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Mobile uranium(lV)-bearing colloids
in @ mining-impacted wetland
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Tetravalent uranium is commonly assumed to form insoluble species, resulting in the
immobilization of uranium under reducing conditions. Here we present the first report of
mobile U(IV)-bearing colloids in the environment, bringing into question this common
assumption. We investigate the mobility of uranium in a mining-impacted wetland in France
harbouring uranium concentrations of up to 14,000 p.p.m. As an apparent release of uranium
into the stream passing through the wetland was observable, we examine soil and porewater
composition as a function of depth to assess the geochemical conditions leading to this
release. The analyses show the presence of U(IV) in soil as a non-crystalline species bound to
amorphous Al-P-Fe-Si aggregates, and in porewater, as a distinct species associated with Fe
and organic matter colloids. These results demonstrate the lability of U(IV) in these soils and
its association with mobile porewater colloids that are ultimately released into surface water.
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ranium, a radioactive element used in the weapon and

nuclear energy industries, is a source of contamination at

numerous sites around the world owing to its mining,
milling and processing at large scales. Moreover, naturally
occurring high U concentrations in ground and surface water
are common in alpine regions'? where the surrounding granitic
bedrock contains trace amounts of uranium®. Wetlands often act
as sinks for U and other trace metals and U has been shown to
accumulate in wetland soils up to several thousand p.p.m.12. In
natural settings, U occurs in the hexavalent [U(VI)] or tetravalent
[U(IV)] oxidation states?. Because of the relatively high stability
and low solubility of uraninite (U™VO,) under reducing
conditions at near-neutral pH, its formation as a result of
(bio)reduction is considered an efficient strategy for U immo-
bilization in sediments®. A similar reductive immobilization
process is sought in constructed wetland systems®. Thus, U(IV)—
where it occurs in the environment—is generally expected to be a
low mobility U species, in contrast to U(VI) species that are
generally soluble and mobile. Recently, non-crystalline U(IV)
species were discovered as the product of microbial U(VI)
reduction in batch experiments”®, flow-through columns with
natural sediments’ and in field biostimulation'®. It was also
demonstrated that non-crystalline U(IV) was formed by the
reduction of dissolved U(VI) by vivianite (Fe;(PO,),) or
phosphate-sorbed magnetite (Fe;0)!. These non-crystalline
species are being characterized in ongoing research but are
commonly referred to as ‘monomeric U(IV)’ in reference to the
lack of U-U pair correlations as observed in their X-ray
absorption spectroscopy (XAS) spectra’.

A wetland in central France located adjacent to a former U
mine was affected by mining activity for several decades. A recent
study showed that there were hotspots within the wetland with
soil U concentrations of up to 4,000 p.p.m.'2. Here we show that
the U concentration in a stream flowing through the wetland
increases as a function of distance, suggesting U release into the
stream. Major elements and U speciation analysis in porewater
and soil as a function of depth allows linking of U(IV)
mobilization in the porewater to its association with Fe and
organic matter (OM) colloids. Furthermore, U in the soil occurs
primarily as monomeric U(IV), more specifically, a U(IV) species
bound to amorphous Al-P-Fe-Si aggregates through phosphate
groups. The results imply that the non-crystalline form of U(IV)
extant in the soil is labile and may complex with mobile Fe and
OM colloids that are ultimately released into the stream. The
environmental implication of these findings is that, currently,
U(IV) mobility may be severely underestimated in high OM
environments such as wetlands.

Results

Study site. The studied wetland is located in the Limousin region
of France, in the northwestern part of Massif Central, where
igneous rocks such as granite dominate. A former open-pit and
underground U mining site with adjacent waste rock piles and a
high U clay deposit are located north of the wetland, which
represents the lowest topographical point (Fig. 1). A stream flows
through the wetland. Two locations harbouring high U con-
centrations, henceforth referred to as ‘spot A” and ‘spot B’, were
identified in the site after a gamma radiation survey. Spot A is
located south of the eastern waste rock pile and the high U clay
deposit; spot B is adjacent to the western waste rock pile (Fig. 1).

Increase of U concentration in the stream. Stream water was
sampled at various locations in three seasons and analysed for U
content (Fig. 1). A steady increase of the stream concentration of
soluble U from 0.012 to 0.13 pmol1~! as a function of distance

2

was observed, and this increase is proposed to correspond to the
release of U into the stream. Hence, it was important to inves-
tigate the geochemical conditions leading to this release.

Porewater chemistry. Profiles of porewater dissolved oxygen
(DO), SO5~, Fe(Il), Fer and U (Fig. 2) at spots A and B in
November 2011 and July 2012 show a suboxic-anoxic environ-
ment where Fe(III) reduction—of possible microbial origin—as
well as, to a lesser extent, sulphate reduction occur. At spots A
and B, sulphate reduction proceeds as evidenced by the
decreasing concentration of sulphate with depth and the presence
of small concentrations of sulphide (1-4 uM) in the porewater
(Supplementary Fig. S1). This process is more prevalent at spot B
than at spot A, as X-ray diffraction (XRD) analysis shows the
presence of pyrite in the soil at spot B at 30-40 cm but not at spot
A (Supplementary Fig. S2). Sulphate reduction is unlikely to be a
major process here because of the persistence of substantial
porewater Fe(II) concentrations at both locations (Fig. 2). Fe(III)
reduction is clearly ongoing due to the presence of high con-
centrations (up to ~400uM) of Fe(II), which represents the
entirety of Fe in the porewater. Hence, reducing conditions pre-
vail throughout the depth profile with some seasonal excursions
of the redox front in the top 40 cm. Most interestingly, despite
reducing conditions, U content in the porewater is significant
with a spot A average U concentration of 0.80+0.20 uM in
November and 0.91 + 0.07 pM in July and up to 3 uM at spot B in
November.

The reducing conditions that persist in this soil support the
hypothesis that U is present in a reduced tetravalent form. Metal-
and sulphate-reducing bacteria have been shown to enzymatically
and indirectly reduce U(VD)1314 To elucidate the valence state of
porewater U, laser-induced fluorescence spectroscopic (LES)
analysis was conducted on selected spot A porewater samples
(November, 15-20 cm and 35-40 cm; and July, 15-20 cm) and on
the same samples oxidized by atmospheric oxygen as positive
controls. The results (Supplementary Fig. S3) show a detectable
U(VI) luminescence signal at ~493 and ~ 514 nm for the oxidized
control samples. In contrast, the signal of the original samples was
within the background noise. Thus, these results reveal that the
predominant U redox state in porewater is tetravalent.

The relatively high U(IV) porewater concentrations are
surprising because in this valence state, U is sparingly soluble at
the porewater pH value (5.8). Dissolved OM may complex
and stabilize U(IV) in aqueous phases!®, which is consistent
with high dissolved organic carbon values in the porewater
(1.24 £0.06 mM, Supplementary Fig. S1). In addition, U may be
bound to colloidal phase(s) smaller than the filter pore size
(0.22 pum).

Characterization of U-bound porewater colloids. To probe the
potential for the presence of colloidal U in the porewater, freshly
collected samples maintained under anoxic conditions were
subjected to immediate on-site ultrafiltration. Porewater from
selected depths at spot A was divided into subsamples that were
filtered through membranes with pore sizes of 0.22 um, 500 or
10kDa (Fig. 3). At all depths investigated, 93-98% of U was
present in the 500-kDa-0.22 pm size fraction along with >50%
of Fe and 40-56% of organic carbon (OC). This finding supports
the hypothesis that the high U concentration in the porewater is
due to its association with Fe(II)-rich and OM-rich colloids.
Further characterization of U-bearing colloids using transmis-
sion electron microscopy (TEM) revealed a morphology remi-
niscent of beads on a string (Fig. 4 and Supplementary Fig. S4).
Elemental mapping shows that these colloids are composed
of Fe and C, suggesting OM threads extending for hundreds of
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Figure 1| Site map and U content in the stream. (a) The two black arrows show the stream flow direction and the seven numbered orange triangles
indicate locations where stream water was sampled in April and November 2011 and July 2012 (locations number 1 and 7 outside the wetland were
only sampled in July 2012). (b) U concentration data for the sampled stream water in the three seasons indicate a clear increase with distance downstream
within the wetland and a decrease in the lake inlet because of dilution from lake water, which suggests that U is released gradually into the stream
water from the wetland; the black arrow shows the stream flow direction; the blue zone shows the distance range within the wetland; the dashed line
represents the background U concentration (0.0042 uM) for surface water in the region. The stream water samples were filtered with 0.22 um pore-size
membrane. The highest s.d. (A) is 10% of the reported values based on three replicate measurements and is not shown.
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Figure 2 | Porewater chemistry. The profiles of (a) DO, (b) SO3 ~, (c) Fe(ll), (d) Ferora and (e) U in the porewater at spots A and B in November 2011 and
July 2012. Blue circle: spot A November 2017; red circle: spot A July 2012; blue-crossed square: spot B November 2011; red-crossed square: spot B July
2012. The samples were filtered with 0.22 um pore-size membrane. The porewater pH value is 5.8 £ 0.2 in both seasons (Supplementary Fig. S1). The
measured porewater temperature is 7-10 °C and 17-22 °C in November and July, respectively. Relatively fewer data points are available at spot B as
compared with spot A because of the fact that numerous sampling chambers at spot B did not hold sufficient water to allow reliable porewater collection.
The s.d. (A) is <5% of the reported values based on three replicate measurements and is not shown.
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Figure 3 | Porewater ultrafiltration. The ultrafiltration results obtained from selected porewater samples from spot A collected in July 2012. Purple:
500 kDa-0.22 um; green: 500 kDa-10 kDa; orange: <10 kDa. (a) For porewater at 15-25cm depth, the total U, Fe and OC concentrations in the
aqueous phase filtered with 0.22 pm pore-size membrane are 0.81uM, 427 uM and 3.74 mM, respectively. (b) For porewater at 60-75 cm depth, the total
U, Fe and OC concentrations in the aqueous phase filtered with 0.22 um pore-size membrane are 0.90 uM, 402 uM and 2.61mM, respectively. (c) For
porewater at 115-130 cm depth, the total U, Fe and OC concentrations in the aqueous phase filtered with 0.22 um pore-size membrane are 1.08, 423 and
2.35mM, respectively. The s.d. (A) is <5% of the reported values based on three replicate measurements and is not shown.

NATURE COMMUNICATIONS | 4:2942 | DOI: 10.1038/ncomms3942 | www.nature.com/naturecommunications 3
© 2013 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3942

Camera length / mm : 1
Accelerating voltage / kV: 200

Figure 4 | TEM observation of U-containing colloids in porewater. (a) Scanning TEM image of colloids in porewater at 15-20 cm depth at spot A that was
filtered with 0.22 um pore-size membrane; (b) the corresponding Fe (blue)/C (red) EDS map; (¢) TEM image of colloids in the same sample; (d) HRTEM
image of small crystallites; (e) SAED pattern obtained from similar colloids interpreted as a combination of trigonal Fe(OH), (red) and cubic FeO

(green) phases. Point EDS analyses on similar colloids show low but statistically relevant U concentrations in association with Fe and C (Supplementary
Table S1). Similar results obtained from other selected porewater samples are shown in Supplementary Fig. S4. Scale bar, 50 nm (a,b); 100 nm (c); 5nm (d);

5nm " (e).

nanometres with associated iron-rich nanoparticles. Point
energy-dispersive X-ray spectroscopy (EDS) analyses show low
but statistically relevant U concentrations in association with Fe
and C (Supplementary Table S1). High-resolution transmission
electron microscopic (HRTEM) observation reveals that string-
associated crystalline nanoparticles of 2-3nm and selected
area electron diffraction (SAED) patterns are consistent with a
mixture of trigonal Fell(OH), and cubic FellO nanoparticles
(Fig. 4). Fel!O probably resulted from the sintering of Fe(OH),
particles under the intense electron beam during SAED data
collection. Altogether, these U-bearing colloids consist of
Fell(OH), associated with OM as anisotropic threads that could

pass through a 0.22-pm pore-size membrane but are retained by a
500-kDa pore-size filter. A previous study showed that OM-rich
colloids with associated Fe and Ca precipitates were found in
porewater of a wetland-karst system in Switzerland', suggesting
that this type of Fe- and OM-rich colloids may be common in
mineral-rich wetland environments.

Characterization of stream colloids. To elucidate the relation-
ship between the steady increase in U concentration along the
stream and the presence of mobile U-bearing colloids in the
porewater, colloids in filtered stream water were analysed for their
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chemical composition and mineralogy. They were composed
mainly of OC (26.6% w/w), Fe (22.3%), Si (1.9%), Ca (1.0%), Al
(0.8%) and U (0.2%). Fe and OC, the main elemental compo-
nents, are in an XRD amorphous phase(s) (Supplementary
Fig. S2). These stream colloids thus bear an uncanny composi-
tional resemblance to the U-bearing porewater colloids (that is,
they are rich in Fe and OC and contain U).

Characterization of soil and U speciation. Soil samples from
both spots A and B are rich in water (65-90% w/w in most cases).
Chemical composition profiles in the soil show a U- and Fe-rich
layer at 0-30cm and 0-40cm at spots A and B, respectively
(Supplementary Fig. S5). Total organic carbon (TOC) content (w/
w) in dried soil shows similar low average values at both spot A
(16.3% £7.5%) and spot B (19.4% *7.4%), suggesting high
mineral content. The Al and Si profiles, along with the XRD
analysis (Supplementary Fig. S2), underscore the presence of
aluminosilicates in the soil. Images of the cores (Supplementary
Fig. S6) show the presence of a distinct clay-like layer at 10-25 cm
for spot A and at 10-30 cm for spot B. XRD analysis confirmed
the presence of muscovite (KAl3Si30,0(OH),), smectite
((Cao_s,Na)oj(Al,Mg,Fe)zl[(Si,Al)gOzo].nHzo), albite (NaAl—
Si30g), orthoclase (KAISi3Og) and kaolinite (Al,Si,O5(OH),) as
well as quartz (SiO,) (Supplementary Fig. S2). The origin of this
clay layer, unexpected in a wetland, is discussed below in the
Discussion section.

Fe concentrations (an average of 1.9%0.7% w/w) in the
soil profile at spot A decrease from 0 to 30 cm (Supplementary

Fig. S5), consistent with the increasing dissolved Fe(II) concen-
tration in the porewater in the same depth range (Fig. 2). At spot
B, the Fe situation is similar in the 0-30 cm range, but a spike in
Fe concentration is visible at 30-40 cm (Supplementary Fig. S4),
corresponding to  pyrite precipitation at this depth
(Supplementary Fig. S2). The soil U profile shows high U
concentrations (2,400-4,400 p.p.m. for spot A and 1,000-
14,000 p.p.m. for spot B) restricted to shallow depths (0-25cm
for spot A and 0-40cm for spot B) comparing with low U
concentrations (40-120 p.p.m.) beneath. Soil-associated rather
than porewater-associated U represents >99% of U in the
wetland. The high U zone corresponds to the abovementioned
clay layer and immediately adjacent depths.

Scanning electron microscopic (SEM) observation of the
15-20 cm soil sample at spot A showed a majority of layered
mineral particles, corresponding to the clay minerals detected by
XRD. No detectable U was associated with these clay particles.
However, a minor phase identified repeatedly by SEM as
exhibiting a distinctive morphology and chemical composition
(Fig. 5) was shown by HRTEM to be amorphous aggregates
(Fig. 6). This phase contains Fe, P, Al, Si, O and U (Fig. 5,
Supplementary Table S2). Similar aggregates were also observed
at other depths (10-15cm and 20-25cm) corresponding to the
clay layer at spot A (Supplementary Fig. S7). We conclude that
this amorphous Al-P-Fe-Si phase binds U and controls U
mobility in the soil.

U redox and coordination was investigated by U Lyj;-edge XAS
on soil samples at 5-25cm at spot A and at 5-40 cm at spot B,

Fe Ka1

P Ka1

U Ma1

Figure 5 | SEM observation of U-containing aggregates in soil. SEM image and SEM-EDS mapping results of an aggregate exhibiting a morphology
distinct from that of surrounding clay particles in the 15-20 cm soil sample at spot A. This aggregate contained Al and Si (albeit at lower concentrations

than the surrounding aluminosilicates), O, Fe, P and U. Scale bar, 2 um
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and the results are displayed in Fig. 7. X-ray absorption near-edge
structure (XANES) spectra exhibit an absorption maximum at
17,175.0eV for all samples, underscoring the predominantly
tetravalent oxidation state of U in the soil, which is consistent
with the metal-reducing conditions evidenced by high Fe(II)
concentrations in the porewater. Unfiltered and k3-weighted
extended X-ray absorption fine structure (EXAFS) spectra

Figure 6 | TEM observation of U-containing aggregates in soil. (a) TEM
and (b) HRTEM images of an U-containing amorphous aggregate in the
15-20 cm soil sample at spot A. The dashed square in the TEM image
corresponds to the zone of HRTEM. Scale bar, 200 nm (a); 10 nm (b).

collected for soil samples show oscillations similar to those of a
monomeric U(IV) model compound, suggesting a similar atomic
environment. Fits of EXAFS data further confirm the absence of a
U-U pair correlation typical of U(IV) minerals and the presence
of U(IV) coordinated to phosphate, a monomeric-U(IV)-like
species. There is no evidence for U association with clays. Hence,
we conclude that U in the soil is predominantly tetravalent and
bound to the amorphous Al-P-Fe-Si aggregates through phos-
phate groups.

Discussion

Analytical results show that the mineralogical composition of the
U-bearing clay layer at spots A and B is similar to that of the clay
deposit identified as overflow from the former settling pond
(Supplementary Figs S2 and S8), as is discussed in detail in
Supplementary Note 1. This strongly suggests that the clay layer
within the wetland and the clay deposit in the overflow area share
the same origin.

The XAS results of the present field study evidence U(IV)
binding to phosphate groups to form monomeric U(IV)-like
species in the soil and are thus consistent with those of laboratory
studies, which have previously demonstrated that U(VI) bior-
eduction could yield monomeric U(IV) characterized by U(IV)
association to phosphate groups in batch and column systems’~°.
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Figure 7 | XAS results from soil samples. Uranium L;-edge data recorded for soil samples at 5-10 (light blue), 10-15 (deep blue), 15-20 (light yellow) and
20-25cm (deep yellow) at spot A and those at 5-10 (light purple), 15-20 (deep purple), 20-25 (light grey) and 35-40 cm (black) at spot B compared
with monomeric U(IV) (green) and U(VI)-acetate (red) model compounds. (a) XANES data of spot A showing that U(IV) is the predominant valence
state in soil samples; (b) unfiltered k3-weighted EXAFS data of spot A; (€) magnitude and imaginary part of the Fourier transform (FT) of spot A;

(d) XANES data of spot B showing that U(IV) predominates in the soil samples; (e) unfiltered k3-weighted EXAFS data of spot B; (f) magnitude and
imaginary part of the FT of spot B. Experimental and calculated curves (see Supplementary Table S3 for fitting parameters) are displayed as solid and
dashed lines, respectively. The vertical-dashed lines labelled ‘U(IV)" and ‘U(VI)" in a and d show the energy of the U(IV) and U(VI) white lines, respectively.
The vertical lines labelled ‘1", '5" and ‘5" at the top left-hand corner of a and d, b and e, ¢ and f represent the scale of y axis.
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Figure 8 | Model of U release. The Fe- and OM-rich colloids are transported to the U-rich clay layer where some U(IV) is transferred from the Al-P-Fe-Si
aggregates in soil to the porewater colloids, because this form of U(IV) is labile. Migration of mobile porewater colloids into the stream water then leads to

the release of U from the wetland into the stream.

In addition, abiotic U(VI) reduction via PO3 ~ -sorbed magnetite
(Fe;04) and vivianite (Fe;(PO,),)!! also produced a similar
product. Interestingly, in another site also located in the same
Massif Central region, Fe-rich particulate Si gels were observed in
the surface water under oxic conditions with U(VI) in association
with these phases!’, underscoring the complex chemistry of U.

The high concentration of soluble U(IV) throughout the
porewater profile while soil U(IV) is restricted to the top 30 cm is
attributed to its mobility owing to its association with Fe(OH),-
OM colloids. The results in the present study demonstrate that
U(IV) species in the porewater are distinct from those present in
the soil in this wetland. This finding suggests that U(IV) bound to
amorphous Al-P-Fe-Si aggregates in the soil is labile and
complexes with mobile Fe and OM colloids. We propose that
mobile OM-rich colloids form in the organic-rich layers and
associate with Fe(II) originating from active Fe(III) reduction.
The colloids are transported to the U-rich clay layer, where U(IV)
may be transferred from the Al-P-Fe-Si aggregates in soil to the
porewater colloids, because of the lability of the U-bearing soil
aggregates. The presumed lability of this form of U(IV) is
consistent with recent findings showing that monomeric U(IV),
in contrast to UO,, appears to be mobile and reactive!®,
Moreover, the lability of U in a wetland soil reported by
Schoner et al.'® was attributed to the presence of amorphous
U(VI) rather than U(IV) phases despite the prevalence of
reducing conditions because it was not conceivable at the time
that U(IV) could be present in a non-crystalline form. However,
the present study reveals a more likely interpretation of those
data with the formation of labile non-crystalline U(IV) species in
the soil. Finally, as the composition of the stream colloids
remarkably resembles to that of the U-bearing porewater colloids,
it is conceivable that the release of U from the wetland is
due to the migration of mobile porewater colloids into the stream
water. A scheme summarizing the entire process is presented
in Fig. 8.

U(V) association to colloids in natural environments was
suspected but never proven in numerous U solubility or mobility
studies. For instance, Ollila et al.?%, Noseck et al.>! and Delecaut
et al?? observed that the solubility of U under reducing
conditions exceeded the solubility limit of the U(IV) phase. To
explain their results, they speculated that U(IV) colloids enhanced
the observed U(IV) solubility in experiments with groundwater
from granitic bedrock, a uranium ore deposit or porewater from

Boom Clay, respectively. While U(VI) mobility in association
with colloids has been documented in the field*3>~2%, and recent
laboratory studies evidenced the formation of U(IV) silicate
colloids <20 nm in size?® and that of U™VO, colloids?”, this study
is the first to demonstrate the association of U(IV) with colloids
in natural environments and its resulting increased mobility.

Reductive precipitation of uranium minerals is regarded as a
major and sustainable mechanism to control U mobility. This
mechanism is targeted by constructed wetland systems® that aim
at stimulating microbial-mediated reduction of uranyl ions as
described by Lovley et al.'> Recent work has shown that the
dominant species formed in the field b}r microbially mediated
U(VI) reduction is monomeric U(IV)!®. The present study
further shows that the lability of non-crystalline U(IV) species
may lead to the release of highly mobile U(IV)-bearing colloids.
Both the formation of labile U(IV) and the potential release of
U(IV)-bearing colloids should be considered carefully when
designing wetland-based U remediation strategies.

Methods

Stream water sampling and analysis. The stream flowing through the wetland is
shallow, with a maximum depth of ~20cm. Stream water was sampled from a
depth of ~10cm. The sampling took place at various locations in April and
November 2011 and July 2012, and each sample was divided into two parts, one of
which was measured for pH (using WTW Multi 350i or HORIBA W20 multi-
parameter instruments) and alkalinity (using HACH titration cartridge with sul-
phuric acid and bromocresol green/methyl red colour indicators) and the other was
filtered using 0.22 pm pore-size polyethersulfone (PES) membranes and analysed
for U content using inductively coupled plasma mass spectrometry on a Thermo
X7 analyser (detection limit for U: 4.2nM). The pH and alkalinity values are
reported in Supplementary Table S4, and the U concentrations are shown in Fig. 1.
Stream water was also sampled near location 3 in Fig. 1, filtered using 0.22 um
pore-size PES membranes and dried at 100 °C to obtain a powder. A part of the
powder was dissolved completely using a three-step HNO;/HF microwave diges-
tion procedure with a high-performance microwave and then analysed using
inductively coupled plasma optical emission spectroscopy (ICP-OES) for main
elements and U content, and another part was analysed using XRD for mineralogy.
The results are shown in the main text and in Supplementary Fig. S2.

Porewater and soil sampling. Soil and porewater sampling campaigns were
carried out in November 2011 and July 2012. Soil core samples were only collected
in November 2011, and porewater was sampled both in November and July to
capture seasonal variations. The core was sampled under a high-flow Ar stream,
sealed in airtight sterile bags and then conditioned in an anoxic chamber (N,
atmosphere) 5 min away from the sampling spots. The vertical soil core was
collected using a Russian corer, cut into 5 cm slices and each slice divided into two
fractions, one of which was sealed in 0.127-mm-thick (0.005 inches) MYLAR bags
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and was stored at 4 °C for XAS analysis, and the other was dried by heating at 80 °C
in an anoxic chamber for 24 h and then ground and homogenized to a fine powder
for the remainder of the analyses. The porewater was sampled with a vertical
resolution of 5 ¢cm using multi-chambered piezometers designed and manufactured
at EPFL. The concept of the piezometers is illustrated in Supplementary Fig. S9.
The piezometers were installed at spot A and sspot B in April and June 2011,
respectively, with the help of a peat soil corer?®, The porewater in each chamber
was pumped to the surface using a LAMBDA HIFLOW peristaltic pump and
Tygon R-3603 tubing, and the pH and DO of the porewater was measured

using airtight flow-through cells custom made for the probes at EPFL. The
porewater was then sampled under a high-flow Ar stream, sealed in serum bottles
with blue butyl rubber stoppers and then handled in an anoxic chamber (N,
atmosphere) 5min away from the sampling spots. In the anoxic chamber, the
samples were filtered using 0.22 pm pore-size PES membranes, and divided into
three fractions: one amended with anoxic 2 M HCI (1:1 volume ratio) for Fe(II)
analysis, one amended with 5 M HNOj (1:5 volume ratio) for metal ion analysis
and the rest stored in a serum bottle sealed with a butyl rubber stopper for the
remainder of the analyses.

Analysis of porewater chemistry. The Fe(II) concentration in porewater samgles
was determined using the ferrozine colorimetric method described by Stookey®”. A
solution of ferrozine [3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine]
was prepared at 1 gl =1 in 50 mM HEPES at pH 7.0. Acidified porewater samples
were analysed by mixing 15 pl of sample with 1,485 pl of ferrozine solution.

The absorbance at 562 nm was measured with a Shimadzu UV-2501 PC
spectrophotometer. Metal ion concentrations in porewater samples were obtained
using ICP-OES on a Shimadzu ICPE-9000 analyser (respective detection limit for
Fe and U: 1.8 and 21 nM). Anion concentrations were measured using a Dionex
ICS 3000 ion chromatograph. Dissolved organic carbon and dissolved inorganic
carbon (bicarbonate) in porewater were analysed using a Shimadzu TOC-Analyzer
5000 (detection limit: 16.7 uM).

Laser-induced fluorescence spectroscopy. The samples for LFS analysis were
prepared at EPFL in an H,/N, (3-4% H,) anoxic chamber. Two spot A porewater
samples from November (15-20 and 35-40 cm) and one from July (15-20 cm)
were selected for LES analysis. LFS is only able to detect dissolved U(VI). Each
sample was divided into two 4 ml subsamples acidified using 1 ml of N,-purged
anoxic 1 M HCI to release U from the Fe-rich colloids. Previous tests showed that
no U(VI) could be detected if it was bound to Fe-rich colloids. One subsample was
sealed in a serum bottle with a butyl rubber stopper until the analysis, and the other
was exposed to air for at least 24 h to oxidize U(IV) to U(VI). The samples were
then sent to HZDR for analysis. On arrival, the serum bottles containing anoxic
subsamples were opened in a glove box (Braun, Germany) with an N, atmosphere
(<6 p.p.m. O,), and the oxidized ones were opened to the air. The subsamples
were transferred into a plastic cuvette and sealed with a teflon plug. The closed
cuvette was then stored for 24h in a freezer at 253 K. The formed ice block was
extracted from the cuvette and immediately transferred to the cold gas system
sample holder. This cold gas system allows cooling the sample to 120K by use of
N, gas from a liquid nitrogen source (Isotherm, Germany). Acquiring spectra at
this temperature minimizes the quenching effect of chloride in the samples. The
thermostat housing has three windows, where two opposing windows allow the
laser beam through while the third, at a right angle, is used for collecting the
emitted luminescence. The luminescence light is focused onto an optical fibre and
transmitted into a spectrograph (Acton Research, USA). The resolved spectrum is
measured by an intensified charge-coupled device camera system (Roper Scientific,
USA). A laser source (Inlite, Continuum, USA) is used for U excitation. The fourth
harmonic of a Nd:YAG laser (wavelength =266 nm) was used to excite the ura-
nium(VI) species in the frozen sample. The duration of the laser pulses was 10 ns.
The repetition rate of the laser was 20 Hz and the energy of the laser pulses was
adjusted to about 5m]. The measurement by the camera system started immedi-
ately after application of the laser pulse (30 ns). The gate width of the camera was
set to 500 ps. Three hundred laser shots were collected for each spectrum and
repeated three times. Because of the low luminescence intensities detected, no time-
resolved spectra were collected.

Ultrafiltration. Ultrafiltration of the porewater samples was performed in July
2012. The system consisted of a 0.45-pm pre-filtration through a cellulose acetate
in-line filter, followed by parallel filtration through a 0.22-pm pore-size Millipore
PES membrane and ultrafiltration through 500 and 10kDa pore-size Millipore
Biomax PES membranes. These membranes were secured in stainless steel mounts,
with polytetrafluoroethylene (PTFE)-coated inner walls to prevent metal con-
tamination. The whole procedure was performed in an anoxic glove bag purged
and filled with N, gas. Blank samples were obtained for each filtration threshold by
running ultrapure water through the system. Between each sample, the cleaning
procedure consisted of rinsing the entire system with 2% HNOj; followed by
ultrapure water until the pH was back to neutral.

Electron microscopy. SEM observation on selected soil samples was conducted
without C coating using a Carl Zeiss Merlin microscope with GEMINI II column at
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1kV and 100 pA at EPFL. TEM observation was conducted on selected porewater
and soil samples at EPFL. The TEM grids and windows were prepared in an H,/N,
(3-4% H,) anoxic chamber. For the porewater sample, several microlitres were
extracted by a needle and a syringe and dropped onto the TEM SiN window. The
liquid was left on the window for about 10 s and then wicked away using a paper
towel. This procedure was repeated three to five times. TEM observation showed
that porewater colloids were loaded onto the grid. For soil samples, finely ground
dry soil powder was loaded onto C-coated TEM grids by spraying powder onto the
grid. The grids and the windows were transferred to the microscope in an anoxic
jar. The chemical composition of porewater colloids and soil U-rich aggregates was
studied by scanning TEM and X-ray energy-dispersive spectroscopy (EDS) in an
FEI Tecnai Osiris microscope at 200 kV (FEI, Eindhoven, The Netherlands)
equipped with four windowless Super-X silicon drift detector (SDD) EDX detec-
tors. Quantitative EDS results were obtained with Bruker Esprit software (Bruker
Corporation). The morphology and phase composition were studied by conven-
tional and HRTEM (TEM and HRTEM) and electron diffraction in an FEI
CM300UT/FEG microscope at 300kV (FEI). Images and SAED patterns were
recorded on a Gatan 797 slow scan charge-coupled device camera and processed
with the Gatan Digital Micrograph software (Gatan, Inc., Pleasanton, CA, USA).
Phase identification was performed by analysing SAED patterns using a software
known as JEMS (http://www.cimewww.epfl.ch/people/stadelmann/jemsWebSite/
jems.html) for the electron-optical parameters of the microscope and the structural
data of Fe oxides (27856) and hydroxides (53992) taken from the Inorganic Crystal
Structure Database, FIZ Karlsruhe, Germany and NIST, US Department of
Commerce, 2013.

Analysis of soil chemistry. Water content of the soil samples was obtained by
weighing the samples before and after drying. Soil TOC content was measured in
dried homogenized samples with a Shimadzu TOC-V CPH/CPN analyser. To
study the soil chemical composition and U content, soil samples were dissolved
completely using a three-step microwave digestion procedure with a high-perfor-
mance microwave (Microwave Laboratory Systems). Hundred milligrams of dried
and homogenized sample was mixed first with 4ml of HNO; (65%) and 4 ml of
H,0,, and the first microwave digestion step (all steps were carried out at 100 °C)
was started followed by the second, which involved the addition of 2 ml of HF
(48%), and finally the third with the addition of 20 ml of H;BO3 (4.5%). The final
extract was diluted with MilliQ water to 100 ml and analysed using ICP-OES for
main elements and U content. The main elements’ composition is shown in
Supplementary Fig. S5.

X-ray diffraction. To avoid oxidation by air during analysis, XRD analysis was
conducted under anoxic conditions at the Institut de Minéralogie et de Physique de
Milieux Condensés (IMPMC) in Paris. Finely ground dry soil samples were sealed
in serum bottles with butyl rubber stoppers before analysis. Powder samples were
loaded onto a Si single crystal ‘zero diffraction plate’ under a N, atmosphere in a
Jacomex glove box (O, <20 p.p.m.) at IMPMC. XRD measurements were per-
formed with CoKa (6.93 keV, wavelength = 1.79 A) radiation on a Panalytical
X’Pert Pro MPD diffractometer mounted in Debye-Scherrer configuration using
an X’Celerator detector to collect the diffracted beam. Data were recorded in the
continuous-scan mode in the 3-80° 20 range with a step of 0.0330°.

X-ray absorption spectroscopy. The monomeric U(IV) model compound was
obtained by following the procedure described by Bernier-Latmani et al.,” whereas
the U(VI)-acetate model compound was prepared by diluting U(VI)-acetate
powder (Fluka) into cellulose. Soil samples for XAS analysis were mounted onto
sample holders, sealed in individual MYLAR bags (0.127 mm thick) and sealed in a
metallic jar at EPFL in an H,/N, (3-4% H,) anoxic chamber. The jar was then
shipped to XAS beamlines and was kept sealed until analysis. Uranium Lyj-edge
(17.166 keV) XANES and EXAFS data of selected spot A and spot B samples were
obtained at the Core EXAFS beamline (B18) of Diamond Light Source and
Rossendorf Beamline (BM20) of the European Synchrotron Radiation Facility,
respectively. On analysis, the sample was mounted quickly onto the cryostat rod
and inserted into the cryostat. XANES data showed no evidence of air-induced
oxidation with this approach. We collected XANES and EXAFS data in
fluorescence mode under N,-liquid temperature (~ 77 K) at B18 of Diamond Light
Source or He-liquid temperature (~10K) at BM20 of European Synchrotron
Radiation Facility. The Si(111) double-crystal monochromator was used in
channel-cut mode. The spectra were collected in fluorescence mode using
multielement solid-state Ge detector, together with Iy, I; and I, signals using
ionization chambers. Energy was calibrated by using double-transmission set-up in
which a uranium Lyj-edge spectrum of the sample and that of Y metal (first
inflection point at 17,038 eV) foil reference sample placed between I; and I, were
simultaneously recorded. Several EXAFS scans were summed for each sample to
obtain an adequate signal-to-noise ratio at k=10 A ~1. Athena of IFEFFIT
program package®® was used for normalization and background removal. The
EXAFS oscillations were extracted from raw spectra by standard methods including
a spline approximation for the atomic background. Artemis of IFEFFIT program
package was used for shell-by-shell fitting of EXAFS data. Theoretical
backscattering phase and amplitude functions were calculated with the FEFF 8.4
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code®! using Artemis. The Fourier transform peaks are shifted to lower values,
R+ AR, relative to the true near-neighbor distances, R, due to the phase shift of the
electron wave in the adjacent atomic potentials. This AR shift is considered as a
variable during the shell fits. The data-fitting ranges were k=3-11 A~ ! and
R+AR=1-3.5A for the EXAFS and Fourier back transform, respectively. The
amplitude reduction factor, S3, was defined as 0.9 in the data fits. Numerical
constraints were applied to keep the values of the fits within a physically reasonable
range, and the number of free parameters was kept maximally at four for most
cases.
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