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ABSTRACT
We present the Personalized News (PEN) recommender sys-
tems framework, currently in use by a newspaper website to
evaluate various algorithms for news recommendations. We
briefly describe its system architecture and related compo-
nents. We show how a researcher can easily evaluate differ-
ent algorithms thanks to a web-based interface. Finally, we
discuss important factors to take into account when conduct-
ing online evaluation, and report on our experience when
deploying recommendations on a live-traffic website.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering

Keywords
recommender system, news, online evaluation

1. INTRODUCTION
Researchers in the recommender systems community have
developed open-source libraries which try to bring a growing
number of recommender algorithms under one roof [6, 5, 1,
13, 15, 19]. Most of these libraries are designed for research
purposes to conduct offline evaluations and only a few target
online evaluations on production websites [19, 15].

In this paper, we are interested in online evaluation of state-
of-the-art algorithms for news recommendations. Unfortu-
nately, it is not possible to use current open-source platforms
because they are not tailored to the specific needs of news
recommendations and thus are difficult to adapt to the news
domain [7].

The most important challenge of news recommendation is
that news items are evolving very quickly. Stories and topics
emerge and vanish rapidly and outdated stories are no longer
interesting. Hence the recommender system must take into
account these changes.
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To this end, we present the PEN recsys framework for online
evaluation of news recommender systems. PEN recsys is
designed with 4 criteria in mind. First, it has to be fast.
The framework must provide real-time recommendations as
soon as possible, without making the users wait. Second,
it must be reliable. It is not acceptable for a newspaper
website to suffer from crashes. Third, a flexible design is
important. It should be easy to add new components or
extend recommender systems. Finally, it must be scalable.
News websites are subject to unpredictable visit peaks and
the framework must be able to handle them by delivering
recommendations on time and without problems.

Implementing a recommender system for production web-
sites is challenging [14]. In the following, we describe our
framework and explain our design choices. We discuss im-
portant factors to take into account when conducting online
evaluation and report on our experience when deploying rec-
ommendations with a live-traffic website. The PEN recsys
framework is currently in use by the news website swiss-
info.ch1 for evaluating various recommender systems.

2. RELATED WORK
Over the last few years, several libraries for recommenda-
tions have been developed. In the following, we present the
ones that are still actively under development and free/open
source.

MyMediaLite [6] is an actively maintained C# library. It
contains simple baseline techniques such as slope-one or ran-
dom/most popular item, several variants of k-nearest neigh-
bour models and some matrix factorization methods. Un-
fortunately, MyMediaLite is not thread-safe, and thus is not
suitable for concurrent access required in a highly-dynamic
environment such as the news domain.

Apache Mahout [1] is a distributed machine learning library
in Java. Although it is not specifically developed for rec-
ommendations, it contains some collaborative filtering algo-
rithms. This library implements the Map/Reduce paradigm
and is tailored for distributed systems. As we discuss in Sec-
tion 6.2, standard news websites do not need such complex
distributed framework because it brings an heavy overhead
when deployed on a single server.

1www.swissinfo.ch
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LensKit [5] is a Java-based library developed for offline re-
search environments. It focuses on collaborative filtering
techniques.

GraphLab [13] is a C++ collection of machine learning toolk-
its on graphs. One toolkit is dedicated to collaborative fil-
tering with implementations of Alternating Least Squares,
Stochastic Gradient Descent and Singular Value Decompo-
sition.

easyrec [15] is a web service in Java generating recommen-
dations through an API. easyrec is designed for online eval-
uation. However, it is not clear which algorithms are avail-
able. Recently, easyrec reached the final stage of its research
project and it is also not clear whether this engine will stay
free and open source or not.

reclab [19] provides a Java API to build recommender mod-
els. It does not come with any implemented algorithms,
and it is designed to run together with a cloud service pro-
vided by the developers. Unfortunately, this library seems
no longer active.

These libraries are all useful for research purposes but can-
not be used on production websites due to restrictions on
licenses for commercial usages. In addition, most of them
are designed for offline evaluation.

Specific to news recommendations, the literature describing
actual implementation of algorithms on production websites
is scarce. Das et al. [4] give a short description of the system
components for generating recommendations on the live sys-
tem Google News. Li et al. [11] describe the SCENE frame-
work aiming at news recommendations, but they evaluate
their algorithm offline. Tavakolifard et al. [18] explain the
implementation of a recommender engine for a mobile news
application. Finally, Kirchenbaum et al. [10] conducted an
online evaluation of several recommender systems for news
articles.

In this work, we focus on describing a general framework
to evaluate recommender algorithms for news in an online
environment. We report on our experience in deploying such
framework.

3. SYSTEM ARCHITECTURE
The PEN recsys framework is designed around 6 main com-
ponents. Figure 1 gives a brief overview of these components
and their interactions.

The dispatcher randomly assigns a recommender system to
a user, performing A/B or multivariate testing. The recsys
1, 2, 3, ..., k are the different algorithms to evaluate (See Sec-
tion 4 for more details). Some algorithms rely on click statis-
tics. The component statistics gathers click statistics about
the stories. Other recommender systems need the content
of news articles, or more specifically its topic distribution.

The component topic model is in charge of keeping the topic
model up-to-date. We use the Latent Dirichlet Allocation
(LDA) method as probabilistic topic model [3, 9]. Building a
topic model takes time and resources. We implemented the
offline LDA [3] in which we build the topic model at regular
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Figure 1: System architecture and components

intervals and based on the number of new items. This option
is useful in the case of a small corpus of news items or when
the number of new items per day is small. In the case of a
larger corpus or when the number of new items per day is
more important, we also implemented an online version [9]
which is useful for news items arriving in a stream.

Candidate items for recommendations are provided by the
candidates component. This component periodically queries
the news website for fresh, unseen items and keeps track of
the clicked ones. Let F be the set of fresh items and P
the set of clicked items such that F ∩ P = ∅. We define
the candidate set C as C = F ∪ P. It thus contains fresh
items but also old ones. It is possible to control the size of
C thanks to two parameters: the size of the fresh set F and
the size of the clicked set P. The clicked set contains the
latest |P| clicked news items.

The performance component generates periodically perfor-
mance reports of the algorithms under evaluation. The
database stores the clicks, statistics and performance reports
for offline analysis. It provides a simple abstraction so that
algorithms can access useful information such as the user
history, preference or item statistics.

Finally, the backup component periodically triggers backup
to the hard disk of the various states of the system such as
the current topic model and click statistics. This is useful if
we want to roll back to a previous set of parameters.



It is important to deliver recommendations to the user as
soon as possible. With that in mind, the platform is designed
to reduce this latency to the minimum. Hence tasks that are
not essential for generating recommendations are run in the
background. For instance, the database is known to be a
bottleneck. Thus statistics are first cached in memory and
later stored in the database when resources are available.

When a reader clicks on a news item, the website sends to
the PEN recsys a token id representing the reader and the
respective item id. Note that the token id can be the reader
id when the reader logs into the website or a completely
anonymized string representing the current session of a non-
logged reader. In our case, the website sends the latter.

The PEN recsys framework follows the software-as-a-service
paradigm and is implemented using Java EE technologies.
It scales very well since each component can be physically
located on different sites.

4. RECOMMENDER SYSTEMS
The framework contains various algorithms such as the 4
versions of context-tree recommender systems [7], a simple
collaborative filtering [17], a content-based approach [12],
most popular articles, and random articles. We plan to im-
plement more algorithms in the future.

To add a new algorithm, we just need to implement a single
method getRecommendations. If required, the algorithm can
have access to the click statistics, fresh news stories, or topic
model via the specific components described in Section 3.

5. INTERFACES
The PEN recsys framework has a web-based control panel
(Fig. 2) allowing the researcher to configure the general be-
haviour of the framework, enable/disable an algorithm or
fine tune its parameters. In Figure 3, some recommender
systems are enabled for an online multivariate evaluation
(random articles, most popular recommender and VMM rec-
ommender [7]), and the specific options of the VMM recom-
mender are displayed.

The researcher can also check the performance of the enabled
algorithms. Figure 4 shows the performance panel with 3
metrics: success@k, mean average precision and the average
clicks per visit.

6. DISCUSSION
Since July 2013, we are evaluating various recommender sys-
tems with live traffic on the news website swissinfo.ch. swiss-
info.ch is a 10-language news website owned by the Swiss
broadcasting corporation. Its content is produced specifi-
cally for an international audience with interests in Switzer-
land. swissinfo.ch gives priority to in-depth information on
politics, society, business, culture and science & technology.
It has about 1.7 million clicks per month.

Unfortunately at the time of writing, our evaluation is still
being conducted and it is too soon to account on our results.
However, we discuss here important factors that influence
directly the recommendations, and report on our experience
in developing and deploying the PEN recsys framework.

Figure 2: screenshot of the main panel

Figure 3: screenshot of the setting panel (partial)

Figure 4: screenshot of the performance panel
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Figure 5: Two possible solutions to deliver news recommendations.

6.1 Evaluation
For offline settings, there are many ways to evaluate a rec-
ommender system [16]. In our previous works [8, 7], we mea-
sured the performance with respect to accuracy and novelty.
For accuracy, we considered the Success@k and the mean
average precision. Novelty is defined by the ratio of unseen
and recommended items over the recommended items. In
the context of news recommendations, novelty is essential
because it exposes the readers to relevant items that she
would not have seen by herself.

An offline evaluation is very artificial because it is not pos-
sible to assess the impact of recommendations on real users.
In an online environment, the evaluation are motivated by
different factors, and the way to measure the performance
of a recommender system is different.

Most of the time, a news website is interested in generating
revenues. These revenues come from either advertisements
(ads) displayed on the website or paid articles (or some-
times both). In general for online advertisement, there are
two revenue methods: pay per impression or pay per clicks.
With the former, the news website receives monetary com-
pensation for displaying ads while with the latter every time
a user clicks on the ad.

In all cases, news website are incentivized in increasing page
views. So one way to evaluate the performance of a rec-
ommender system is to look at the generated revenue from
readers using this system.

swissinfo.ch is owned by a public non-profit organisation and
financed by the Swiss government. It creates high-quality
contents with no advertisements, and they do not have any
subscription schemes or paid articles. Their motivation for
implementing a recommender system is to bring an added-
value to the readers but also to increase the number of clicks
per visit.

For online settings, we measure the click rate on recom-
mended items. More precisely, we compare simultaneously
the average clicks per visit over the different algorithms.

In the PEN recsys framework, we decided to have both the
offline and online performances such that we can study how
a recommender algorithm behaves in both settings.

Previously, we conducted an offline evaluation of the al-
gorithms [8, 7]. This allowed us to understand how the
parameters influence the performance of the various algo-
rithms, and pre-select the best parameters for the online
evaluation. Since July 2013, we are evaluating various rec-
ommender systems and at the time of writing the evaluation
is still on-going. Although it is too early to draw any conclu-
sion, preliminary results show an increase of at least 20% in
average clicks per visit when recommendations are displayed
against no recommendations.

6.2 Real-time Recommendation and Latency
In a highly-dynamic domain such as news, providing real-
time recommendations is crucial and challenging. Most of
the standard recommender algorithms cannot be applied di-
rectly to the news domain [2, 8]. They are designed for
product recommendations where updating a model once a
day or week is acceptable. However, in our case the mod-
els need to be reactive and updated on-the-fly as fresh news
stories come in.

We paid careful attention to optimize the PEN recsys frame-
work in such a way that it generates recommendations very
quickly. From a server-side perspective, it is important to
remove any system bottleneck. For instance, storing infor-
mation into a database is a known bottleneck. It is thus
better to use caching methods which allow to keep informa-
tion in memory first, and save them in a database when re-
sources are available later. Moreover, the PEN recsys frame-
work relies on threads and concurrent data structures. This
allows to generate recommendations simultaneously to mul-
tiple readers.

A näıve solution to deliver a news content to the user is to
use a synchronous approach. In Figure 5(a), the user clicks
on a news item. Then, the swissinfo.ch’s server queries the
PEN recsys server. The PEN recsys generates recommenda-
tions and sends them back to the swissinfo’s server, which
encapsulates them in the web page. The swissinfo.ch’s server
sends the page with the recommendations back to the user.
As a result, the user has to wait to see the content of the



page until the recommendations are ready. This approach
is not efficient.

We choose an asynchronous solution depicted in Figure 5(b).
When a user clicks on a news item, swissinfo.ch’s server
sends the content of the page to the user’s browser and at the
same time queries the PEN recsys server. At that moment,
the PEN recsys server generates recommendations and sends
them back to the swissinfo.ch’s server. The browser makes
an asynchronous call, i.e. with Ajax technology, to the swiss-
info.ch’s server in order to fetch these recommendations.
swissinfo.ch forwards the recommendations to the browser
as soon as they are ready. If they are ready before the
asynchronous call, the swissinfo.ch’s server stores them tem-
porarily. The advantage of this approach is that the original
content of the page is not blocked while the recommenda-
tions are generated.

swissinfo.ch had another requirement: deliver recommenda-
tions within 1 second. When this threshold expires, no rec-
ommendations are displayed. So far, we never witnessed
such behaviour.

For our online evaluation, the PEN recsys framework is run-
ning on a standard workstation with a dual-core CPU @
2.6Ghz and 4GB of RAM. At the time of writing, the cur-
rent memory usage is 48% with a CPU load of 51%. It han-
dles visit peaks smoothly and recommendations are always
delivered on time in less than 30ms (including connection
overhead).

Consequently, we believe that standard news websites do not
need an heavy system such as [1] but special cares must be
taken by the researcher when designing and implementing
the system.

6.3 Presentation
A recommender system is a small piece of a bigger and com-
plex environment. In our case, we have little to no control
over the other elements of the environment such as the pre-
sentation layer.

swissinfo.ch’s website has two types of news items: stories
and tickers. The former are in-depth news articles written
by swissinfo.ch’s journalists. The editor-in-chief selects a
topic of the day and the journalists produce relevant articles
about the selected topic. The articles are translated in the
10 languages and modified to fit cultural backgrounds and
differences. Figure 6 shows a screenshot of one story.

The second kind of items are tickers. Tickers are unedited
short news items coming from press agencies. The number
of tickers per day is very large, while the number of stories
is significantly smaller.

The web page is split into several areas, sketched in Figure 8.
The header has the menu buttons to browse the website and
jump to different sections and topics, while the footer con-
tains information about swissinfo.ch, links to social media
sites, links to swissinfo.ch mobile applications and legal no-
tices.

Figure 6: a swissinfo.ch’s story of average length
(2758 characters)



Figure 7: swissinfo.ch’s dynamic recommendation
box

Below the header, the title of the news story is displayed,
then follows the content with one relevant image.

Recommendations generated by the PEN recsys framework
are displayed in the dynamic recommendations box. The
original design of the page limits to three recommended
items due to aesthetic constraints (see Fig. 7). We believe
that three recommendations restrain the user’s choice. We
do not know what is the optimal number of recommenda-
tions, but we plan to investigate this in the future.

Most of the news stories are very long and do not fit on the
displayed area of the screen. swissinfo.ch has a sticky menu
that does not disappear while scrolling down the page. It
allows a quick navigation inside the current page. This menu
contains a list of links pointing to parts of the news content,
but also to the dynamic recommendations box (Fig. 7).

The author of a story can select related stories and place
them in the manual recommendations box situated below
the dynamic recommendations. We discuss the differences
between manual and dynamic recommendations in the next
Section.

Finally, users can submit feedbacks about the stories and
they will appear just above the footer in the users comments
area.

The layout of the page is extremely important. Since stories
are rather long (2705 characters on average), the placement
of recommendations on the page plays an important role
in drawing users’ attention. Because recommendations are
at the bottom of the story, the increase in average clicks
per visit (about 20%) is smaller than expected. Although
there is a direct link in the sticky menu pointing to the
recommendations, users need to scroll down the page to see
the recommendation box, and we believe that users tend not
to read the articles down to the end.

At the time of writing, recommendations are only available
for stories and not tickers. It is planned to extend them
to tickers as well. We will also experiment with different
layouts by changing the position of the recommendation box
either on the left, right or just below the title of the story.

6.4 Manual and Dynamic Recommendations
Manual recommendations are constructed by the author of
the current news item. They take into account only the
current article, but not the history and preferences of the
reader. It is desirable to have an automatic way to create
more personalized recommendations.

HEADER

NEWS STORY TITLE

FOOTER

DYNAMIC RECOMMENDATIONS

RELEVANT
IMAGE

STICKY
MENU

USERS COMMENTS

MANUAL RECOMMENDATIONS

NEWS CONTENT

Figure 8: swissinfo.ch’s page layout. Dynamic (blue-
dashed) and manual (blue-dotted) recommendations
are at the bottom of the page.

When generating dynamic recommendations, the system can
take into account the set of manual recommendations in or-
der to refine its recommendations.

We believe that manual recommendations can be replaced
by a simple content-based recommender or a content re-
trieval system that do not rely on user’s preferences. How-
ever, dynamic recommendations are more challenging to de-
sign and implement.

Manual recommendations might attract more users than
personalized recommendations. Researchers should take into
consideration the fact that one might drives more click than
the other. However, it does not mean that the recommenda-
tions are bad, but that the interest of the users are different.
To study this issue, it would be interesting to look at the
click ratio of manual versus the click ratio of dynamic rec-
ommendations.

7. CONCLUSION AND FUTURE WORK
We presented the PEN recsys framework which aims at help-
ing researchers and practitioners to conduct online evalua-
tion of algorithms for news recommendations. The PEN rec-
sys framework is fast, reliable, flexible and scalable. With
the help of a simple control interface, it is possible to fine
tune each recommender system and have a direct feedback
of their performance.

Since July 2013, the PEN recsys framework is currently used
by a news website for online evaluations of various recom-
mender algorithms. At the time of writing, it is too early to
draw any conclusion regarding performances of the different
algorithms. However, we discussed issues that arose while
conduction our online evaluation.



During our design, implementation and evaluation, a num-
ber of questions arose. We list them here as future direction
of research, and we hope to answer some of them at the end
of our online evaluation.

• Does a recommender algorithm behave the same in an
offline setting than in a online setting?

• Which algorithm brings the best performance?

• What is the best tradeoff between fresh, popular and
standard news items for the candidate set?

• How to make the recommendations more attractive to
the users?

• What is the best placement for the recommendations?

• What is the optimal number of recommendations (3,
5, 10, ...)?

• What is the click ratio of manual vs dynamic recom-
mendations?

• What is the optimal scheme to generate revenue?
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