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Abstract—Infinite nature of sensor data poses a serious chal-
lenge for query processing even in a cloud infrastructure. Model-
based sensor data approximation reduces the amount of data for
query processing, but all modeled segments need to be scanned,
in the worst case. In this paper, we propose an innovative index
for modeled segments in key-value stores, namely KVI-index.
KVI-index has an in-memory tree component and a secondary
structure materialized in the key-value store that maps the tree
nodes to the modeled data segments. Then, we introduce a KVI-
index-Scan-MapReduce hybrid approach to perform efficient
query processing. As proved by a series of experiments in a
real private cloud infrastructure, our approach outperforms in
query response time and index updating efficiency both Hadoop-
based parallel processing of the raw sensor data and multiple
alternative indexing approaches of model-view data.

Index Terms—index, key-value, MapReduce, approximation,
query processing

I. INTRODUCTION

Recent advances in sensor technology have enabled the
vast deployment of sensors embedded in user devices that
monitor various phenomena for different applications of inter-
est, e.g., air/electrosmog pollution, radiation, early earthquake
detection, soil moisture, permafrost melting, etc. Sensors con-
tinuously produce unbounded time series of measurements
that can be erroneous or have missing values posing great
challenges for data management. To this end, various model-
based sensor data management techniques [1]–[4] have been
proposed. Models exploit the inherent correlations (e.g. with
time or among data streams) in time series to split data in
segments and approximate each segment with a certain math-
ematical function derived by the model within a certain error
bound. These techniques aim to facilitate query processing by
accessing or generating minimal amount of data [2], [5] and
deal with missing values in data by an abstraction layer over
the sensor data [3].

However, proposed model-based query processing ap-
proaches [2], [3] mostly employ the relational data model and
process queries based on materialized views or interval indices
[6] on top of modeled segments of sensor data. Alternatively,
in the cloud era, time series are stored in key value stores [7]
and query processing is parallelized via MapReduce.

In this paper, we exploit key-value stores and the MapRe-
duce parallel computing paradigm, two significant aspects of
cloud computing, to realize indexing and querying model-
view sensor data in the cloud. One modeled segment is
characterized by its time and value intervals [2]–[4]. In order
to process range or point queries on model-view sensor data

[8], our index in the cloud store should excel in processing
interval data. Current key-value built-in indices do not support
interval related operations. The interval index for sensor data
management should not only work on static data set, but it
should be dynamically updated based on the new arriving
segments of sensor data [9]. If traditional batch-updating or
periodical re-building strategy is applied here [10], then the
high speed of sensor data generation may lead to a large
size of the new unindexed data set, even in short time, with
significant index updating delay. The performance of queries
involving both indexed and unindexed data will degenerate
greatly, thus the interval index in the cloud store should be
able to be updated based on individual modeled segments in
an online manner.

The contributions of this paper can be summarized as
follows:
• Innovative interval index: We propose an innovative inter-

val index for model-view based sensor data management
in key-value stores, referred to as KVI-index. KVI-index
is a two-tier structure consisting of one lightweight and
memory-resident binary search tree and one index-model
table materialized in the key-value store. This composite
index structure can dynamically accommodate new sensor
data segments very efficiently.

• Hybrid modeled-segment query processing: After explor-
ing the search operations in the in-memory structure of
the KVI-index for range and point queries that locate
modeled segments that may satisfy the query, we intro-
duce a hybrid query processing approach that integrates
range scan and MapReduce to process these segments in
parallel and identify the qualified ones.

• Intersection search: We introduce an enhanced intersec-
tion search algorithm (iSearch+) that produces consec-
utive results suitable for MapReduce processing. We
theoretically analyze the efficiency of (iSearch+) and find
the bound on the redundant index nodes that it returns.

• Experimental evaluation: Our framework has been fully
implemented, including on-line sensor data segmentation,
modeling, KVI-index and the hybrid query processing,
and it has been thoroughly evaluated against a signifi-
cant number of alternative approaches. As experimentally
shown based on real sensor data, our approach signifi-
cantly outperforms in terms of query response time and
index updating efficiency all other ones for answering
time/value point and range queries.
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The remainder of this paper is as follows: Sec. II summa-
rizes some related work on model-view sensor data manage-
ment, interval index and index-based MapReduce optimization
approaches. In Sec. III, we provide a brief description about
sensor data segmentation, querying model-view sensor data
and the necessity to develop interval index for managing
model-view sensor data in key-value stores. The detailed
designs of our innovative KVI-index and the hybrid query pro-
cessing approach are discussed in Sec. IV and V respectively.
Then, in Sec. VI, we present thorough experimental results to
evaluate our approach with traditional query processing ones
on both raw sensor data and modeled data segments. Finally,
in Sec. VII, we conclude our work.

II. RELATED WORK
Many researchers have proposed techniques for managing

modeled segments of sensor data in relational databases.
MauveDB [3] designed a model-based view to abstract under-
lying raw sensor data; it then used models to project the raw
sensor readings onto grids for query processing. As opposed to
MauveDB, FunctionDB [2] only materializes segment models
of raw sensor data. Symbolic operators are designed to process
queries using models rather than raw sensor data. However,
both approaches in [3] and [2] do not take into account the
role of an index in managing modeled segments of sensor data.

Many relevant index structures [6], [9], [10] have been
proposed to manage interval data [11]. However, they all have
memory-oriented structure and cannot be directly applied to
the distributed environment of key-value cloud stores. Many
efforts [8]–[11] have also been done to externalize these in-
memory index data structures. The relational interval tree(RI-
tree) [6] integrates interval tree into relational tables and
transforms interval queries into SQL queries on tables. This
method makes efficient use of built-in B+-tree indices of
RDBMS. In [12], they proposed an approach that enables key-
value stores to support query processing of multi-dimensional
data via integrating space filing order into row-keys. The latest
effort for supporting interval index in key-value stores [10]
utilizes MapReduce to construct a segment tree materialized
in the key-value store. This approach outperforms the interval
query processing provided by HBase (http://hbase.apache.org/)
and Hive (http://hive.apache.org/). However, segment tree [10]
is essentially a static interval index, as is also the case with
[13]. Therefore, a segment tree re-building phase needs to be
periodically executed to include new data.

MapReduce parallel computing is an effective tool to ac-
cess large scale of segment models of sensor data in cloud
stores. Many researchers proposed index techniques to avoid
data scan by MapReduce for low-selective queries [14]. The
authors in [15] integrate indices into each file split, so that
mappers can use index to only access predicate qualified data
records. In [16], indices applicable to queries with predicates
on multiple attributes via indexing different record attributes
in different block replicas were designed. In [17], a split-
level index is designed to decrease MapReduce framework
overhead. As compared to record-level optimizations in [15],
[16], split-level indices eliminate irrelevant file splits before

launching mappers, and thus the data transferring and starting
up overheads are further saved.

III. OVERVIEW OF MODEL-VIEW SENSOR DATA
MANAGEMENT

In this section, we discuss the issues for managing modeled
segments of sensor data in a key-value store. First, we explain
what is modeled data segments. Then, we discuss possible stor-
age schemas for modeled segments and explain the necessity
to develop a segment model index therein. Last, we describe
the query types of our focus and some particular techniques
for processing model-view sensor data queries.
A. Sensor data segmentation

Among the objectives of sensor data modeling are to
compress the raw data, to fill missing values and to detect
data outliers. A typical modeling approach fragments the data
stream into modeled data segments, and then approximates
each data segment by a mathematical function with certain
parameters [18], so that a specific error norm is satisfied.
Query processing can then be performed on the materialized
modeled data segments instead of the raw sensor data, as
in [2]. Sensor data segmentation and modelling have been
extensively studied in [4], [18], [19].
B. Storage model

One idea for storing modeled segments in key-value stores
could be to do it similarly to that of the raw sensor data storage
such as Open-TSDB [7], and takes the time interval of one
segment as the row key (rk). As rows are sorted on the row key
in the key-value store, the starting points of time intervals are
in ascending order. Therefore, although for time range or point
queries, the query processor knows when to stop the scan, it
still needs to start the scan from the beginning of the table. The
same problem happens to the table with value intervals as row-
keys. In summary, simply incorporating time, value interval or
model coefficients into the row-key cannot help accelerate the
query processing. A generic key-value based interval index
for sensor data segments is necessary. Moreover, key-value
represented interval index can take advantage of efficient key
based random access, range scan and parallel computing of
key-value stores [20].
C. Querying model-view sensor data

In this paper, we focus on the following four types of
fundamental queries on model-view sensor data.
• time point query: return the value of one sensor at a

specific time point.
• value point query: return the timestamps when the value

of one sensor is equal to the query value. There may be
multiple time stamps of which sensor values satisfy the
query value.

• time range query: return the values of one sensor during
the query time range.

• value range query: return the time intervals of which the
sensor values are within the query value range. There may
be multiple time intervals of which sensor values satisfy
the query value range.

The generic process to query model-view sensor data
queries comprises the following two steps:



• Searching of qualified modeled segments: The qualified
modeled segments are defined as the ones of which time
(resp. value) intervals intersect the query time (resp.
value) range or point. This step should make use of
an interval index to localize all the qualified modeled
segments in the segment model store.

• Model gridding: In model-view sensor data management
system, only modeled segments are usually materialized,
instead of raw data values. Qualified modeled segments
are too abstract and a finite set of data points are more
useful as query results [2]. Therefore, model gridding
is another necessary process [2], [3]. Model gridding
step applies three operations to each qualified segment:
(i) It discretizes the time interval of the segment at a
specific granularity to generate a set of time points. (ii)
It generates the sensor values at the discrete time points
based on the model that approximates the segment. (iii)
It filters out the sensor data that does not satisfy the
query predicates. The qualified time or value points from
gridding all qualified modeled segments are returned as
query results.

IV. KEY-VALUE INTERVAL INDEX

We will first present the design of the two-tier model
index on key-value stores then we will discuss the updating
algorithm of the model index.
A. Structure of KVI-index

We propose the key-value represented interval index (KVI-
index) to index time and value intervals of modeled data
segments. The interval tree is chosen here, because in-memory
interval tree’s primary-secondary structure is convenient for
externalization to the key-value store [6]. Furthermore, the
searching and scanning algorithm of the interval tree to process
queries is fit for being implemented via the MapReduce com-
puting paradigm to enhance query processing performance.

Our KVI-index is a novel in-memory and key-value com-
posite index structure. The virtual searching tree(vs-tree) re-
sides in memory, while an index-model table in the key-value
store is devised to materialize the secondary structure(SS) of
each node in vs-tree.

1) In-memory structure: The in-memory virtual searching
tree(vs-tree) is a standard binary search tree shown in Fig.
1(a). Each time (or value) interval is registered on only one
node of vs-tree, which is the one with the interval first overlaps
along the searching path from root. This node is defined as
registration node τ for this interval. Each node of vs-tree has
an associated secondary structure(SS), materialized in the key-
value store, which stores the substantial information of the
modeled segments registered at this node.

We apply space-partition strategy for vs-tree. The height of
the vs-tree is denoted by h. We set the value of leftmost leaf
node as 0. For negative sensor data values, we use simple
shifting to have the data range start from 0 for convenience.
Then, the domain of the vs-tree is [0, R] and R = 2(h+1) − 2.
The value of root node is r = 2h − 1. During the whole life
of KVI-index, only the root value r is kept, since, due to the
lightweight computability of the space-partition, the value of

each node in the searching path from the root to the node
that has the queried point or interval can be calculated in run
time. All the operations on vs-tree are performed in memory
and are thus very efficient. As the domains of time and value
of the sensor data are different, two vs-trees one for times
and another for values are kept in memory simultaneously for
answering time and value queries respectively.
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2) Index-model table: We designed a novel index-model
composite storage schema, which enables one table not only
to store the modeled segments, but also to materialize the
structural information of the vs-tree, i.e., the SSs for each tree
node.

The index-model table is shown in Fig.1(b). Each row
corresponds to only one modeled segment of sensor data,
e.g., the data segment shown in the black dotted rectangle
in Fig.1(c). A row key consists of the node value and the
interval of an indexed modeled segment at that node. One
modeled segment’s time, value interval and coefficients are all
stored in different columns of the same row. So far, the SSs of
each node correspond to a consecutive range of tuples in the
index-model table. For instance, the rows corresponding to the
SSs of node 1, node 5 and node 13 in vs-tree are illustrated in
Fig. 1(b). Analogously, we have two index-model tables that
correspond to time and value vs-trees respectively.
B. KVI-index updates

The complete modeled segment updating algorithm of KVI-
index is shown in the Alg. 1. It includes two processes:

(1) Registration node searching: localize the node τ at
which one time(value) interval [lt, rt] should be registered.

(2) Materialization of modeled segments: construct the row-
key based on the τ and materialize one modeled segment’s
information into the columns of corresponding row.

1) Registration node searching (rSearch): This algorithm
first involves a domain expansion process to dynamically
adjust the domain of the vs-tree according to the domain
variation of the sensor data. Then, the registration node can
be found on the validated vs-tree.

Lemma 1: For a modeled segment Mi with time(value)
interval [lt, rt], its registration node lies in a tree rooted at
2dlog(rt+2)e−1 − 1.

Proof: The domain of one tree rooted at 2dlog(rt+2)e−1−1
is [0, 2dlog(rt+2)e−2]. As 2dlog(rt+2)e−2 ≥ 2log(rt+2)−2 = rt,
the registration node of interval [lt, rt] must be in a tree rooted
at 2dlog(rt+2)e−1 − 1.

Lemma 2: For a modeled segment Mi with time (value)
interval (lt, rt), if the right end-point rt satisfies rt > R, the
domain of vs-tree needs to expand.



Algorithm 1: Time (or value) KVI-index Updating
Input: [lv, rv ], [lt, rt], /* value and time intervals of one modeled segment
Mi, r /* Mi denotes the coefficients of the modeled segment

1 begin
2 /* dynamic domain expansion
3 if (rt > R) then
4 r= 2dlog(rt+2)e−1 − 1 /* expand to new root value

5 /* registration node search
6 node=r; h=log(r)-1;
7 while (h ≥ 0) do
8 if (lt ≤ node and rt ≥ node) then
9 break; /* node is the registration node

10 else
11 if (lt > node) then
12 node= node+ 2h;

13 if (rt < node) then
14 node= node- 2h;

15 h=h-1;

16 /* materialized into the index-model table.
17 if the SS of node has been initialized then
18 rowkey= <node|lt|rt>;

19 else
20 rowkey= <node|α>;

21 insert [lv, rv ], [lt, rt], Mi into the table.

Proof: The current vs-tree’s height is h and lt ≤ r, the
interval [lt, rt] rides over the root node r. Assume we don’t
expand the domain and hang [lt, rt] on r. When a new model
Mj with a time (or value) interval [l

′

t, r
′

t] and l
′

t > R comes,
the root value has to increase to r

′
=2dlog r

′
t+2e−1-1 as [l

′

t, r
′

t]
intersects no node of current vs-tree. Then between r and r

′
,

there is one node with value 2(h+1)-1. The interval (lt, rt) is
stored at node r = 2h-1 and rt > 2(h+1)-2 ⇒ rt ≥ 2(h+1)-1,
therefore registering the interval [lt, rt]’s registration on node
r contradicts with the interval registration rule.
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Fig. 2. Registration node searching of KVI-index
Using Lemma1 and Lemma2, KVI-index is able to dynam-

ically decide when and how to adjust the domain [0, R] of vs-
tree. The complete rSearch can be illustrated by Fig. 2. When
model1 is to be inserted, the vs-tree rooted at node7 is still
valid. model1 is registered at node5. However, when model2
arrives, its right end-point, i.e., 16, exceeds the domain [0, 14].
The vs-tree is expanded having 15 as new root and the new
extended domain is the area enclosed by the dotted block in
Fig. 2. Then, the sub-sequential model2 and model3 can be
updated successfully.

2) Materialization of modeled segment: When materializ-
ing model Mi into the SS of a node τ , the row-key may be
chosen in two ways:
• Upon initialization of the SS of node τ : when no modeled

segment has been stored at τ ’s SS, the row key is chosen
as < τ, α > for model Mi. Here, α is a postfix of row
key to indicate that this row is the starting position of τ ’s

SS in the table.
• Upon updating the SS of node τ : when the SS of τ

has already been initialized, the time interval [lt, rt]
(resp. [lv, rv] for value interval) to be indexed will be
incorporated into the row key, i.e., < τ, lt, rt > (resp.
< τ, lv, rv > in the index-model table for values). In this
way, different modeled segments stored in the same SS
of a node do not overwrite each other.

The selection of specific α should make sure that the binary
representation of < τ, α > is in front of any other < τ, lt, rt >.
This design is useful for query processing. For instance, if the
query processor requires to access all the modeled segments
stored at registration node 5, then we know that all the
corresponding modeled segments lie in the rows within the
row-key range [< 5, α >,< 6, α >). For example, take the
model1 and model2 in Fig. 3. First, the KVI-index checks
whether the starting modeled segments of node5 and node15,
namely rows with key < 5, α > and < 15, α >, exist. Then,
the row key < 5, 4, 6 > is constructed for model1 as the SS
of node5 has been initialized, whilst KVI-index constructs the
row key < 15, α > for model2.
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V. QUERY PROCESSING VIA KVI-INDEX AND
MAPREDUCE

For querying model-view sensor data, the searching process
of qualified modeled segments (defined in Sec.III) in KVI-
index includes two steps:

• Intersection and point search: The intersection search on
vs-tree is used for range queries, while point search is
employed for point queries. They are responsible for
collecting the nodes that accommodate qualified modeled
segments [6], [9] in their secondary structures SSs.

• Modeled-segment filtering: Due to the rule for interval
registration at the nodes of the vs-tree, the SS of a node
may contain some intervals irrelevant to queried range or
point [6], [8], [13]. In KVI-index, the SSs of all nodes
found by the search operation are accessed to filter out
unqualified segments.

After the above two steps, model gridding component
fetches the coefficients of each qualified modeled segment
and performs gridding. Next, we first describe an enhanced
intersection search algorithm on vs-tree that benefits KVI-
Scan-MapReduce query processing introduced later in this
section. We then present the point search algorithm on vs-
tree. Subsequently, we introduce our novel hybrid KVI-Scan-
MapReduce query processing. Last, we theoretically analyze
the enhanced intersection search algorithm of the KVI-index.



A. Intersection and point search
1) Enhanced interval intersection search: Alg. 2 presents

the iSearch+. Given a time (resp. value) range query [lt, rt],
iSearch+ first calls the rSearch to find the registration node τ
of [lt, rt]. The nodes on the searching path from the root node
to the one preceding τ form a node set denoted by S0. The
iSearch+ stops at the node, which is closest to the left-end
point lt. All the nodes along the left-descending path form
a node set, denoted by Sl, while the node with the minimum
value in this path is denoted by ls. Analogously, Sr is the node
set from the right-descending path and rs is the node with
the maximum value in this path. Any node outside the range
[ls, rs] and the set S0 does not have any qualified modeled
segments.

Algorithm 2: iSearch+ of vs-tree
Input: time query range [lt, rt], root value r
Output: node set S0 and D

1 begin
2 /* construct S0
3 node=r; h=log(r)-1;
4 while (h ≥ 0) do
5 if (lt ≤ node and rt ≥ node) then
6 break; /* node is the registration node

7 else
8 S0 = S0 ∪ node
9 if (lt>node) then

10 node= node + 2h;

11 if (rt<node) then
12 node= node - 2h;

13 h=h-1;

14 /* construct D .
15 ls= 2blog(lt)c, rs= R - 2blog(R−rt)c, D = [ls, rs]

The traditional intersection search would return the node set
C = S0∪Sl∪Sr∪ [lt, rt] for further modeled-segment filtering
and gridding. Our iSearch+ outputs the discrete node set S0
and a consecutive range of nodes D = [ls, rs]. For example,
take the range query in Fig. 4(a). node7 is the registration node
of query range [6, 10]. The traditional iSearch returns the
discrete node sets shown in the solid boxes of Fig. 4(a), while
our iSearch+ returns a range of nodes [3, 11] and S0 = {15}.
We will see how the output of iSearch+ benefits the hybrid
query processing later in Subsection V-B.

2) Point search: We denote the point search by sSearch
as it functions as the stabbing search of interval tree. The
sSearch is a binary search that records the nodes along the
descending path. We present the sSearch in Fig. 4(a). For
example, when querying the sensor value of time point 24,
the node set S0 = {15, 7, 11, 9, 10} is returned by sSearch.
Since there is no split searching, as in iSearch+, only one
node set is produced here. We denote this node set by S0 as
well, so as to facilitate the description of the hybrid KVI-Scan-
MapReduce query processing that follows next.

B. KVI-Scan-MapReduce query processing
We first analyze the location distribution of the SSs of the

nodes found by iSearch+ and sSearch in the index-model
table. The characteristics of this distribution inspired us to
propose the hybrid KVI-Scan-MapReduce query processing
approach.

1) SS location distribution: There are two cases for the SS
distribution in the index-model table, described below.
• S0: The SSs of S0 are non-consecutive and sparsely

distributed in the index-model table. The node value
is the primary part of the row-key; thus, the distance
between SSs of S0 depends on the numerical difference
of node values. As S0 includes the nodes from root
node to the one preceeding the τ , the intra-distances
between any consecutive nodes in S0 are 2h−i, where
i = 0, · · · , h − dτ is the position of the node in the
descending search path S0 and dτ is the depth of τ .
Obviously, the intra-distances in S0 are greater than those
for other nodes below τ in the search path.

• D: The SSs of [ls, rs] are clustered around the ones of
[lt, rt] in the index-model table. The SSs of [lt, rt] are
all adjacent in the index-model table. The SSs of [ls, rs]
are bounded by those of the sub-tree rooted at τ and the
nodes in [ls, rs] are a superset of the nodes in [lt, rt]. The
deeper the registration node τ is located, the tighter the
set of the SSs of [ls, rs] over those of [lt, rt].

For example, take the time (or value) query range [6, 10] in
Fig. 4(a). The registration node is node7. Then, S0 = {15}
and D = [3, 11]. The sub-tree rooted at node7 covers the node
range E = [0, 14] and D ⊂ E . From Fig. 4(b), the SSs of D
are clustered around those of [6, 10] and bounded by the SSs
of E . However, node15’s SS is located far away from those of
[3, 11].

If SSs of S0 and D are processed via straightforward
random access and range scan provided by key-value stores,
the entire modeled-segment filtering and gridding processes
are conducted locally at the application side. For a table
of multiple or hundreds of GBs, the communication and
computation costs are prohibitively high for the application
side even for low-selective queries.

The modeled segment filtering-gridding processing matches
MapReduce’s filtering-aggregation paradigm. Considering the
research results from [15]–[17], for CPU non-intensive work-
load, I/O cost, network latency and starting-up overhead of
mappers are dominant in the execution time of MapReduce
programs. If the SSs of S0 and D are all processed by MapRe-
duce, a lot of time is wasted for mappers that process irrelevant
SSs in the index-model table. This is because MapReduce will
access the continuous regions of the table including the SSs of
nodes between the S0 and D due to the sequential data feeding
mechanism in the mapping phase. For example, in Fig. 4(b),
the SSs of D=[3, 11] and S0={15} are distant in the table.
Hence, MapReduce will launch many un-necessary mappers
for the irrelevant SSs of nodes between 11 and 15, in order to
process the SSs of S0 and D.

2) Hybrid model filtering and gridding: As discussed
above, simply using range scan or MapReduce to process
SSs are both problematic. Our idea is to design a hybrid
KVI-Scan-MapReduce paradigm that combines range scan and
MapReduce for processing SSs, as follows:
• (1) S0: the height of vs-tree is bounded by log(R), and

thus the amount of computation on S0 is limited. As the
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SSs of S0 are sparsely distributed in the index-model table
and each SS of S0 can be considered as a small range of
clustered index, the random-access- and range-scan-based
model filtering and gridding is suitable.

• (2) D = [ls, rs]: the successive range [ls, rs] delimits a
tight boundary of the sub-index-model table over the rele-
vant SSs that are suitable for processing with MapReduce.

This hybrid paradigm eliminates the Map-phase processing
of SSs of irrelevant nodes between S0 and D and the nodes
between the elements of S0. Moreover, it is non-intrusive for
both the key-value store and MapReduce. Regarding the time
(or value) point query, it only produces the node set S0 without
D, hence, only range-scan-based model filtering and gridding
is needed.

Suppose that the number of reducers is P and each reducer
is denoted by 0, · · · , P -1. For range queries, the partition
function f is used to assign the qualified modeled segments
into different reducers. It is designed on the basis of query
time (resp. value) range [lt, rt] (resp. [lv, rv]) and the time (or
value) interval [li, ri] of each modeled segment i. The idea is
that each of the reducers is in charge of one even sub-range
rt−lt
P . Such a partition function f is given in Eq. 1.

f(ri) =

{
lt ≤ ri ≤ rt b (ri−lt)∗Prt−lt c

ri ≥ rt P − 1
(1)

The functionalities of mappers and reducers are depicted in
detail below.
• Mapper: Each mapper gets the time (resp. value) interval

[li, ri] of one modeled segment i to check whether it
intersects with the query time (resp. value) range. For
the qualified modeled segments, the intermediate key
is derived by the partition function f(ri). The model
coefficients < p1i , · · · , pni > are the value part of the
intermediate key-value pair.

• Reducer: One reducer receives a list of qualified modeled
segments < p10, · · · , pn0 >,< p11, · · · , pn1 >, · · · . For each
modeled segment < p1i , · · · , pni >, the reducer invokes a
model-based gridding function to compute discrete values
as query results.

Regarding the scan-based model filtering and gridding, as
SSs in S0 are located in different regions of the index-model
table, the query processor makes use of thread pool to process

each SS of S0 in parallel. Fig. 4 shows the workflow of the
hybrid KVI-Scan-MapReduce approach. For a time (or value)
range query [6, 10], iSearch+ constructs the node set S0 =
{15} and D = [3, 11]. Then, the SSs of the nodes in D are
sent to MapReduce. The SS of node15, enclosed by the bottom
dot-dashed block, is processed via range scan.
C. Theoretical analysis

One point to carefully consider is that iSearch+ may
generate redundant nodes, because the iSearch+ aims to find
a tight and consecutive range of SSs for MapReduce. For
instance, in Fig. 4(a), the SS of node4 is not accessed by the
iSearch+, but is in the sub-table processed by MapReduce.

Theorem 1: For a range query [lt, rt], the redundant nodes
in [ls, rs] returned by iSearch+ are bounded.

Proof: Assume the height of the registration node τ as
h. Consider the left-descending path from τ to the node l0
closest to lt. Let d be the depth from which the descending
path turns right, namely the value w < lt of the current node.
Then, based on the iSearch+ algorithm, w is the left boundary
of accessed node range and w = τ −

∑d
i=1 2h−i.

For a certain value of d, the worst case happens when the
descending process continues to go right until reaching l0,
as the nodes between w and l0 are all redundant ones. The
number of nodes returned by iSearch+ under this case is
given by:

U = τ − (τ −
d∑
i=1

2h−i) (2)

The nodes between τ and w are all included into the output
range D of iSearch+. The number of nodes returned by the
conventional iSearch is given by:

V = h− d+ {τ − (τ −
d∑
i=1

2h−i +

h∑
i=d+1

2h−i)} (3)

Therefore, the number of redundant nodes returned by
iSearch+ is given by:

f = U − V =d+

h∑
i=d+1

2h−i − h

=d+ 2h−d − h− 1

(4)

The Eq. 4 is a function of d and is monotonous decreasing in
d’s domain [1, h]. Consequently, when d = 1, the function f
reaches the maximum value, namely, the number of redundant
nodes from iSearch+ attains the maximum value. Therefore,

fmax = 2h−1 − h . (5)



As the total number η of nodes of the sub-tree of the left
child of τ is 2h − 1, hence

f ≤ 1

2
η − log(η + 1) +

1

2
. (6)

In summary, the total number of redundant nodes in the
range [ls, rs] is bounded.

The worst case happens when the endpoints lt and rt are
the preceeding and succeeding nodes of τ , namely lt = τ − 1
and rt = τ +1. However, for most of the cases, the redundant
nodes returned from iSearch+ are very limited.

VI. EXPERIMENTAL EVALUATION

First, we compare model-view sensor data query processing
with conventional one over raw sensor data. Then, we show
that our KVI-Scan-MapReduce (KSM) approach outperforms
other model-view sensor data querying approaches. Finally, we
experimentally explore the factors that affect the performance
of KVI-Scan-MapReduce.
A. Setup

We employ accelerometer data from mobile phones as
sensor data set. The size of raw sensor data is 22 GB in-
cluding 200 millions data points. After modeling, the modeled
segments of the sensor data take 12 GB, while there are around
25 millions modeled segments.

We developed our system using the versions of Hbase
and Hadoop in Cloudera CDH4.3.0. The experiments are
performed on our own cluster that consists of 1 master node
and 8 slaves. The master node has 64GB RAM, 3TB disk
space (4 x 1TB disks in RAID5) and 12 cores, each of which
is 2.30 GHz (Intel Xeon E5-2630). Each slave node has 6 cores
2.30 GHz (Intel Xeon E5-2630), 32GB RAM and 6TB disk
space (3 x 2TB disks). Nodes are connected via 1GB Ethernet.
In the experiment results, we refer to query selectivity as the
ratio of the number of qualified modeled segments over that
of total modeled segments.

Regarding the online sensor data model-based segmentation,
we applied the PCA(piecewise constant approximation) [1].
Piecewise constant approximation (PCA) approximates a data
segment with a constant value, which can be the mean value
of the segment (referred to as the cache filter). We simulate
sensor data emission and online time series segmentation [18]
and upload them into the key-value store. Regarding gridding,
we choose 1 second as the time granularity for discretization
of a modeled segment. The gridding granularity is a parameter
depending on end-user requirements.
B. Model-view sensor data vs. raw sensor data

Raw sensor data is a set of discrete data points each of which
has associated timestamp and value. We create two tables,
which respectively take the timestamp and sensor value as
the row-keys, such that the query range or point can be used
as keys to locate the qualified data points. Then, the query
processor invokes the MapReduce to access the large size of
data points for query results.

Fig. 5 (a), (b) and (c) present the query response times
for time range, value range and point queries respectively.
As shown in Fig. 5 (a) and (b), model-view approach takes
around 30% less time than the raw sensor data method for

both time and value range queries. Although the raw sensor
data based methods apply MapReduce to directly access the
qualified tuples via the row-key based range scan, the amount
of raw sensor data to process is much larger than that of the
model-view approach. In Fig. 5(c), the processing time of the
raw data based method is 2× less than that of the model-view
one in time point queries, because the raw data method can
use the query time point as index key to directly access the
relevant data points, while our KSM requires to perform model
filtering and gridding. For value point queries, the model-view
approach has nearly 3× less time than the raw data method.
As normally there is a large size of data points with the query
value, MapReduce is used to access this qualified sensor data
set. In model-view approach, the point query processing only
uses random access and range scan to get qualified modeled
segments for gridding locally, and thus it saves the time on
starting MapReduce to access data.
C. Comparison of model-view approaches

There are four baseline approaches for querying model-view
sensor data, namely:

MapReduce (MR). This approach utilizes MapReduce with-
out any support from index. It always works on the whole
index-model table to filter the qualified modeled segments in
the mapping phase and perform the model gridding in the
reduce phase.

Interval tree (IT). We implemented the traditional query
processing operations of the interval tree [6], [9] by adding
another table to store the SS of each node sorted by the right
end-point of intervals. Each index, time or value, has two
associated tables. During the intersection or point search on vs-
tree, the query processor decides which table to access based
on the relation between the query range (or point) and the
node value. In this way, the query processor can stop scanning
once encountering one unqualified modeled segment, due to
the monotonicity of end-points of modeled segments. IT makes
use of random access and range scan to sequentially filter the
qualified modeled segments and make gridding locally.

MapReduce+KVI (MRK). The idea of MRK is to leverage
KVI-index to avoid having MapReduce to process the whole
table. In MRK, MapReduce is designed to work over one
continuous sub-index-model table including all the SSs of
the accessed nodes in search operations. For instance, in Fig.
4(a), for a time (or value) range query [6, 10], MRK invokes
MapReduce to work on the sub-table within the row-key range
[< 3, α >,< 16, α >]. The same idea applies for point
queries. As compared to our hybrid KSM approach, MRK is
a lightweight indexing-MapReduce plan, as it processes many
irrelevant SSs of nodes between S0 and D.

Filter of key-value store (FKV). Some key-value stores
such as HBase provide a filter functionality to support
predicate-based row selection. The filter transmits the filtering
predicate to each region server and then all servers scan their
local data in parallel. Afterwards, they return the qualified
tuples. Our filter-based query processing also works on the
index-model table, as the filtering predicates can be directly
applied to the columns. The query processor waits until all
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region servers finish scans and then it retrieves each returned
qualified modeled segment to conduct gridding locally.

1) Range Query: Fig.6 (a), (b) and (c) present the perfor-
mance of time range queries. As depicted in Fig.6(a), KSM
outperforms MR up to 3× for the low-selective time range
queries. As the query selectivity increases, the amount of SSs
for scan based processing decreases and that for MapReduce
approaches the entire table. Therefore, the response time
increases and approaches that of MR. The response time of
MR increases little. As increasing query selectivity leads to
ascending gridding workload in reduce phase, these results
show that the overhead from model gridding is not dominant
in MR. The response time of MRK is more than that of KSM,
but less than that of MR. As MRK utilizes the KVI-index
to localize a consecutive sub-index-model table covering all
the SSs of nodes found by intersection search, it processes
fewer modeled segments than MR’s full table scanning. Yet,
as compared to KSM, MRK processes more redundant modeled
segments. Moreover, as the sub-table in MRK covers a large
range, the processing time of MRK increases little for low-
selective queries.

Fig.6(b) exhibits the performance of IT and FKV ap-
proaches. As FKV needs to wait for each region server of
HBase to finish the local data scanning, its total response time
is a little longer than that of IT approach. They both consume
much more time than all MR, MRK and KSM, as they apply
sequential accessing of modeled segments.

We also analyse the number of modeled segments accessed
by each approach in Fig. 6(c). These experiments show
how different access methods of modeled segments affect
the performance. MR works on the entire table, thus, the
number of accessed segments is the same. From the point
of view of the application, only qualified modeled segments
are returned for gridding, thus FKV processes no redundant
modeled segments and consumes the least amount of modeled
segments. Since IT scans the SS of one node until encountering
an unqualified model, the total number of accessed segments
is a little larger than that of FKV. Our KSM processes larger
number of segments than both IT and FKV due to the
continuous and redundant range of SSs found by iSearch+.
However, the results also verify our theoretical analysis that
the amount of redundant modeled segments is bounded. MRK

accesses more segments than IT, FKV and KSM, as it adds
the SSs between S0 and D to form a continuous sub-table
for MapReduce. Referring to Fig. 6(a) and Fig. 6(b), although
KSM approach consumes more segments than IT and FKV, its
hybrid paradigm is the most efficient.

Fig. 6 (d), (e) and (f) present the value range query per-
formance. The different query processing approaches exhibit
similar patterns as for the time range queries, so we skip the
detailed analysis.

2) Point Query: The time and value point query processing
performance are shown in Fig. 6(g). IT wins both for time
and value point queries. The response time of KSM is a little
greater than IT, but outperforms the other approaches, because
IT is able to access all qualified modeled segments in one SS.
However, the KSM scans the whole SS entries of a node to find
the qualified ones. Because of the invocation of MapReduce
and redundant modeled segments in the sub-table, MRK takes
more time than both IT and KSM. But, as MRK does not work
on the entire table as MR does, it takes about 2× less time
than MR. FKV consumes the most time as it needs to wait for
server-side full table scan before gridding operations. Since the
size of the domain of the sensor data values is smaller than
that of the time domain, nodes in value vs-tree accommodate
more modeled segments than time vs-tree nodes. Thus, the
response times of value point queries of IT, FKV and KSM
approaches are all more than those of time point queries. For
MR and MRK, the processing time differences between time
and value queries are insignificant, as the time spent on model
filtering and gridding is not dominant.
D. Insights into KVI-Scan-MapReduce

This experiment aims to reveal how much time KSM spends
on model gridding, which is an additional step, as compared
to querying raw sensor data. Due to space constraints, we only
show the results from time range queries of selectivity from
10% to 50%. From Fig. 6(h), the time on model gridding
accounts for 1/3 - 1/2 of the total processing time. As the
majority of the gridding work is performed in the reduce phase
and the amount of qualified segments for reducers depends
on the query selectivity, the time spent on model gridding
increases with the query selectivity. If the model gridding can
adapt to users’ different requirements for query results, the
performance of KSM can be further improved.
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Fig. 6. Query performance (a)-(c): time range queries, (d)-(g): value range queries, (g) point queries, (h)query processing time constitution

VII. CONCLUSION
To the best of our knowledge, this is the first work to

explore the key-value representation of an interval index for
model-view based sensor data management. Different from
conventional external-memory index structure with complex
node merging and split mechanisms, our KVI-index, resident
partially in memory and partially materialized in the key-value
store, is easy to maintain in the dynamic sensor data generation
environment. Moreover, we proposed a hybrid query pro-
cessing approach, namely KVI-Scan-MapReduce, integrating
the KVI-index, range scan and MapReduce for model-view
sensor data in key-value stores. Extensive experiments in a
real testbed showed that our approach outperforms in terms
of query response time and index updating efficiency not only
query processing methods based on raw sensor data, but also
all other approaches considered based on model-view sensor
data for time/value range and point queries. As a future work,
we plan to explore how to process time and value composite
queries based on KVI-index.
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