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Abstract—With the prosperity of cloud computing, an in-
creasing number of Small and Medium-sized Enterprises
(SMEs) move their business to public clouds such as Amazon
EC2. To help tenants deploy services in the cloud, researchers
either conduct performance evaluations or design mechanisms
and software on seeking virtual machines of better perfor-
mance. However, few studies have investigated the impact of
instance seeking strategies on resource allocation in clouds if
every tenant starts to apply the same method to find the better-
performing virtual machine. In this paper, we propose a cloud
and a tenant model in order to simulate the process of tenants’
seeking better-performing instances in the cloud. We discuss,
implement and evaluate six cloud resource allocation strategies
and five instance seeking strategies. We perform the evaluation
via simulation based on real data traces. Our results show
that instance seeking strategies can cause the exhaustion of
better-performing instances and significant request growth in
the cloud. Furthermore, we find that tenants could save time
and budget through collaborative seeking strategies. Finally,
we discuss the implications of our findings from perspectives
of both tenants and providers.

Keywords-instance seeking strategy; resource allocation; per-
formance heterogeneity;

I. INTRODUCTION

Cloud computing has been popular in the past few years,
ranging from industry to academia. In industry, a number
of leading cloud providers, such as Amazon, Microsoft
and Google, have built their cloud data centers to provide
scalable and pay-as-you-go compute capacity. Cloud tenants
rent virtual machines (VMs) according to their needs. With
the mounting demands from tenants, it is inevitable for cloud
providers to add new servers to their clouds due to the
business expansion and hardware upgrade. Consequently,
cloud data center becomes hardware heterogeneous, which
results in performance variations. For example, Amazon uses
EC2 Compute Unit (ECU), which is defined as one ECU
equals the CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor [1], to evaluate the CPU capacity
of VMs. It means that Amazon EC2 is a heterogeneous
computing system with different CPU processors (Opteron
and Xeon) and the performance variation of CPU capacity
is about 20% (1.0 to 1.2 GHz). Thus, for cloud tenants,
they always prefer to rent the instances1 with faster CPU to

1Hereafter, we will use VM and instance interchangeably

achieve the best price-performance ratio.
Meanwhile, in academia, recent research suggests that

there exist great performance variations of instances in cloud
data centers. Our prior work [2], which was also reported by
BBC, confirmed that hardware heterogeneity is the primary
culprit for great performance variations. The variation of
the same sub-type of instances, i.e. hosted by identical
hardware, is relatively small, whilst the variation among
different sub-types of instances, i.e. hosted by heterogeneous
hardware, could reach up to 60%. [3] also found out
that the performance heterogeneity exists in Amazon EC2
standard small instance. Also, existing works either give
their suggestions [4] or design various mechanisms [2], [3]
and software [5] for cloud tenants to find better-performing
instances in public clouds. We define these mechanisms
and software of detecting better-performing instances as
detection techniques.

In this paper, however, we will challenge the effectiveness
of these detection techniques if every tenant starts to use
the same detection technique to seek better-performing in-
stances. Cloud data center should support thousands of con-
current tenants. With the increasing number of tenants seek-
ing better-performing instances, the probability of finding
a better-performing instances becomes increasingly smaller.
Thus, an immediate question is that “how could the tenant
find better instances from the cloud with the acceptable time
and cost?”. Meanwhile, it would not be difficult for cloud
providers to detect tenants’ behaviors. Would they either
prohibit it or change their resource allocation strategies? In
this paper, instead of designing the methods or software on
how to distinguish better instances from worse ones, we shift
our focus to study the impact of the widespread use of these
detection techniques on cloud resource allocation. To that
end, five instance seeking strategies, which are the ways to
request instances from the cloud, are designed for tenants
when they use detection techniques. Our main contributions
can be summarized as follows. (1) We propose a cloud model
and a tenant model to evaluate the impact of instance seeking
strategies based on real cluster data traces. (2) We find
that the performances of instance seeking strategies differ
widely. The greedy strategy outperforms the moderate which
depletes the better-performing instances quickly. Moreover,
cloud tenants could save more cost and time through the
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collaborative strategy. (3) Resource allocation strategies in
the cloud exert a strong influence on the tenant requests’
growth which is between 2 times to 42 times what is
expected. The soaring request growth results in a heavy price
on tenants seeking cost which may go up by 31 times.

The rest of the paper is structured as follows. In Section
II, we present related literature. Section III describes our
cloud data center and tenant models. Section VI details
our simulation methods and evaluations, followed by a
discussion of our findings in Section V. Section VI concludes
the paper.

II. RELATED WORK

Our work is related to existing research efforts in the
following three aspects:

Performance heterogeneity: Wang et al. [4] presented
a measurement study on the impact of virtualization on
Amazon EC2 platform. Their findings indicated that virtual-
ization causes instability and variation to network throughput
and packet delay. Our prior work [2] further confirmed
that hardware heterogeneity is the primary culprit for great
performance variations. Farley et al. [3] also found out
that hardware heterogeneity exists in Amazon EC2 standard
small (m1.small) instance, which results in performance
variations.

Detection techniques: Li et al. [6] developed a per-
formance and cost comparator, i.e. CloudCmp, to measure
cloud services from different cloud providers. Their study
demonstrated that there was no single winner who outper-
formed the other counterparts in all aspects of its cloud ser-
vice offerings. [3] also formulated the customer-controlled
placement gaming as a multi-armed bandit problem. [5]
proposed ClouDiA, a software that helps the cloud users
select server nodes with the lowest latency in the cloud, to
minimize the latency between the servers, thereby improving
the performance for latency-sensitive applications. However,
they do not consider how cloud providers will react to
tenants detection behaviors, which makes our work different.

Resource allocation policies and cloud simulation:
[7] compared different VM allocation algorithms in the
infrastructure clouds. We designed our VM allocation strate-
gies inspired from this paper. Lee et al. [8] introduced a
scheduling mechanism in the cloud that takes heterogeneity
of the underlying platform and workloads into consideration
. [9] analyzed the Google cluster trace data from a sizable
multi-purpose cluster. We conducted our simulation with the
real job statistics extracted from the Google cluster trace
data. Rodrigo et al. [10] presented CloudSim to evaluate
the performance of cloud provisioning policies, application
workload models, and resources performance models. We
developed our simulator based on CloudSim.

Our prior work [2] proposed a simple trial-and-error
mechanism to achieve cost-savings based on hardware het-
erogeneity. In this paper, we focus on validating the effec-

tiveness of these detection techniques [2], [3], [5] through
designing instance seeking and resource allocation strategies
from the perspectives of both tenants and cloud providers.
To the best of our knowledge, there is no work focusing
on instance seeking strategies of better instances in public
clouds, which motivates our work in this paper.

III. MODELS

A. Cloud Data Center

we assume a cloud data center model, which is similar to
the Amazon EC2, goes through several hardware upgrades
due to the business expansion. Different generations of
hardware co-exist in the cloud. Based on our prior work,
the performance of instances hosted on the latest hardware
are better than that of old hardware. In other words, cloud
tenants could find better instances through checking the
hardware information. Cloud data center provides several
types of VMs with different capacities, which are suitable
for various workloads. We only focus on the same type
of instances with the same specifications of CPU, memory,
network, disk and etc. All the instances are charged by hour
and instances of the same type are charged with the same
price c.

For the purpose of load balance and management, physical
machines are organized in terms of cluster. The cloud data
center consists of several clusters and each cluster has
different quantities of physical machines. After receiving
tenants’ requests, the cloud data center will find and return
the VMs to the tenants in the light of VM allocation
strategies. Tenants can request instances at any time but each
tenant can apply for only M instances at most. In Amazon
EC2, M is 20. There are latencies for both requesting and
terminating the instances.

1) Host Distribution: similar to Amazon EC2 [2], we
design three kinds of host servers with different CPU types,
namely E5430, E5507 and E5645 from Intel Xeon Processor
5000 Sequence[11]. Therein, E5645 is the most powerful
and the latest hardware. In our study, we model a data center
with three clusters. Furthermore, a discrete distribution ψ is
defined to determine the distribution of each host in a cluster.

ψ = {Ei:
∑
i

Pr(Ei)=1, i=1..3}

where E1, E2, E3 represents the distribution of E5430, E5507
and E5645 respectively. We study the effect of varying ψ. In
particular, we analyze three representative distributions (1)
Minority ψmin = {0.3, 0.3, 0.4}, (2) Majority ψmaj = {0.2,
0.2, 0.6} (3) Dominant ψdom = {0.1, 0.1, 0.8}. For example,
Majority distribution means the latest hardware E5645 takes
up as much as 60% in a cluster.

2) VM Resource Allocation Strategies: VM resource allo-
cation is the process of mapping the virtual server onto phys-
ical host machines. The allocation policies of the commercial
cloud are shadowed by their proprietary nature. However,



we can be inspired from the prior studies [7] as well as
from opensource cloud platform. OpenStack [12], for ex-
ample, employs various filters to select hosts by computing
capacities, CPU cores, RAM and image properties. After
receiving requests from tenants, the data center controller
will firstly apply these filters to select eligible hosts. After
filtering, the scheduler selects the host that has the minimum
weighted cost and returns it to end users. Virtualization also
provides a VM migration mechanism to remap the virtual
machines onto a less-loaded server after allocation. However,
we regard VM migration as a costly operation and do not
consider the migration.

In this paper, we design a two-level resource allocation
strategies φclusterhost [7]. For each tenant’s request, the data
center controller should decide which cluster and which
host to run the VM. For the cluster level, we have three
allocation strategies: (1) Random (rand) is to select the
cluster randomly; (2) Round Robin (rr) selects the cluster
in circular order; (3) Least Full First (lff) is to select the
cluster with the minimal utilization. For the host level,
two allocation strategies are provided (1) Random (rand)
returns the host in a random way; (2) Max Core First (mcf)
chooses the first node with maximal available computing
cores. Combining both cluster and host levels, we have six
VM resource allocation strategies:

φ = {φrandrand, φ
rr
rand, φ

lff
rand, φ

rand
mcf , φ

rr
mcf , φ

lff
mcf}

where φrandrand is similar to the Chance scheduler [12] in
OpenStack; Round Robin ensures the fairness of resource
allocation; lff-based allocation considers the load balance
during the resource allocation. Since we do not focus on
resource allocation, other factors such as energy and cost
efficiency are not considered.

3) Instance Performance Level:
Definition 1: (Instance Performance Level). We assume

the performance of each instance can be measured by detec-
tion technique. Let X be the set of the instance performance
levels which is normalized to that of the worst performing
instance and the instance performance level is defined as X
= {xi}.

Note that instances of the same type are charged with
the same cost per hour, although they present different
performance levels. Furthermore, we classify the instances
running on different hosts into two categories by assigning a
threshold value xthres. If the performance level of a instance
is greater than xthres, we regard it as a better-performing
instance. Otherwise, it is regarded as a worse-performing
one. Tenants could define xthres according to their detection
techniques. Let B be the set of better-performing instance
and W be the set of worse-performing. Thus, a data center
can be defined as DC={B,W,ψ}. It follows immediately that
the total number of instances hosted by a cloud at time t is
Nt = |Bt| + |Wt|. Furthermore, the probability of a tenant
to get a better-performing instance is denoted as pt = |Bt|

Nt
.

B. Cloud Tenants
1) Job Modeling: tenants submit their requests to the

cloud, indicating how many instances they will request and
how long they will keep the instances. The duration and the
number of instances depend on the characteristics of tenants
jobs. To make our evaluation as realistic as possible, we
extract the real job data from the Google Cluster traces [13]
which provide trace data from 12 thousand machines over
about a month-long period in May 2011. The distribution
of job durations is similar to the heavy-tailed distribution
shape [9]. The job duration ranges from tens of seconds to
essentially the entire duration of the trace (about 700 hours).
In our model, we define tenant jobs as a tuple ji = 〈qi,di〉,
where the qi is the number of instance and di is the duration
of job runtime.

2) Instance Seeking Problem: We define Γ as the set of
tenant τi :

τi= 〈ji, Si〉

where Si is the set of assigned instances sji (1≤j≤qi)
from the cloud to execute the job ji= 〈qi,di〉. Naturally,
the assigned instance set Si consists a mixture of better-
performing and worse-performing instances each with cer-
tain percentage.

We assume tenants submitting their requests follows a
Poisson distribution at a request rate λ. Then, we can give
the definition of a tenant to seek better-performing instances
in cloud data center.

Definition 2: (Instance Seeking Problem). Given a
cloud data center DC={B,W,ψ} with resource allocation
strategies φ and a group of tenants Γ={τi} with seeking
strategies Ψ, the instance seeking problem for each τi =
〈ji,Si〉 is to find each assigned instances set Si ⊆ B.
where we will further discuss instance seeking strategies Ψ.

3) Instance Seeking Strategies: to solve the instance seek-
ing problem, different tenants adopt various seeking strate-
gies. We divide tenants into two categories: performance-
oriented and budget-constraints. For performance-oriented
tenants, their applications need to run a really long time
(maybe “forever”). Thus, they give the top priority to select
instances of better performance from the cloud. In compar-
ison with performance-oriented tenants with sufficient bud-
get, budget-constrained ones prefer to make a compromise
between the instance performance and the limited budget.
For budget-constrained tenants and tenants who are unaware
of instance performance variations, we provide the normal
strategy, while we design three other types of strategies for
performance-oriented tenants, namely moderate, greedy and
collaborative.

Note that each tenant can only rent M instances at most.
We suppose a tenant τi will request qi (qi ≤M) instances
from the cloud and propose four strategies for τi.

i) Normal strategy Ψn is not targeted to solve the instance
seeking problem. However, it is widely used by the most



of the tenants who are not concerned with performance
variations. They request the number of instances according
to their demands and free instances immediately after the
job completes.

ii) Moderate strategy Ψm is a three-step iterative process
to acquire the desired number of better-performing instance:
(1) request for the desired number qi of instances from the
cloud; (2) sort the acquired instances by performance levels
xi; (3) keep the better-performing instances, terminate the
worse ones immediately, and then apply for new instances
from the cloud. Through iterating the procedure for multiple
rounds, the tenant will eventually get the desired number of
better-performing instances.

Algorithm 1 Greedy Algorithm
Require: qi : number of instances will request
Ensure: Si ⊆ B : assigned instances are all better ones

1: Si ← ∅;
2: request num = greedy(qi);
3: while |Si| < qi do
4: wi ← requestInstance(request num);
5: Si ← checkPerformanceLevel(wi, xthres);
6: terminate(wi, free latency)
7: if |Si| ≥ qi then
8: terminate(Si, |Si| − qi, free latency)
9: break;

10: else
11: request num = greedy(qi − |Si|)
12: end if
13: end while
14: return Si

iii) Greedy strategy Ψg requests instances from the cloud
in a greedy way. In this paper, we make a hybrid piecewise
greedy policy according to the desired instance number.

greedy(qi) =


qi + α, 1 ≤ qi ≤ M

4

qi ∗ β, M
4 + 1 ≤ qi ≤ M

2

M, qi ≥ M
2 + 1

where the value of α, β are tunable in an addition and multi-
plication way by the tenant. Algorithm 1 shows how tenants
seek better-performing instances with the greedy strategy.
For each tenant, they will apply the greedy policy according
to their desired instance number firstly. In each iteration,
all the requested instances are put in the set of worse-
performing wi. After checking the performance level in wi,
the better-performing instance will be removed from the wi

and put into the Si. The left worse-performing instances in
wi will be terminated within a free latency. However, the
time spent on the checkPerformanceLevel procedure depends
on the detection techniques. In our implementation, we only
check the hardware information of VM and then sleep for
100 seconds which we define as tenant seeking time. Finally,

it will be decided that how many instances still need to be
applied in the next round. If the number of better-performing
instances is larger than the demand, it will terminate the
extra better instances. However, the tenant could tune the
value of α, β to decrease the number of extra instances.

iv) Collaborative strategy Ψc assumes not all the tenants
are selfish and they could also cooperate. Ψc makes a dif-
ference on the way of tenants terminating the instance. The
price model of cloud data center is charged per hour. Thus,
if the tenant terminate the worse-performing instance at the
end of the first hour rather than immediately, the number
of worse-performing instance (|Bt|) will decrease at time t.
Consequently, the probability of other tenants to acquire the
better instance will increase. The cloud tenants could use
Ψc strategy together with either Ψm or Ψg strategy. Thus,
we have five tenant strategies:

Ψ ={Ψn ,Ψm ,Ψg ,Ψcm, Ψcg}

Both Ψm and Ψg focus on the tenant request strategies,
while Ψc pays attention to the tenant termination strategies.
Thus, to combine the request- and terminate-strategy, we
have two more strategies, Ψcm and Ψcg , based on Ψm and
Ψg respectively.

IV. EVALUATION

A. Simulator

To evaluate the impact of tenant strategies, we devel-
oped our simulator based on the CloudSim[10] which is a
simulation toolkit that enables modeling and simulation of
cloud computing systems based on discrete events. There are
four layers in our model, namely Cloud, Cluster, VM and
Broker. The Cloud layer provides Amazon EC2-like APIs for
tenants to start and to terminate the instances. Cluster layer is
responsible for cluster profiling and scheduling. It collects
the statistical information of each cluster and returns the
cluster in terms of cluster-level allocation policy. VM layer
manages all physical machines within a cluster. It collects
the utilization information (e.g. CPU, memory, disk, etc.)
of each physical machine and filters machines by utilization
information. In Broker layer, we implement five types of
brokers on behalf of tenants with different strategies. Tenant
brokers interact with the cloud through the APIs provided
by Cloud layer.

B. Experiment Setup

We set up a data center with three clusters. The config-
uration of the data center consists of data center, cluster,
VM and host level which are listed in table I. The data
center level configures the maximum instance which a user
can request, price, VM allocation strategy, request and free
latency. For each cluster, we have a total of 1500 instances
each with different host distribution ψ. The number of better-
performing instances of the cluster with ψdom is twice as
much as that of the cluster with ψmin. The data center
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Figure 1. Utilization of better- and worse-performing instance in different clusters

provides tenants with a large VM instance which has 2
CPU cores, 3.7GB memory and 400GB disk. From the host
configurations in table I, it can be seen that both E5430 and
E5507 could host two VMs while E5645 could host three
instances.

Level Notation Semantics(default value)
M the maximum instance(20)

Data c cost in $ per instance per hour(0.3)
Center φ VM allocation strategy (φrand

rand)
Req Latency request latency in seconds(80)
Free Latency free latency in seconds(60)

N total instance in a cluster(1500)
Cluster ψ host distribution for each cluster

({ψdom,ψmaj ,ψmin})
VM <CPU,Mem,Disk> VM instance with 2 cores,

3.7GB memory and 400GB disk
E5430 4 CPU cores,8GB memory,1TB disk

Host E5507 4 CPU cores,8GB memory,1TB disk
E5645 6 CPU cores,16GB memory,1.6TB disk

Table I
DATA CENTER CONFIGURATION

C. Performance Metrics

Two metrics are defined for instance seeking problem:
seeking latency and seeking cost. Seeking latency is the time
which a tenant spends on solving the instance seeking prob-
lem whilst the seeking cost is the cost of requesting extra
instances during the seeking latency. Usually, the running
time of extra instances is less than one hour but it is billed
as a full hour. From the perspective of cloud, we observe
the utilization of better instances and worse instances in each
cluster and also monitor the request throughput, which is the
number of requests processed per unit of time in the cloud,
to ensure the load balance in the cloud.

D. Impact of Instance Seeking Strategy

In this part, we keep the default VM resource allocation
φrandrand unchanged and vary instance seeking strategies Ψ.
We simulate a group of 1000 tenants to request the instances
from the cloud with a learning process, in which the first 200
tenants are unaware of seeking better instances so that they

adopt Ψn strategy. Afterwards, we define three tenant loads:
(1) Load75, (2) Load50, (3) Load25. The number is the
percentage of performance-oriented tenants. Take Load75
for example, first 200 tenants use strategy Ψn whilst 75% of
the following 800 tenants (that is 600) use one of the other
strategies to seek better instances. The request arrival rate of
tenants λ is 60 which means there is a request about every
minute.

1) Resource Utilization: We run three kinds of loads with
varying the Ψ. The utilization of both better- and worse-
performing instances in three clusters are shown in the
Fig. 1. Be noted that B-Load25 means the utilization of
Better-performing instances with Load25 while W means the
utilization of worse-performing instances. Several findings
can be made from Fig. 1:

i) During the learning process (about first 3 hours), the
increase rates of both B and W are similar in all three
clusters since the first 200 tenants use Ψn. After that,
with following tenants starting to seek better instances, the
increase rate of W utilization has been significantly reduced
while that of B keeps the stable growth. Also, the heavier
the load is, the higher the utilization of B is but the lower
the utilization of W is.

ii) From Fig. 1 (c), the utilization of B in the cluster
with the distribution of ψmin fluctuates at as high as 100%
under the Load75, which means almost all the requests for
better instances dispatched to the cluster ψmin will no longer
get better instances. The status of a cluster with depletion
of all better instances is defined as exhaustive. Fig. 1 (a)
and (b) show that the utilization of B in the clusters ψdom

and ψmaj are not much affected by the heavier workloads
while the cluster ψmin is exhaustive. When the cluster is in
exhaustive status, tenants will spend more time on seeking
better instances. Compared with the clusters ψdom and ψmaj ,
the whole completion time (shown in x-axis) of all tenants
requests rises 66.67% in the ψmin cluster. However, for
cloud providers, the cluster in exhaustive status still has
a large proportion of worse-performing instances available.
The scheduler will keep dispatching requests to this cluster
which results in a sudden request growth. We will discuss



the request throughput in the next subsection.
iii) Fig. 1 (d) shows the utilization in the cluster ψmin

with tenants using Ψg strategy. We set α = 3 and β = 2
in the greedy policy. It is clearly seen that the cluster is
not exhaustive with the utilization of B reaching at about
80%. Hence, from a tenant’s point of view, the strategy
Ψg outperforms Ψm under the same host distribution ψ,
especially in the cluster which has a minority of better
instances.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ψmin − Load75

Time(s)

U
ti
liz

a
ti
o

n

 

 

Ψm −B

Ψm −W

Ψg −B

Ψg −W

Ψcm −B

Ψcm −W

Ψcg −B

Ψcg −W

Figure 2. Utilization of ψmin cluster with varying seeking strategy

To further exploit the impact of tenant strategies Ψ, we run
the heaviest Load75 by varying Ψ. Fig. 2 shows the results
in the cluster ψmin. It is demonstrated that only tenants
with Ψm strategy make the cluster ψmin exhaustive quickly
while those with other three strategies could finish the
simulation in time. Tenants are in favor of that their requests
are processed in the cluster with the low utilization of B,
which increases the probability to acquire better instances.
From this point, the collaborative strategies Ψcm and Ψcg

outperforms the strategies without collaboration. Ψcg shows
the similar utilization of B with Ψg but gives rise to high
utilization of W which is almost twice that of strategies Ψg .
This is because collaborative strategies do not free worse-
performing instances immediately.

2) Seeking latency and cost: Fig. 3 depicts the cumulative
distribution of the seeking latency and cost for all tenants
in the cluster ψmin. However, since the Load75 with Ψm

strategy brings about exhaustion to the cluster, we select the
Load50 with Ψm strategy to compare with other strategies.
From Fig. 3, we can see although the strategy Ψm with less
heavy workload (Load50), both of its latency and cost are the
highest. For the seeking latency, the collaborative strategies
Ψcm and Ψcg are better than those which are selfish. Also,
the greedy-based strategies (Ψcg , Ψg) outperforms moderate
ones (Ψcm, Ψm). Except tenants with Ψm, almost all of
them could solve the instance seeking problem within half
an hour. As for the seeking cost, we find similar trends to
the seeking latency. The seeking cost of about 90% tenants

is less than 10 dollars, which makes it affordable for both
individuals and SMEs. Through the Fig. 3, we find Ψcg is the
best strategy for tenants in terms of both seeking latency and
cost. Also, we find the collaboration among tenants could
save a lot of time and money on seeking better-performing
instances.
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Figure 3. Seeking (a) latency and (b) cost in ψmin cluster

E. Impact of Resource Allocation
1) Request Throughput: cloud data center should monitor

the status of each cluster for the purpose of management
and load balance. Hence, it would not be difficult for cloud
providers to detect the sudden increase of tenants’ requests.
Fig 4 shows the request throughput in ψmin cluster with
Load75. We keep the instance seeking strategies Ψcg un-
changed to observe the impact of different allocation strate-
gies φclusterhost . Normally, for every tenant, they only need to
submit one request to acquire the desired number of VMs.
In the cloud, there are four types of events in each tenant’s
life cycle: VM Create, VM Create ACK, VM Destroy and
VM Destroy ACK. Hence, no matter how φclusterhost changes,
the expected request throughput of all tenants using normal
strategy should be 4 times the tenant request rate which
is 4 requests/minute. However, with the extra requests for
seeking better instances, the request throughput increases
dramatically as is shown in the Fig. 4:

i) The growth rate of throughput is greatly different
with the change of φclusterhost . Compared with the expected
request throughput, φlffmcf allocation results in the most
drastically increase as much as 42 times while even the
minimal increase brought by φrrrand is almost 2 times what
the expected.

ii) For the same cluster level allocation, the throughput
of random-based host level allocation ( φclusterrand ) is smaller
than that of mcf-based (φclustermcf ). Since E5645 has two
more CPU cores than the other two types, the mcf-based
host allocation φclustermcf will firstly assign the E5645 to
tenants. Thus, even tenants with normal strategy Ψn in
the learning process could get better-performing instances
in a first-come-first-served manner until all E5645 servers
are consumed two more CPU cores. The number of better
cores drops significantly in the learning process under mcf-
based allocations, which greatly decreases the probability of
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Figure 4. Throughputs of ψmin cluster with varying allocation strategy

following tenants to acquire better instances. From Fig. 4
(a) and (b), with different host level allocations, the mean
throughput of φrandmcf is 6 times as high as that of φrandrand.

iii) For the same host level allocation, the throughput of
round-robin (φrrhost) is slightly smaller than that of random-
based (φrandhost ) but dramatically smaller than that of llf-based
(φllfhost). The round-robin is more fair than random-based
allocation to each cluster. Since we only simulate 3 clusters,
it is reasonable to understand the similar performances of
round-robin and random allocations. However, the essence
of llf-based allocation is to keep the load balance among
different clusters. It always selects the cluster with the lowest
utilization first. Thus, the cluster with ψmin distribution is
the most likely to be selected, which makes the cluster
exhaustive quickly.
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Figure 5. Impact of allocation strategies on seeking cost in ψmin cluster

2) Seeking latency and cost: Fig. 5 shows the seeking
cost of tenants with Ψcg to find better instances under the
Load75. The seeking latency shows the similar trends and
we will not shed light on it due to space limit. We can see
that the seeking cost rises rapidly with a growing number
of tenants’ seeking instances. From Fig. 5 (a), the seeking
cost under the φrandrand and φrrrand is relatively stable at about
20$ while that under φrandmcf and φrrmcf rises to around 100$
after about 260th tenants. For the last about 50 tenants under

φrandmcf , the seeking cost can be as high as around 300$. Also,
it is interesting to observe a sharp-increase-then-decrease-
gradual loop in the cost of tenants with φrandmcf and φrrmcf . It
is also clearly seen from Fig 5 (b) that the costs of φlffrand and
φlffmcf are much higher than that in Fig 5 (a). The average
seeking cost of φlffmcf , which is also the highest, is 31 times
that of φrandrand. Hence, we can see that the seeking cost of
tenants is significantly affected by the resource allocation
strategy. The tenant will be daunted by the high seeking
cost and long seeking latency.

V. DISCUSSION

Our study serves as a first step towards better understand-
ing the impact of instance seeking strategies in public clouds.
The results of simulation from this study provide insights
that are valuable to both cloud tenants and providers. In this
section, we will discuss the implications of our findings from
the perspectives of both tenants and providers.

Cloud tenant: Cloud tenants always purse the high price-
performance ratio. Given the same instance type, the price is
the same for all tenants but the instance performance varies
a lot. Consequently, it is natural for tenants to seek better
instances by different strategies. Intuitively, we thought that
moderate strategy Ψm could help tenants save more time
and money. Our results, nevertheless, show that compared
with Ψm, greedy strategy Ψg is less likely to drain of better-
performing instances in the cluster under the same workload.
The reason for this is, at any given time t, Ψg strategy could
improve the probability to acquire better instances through
the greedy policy. Therefore, tenants with Ψg strategy could
solve the instance seeking problem with less time and cost.
However, tenants occupying more resources in a greedy
way significantly influence other tenants’ probabilities to
obtain better-performing instances. Our results also show
that the collaborative greedy-based strategy Ψcg is the best
choice for tenants in terms of both seeking latency and cost.
Nevertheless, it is difficult to persuade tenants to collaborate
with each other. Thus, most of the tenants are more likely
to adopt moderate and greedy strategies, which may make
cluster exhaustive quickly, especially for the cluster with a
minority of better instances.

Another interesting finding is shown in the Fig. 6. If all
the tenants use normal strategy Ψn, the probability to acquire
a better-performing instance is the highest at any time.
The collaborative-based strategies improve the probability
greatly, whilst the greedy strategy makes the highest adverse
effects on the following tenants who request later. Thus,
our results give a good motivation for tenants to adopt
collaborative strategies.

Cloud provider: Provisioning instances of homogeneous
performance from heterogeneous hardware remains a tough
problem. Other phenomena like CPU, disk and network
contention also result in vast performance variations within
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instances of the same type. We argue that this problem will
be long-lasting and tenants will keep seeking better instances
with different strategies. However, tenants’ seeking instances
leads to the quick growth of requests and low utilization
for worse-performing instances. How would cloud providers
react to tenants’ seeking behaviors? It largely depends on
their profits. The tenants pay the same price for either better-
or worse-performing instances. Thus, if the operation cost
of the latest hardware is smaller than that of the old ones,
they are pleased to see that more latest hardware are found
and used by tenants. If not, they, however, may change their
VM allocation strategies or the price scheme to discourage
the tenants’ seeking behaviors, thereby maximizing their
profits. As can be seen from Fig. 5, the seeking cost and
latency largely depend on the VM allocation strategies.
Cloud providers could easily control the situation by ad-
justing the allocation policies. Nevertheless, this also harms
the fairness among cloud tenants. The optimal solution is
to introduce more efficient price schema or to provide a
more homogeneous platform. For example, they can give the
discount for instances hosted by old hardware or even they
can give tenants the right to choose the underlying hardware.

VI. CONCLUSION

In this paper, we present a cloud and a tenant model to
simulate the process of tenants seeking the better-performing
instances in the cloud. Six cloud resource allocation strate-
gies and five instance seeking strategies are designed and
evaluated based on the real job data from Google cluster
traces. Through the simulation, we observe the cluster ex-
haustion and significant request growth in the cloud. We
find that the greedy strategy outperforms the moderate one
while collaborative-based strategies help tenants save more
time and budget. Also, resources allocation strategies in the
cloud exert a strong influence on the effectiveness of seeking
strategies. The cloud provider could discourage the tenants’
seeking behaviors with changing resource allocation strate-
gies. Finally, we discuss the implications of our findings
from the perspectives of both tenants and providers. In the
future, we will introduce the game theory into our analysis

and we may also design a tenant behavior aware resource
allocation policy for heterogeneous computing environment.
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