients
of our proposed iterative LET (i-LET) restoration method are
described in Section II: the iterative reweighted least square
(IRLS) algorithm and the linear expansion of thresholds (LET)
approach. The basic LET framework is then adapted to allow
iterations in Section III with the convergence proof and several
examples of LET bases. Experimental i-LET results applied
to solving image deconvolution problems are discussed in
Section IV before we conclude the paper in Section V.
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II. BASIC INGREDIENTS

A. Iterative Reweighted Least Square Methods

1) Majorization Minimization point of view: The iterative
reweighted least square (IRLS) algorithm can be derived from
the Majorization Minimization (MM) framework. The MM
approach for solving

x̂ = argmin
x
f(x)

has the following general form:

x(n+1) = argmin
x
g
(
x,x(n)

)
,

where g
(
x,x(n)

)
“majorizes” f(x) in such a way that

g
(
x,x(n)

)
≥ f(x) ∀x and g

(
x(n),x(n)

)
= f

(
x(n)

)
. The

underlying motivation is that the minimization of f(x) may
be very difficult but we can easily minimize g(x), which is an
upper bound of f(x). From the majorization definition, it can
be easily proven that MM algorithm always produces better
estimates when the iterations increase [28], [44]: f

(
x(n+1)

)
≤

f
(
x(n)

)
.

Unlike IST, which majorizes the Hessian of the quadratic
term ‖y − HWc‖22 in the objective functional (3), IRLS
majorizes the `1 penalty instead. Consider 1

2 |c̃|+ 1
2|c̃|c

2, which
is an arithmetic average of |c̃| and 1

|c̃|c
2; it is lower bounded by

the geometric average |c|; hence, 1
2|c̃|c

2 is a majorizer of |c| (up
to a constant term independent of c). Likewise, a majorization
function for the `1 regularizer ‖c‖1 is 1

2c
TDc, where D is

a diagonal matrix and Di,i =
1
|ci| . Then at the minimization

step, c is updated by minimizing the majorizing function:

c(n+1) = arg min
c∈RD

{
‖y −HWc‖22 +

λ

2
cTD(n)c

}
,

which has the form of a (reweighted) `2 regularization. The
updated iterate c(n+1) is given by:

c(n+1) =
(
(HW)T(HW) +

λ

2
D(n)

)−1
(HW)Ty. (6)

IRLS-type algorithms exhibit superior performance in terms
of convergence speed among various experiments [6], [28],
[45]. Global convergence of IRLS has been shown in [46],
[47]. Note that we will not apply IRLS to solve the straight
`1 minimization problem (4) (contrary to [28], [48]) but to
solve a much smaller dimensional optimization problem (see
Section II-B2).

2) Image size issues: It is generally difficult to apply IRLS
directly to images due to limited computational resources, e.g.
memory size and RAM access speed. The computational dif-
ficulties arise from the matrix inversion in (6), which requires
explicit computation and storage of HW. For instance, the
dimension of the inverse matrix

(
(HW)T(HW) + λ

2D
(n)
)−1

is 65536×65536 for a typical 256×256 image when decimated
wavelet transform is used. One exception is image denoising,
i.e. H = I, where the inverse matrix becomes diagonal and
the matrix inversion can be computed component-wise (but
the exact solution is already known: component-wise soft-
threshold). Otherwise, without dimension reduction, the linear
system (6) has to be solved iteratively. In [28], [31], [49],
second-order stationary iterative method (SOSIM) is proposed

to solve the system with a few inner iterations for each MM
iteration.

B. Linear expansion of thresholds (LET)

1) LET expansion: From our previous experience in image
denoising, we know that it is possible to have an excellent
estimate of the noiseless image by decomposing the denoising
process into a linear combination of elementary thresholding
processes—Linear Expansion of Thresholds (LET) and then
optimizing the coefficients of this representation using an
estimate of the MSE—the Stein’s Unbiased Risk Estimate
(SURE) [42], [43]. Here we use the same strategy by rep-
resenting the solution of (4) as a function of the known data
y from a linear combination of thresholding processes Fk(y):

c =

K∑

k=1

akFk(y), (7)

where ak’s for k = 1, . . . ,K are linear coefficients to be
determined. Note that even though here we term (7) as a
linear expansion of “thresholds” for consistency with our
previous work in denoising, the actual meaning is “elementary
processings”; i.e., “basis” vector-functions that transform y
into partially-restored wavelet coefficients. Such bases may be
actual (non-linear) thresholds (see Section II-B4), Tikhonov
linear estimates (see Section II-B3), or recursive estimates
(functions of previous estimates, see Section III).

Therefore, instead of directly addressing the solution that
minimizes (3), our goal is to approximate the optimal function
that maps the distorted measurements to the reconstruction,
which makes this approach akin to approximation theory and
Ritz-Galerkin method [50]. Specifically, for a given set of
elementary functions Fk, the output of which gives a recon-
struction candidate, we only need to determine the optimal
linear combinations a1, . . . , aK . Here the optimality is in the
sense that the objective functional (3) is minimized:

ak = arg min
ak∈R

J

( K∑

k=1

akFk(y)

)
. (8)

Thus the algorithm automatically takes the best of each LET
basis Fk via the optimization of LET coefficients. It is worth
mentioning that even though we parametrize the reconstruction
process with a linear combination of LET basis elements, the
resultant function is usually not a linear mapping between the
measurements y and the reconstruction x̂. Indeed, by choos-
ing adequate and sufficiently many elementary thresholding
functions Fk, a rich variety of functions can be constructed.

2) Solving for LET coefficients: If we introduce the para-
metric LET representation (7) into (3), then the resultant
objective functional is still convex in ak’s, with the advantage
of a much smaller dimensionality: the problem’s dimension
changes from image size (≈ 6.5×104 for a typical 256×256
image) to the degrees of freedom of LET basis K (typically
less than 10). Therefore, the minimization problem can be
easily addressed with standard convex optimization tools, e.g.
iterated reweighted least square approach that we introduced
previously in Section II-A (also see [34] for a similar strategy).
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More specifically, when IRLS is used, the LET coefficients are
obtained iteratively as:

a(n+1) = arg min
a∈RK

{∥∥y −HWFa
∥∥2
2
+
λ

2
(Fa)TD(n)Fa

}
,

where we have rearranged the LET coefficients as a vector
a = [ a1 a2 . . . aK ]T, and the LET basis elements in
a matrix form F = [ F1 F2 . . . FK ]. Here D(n) is a
diagonal matrix such that1

[
D(n)

]
i,i

= 1/
[ ∣∣Fa(n)

∣∣ ]
i
. Then,

we only need to solve a small linear system of equations at
each iteration:

a(n+1) =
(
M(n)

)−1
b, (9)

where b is a K×1 vector and M(n) is a K×K matrix, given
by:

M(n) = (HWF)T(HWF) +
λ

2
FTD(n)F,

b = (HWF)Ty.
(10)

Once we have the LET coefficients a(∞), the image is re-
synthesized as x̂ = Wĉ = WFa(∞). Note that here we are
not limited to the use of IRLS to obtain the LET coefficients,
as long as the algorithm can solve (8) efficiently. Experi-
mentally, IRLS reaches “convergence” within a few iterations
(typically less than 10).

3) Example of LET restoration—Linear Processing: We
use Tikhonov regularizers as LET bases: Fk(y) = WT(HTH+
µkI)

−1HTy for some µk’s, where H is the convolution matrix
and I is the identity matrix. Here we only need to coarsely
select several µk’s such that the LET bases reflect different
aspects of the reconstruction. Fig. 1 shows the result of three
LET processings Fk and their J-optimal combination. In com-
parison, if we hand-tune the parameter µ, then the objective
functional J in (3) is worse than what we obtained with the
LET approach. Therefore, we can out-perform an empirically
selected non-linear parameter with several linear parameters
(i.e. the LET coefficients). The computational advantage is
obvious, as well as the certainty to have a global minimum
(because of convexity).

4) Example of LET restoration—Linear Processing +
Thresholding: We can decrease the objective functional sub-
stantially by further (non-linear) thresholding the wavelet
coefficients of the Tikhonov deconvolution, which results in
a new set of LET basis elements. A possible choice of the
non-linear part of this processing is a combination of the
ramp and of a derivative of Gaussian (DOG) as defined
in [42]: θDOG(c;a) =

(
a1 + a2e

− c2

12σ2
)
c, where a = [a1 a2]

T

are (LET) coefficients to be determined by minimizing the
objective functional (3), σ is the standard deviation of the
additive noise, which are either given or can be robustly
estimated [51], and c corresponds to each component of the
wavelet coefficients of the Tikhonov deconvolution results
WT(HTH + µkI)

−1HTy. This one-step LET reconstruction
is already reasonably close (in terms of peak signal to noise
ratio—see the definition (16)) to the exact minimizer of the
objective functional (3) with various experimental settings.

1To avoid numerical instability, we use max
(
|Fa(n)|i, 10−15

)
for the

denominator in D(n) in the implementation.

TABLE II
PSNR COMPARISON BETWEEN THE NON-ITERATIVE LET

RECONSTRUCTION OF SECTION II-B4 AND THE EXACT SOLUTION
OF (4)—REDUNDANT WAVELET TRANSFORM (SYM8, THREE STAGES)

BSNR 25 30 35 40
Blur Type cameraman (256× 256)

1 28.83 29.06 29.74 30.70
2 32.57 32.95 35.19 37.21
3 34.87 35.18 35.03 34.99

NOTE: The similarity (in dB) between the non-iterative LET reconstruction
and the exact solution of the `1-regularized minimization (4) is measured by
the peak signal to noise ratio defined in (16). See Table IV for the definitions
of various convolution kernels.

Table I and Table II summarises the results we obtained when
orthogonal and redundant wavelet transforms are used for the
transformation respectively.

III. ITERATIVE LET RESTORATION

In the previous section we have proposed a general form (7)
for the approximation of the restoration function. The algo-
rithm finds the best linear combination of LET basis elements
that optimizes the objective functional but it will not find the
exact solution of (4), in general. It is possible, however, to
apply the LET strategy iteratively (i-LET) in such a way as to
refine the solution provided by previous iterations (Fig. 2): at
each iteration, it suffices to build LET bases that are functions
of both the measurements y and the previous iterate results
c(n): F

(
y, c(n)

)
. And the optimal weighting coefficients are

given by

ak = arg min
ak∈R

J

( K∑

k=1

akFk(y, c
(n))

)
. (11)

This choice makes our algorithm related to standard
optimization approaches like (conjugate) gradient-descent,
coordinate-descent [52] and SESOP [33], although our speci-
ficity here rests on a non-differentiable optimization criterion.
We prove that, under very mild conditions on the choice of
LET bases, this iterative procedure eventually results in the
minimum of (3).

Algorithm 1: Iterative LET Restoration
Input : Distorted measurements y, distortion matrix H
Output: Reconstructed image x̂

while stopping criterion not met do

1 Build LET bases from measurements y and previous
iterate results c(n);

2 Solve LET coefficients a from

ak = argminak J
(∑K

k=1 akFk
(
y, c(n)

))
;

3 Re-synthesize reconstruction
c(n+1) =

∑K
k=1 akFk

(
y, c(n)

)
.

end
Reconstruct solution x̂ = Wc(∞).
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(a) LET basis for µ1=10
−4 (b) LET basis for µ2=10

−3 (c) LET basis for µ3=10
−2

J ( F1) = 3 .9 8 × 1 0 4 J ( F2) = 3 .3 3 × 1 0 4 J ( F3) = 1 .8 8 × 1 0 5

(d) Blurred measurements (e) LET reconstruction (f) Hand-tuned reconstruction
J = 3 .1 3 × 1 0 4 J = 3 .3 1 × 1 0 4

Fig. 1. (a)–(c) LET bases built from Tikhonov deconvolution with different regularization weights µk’s, (d) the blurred cameraman image (e) the LET
reconstruction, i.e. the J-optimal combination of (a), (b) and (c) (J given in (3)), and (f) the Tikhonov deconvolution with hand-tuned parameter. (see, text
in Section II-B3)

TABLE I
PSNR COMPARISON BETWEEN THE NON-ITERATIVE LET RECONSTRUCTION OF SECTION II-B4

AND THE EXACT SOLUTION OF (4)—ORTHOGONAL WAVELET TRANSFORM (SYM8, THREE STAGES)
BSNR 10 15 20 25 30 35 40 10 15 20 25 30 35 40

Blur Type cameraman (256× 256) bank (512× 512)
1 30.39 29.02 27.93 28.35 28.09 28.51 29.42 29.07 28.58 27.68 27.81 27.86 28.75 30.10
2 31.34 30.14 31.46 33.18 33.48 34.50 36.96 31.36 30.74 32.08 34.14 35.94 35.80 38.37
3 30.58 32.45 34.51 33.27 31.45 30.94 31.18 31.06 33.16 35.51 37.44 34.09 33.00 32.84

Blur Type peppers (256× 256) mandrill (512× 512)
1 30.00 28.30 27.73 26.98 27.41 28.69 30.38 32.16 29.40 28.37 27.89 28.23 28.87 29.94
2 32.23 31.67 33.06 35.12 36.42 36.31 38.46 31.58 32.40 33.48 32.76 33.44 35.89 38.74
3 32.01 34.07 36.67 39.85 35.81 34.37 34.14 32.98 34.67 33.10 30.27 29.29 29.14 29.30

NOTE: The similarity (in dB) between the non-iterative LET reconstruction and the exact solution of the `1-regularized minimization (4) is measured by
the peak signal to noise ratio defined in (16). See Table IV for the definitions of various convolution kernels.

A. Selection of i-LET bases

In principle, we have the freedom to choose arbitrary ele-
mentary LET processings. However, in an iterative framework
it is reasonable to describe the update as a sum of the previous
iterate and an incremental change. Hence, a typical minimal
LET basis is made of two elements: the previous iterate, and
a change that we are now going to specify.

Which constraint should we impose on the incremental
change so as to ensure convergence of the iterations to
the global minimum of (3)? For continuously-differentiable
objective criteria, an instance of converging iterative scheme
is the gradient-descent algorithm. Under the i-LET framework,
this means that the second LET basis element should be
the gradient of the objective functional, ∇J itself, as shown
in [32]. Despite the fact that J in (3) is not continuously-
differentiable, it is still possible to define a LET element that
behaves like a gradient; we denote by ∇τ J this “generalized”

gradient:

∇τ J def
=

2

τ

(
c− θλτ/2

(
c− τ

2
∇J0

))
, (12)

where τ is an arbitrary positive number and J0(c) = ‖y −
HWc‖22. We will see that a small variation of c opposite
to this “gradient” results in a decrease of J(c), unless c
minimizes J(c), in which case ∇τ J(c) = 0. Any LET basis
that contains the previous iterate and ∇τ J will be shown to
converge to the global minimum of (3). Adding other basis
may speed up the algorithm, but does not alter the convergence
behavior. These requirements are summarized in Table III.

B. Convergence of the i-LET scheme

We first give an equivalent characterization of the minimum
of (3), and a sufficient condition for this minimum to be
unique, as they appear in the literature. Then, we prove the
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Minimize
J(c) = ‖y − HWc‖22 + λ‖c‖1
over ak, where

c =
∑K

k=1
akFk

(
y, c(n)

)
.
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...
ak
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aK
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econstruct
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c

c(n+1)

c(n)
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Fig. 2. i-LET deconvolution schematic view. For a given set of LET bases, LET coefficients ak’s are obtained by minimizing (3). The reconstructions are
fed back as the input for the next iterate.

TABLE III
ITERATIVE LET BASES SELECTION CRITERIA

A “good” set of thresholding bases should contain:

1 Previous iterate : at each iteration the updated result obtained from
the algorithm is no worse than the one at the previous iteration;

2 Generalized gradient : ∇τ J
def
= 2

τ

(
c − θλτ/2(c − τ

2
∇J0)

)
for

arbitrary τ > 0 where J0 = ‖y −HWc‖22 is the quadratic term in
the objective functional J given in (3).

unconditional convergence of the value of the criterion (3) to
its global minimum in the iterative LET scheme. When the
problem is known to have a unique solution, we will finally
show that the LET iterates converge to this very minimum.

Lemma 1 (adapted from [21, Proposition 3.1 (iii)]): c? ∈
RD minimizes the criterion (3), if and only if there exists
τ > 0 such that c? satisfies

∇τ J(c?) = 0. (13)

Note that, when (13) is satisfied for some τ > 0 then it will
be satisfied for any τ > 0. The following theorem provides
a sufficient condition that we will explicitely check in the
experiment Section IV.

Theorem 1 (from [53]–[55]): Let c? ∈ RD be a minimizer
of (3) and define S(c?) =

{
i ∈ {1, . . . , D} : c?i 6= 0

}
, then

the solution c? is unique if

AT
i(y −Ac?) =

λ

2
sign(c?i ), for i ∈ S(c?),

∣∣AT
i(y −Ac?)

∣∣ < λ

2
, for i /∈ S(c?),

AT
S(c?)AS(c?) is invertible.

Here A = HW and AS(c?) extracts columns in A that are
indexed by S(c?).
We now state a strictly decreasing property satisfied by ∇τ J ,
which outlines its similarity with a true gradient (if J were
differentiable).

Lemma 2: Let ∇τ J be the generalized gradient of (3)
where τ > 0 is arbitrary. Then J(c − ε∇τ J) < J(c) for
sufficiently small ε > 0 unless ∇τ J = 0.

Proof: See Appendix A-A.
What is important here is the strict inequality: in the neighbor-
hood of a (non-optimal) point c, descending in the direction
of −∇τ J(c) decreases the value of the criterion strictly. Note
however that, contrary to the true gradient (of a continuously
differentiable function), preconditioning the generalized gra-
dient does not automatically decrease the criterion, even for

values of c away from convergence. Said differently, −Q∇τ J
is not always a descent direction of J , even if Q � 0.

Lemma 2 is instrumental in proving the convergence of
iterated LET schemes for arbitrary values of τ > 0 in the
following theorem.

Theorem 2: Let τ > 0, then the iterated LET restoration
(Algorithm 1) minimizes the criterion (3). More precisely, any
limit points of the i-LET sequence minimize this criterion.

If, in addition, we are ensured of the unicity of the mini-
mum, then the iterated estimates c(n) converge towards this
minimum.

Proof: See Appendix A-B.
How does this simple result stand compared to other conver-
gence results in the literature?
• SESOP [32] uses a smooth approximation of the `1 norm

and is not able to solve exactly the non-differentiable `1
problem: when the approximation of `1 gets more rough,
convergence slows down substantially because the true
gradient of the criterion becomes more unstable. What
we have proven here is that this true gradient has to
be replaced by a generalized gradient (12). With this
modification, the i-LET iterations converge to the rough
non-differentiable `1 problem. Moreover, even if at each
iteration the LET coefficients are not optimized exactly
according to the `1 criterion (due to, e.g. few IRLS
iterations, 10−15 saturation), convergence to the solution
of the `1 problem is still very likely2 to hold.

• IST-like schemes are known to be convergent when τ is
smaller than the spectral radius of the distortion matrix.
The obvious improvement here is that τ may be arbitrary.
On the other hand, our result addresses less general
situations than, e.g., [4], [21] because of our finite-
dimension setting, which ensures that i-LET sequences
have limit points.

C. Examples of i-LET bases

In this section, we exemplify the iterative algorithm with
different choices of LET bases, which satisfy the properties
summarized in Table III. Therefore, from Section III-B, we
know that global convergence is guaranteed. However, it is
expected that with different sets of bases, the convergence
speed varies. Therefore, the difficulty now lies on designing
adequate LET bases. For instance, we could have chosen the

2This is because the IST, which is itself an i-LET algorithm with fixed
coefficients, is known to converge to the solution of the exact non-smooth
problem (4). Hence, the choice of the coefficients (even through ill-adapted
optimization) is not expected to lead to a different solution.
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Fig. 3. Convergence comparison between IST and i-LET (with same
τ = 0.5) where the LET basis consists of previous iterate result and a soft-
threshold—see (14).
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Fig. 4. The i-LET algorithm converges to the global optimum for arbitrary
values of τ (IST would diverge for τ ≥ 1).

thresholding bases introduced in Section II-B4, and added the
ones recommended in Table III. But our experiments indicated
that the computational cost caused by having many LET bases
(57 + 2 here) could not be counterbalanced by having less
iterations. For this reason, we chose to design fewer LET
bases.

We first focus on one particular LET basis that follows
naturally from the IST algorithm. It is also the simplest set
of thresholding functions that conform to the convergence
requirements, and serves as a reference for discussions of other
alternative bases that further improve the convergence rate of
i-LET.

1) IST-like bases: The LET bases consist of the previous
iterate c(n) and the generalized gradient (12):

F1 = c(n), and F2 = ∇τ J
(
c(n)

)
. (14)

The IST is actually a LET with fixed weights throughout
iterations: a1 = 1 and a2 = −τ/2 for F1 and F2 respectively.
In contrast, the i-LET algorithm consists in optimizing these
two weights at each iteration according to (11). Thanks to
this optimization, notable accelerations are readily observed
in experiments compared with the standard IST (Fig. 3).

It is important to stress again that, contrary to the IST, we
do not have here any further limitations on the positive step-
size τ of the i-LET for its convergence to the global minimum.
We exemplify this insensitivity to τ in Fig. 4.

2) Bases with more than one previous iterate: It is well
known that the convergence rate is dramatically improved
by simply taking into account previous two or more iterate
results [29], [31], [49]. Nesterov has proven that with a
smartly chosen additional iterate result to the previous one,
subquadratic convergence rate can be achieved [17], [18].
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← same i-LET as in Fig. 3
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i -LET (prev. 3)
i -LET (prev. 4)

Fig. 5. Comparison of i-LET convergence with different number of previous
iterates results included as LET bases—see Section III-C2. (Note: narrowing
of vertical axis compared to Fig. 3)

Such remarkable results give us the motivation to derive the
following LET bases:

i-LET prev. 2:





F1 = c(n−1)

F2 = c(n)

F3 = ∇τ J
(
c(n)

)
,

i-LET prev. 3:





F1 = c(n−2)

F2 = c(n−1)

F3 = c(n)

F4 = ∇τ J
(
c(n)

)
, etc.

In this sense, the LET basis considered in (14) is a special
case of the ones presented here. Fig. 5 are the results obtained
with i-LET when different numbers of previous iterates are
involved in the LET bases. We found that the convergence
rate is insensitive to the number of previous iterates used
after a certain point (here approximately three or even two
seems to be enough). Similar behavior was observed in [49].
In practice, we would like to use as few LET basis ele-
ments as possible to minimize the computation cost of the
i-LET algorithm (see below in Section IV-C). Previous efforts
to build more complicated shrinkage functions other than
the soft-threshold by combining several thresholding func-
tions [31], [49], experience difficulties in specifying proper
weight for each individual thresholding function. Empirical
approaches were usually adopted to optimize the convergence
speed. With the LET approach, however, it becomes almost
trivial to determine the proper weights, as the minimization
of the objective functional automatically takes care of the
necessary adjustments for fastest decrease.

3) Bases with preconditioned generalized gradient: The
LET bases discussed in the previous Sections III-C1 and III-C2
result in i-LET algorithms that are akin to gradient-descent
algorithms. Therefore, only first order information is con-
sidered. Faster convergence is expected when second order
information of the objective functional is taken into account,
e.g. the Hessian, especially when the problem is very ill-
conditioned. In particular, in analogy with preconditioned
gradient algorithms, we consider the following LET basis:

F1 = c(n),

F2 = ∇τ J
(
c(n)

)
,

F3 =
(
WTHTHW + µI

)−1∇τ J
(
c(n)

)
. (15)
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Fig. 6. Convergence speed improvements by including preconditioned
generalized gradient (15) in addition to the previous iterate and the soft-
threshold basis under different levels of blur and/or noise (image: cameraman).

TABLE IV
CONVOLUTION KERNELS USED IN EXPERIMENTS

Convolution Type Description

Type 1 9× 9 uniform blur

Type 2 hi,j = 1/(1 + i2 + j2) for i, j = −7, . . . , 7

Type 3 hi,j = [1, 4, 6, 4, 1]T[1, 4, 6, 4, 1]/256

Here the regularized Hessian
(
WTHTHW + µI

)−1
is used

for “preconditioning” the generalized gradient.3 Now comes
an obvious question: how to select the optimal µ, which is
case-dependent, for fast convergence? We can either choose
it empirically or we can do it “the LET way”: use several
bases of the same form as F3 but with different µ’s and
let the algorithm take necessary adjustments by assigning
different weights to each basis element. The convergence
rate improvements under various blurring and/or noise level
conditions are shown in Fig. 6. The speedup is more obvious
when the measurements y are less noisy.

IV. EXPERIMENTAL RESULTS

In this section, we exemplify the proposed iterative LET
restoration algorithm to solve image deconvolution problems
where the images have been distorted with various convolution
kernels (Table IV) and different levels of noise. Both deci-
mated wavelet transform (DWT) and redundant wavelet trans-
form (RWT) have been used. We compare the performances
of the proposed i-LET algorithm with the state of art algo-
rithms that are available in the public domain4: FISTA [29],
SALSA [40] and PCD with subspace accelerations (PCD-
SESOP) [11], [33]. We have run all experiments with Matlab

3Note that this “preconditioned” generalized gradient is not always a
descent direction for J (see our comments below Lemma 2), which is why
we need to keep ∇τ J .

4FISTA: http://iew3.technion.ac.il/∼becka/papers/wavelet FISTA.zip
SALSA: http://cascais.lx.it.pt/∼mafonso/SALSA v1.0.zip
PCD-SESOP: http://ie.technion.ac.il/∼mcib/SESOP PACK 07 06 2010.zip

7.9.1 in Windows 7 (64-bit) on a desktop computer with Intel
Core i3 3.1GHz CPU and 4GB RAM. We did not make use of
any additional pre-compiled code, but special treatments had
to be made in order to be more efficient in building the IRLS
matrix in (10) due to Matlab’s memory management behavior.

In the experiments, the parameters of FISTA, SALSA and
PCD-SESOP have been set to their default values as suggested
by their corresponding authors. We have initialized all compar-
ing algorithms with the same random wavelet coefficients, and
averaged the computation times and iteration numbers over ten
realizations of this random initialization.

In order for our stopping criterion to be as objective as
possible, we first obtain the global minimizer c? of the `1-
regularized objective functional (3) before we run all four
algorithms for comparisons. This global minimizer is com-
puted by running FISTA with usually more than 106 iterations
and checking that we are effectively at convergence using
Lemma 1. We also explicitly verify that this solution c? is
unique by checking that the conditions in Theorem 1 are met
for all cases considered in the subsequent sections.5

We terminate the iterations when the reconstructed image
x̂ = Wĉ from each algorithm is close enough to the one at
convergence x? = Wc? in peak signal to noise ratio (PSNR)
sense:

dist(x,x?) def
= 10 log10

(
2552

MSE(x,x?)

)
≥ 40 dB. (16)

We observed that this stopping criterion corresponds to a
relative difference of 10−4 up to 10−3 (depending on the
experimental settings) between the resulting objective function
and the minimum J(c?).

A. Deconvolution with decimated wavelet transform

We consider image deconvolution with a decimated wavelet
transform over a wide range of noise variations (σ2). In
particular, the blurred signal to noise ratio (BSNR)

BSNR[dB]
def
= 10 log10

(
Var(Hx)

Var(noise)

)

varies from 10 dB to 40 dB. And we used three different
convolution kernels as summarized in Table IV. In all exper-
iments, sym8 decimated wavelet transform with three stages
is used. The regularization weight λ is chosen in such a
way that the data-fidelity term is compatible with the noise
level at convergence ‖y − HWĉ‖22 = Nσ2 for an N -pixel
image (see Section IV-D). We only used the wavelet subbands
in the `1 regularization (not the low-pass), since the low-
pass subband of a natural image is generally not sparse.
Four different test images are used in comparisons, namely
cameraman (256×256), bank (512×512), peppers (256×256)
and mandrill (512 × 512). We use the following set of LET

5We use LU decomposition of AT
S(c?)

AS(c?) to check the invertibility,
which usually takes a few hours for each case. The minimum absolute value
in the diagonal entries of the upper-triangular matrix is around 10−4 for DWT
cases and 10−6 for RWT cases.
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TABLE V
DECONVOLUTION CONVERGENCE COMPARISONS WITH ORTHOGONAL WAVELET TRANSFORM (SYM8, THREE STAGES)

BSNR 10 15 20 25 30 35 40 10 15 20 25 30 35 40
Method cameraman (256× 256) type 1 blur bank (512× 512) type 1 blur

FISTA iterations
computation time

18
0 .30

33
0 .49

64.1
0 .92

72
1 .02

112
1 .58

147
2 .08

176
2 .45

21
1 .67

31
2 .37

55
4 .16

89
6 .68

130
9 .72

162
12 .55

176
14 .23

SALSA iterations
computation time

60
1 .26

58
1 .28

75
1 .57

40
0 .86

40
0 .9

31
0 .66

20
0 .46

72
7 .65

46
4 .78

51
5 .31

55
5 .7

52
5 .44

38
3 .99

22
2 .39

PCD-SESOP-7 iterations
computation time

234.1∗
10 .82

151.7
7 .19

46.1
2 .19

34.6
1 .64

43.4
2 .05

56.3
2 .64

72.4
3 .39

741.2∗
165 .92

84.8
18 .97

44
9 .86

39.1
8 .75

48.6
10 .88

61.3
13 .66

76.5
17 .09

i-LET iterations
computation time

6
0 .28

7
0 .29

10
0 .40

8
0 .32

8.9
0 .35

9.2
0 .36

9.9
0 .39

7
1 .42

6
1 .23

8
1 .57

10
1 .93

10.4
2 .03

10.1
1 .98

10.5
2 .04

Method cameraman (256× 256) type 2 blur bank (512× 512) type 2 blur

FISTA iterations
computation time

9
0 .16

14
0 .22

18
0 .27

22
0 .33

36
0 .53

52
0 .74

63
0 .90

9
0 .74

13
1 .05

16
1 .26

19
1 .49

25
1 .93

41
3 .37

53
4 .32

SALSA iterations
computation time

19
0 .42

15
0 .34

11
0 .27

7
0 .18

7
0 .18

6
0 .16

4
0 .12

18
1 .99

13
1 .50

9
1 .09

6
0 .78

4
0 .60

4
0 .59

3
0 .48

PCD-SESOP-7 iterations
computation time

238
11 .10

74.1
3 .53

36.2
1 .73

16.6
0 .80

10
0 .48

10.2
0 .49

11
0 .53

219.7
48 .85

72.8
16 .30

36.5
8 .20

16.7
3 .78

10
2 .26

10.1
2 .29

10.9
2 .45

i-LET iterations
computation time

3
0 .14

3.5
0 .16

3
0 .14

3
0 .13

4
0 .17

4
0 .17

3.4
0 .15

3
0 .65

3
0 .65

3
0 .65

3
0 .65

3
0 .66

4
0 .85

3
0 .66

Method cameraman (256× 256) type 3 blur bank (512× 512) type 3 blur

FISTA iterations
computation time

5
0 .09

6
0 .10

7
0 .11

52
0 .74

107.9
1 .5

172.9
2 .43

249.8
3 .48

4
0 .37

5
0 .45

6
0 .51

8
0 .66

62
4 .66

116
9 .39

166
13 .42

SALSA iterations
computation time

21
0 .48

9
0 .23

5
0 .14

54
1 .13

93
1 .98

109
2 .32

107
2 .30

18
2 .02

8
0 .98

4
0 .58

3
0 .48

34
3 .60

52
5 .38

52
5 .45

PCD-SESOP-7 iterations
computation time

116.4
5 .54

77.9
3 .76

41.4
1 .94

26.9
1 .27

35.4
1 .68

62
2 .96

90.7
4 .28

114
25 .43

71.7
16 .09

42
9 .42

24.8
5 .59

27.8
6 .27

54.4
12 .31

77.6
17 .41

i-LET iterations
computation time

3.2
0 .15

3.1
0 .15

3
0 .14

11
0 .44

16.2
0 .61

18.6
0 .71

19.4
0 .74

3
0 .64

3.1
0 .67

2.1
0 .49

3.1
0 .67

11.2
2 .21

15.3
2 .94

14.9
2 .86

Method peppers (256× 256) type 1 blur mandrill (512× 512) type 1 blur

FISTA iterations
computation time

21
0 .31

38
0 .54

83.1
1 .16

167
2 .32

241
3 .35

272.5
3 .77

270.5
3 .77

20
1 .55

41
3 .13

100
7 .53

150
11 .25

169
12 .76

201
15 .07

248.7
18 .72

SALSA iterations
computation time

43
0 .90

46
0 .94

82
1 .66

152
3 .03

146
2 .96

85
1 .75

38
0 .79

22
2 .39

31
3 .30

67
6 .88

64
6 .63

37
3 .93

23
2 .76

16
1 .96

PCD-SESOP-7 iterations
computation time

466.5∗
20 .77

55.3
2 .55

37.2
1 .71

36.2
1 .67

46.8
2 .15

59.9
2 .70

78.8
3 .62

62.6
14 .07

40.5
9 .39

36.2
8 .51

47.8
11 .10

63.9
14 .82

85.9
19 .23

117
26 .09

i-LET iterations
computation time

5
0 .21

6.8
0 .28

12
0 .46

19.9
0 .75

19.6
0 .72

15.5
0 .58

13.2
0 .50

4.1
0 .85

6
1 .20

11.7
2 .30

12.7
2 .46

12.3
2 .39

13.4
2 .66

15.5
3 .03

Method peppers (256× 256) type 2 blur mandrill (512× 512) type 2 blur

FISTA iterations
computation time

9
0 .14

13
0 .19

17
0 .25

20
0 .29

28
0 .40

51
0 .72

69
0 .97

13
1 .03

17
1 .33

23
1 .77

45
3 .42

63
4 .75

74
5 .63

82
6 .18

SALSA iterations
computation time

13
0 .29

10
0 .24

7
0 .17

5
0 .14

4
0 .12

4
0 .12

4
0 .12

12
1 .38

9
1 .08

6
0 .79

8
0 .98

7
0 .89

5
0 .77

3
0 .52

PCD-SESOP-7 iterations
computation time

138.4
6 .20

58.3
2 .69

28.3
1 .31

14
0 .64

9
0 .42

10.5
0 .49

10.9
0 .50

67.4
18 .79

33
7 .72

15.5
3 .72

10
2 .37

10.9
2 .46

11
2 .46

11.7
2 .65

i-LET iterations
computation time

3
0 .14

3
0 .14

3
0 .14

3
0 .14

3
0 .14

4
0 .17

3
0 .14

3.8
0 .81

3.1
0 .66

3
0 .65

4
0 .88

4.8
0 .97

4
0 .85

4
0 .82

Method peppers (256× 256) type 3 blur mandrill (512× 512) type 3 blur

FISTA iterations
computation time

4
0 .07

5
0 .08

6
0 .10

7
0 .11

38
0 .55

87
1 .21

118
1 .66

6
0 .51

8
0 .67

43
3 .27

125
9 .34

206.6
15 .39

309.5
23 .16

420.1
31 .21

SALSA iterations
computation time

12
0 .29

7
0 .17

4
0 .12

3
0 .10

11
0 .26

23
0 .50

20
0 .44

8
0 .98

5
0 .68

34
3 .60

108
11 .06

130
13 .77

130
14 .68

106
11 .95

PCD-SESOP-7 iterations
computation time

109.4
5 .05

68
3 .15

39
1 .79

22.6
1 .04

23.3
1 .08

46.4
2 .15

64.2
2 .95

70.8
16 .01

39.3
9 .19

26.2
6 .11

38.4
8 .94

77.7
17 .42

112.1
24 .89

151.9
33 .92

i-LET iterations
computation time

3
0 .14

3
0 .14

2.1
0 .10

2.2
0 .10

8.4
0 .33

10.6
0 .41

10.6
0 .41

4
0 .85

4
0 .85

9.6
1 .89

19.2
3 .61

22.3
4 .23

23.4
4 .45

23.7
4 .50

NOTE: Iteration numbers and computation time (in sec) is averaged over ten runs. Stopping criterion: within 40 dB difference of the exact minimum of (3) (see, (16)).
If the algorithm does not meet the stopping criterion within the maximum iterations allowed in some of the ten runs, we mark the results with (∗).
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bases for the i-LET algorithm6:

F1 = c(n−1),

F2 = c(n),

F3 = ∇τ J
(
c(n)

)

= cn − θλτ/2
(
c(n) − τWTHT

(
HWc(n) − y

))
,

F4 =
(
WTHTHW + µ1I

)−1∇τ J
(
c(n)

)
,

F5 =
(
WTHTHW + µ2I

)−1∇τ J
(
c(n)

)
.

We choose τ in F3, F4 and F5 based on the regularization
weight λ as well as the wavelet coefficients range7, cmax, as
τ = cmax/λ. The values obtained by this choice are usually
between 10 and 5000, much larger than 1, which is the value
allowed for the convergence of the IST. We also use µ1 = 1/τ ,
and µ2 = 10/τ to sidestep the need to select a single parameter
µ empirically (see the example in Section III-C3). Notice that
here we do not need to finely adjust these parameters as the
LET optimization (11) automatically performs fine tuning. An
IRLS inner loop with 5 iterations is used to solve the LET
coefficients.

Since the reconstructed images are indistinguishable both
visually and in the SNR sense, we report the iteration numbers
required as well as the computational time for each algorithm
in Table V. In almost all cases, the i-LET deconvolution
algorithm outperforms FISTA, SALSA and PCD-SESOP in
terms of iteration numbers. Arguably, to be meaningful in
practice, we should compare the actual computational time
consumed by each algorithm instead of the iterations required.
In our current implementation, each i-LET iteration takes
about 2.6 times the execution time per FISTA/SALSA iteration
with the settings specified previously (i.e. LET bases and
maximum IRLS inner loop iteration numbers). Hence, in most
cases, the proposed i-LET algorithm is faster than FISTA and
SALSA and in many instances, the speed improvement is quite
substantial.

Notice that the i-LET algorithm has rather consistent per-
formance for both high noise level and low noise level cases
with various convolution kernels and test images. Arguably,
this is a direct consequence of the LET optimization (11): each
LET basis element is automatically (and optimally) weighted
depending on the experimental configuration. We need to point
out that most of the time consumption is due to the IRLS
inner loop which computes the optimal LET coefficients at
each iteration (see the detailed analysis in Section IV-C). With
better alternatives than IRLS to solve (11), the computational
time is likely to be reduced. In addition, we may have further
gains with a more careful selection of LET basis.

6A demo software is available at http://www.ee.cuhk.edu.hk/∼tblu/monsite/
phps/iletdeconv.php

7This range is the maximum possible absolute value of the wavelet
coefficients of an image, given the bounds of its pixel values; e.g. for an
8-bit gray-scale image with haar wavelet transform, where the decompo-
sition filter is G = 1√

2
[1,−1] and the pixel values are in [0, 255], then

cmax = 255√
2
≈ 180.

TABLE VI
IMAGE DECONVOLUTION WITH REDUNDANT WAVELET TRANSFORM FOR

cameraman (SYM8, THREE STAGES)

BSNR 25 30 35 40
Method cameraman type 1 blur

FISTA iterations
computation time

640
60 .11

733
68 .86

864.2
81 .89

879.8
82 .8

SALSA iterations
computation time

880
143 .04

575
93 .52

410
66 .98

252
40 .96

PCD-SESOP-7 iterations
computation time

636.5
195 .23

723.6
222 .42

864
265 .39

891.4
273 .87

i-LET iterations
computation time

154
34 .88

113.6
25 .63

91.9
20 .77

67.4
15 .17

Method cameraman type 2 blur

FISTA iterations
computation time

154
14 .47

111
10 .56

98
9 .25

88
8 .38

SALSA iterations
computation time

83
13 .62

25
4 .24

10
1 .80

5
0 .95

PCD-SESOP-7 iterations
computation time

134.2
41 .51

98.5
30 .56

103.6
32 .15

119.5
37 .1

i-LET iterations
computation time

23.4
5 .36

7.5
1 .84

5.7
1 .42

5
1 .25

Method cameraman type 3 blur

FISTA iterations
computation time

30.2
2 .87

58
5 .53

145
13 .67

208.7
19 .62

SALSA iterations
computation time

11
1 .93

15
2 .6

42
7

45
7 .43

PCD-SESOP-7 iterations
computation time

69.7
21 .63

98.8
30 .63

159.9
49 .56

240.4
74 .45

i-LET iterations
computation time

7.5
1 .83

8.4
2 .05

14.4
3 .38

16.4
3 .84

NOTE: Iteration numbers and computation time (in sec) is averaged over
ten runs. Stopping criterion: within 40 dB difference of the exact minimum
of (3) (see, (16)).

B. Deconvolution with redundant wavelet transform

We also consider image deconvolution problems with re-
dundant wavelet transform (RWT), which is known to provide
better reconstruction quality (see Figure 7 for an example) [5],
[6], [28], [56]. All the other settings remain the same with
DWT deconvolution cases, including termination criterion, the
way to determine proper regularization weight λ, LET bases
and maximum inner IRLS iterations. However, the solution to
RWT deconvolution is trivial if we use only high-pass sub-
bands in the `1 regularization of the objective functional (3),
as it is possible to deconvolve the low-pass exactly—albeit
with a very unsatisfactory solution. For this reason, and in
agreement with the literature [40], we choose to minimize
the objective functional that includes both wavelet and low-
pass subbands in the `1 regularization. Obtaining the global
minimizer for the RWT deconvolution cases is obviously much
slower because of the larger computational cost. We report a
few representative test cases with cameraman in Table VI. In
all but one cases, i-LET takes much less iterations and time
to reach the stopping criterion compared to FISTA, SALSA
and PCD-SESOP.

It is peculiar that all three algorithms require significantly
more iterations to reach convergence in the 9 × 9 uniform
blur cases with our current experimental configurations. One
possible explanation might be that three wavelet analysis levels
may not be sufficient for the 9×9 uniform blur kernel, which
has 9 zeros uniformly positioned from 0 to 2π in the frequency
domain: inside the low-pass subband, the convolution filter
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(a) Blurred measurements (b) Reconstruction with DWT (c) Reconstruction with RWT
y PSNR = 27 .6 9 dB PSNR = 28 .7 7 dB

Fig. 7. Reconstructed images obtained by minimizing `1-regularized objective functional (3) with sym8 decimated wavelet transform (DWT) and redundant
wavelet transform (RWT) for cameraman with BSNR = 35 dB, convolution kernel hi,j = [1, 4, 6, 4, 1]T[1, 4, 6, 4, 1]/256.

is still singular, making the thresholding of its coefficients
inefficient. With increased wavelet analysis stages (e.g. 5
levels), all four algorithms take much less iterations to reach
convergence for the 9× 9 uniform blur cases:

BSNR 25 30 35 40

FISTA iterations
computation time

277
42 .95

319.1
50 .19

378
58 .8

409.9
63 .89

SALSA iterations
computation time

169
45 .98

120
32 .62

84
22 .91

63
17 .21

PCD-SESOP-7 iterations
computation time

384.8
185 .12

400.7
192 .74

456.6
221 .89

505.3
244 .41

i-LET iterations
computation time

39.2
14 .02

30.5
10 .89

25.9
9 .22

23.7
8 .48

NOTE: Iteration numbers and computation time (in sec) is averaged over ten
runs.

C. Algorithm complexity analysis

A good indication of the computational cost of the
i-LET algorithm is its cost per iteration. At each iteration,
we need to build the LET basis first and then compute the
LET coefficients by optimizing the objective functional as
in (11), whose solution is obtained with an IRLS inner loop.
The primary cost of the algorithms is due to wavelet anal-
ysis/synthesis, point-wise thresholding functions, and to the
building of the IRLS matrix M(n) in (10). Take the LET bases
for decimated wavelet deconvolution cases in Section IV-A
as an example for the complexity analysis. In that case, the
wavelet coefficients c and the measurements y are vectors of
length N , and the LET basis is a matrix of size N × 5.

The computational cost is O(N) to build F1, which de-
pends linearly on the previous iteration results. The matrix
multiplication of the convolution matrix in the generalized
gradient ∇τ J can be efficiently implemented in Fourier with
O(N logN) cost. And the wavelet transformation is of O(N)
complexity. Since the component-wise subtraction and soft-
thresholding are O(N) operations, the overall cost to build F2

is O(N logN). As to F3, the computational cost is similar to
F2 except for the extra preconditioning matrix, which can be
easily diagonalized in Fourier with additional O(N) cost by
applying the matrix inversion lemma:

F3 =
1

µ

(
I−WTHT(µI+HTH)−1HW

)
∇τ J

(
c(n)

)
.

Therefore, it takes O(N logN) to build F3.

The IRLS matrix M(n) involves two matrix multiplications:
(HWF)T(HWF) and FTD(n)F. Since HWF is an N × 5
matrix, it takes O(25N) cost, i.e. linear-cost, to calculate
(HWF)T(HWF). While for FTD(n)F, it also has O(N)
cost, since D(n) is a diagonal matrix and the multiplication
between D(n) and F corresponds to a component-wise product
that is of O(N) complexity. Such cost may not appear to be
very expensive from the theoretical point of view. However,
in practice, the matrix multiplication corresponds to loading
image-size data (F is a 65536×5 matrix for a typical 256×256
image) from memory several times (here we use 5 IRLS inner
loop iterations). That is where i-LET costs the most compared
to other algorithms, like FISTA and SALSA. Once we have
the IRLS matrix M(n), the cost to inverse a 5×5 matrix in (9)
is negligible.

D. Choice of regularization weight λ

The unconstrained problem (4) has the same solution as
the constrained problem (1) for some regularization parameter
λ = λopt in the objective functional (3). Such λopt can be
obtained with a simple strategy: at each i-LET iteration, the
regularization weight λ is updated based on the ratio between
the data-fidelity and the noise energy threshold ε2 as λ(n+1) =

ε2

‖y−HWc(n)‖22
λ(n) with the current iteration results c(n) (for a

similar approach in TV-based deconvolution, see [57] and an
alternative in [58]). Experimentally, the algorithm converges
to a solution that satisfies the constraint ‖y −HWc‖22 ≤ ε2

at the same rate of convergence as in the case when the fixed
λopt is used in the unconstrained formulation (3), i.e. we have
solved the constrained problem (1) (see, Fig. 8).

V. CONCLUSION

We presented a novel approach to solve the unconstrained
`1-regularized image restoration problems iteratively with
linear expansion of thresholds (i-LET). The restoration pro-
cess is represented as a linear combination of elementary
restoration functions (LET basis) with unknown weights (LET
coefficients). Then the linear coefficients can be computed
efficiently by solving a small optimization problem in contrast
to the original image-size one. The proposed i-LET is more a
generic algorithmic framework than a specific algorithm that
solves the unconstrained problem (4). As long as the basis
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Fig. 8. (a) Evolution of the objective function value with updated λ and the fixed optimal regularization weight λopt. (b) Evolution of the regularization
weight and the data-fidelity—see Section IV-D. (convolution kernel: hi,j = 1/(1 + i2 + j2) for i, j = −7, . . . , 7)

satisfies conditions in Section III-A, global convergence is
guaranteed. Such a nice property is powerful: we can add
whatever thresholding basis that has fast convergence and
improve the overall speed of the new algorithm within the
iterative LET framework. Variable splitting technique [35],
[36], might provide such an alternative set of LET bases.
Future work includes extending the proposed iterated LET
framework to solve the analysis formulation problems, e.g.
total-variation based image restorations.

APPENDIX A
PROOFS AND DERIVATIONS

A. Proof of Lemma 2

Take a small variation δc from c then,

J(c+ δc)− J(c)
= J0(c+ δc)− J0(c) + λ‖c+ δc‖1 − λ‖c‖1
= ‖Aδc‖22 + δcT∇J0 + λ‖c+ δc‖1 − λ‖c‖1

(17)

Let J1(δc) =
1

τ
‖δc‖22 + δcT∇J0 + λ‖c + δc‖1 − λ‖c‖1, we

have

J(c+ δc)− J(c) = J1(δc) + ‖Aδc‖22 −
1

τ
‖δc‖22.

Notice that we can rewrite J1(δc) as

J1(δc) =
1

τ

∥∥∥δc+ τ

2
∇J0

∥∥∥
2

2
+ λ‖c+ δc‖1

+ terms independent of δc

Hence,

argmin
δc

J1(δc)=argmin
δc

{
1

τ

∥∥∥δc+ τ

2
∇J0

∥∥∥
2

2
+ λ‖c+ δc‖1

}

(18)
The solution to (18) is given by the standard soft-
thresholding [59]: δc = −c+ θλτ/2

(
c− τ

2∇J0
)
= − τ2 ∇τ J .

Since J1(δc) is a strictly convex function, we have

J1(−ε∇τ J) = J1

((
1− 2ε/τ

)
0+ 2ε/τ

(
− τ

2 ∇τ J
))

<
(
1− 2ε/τ

)
J1(0) + 2ε/τJ1(− τ2 ∇τ J)

= 2ε/τJ1(− τ2 ∇τ J)
(19)

for − τ2 ∇τ J 6= 0, ε ∈ (0, τ/2). On the other hand, from (18)
we have J1(− τ2 ∇τ J) ≤ J1(0) = 0. Combined with (19), we

have J1(−ε∇τ J) < 0. Therefore,

J(c−ε∇τ J)− J(c) = J1(−ε∇τ J) + ‖εA∇τ J‖22 −
1

τ
‖ε∇τ J‖22

< 2ε/τJ1
(
− τ

2
∇τ J

)
+O(ε2) < 0

for sufficiently small ε > 0. We can further reduce the
objective functional value along the negative direction of the
generalized gradient −∇τ J unless ∇τ J = 0, i.e. J is at the
minimum.

B. Proof of Theorem 2

We first have to prove the decrease of the criterion J(c)
down to its global minimum. In order to do this, we consider
the sequence of iterates c(n), n ∈ N, provided by Algorithm 1.
We can make the following observations

1) J(c(n)) is a decreasing positive sequence, hence it con-
verges to some value J∞ as n→∞;

2) for any ε ∈ R and any index n′ ≥ n + 1, J(c(n
′)) ≤

J(c(n+1)) ≤ J(c(n) − ε∇τ (c(n))) (because c(n) and
∇τ (c(n) are two LET basis elements, from which c(n+1)

is optimally built);
3) c(n) belongs to the closed bounded ball ‖c(n)‖1 ≤

λ−1J(c(0));
4) closed bounded balls of RD are compact, which implies

that a convergent subsequence can be extracted from c(n)

(Bolzano-Weierstrass Theorem).
Let us then denote by nk, k ∈ N, the indices for which
the subsequence c(nk) is convergent as k → ∞, and let us
call c∞ = limk→∞ c(nk). According to point 2) above, the
subsequence satisfies the inequality

for any ε ∈ R, J(c(nk+1)) ≤ J(c(nk) − ε∇τ (c(nk))).
Now, we can pass to the limit as k →∞: since J and ∇τ

are continuous we have that
• J(c∞) = J(limk→∞ c(nk)) = limk→∞ J(c(nk)) = J∞;
• J∞ = limk→∞ J(c(nk+1)) ≤ limk→∞ J(c(nk) −
ε∇τ (c(nk))) = J(c∞ − ε∇τ (c∞)).

The last inequality, satisfied for any real value of ε is partic-
ularly interesting because we know, from Lemma 2 that the
generalized gradient provides a strictly decreasing direction
for J . This means that, if ∇τ J(c∞) 6= 0, we can choose ε in
such a way that

J∞ ≤ J(c∞ − ε∇τ (c∞)) < J(c∞) = J∞,
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which is impossible. Hence, we conclude that ∇τ J(c∞) = 0,
and thus that J∞ = minc∈RD J(c) (by Lemma 1). To
summarize, we have proven that the iterative LET scheme
provides a global minimization of the criterion (3); i.e.,

lim
n→∞

J(c(n)) = min
c∈RD

J(c).

The second thing we have to prove is that, if we know
that the minimizer of J(c) is unique (e.g., by checking the
sufficient conditions of Theorem 1), then the sequence of
i-LET iterates converges to that minimizer. We consider again
a convergent subsequence of c(n): according to the above
proof, its limit c∞ should satisfy ∇τ J(c∞) = 0; i.e., c∞ is a
minimizer of J(c). But now, we know that such a minimizer is
unique, hence we can say that all the convergent subsequences
have the same limit, or, said differently: all the limit points of
the i-LET sequence coincide. Since this sequence belongs to a
compact space, we can conclude that the sequence converges
to this unique value.
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