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An exact pulse for the parametrically forced nonlinear Schrödinger equation !NLS" is isolated. The equation
governs wave envelope propagation in dispersion-managed fiber lines with positive residual dispersion. The
pulse is obtained as a ground state of an averaged variational principle associated with the equation governing
pulse dynamics. The solutions of the averaged and original equations are shown to stay close for a sufficiently
long time. A properly adjusted pulse will therefore exhibit nearly periodic behavior in the time interval of
validity of the averaging procedure. Furthermore, we show that periodic variation of dispersion can stabilize
spatial solitons in a Kerr medium and one-dimensional solitons in the NLS with quintic nonlinearity. The
results are confirmed by numerical simulations.

PACS number!s": 42.65.Tg, 05.45.Yv

I. INTRODUCTION

Recent technological advances in material science have
afforded considerable freedom in the design of optical mate-
rials. In particular, an optical medium can be designed to
have variable group velocity dispersion, nonlinearity, and
polarization #1$. All of these parameters can be varied on
different scales by using appropriate manufacturing pro-
cesses. It is especially convenient to produce materials/
systems having physical parameters varying periodically, as
this amounts to a repetitive manufacturing process. The evo-
lution equations guiding the propagation of electromagnetic
pulses !or their envelopes" in such systems are nonlinear
evolution equations with periodically varying coefficients.
Although such systems are frequently encountered in appli-
cations, there are few general techniques for analyzing pulse
dynamics in parametrically forced systems.
The clearest realization of this technology can be found in

the field of fiber-optic communication, namely, in the so-
called dispersion-managed !DM" optical data transmission
that was proposed in 1980 #2$. The simplest optical-pulse
equalizing system consists of a transmission fiber and an
equalizer fiber with the opposite dispersion. The periodic in-
corporation of a compensating fiber reduces !or even elimi-
nates" the total dispersion of the fiber spans. In the linear
regime, the compensation of dispersion aims to prevent dis-
persive broadening of the pulse. In the nonlinear regime, an
additional advantage is that the impact of four-wave mixing
on a signal transmission is substantially suppressed due to

the reduction of the efficiency of phase matching. The prac-
tical achievements of this approach have stimulated further
study of nonlinear dynamics in media with varying coeffi-
cients.
In spite of the practical advances in the realization of such

systems, some basic features of a DM signal are not fully
understood. In this article, we show the existence and stabil-
ity of the DM soliton in one important special case !positive
residual dispersion". In the case of vanishing residual disper-
sion, we verify some nontrivial conditions for stability, one
of which is the boundedness from below of the Hamiltonian
functional. It turns out to be bounded entirely due to a subtle
smoothing effect resulting from the variable dispersion pa-
rameter. Indeed, the large rapid variation of dispersion makes
the pulse undergo rapid oscillations, which smooth out the
peaks that could cause instability.
Having understood and properly formulated this effect,

which one might call dispersive smoothing, we then show
that in some other systems of practical importance stable
ground states can be created.

II. DISPERSION-MANAGED SOLITON AS A GROUND
STATE OF THE AVERAGED VARIATIONAL

PRINCIPLE

We start from the wave envelope equation, derived from
the Maxwell equations, guiding the propagation of electro-
magnetic pulses in optical fibers. We show that the averaged
equation possesses a ground state minimizing an averaged
action functional. The corresponding solutions of the original
equation are constructed from this ground state and turn out
to be nearly periodic for sufficiently long times !while the
averaging procedure remains valid".
After nondimensionalizing and rescaling in the strong dis-
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persion management regime the wave envelope propagation
equation takes the form !see, e.g., #3$"

iuz!d!z "u%%!&! !u!2u!'u%%""0,

where u is the complex amplitude of the electric field, z is the
propagation distance, % is the retarded time, d(z!1)"d(z)
is the mean-zero component of the group velocity dispersion,
and &(d) is the residual dispersion. The & smallness of the
mean dispersion corresponds to the so-called nonweak dis-
persion management regime. We first derive the slowly vary-
ing Hamiltonian and introduce the averaged Hamiltonian #4$.
The above equation possesses a Hamiltonian functional

similar to that of the nonlinear Schrödinger equation !NLS"
#4$

H""
#*

!*#d!z "!u%!2!&$ '!u%!2#
1
2 !u!4% &d% .

Solving the unperturbed equation !with &"0), we obtain
u(% ,z)"T(z)u(% ,0), where T(z) is the fundamental solution
operator of iuz!d(z)u%%"0.
The family of unitary operators T(z) is periodic T(z

!1)"T(z) since (d(z))"0. Using the solution of the linear
system according to the method of variation of constants, we
introduce a canonical transformation u(z ,%)"T(z)v(z ,%).
The new Hamiltonian takes the form

H"&"
#*

!*$ '!v%!2#
1
2 !T!z "v!4% d%

with the corresponding Euler-Lagrange equation

ivz!&'v%%!&T#1!z "„!T!z "v!2T!z "v…"0. !1"

Now we turn to the averaged variational principle

(H)"&"
#*

!*"
0

1$ '!v%!2#
1
2 !T!z "v!4% d%dz

with the corresponding averaged equation, previously de-
rived in #4$,

ivz!&'v%%!&"
0

1
T#1!z "„!T!z "v!2T!z "v…dz"0. !2"

The solutions of the averaged equation are close to the solu-
tions of the original equation in the following sense. In the
interval 0+z+C&#1, there exists a solution of the averaged
equation !2" that has an algebraic decay in Fourier space,

"
#*

!*

!v̂!z ,k "!2!1!k2"s+C if "
#*

!*

!v̂!0,k "!2!1!k2"s+C ,

where v̂(z ,k) is the Fourier transform of v(z ,%).
Furthermore, the solution ṽ(z ,%) of the full equation !1",

with the same initial data ṽ(0,%)"v(0,%), is close to the
solution of the averaged equation, in the sense that

"
#*

!*

!v̂!z ,k "# v̂̃!z ,k "!2!1!k2"s#3dk+C&

for 0+z+C&#1. Establishing these estimates requires a
careful study of the averaging procedure developed in #5$,
and by one of the authors in #6$. The details of the averaging
procedure will appear elsewhere #7$.
Below we show that the averaged equation possesses a

family of ground state solutions, which together with the
averaging result verify the existence of nearly periodic,
stable pulses.
It is easy to see that Eq. !2" is also phase invariant and

therefore has a conserved quantity

P!v """
#*

!*

!v!2 d% .

Introducing another useful functional corresponding to a
Sobolev norm,

G!v """
#*

!*$ !v!2!',v
,%'

2% d% ,

we consider the constrained minimization problem

P-"inf.E!v ""(H)!v ",G!v "$* ,P!v ""-/.

If there is a solution of this problem u(x) then it corresponds
to a standing wave solution of the full averaged equation !2".
Although P- is bounded from below !as we will show later",
it does not guarantee the presence of a minimizer as simple
examples show. Therefore, folowing the standard approach,
we construct a minimizing sequence that converges to a
minimizer.
Note that P-+0, since the sequence of vanishing Gauss-

ians

vk!%""
1

!40k/-
exp$ #

%2

4k %
satisfies the constraint and E(vk)→0 as k→* . This can be
checked by direct calculations using the well known fact that
Gaussian functions are self-similar solutions of the linear
Schrödinger equation.
The idea, now, is to find a minimizing sequence vk

#P(v)"- ,E(vk)→P-$ such that vk→v , which would be a
minimizer satisfying the Euler-Lagrange equation. First, we
must show that #*$P-$0. The first part of the inequality
is required so that a hypothetical minimizer can satisfy the
Euler-Lagrange equation. The second inequality (P-10) is
necessary to avoid minimizing sequences converging to v
20, as in the above example.
By integrating an inequality of Sobolev type over z,

" !T!z "v!4 d%+
1
!3

$ " !Tv%!2 d% % 1/2$ " !Tv!2 d% % 3/2

"
1
!3

$ " !v%!2 d% % 1/2$ " !v!2 d% % 3/2

"
1
!3

-3/2P!v%"
1/2,
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we obtain #8$

E!v "3P!v%"#
1
!3

-3/2P!v%"
1/23#

-3

12 .

Using self-similar solutions of the linear equation corre-
sponding to Gaussian pulses, we show by straightforward
calculations !see the Appendix" that P-$0 for any -%0.
Note that for any minimizing sequence G(vk) is bounded,
for otherwise E(vk) would have infinitely many positive
terms by the above inequality.
Next, we show that for any minimizing sequence vk there

exists a subsequence vkm
and a real number %m such that

wm(%)"v(%#%m) converges to a pulselike periodic solution
v . First, applying Lions’ concentration compactness prin-
ciple !see the Appendix", we find that wm→v so that
P(wm#v)→0 and P(v)"- !the limit satisfies the con-
straint". Since G(wm)$* there exists a subsequence also
denoted wm weakly converging to v .
Following the well known procedure !see #9$" it is pos-

sible to show that G(wm#v)→0, which implies that the
minimizer possesses a weak derivative. Since both function-
als (H)(v) and P(v) are of class C1 then, for some Lagrang-
ian multiplier 4 , the obtained minimizer v weakly satisfies
the Euler-Lagrange equation !2" corresponding to the aver-
aged variational principle, i.e.,

4v!&'v%%!&"
0

1
T#1!z "„!T!z "v!2T!z "v…"0,

thus corresponding to a standing wave solution e#i4zv(%) of
the averaged equation !2".
Using the classical bootstrapping argument, we obtain the

result that the minimizer has superalgebraic decay in Fourier
space,

"
#*

!*

!v̂!k "!2!1!k2"s dk$C for any s ,

and thus it is smooth. Now we can construct a set of initial
data which behave nearly periodically. We take our initial
data v̂(k ,0) close to the ground state solution, which we will
denote by vg(k),

"
#*

!*

!v̂g!k "# v̂!k "!2!1!k2"4 dk$C& ,

and therefore, by the local existence theorem, the corre-
sponding solutions v̂g(k ,z) and v̂(k ,z) of the averaged equa-
tion !2" stay &-close in the same norm. On the other hand, we
can apply the averaging result to conclude that the solutions
v̂(k ,z) and ṽ̂(k ,z) of the averaged !2" and the original !1"
equations stay close for 0+z+C&#1,

"
#*

!*

! ṽ̂!k "# v̂!k "!2!1!k2"dk$C& .

Therefore, a solution initially close to a ground state will stay
near it,

"
#*

!*

! ṽ̂!k ,z "# v̂g!k ,z "!2!1!k2"dk$C& ,

while z+C&#1. Thus, we have shown that an initial pulse
with sufficiently fast decay in Fourier space and close to the
ground state of the averaged variational principle will stay
nearly periodic for z+C&#1.

III. GROUND STATES IN THE CASE OF ZERO
AND NEGATIVE RESIDUAL DISPERSION

In the mean-zero average dispersion case, one does not
expect ground states in the absence of variable dispersion.
The main reason is unboundedness of the Hamiltonian from
below. However, due to the smoothing properties of the lin-
ear Schrödinger equation the Hamiltonian functional is
bounded from below. Formally, this follows from the Stri-
chartz estimate

"
#*

!*"
#*

!*

!u!z ,%"!6 dz d%+C#P!u "$1/3,

where u(z ,t) is the solution of the free Schrödinger equation

iuz!u%%"0.

Indeed,

"
0

1"
#*

!*

!T!z "u!4 dz d%

+"
0

1"
#*

!*

# !T!z "u!2!!T!z "u!6$dz d%

+"
0

1"
#*

!*

!T!z "u!2 dz d%!"
0

1"
#*

!*

!T!z "u!6 dz d%

+P!u "!C#P!u "$1/3,

where we have used the Strichartz estimate and the conser-
vation of power. Therefore the infimum in the constrained
minimization problem

P-"( E!v ""#"
0

1"
#*

!*

!T!z "u!4z% dz ,P!v "$* ,P!v ""-)
is bounded from below. Numerous numerical simulations
showed that there exists a stable pulse in the mean-zero case.
Although we have not been able to establish the presence of
a ground state !it would require constructing a converging
subsequence", we show that the Hamiltonian functional can
be minimized over Gaussian pulses, giving a pulse profile
that exhibits stable behavior. Moreover, in the next section
we use the above smoothing effect to stabilize pulses in fo-
cusing a NLS with critical nonlinearities.
In the case of negative residual dispersion, one should

observe instability due to the presence of the negative gradi-
ent term. In #7$ it is proved that the corresponding con-
strained variational problem cannot have local minima. Al-
though in numerical experiments stable pulse propagation is
observed, it appears to be due to the smallness of the nega-
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tive residual dispersion. Actually, if the value of residual
dispersion is decreased further, the stable pulse disappears.

IV. GROUND STATES IN CRITICAL CASES

Using the above observations, we demonstrate the possi-
bility of stabilization of a spatial pulse in a nonlinear Kerr
medium by introducing rapidly varying dispersion. This is
reminiscent of Kapitza’s phenomenon of the stabilization of
the inverted pendulum by rapidly oscillating the pivot #10$,
as in both cases the stationary states are unstable in the ab-
sence of parametric excitation.
The pulse evolution is governed by the two-dimensional

nonlinear Schrödinger equation

iuZ!5!
2 u!!u!2u"0,

which is well known to have no stable pulses #9$. We modify
the dispersion coefficient by adding a rapidly varying term as
in the dispersion management regime,

iuZ!#1!
1
&

d$ Z
& % &5!

2 u!!u!2u"0.

Rescaling the distance Z"&z , we obtain

iuz!d!z "5!
2 u!&!5!

2 u!!u!2u ""0 !3"

with the Hamiltonian

H!u """
#*

!*"
#*

!*$ d!z "!5!u!2

#&$ !5!u!2#
1
2 !u!4% % dx dy .

Solving the leading order equation

iuz!d!z "5!
2 u"0,

we use its solutions as the new variable u(x ,y)
"T(z)w(x ,y), where T(z)w(x ,y) is the solution of the
above equation with initial pulse w(x ,y). Carrying out this
transformation we obtain the equation for the slowly varying
field

iwz!&5!
2w!&Q!w ,w ,w ,z ""0

with the Hamiltonian

H!w ""&"
#*

!*"
#*

!*$ !5!w!2#
1
2 !T!z "w!4% dx dy .

Up to this point, we have made no approximations. We now
average the Hamiltonian over the fast scale z,

(H)!w ""&"
0

1"
#*

!*"
#*

!*$ !5!w!2#
1
2 !T!z "w!4% dx dy dz .

The averaging result stated in the previous section applies in
this situation as well !see #7$".

As before, in the averaged evolution problem, the aver-
aged Hamiltonian as well as the power of the pulse is a
conserved quantity. Following the above procedure, we fix
the power

P!w """
#*

!*"
#*

!*

!w!2dx dy

and consider the minimization problem

E!P ""inf.E!w ""(H)!w ",

" " ! !5!w!2!!w!2"dx dy$* ,

P"" !w!2dx dy .

The detailed mathematical analysis of this problem is pre-
sented in #6$. Here we provide the result: if P is larger than a
certain threshold Pcr then there is a pulse minimizing the
averaged Hamiltonian.
From the analytical point of view, such a pulse exists

because the averaged Hamiltonian is bounded from below
##*$E(P)$0$ . This is in contrast to the constant disper-
sion regime, where the above minimization problem assumes
either zero #E(P)"0$ or negative infinity #E(P)"#*$ ,
either of which excludes the possibility of existence of stable
ground states. !Note the similarity with the mean-zero re-
sidual dispersion case in a one-dimensional NLS."
Informally speaking, such boundedness results from the

smoothing of the pulse by high local dispersion, which ar-
rests collapse !in the averaged equation" and creates favor-
able conditions for the existence of ground states. Formally,
this stabilizing mechanism is again justified by the corre-
sponding Strichartz estimates #9$

"
0

1"
#*

!*"
#*

!*

!T!z "w!4dx dy dz+CP!w "2+CP2.

Carrying out the same calculations, one can obtain averaged
ground states in a one-dimensional NLS with critical !quin-
tic" nonlinearity

iuZ!#1!
1
&

d$ Z
& % &u!a!u!2u!b!u!4u"0

with a30,b%0.
Now we present some results of numerical simulations

that confirm the possibility of finding ground states in critical
NLS equations. We have simulated the original evolutionary
equations !3" and !4" with a variable coefficient d(z) that
was chosen to be &1 on z!#0,0.5$ and z!#0.5,1$ , respec-
tively, and with &"0.1.
Since it is difficult to create ground states both numeri-

cally and experimentally, we followed the approach in #4$ of
approximating ground states with Gaussian pulses. More
precisely, we found a Gaussian pulse that minimizes the av-
eraged Hamiltonian, subject to the power constraint. An ap-
proximating Gaussian pulse takes the form w(x ,y)
"A exp(r2/6), where A is a real amplitude, 6 is a complex
parameter, and r is the Euclidean distance. Substituting this
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function into the expression for the corresponding averaged
Hamiltonian and using the power relation, after lengthy but
straightforward calculations, we obtain a function in one
complex variable 6 which must be minimized. The real am-
plitude A is then found from the power relation.
The initial pulse profiles obtained in this way have been

used in numerical simulations. The simulations show that
stabilization does take place !see Figs. 1–4". Indeed, after t
"400 an arbitrary pulse would at least double its width !our
simulations confirm this too", while specially prepared pulses
only slightly deform !Figs. 1 and 3". Amplitude oscillations
!see Figs. 2 and 4" also indicate that the pulse solutions are
near the minimum of the Hamiltonian functional. The oscil-
lations are due to the fact that no Gaussian pulse is exactly a
ground state and therefore the solution oscillates near the
ground state.
In conclusion, we have demonstrated the existence and

stability of a periodic DM soliton. We have shown that the
averaged equation possesses a ground state that minimizes

an averaged action functional. The corresponding solutions
of the original equation are constructed from the above
ground state and turn out to be nearly periodic for suffi-
ciently long distances !while the averaging procedure re-
mains valid".
We also found an application of the dispersion-managed

soliton phenomenon that is possible due to interpretation of
the phenomenon as a ‘‘dispersive’’ stabilization mechanism.
It can also be considered as an infinite-dimensional analog of
Kapitza’s effect of the stabilization of an inverted pendulum.
Our theoretical predictions have been confirmed with nu-
merical simulations. This approach can also be used to in-
vestigate the possibility of stabilizing pulses in other practi-
cal systems.

APPENDIX

Concentration compactness principle

Here, we show that from any minimizing sequence of the
constrained variational principle a converging subsequence

FIG. 1. Spatial dispersion-managed soliton at t"0 and t
"400(&"0.1,D0"0.5).

FIG. 2. Amplitude variation of spatial dispersion-managed soli-
ton.

FIG. 3. Dispersion-managed soliton in quintic NLS at t"0 and
t"800 (&"0.1,D0"1).

FIG. 4. Amplitude variation of dispersion-managed soliton in
quintic NLS.
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can be constructed. Although the proof of this result is quite
technical, it seems to be at the heart of the phenomenon of
dispersion-managed solitons. The main difficulty is to show
that the solutions of the linear Schrödinger equation cannot
spread out in finite time if the initial data were localized.
Below, we provide a heuristic explanation of this result.
It turns out that a minimizing sequence um such that

G(um) is bounded and P(um)"- must have a subsequence
umk

!which we will denote by uk) for which one of the fol-
lowing possibilities occurs #11$. !1" It converges to a local-
ized pulse u #satisfying P(u)"-] up to translations %k , i.e.,
G(wk#u)→0, where wk(%)"uk(%#%k). !2" It is vanishing,
i.e., supy!R17 y#1

y!1!uk!2 d%→0. !3" It splits into two parts, i.e.,
for some 8 (0$8$-) and any &%0 there are two subse-
quences vk and wk such that P(uk#vk#wk)$& , P(vk)
"8 , P(wk)"-#8 , and dist„supp(vk),supp(wk)…→* .
Our goal is to show that the second and third possibilities

cannot occur. The main reason for that is the subadditivity of
the constraint minimization problem, P-1!-2

$P-1
!P-2

,
which can be verified by a scaling argument. This implies
that in order to make (H)(uk)→P- the sequence should be
‘‘tight.’’ Indeed, imagine that uk splits as in !3", so that
(H)(vk!wk)"(H)(vk)!(H)(wk) with P(vk)"8 and
P(wk)"-#8 . Then the properties of the infimum and the
subadditivity condition suggest that

(H)!vk!wk"%P8!P-#8%P- ,

and therefore the infimum cannot be attained.
We first show that vanishing does not occur. By the defi-

nition of the minimizing sequence, we have for sufficiently
large k

"
0

1"
#*

!*

!T!z "uk!4d% dz3c%0,

which implies that for some z0

"
#*

!*

!T!z0"uk!4 d%3c%0.

Applying the estimate obtained by Cazenave #9$,

"
#*

!*

!u!4 d%+C1 sup
y!R1

"
y#1

y!1
!u!2 d% G!u "2,

to T(z0)uk we can conclude that

sup
y!R1

"
y#1

y!1
!T!z0"uk!2 d%3c0 ,

where c0 is independent of k. Now we assume that our se-
quence is vanishing and show that it leads to a contradiction.
For definiteness, we assume that y"0 !which corresponds to
centering the sequence" and d(z)"1 on 0+z+z0.1 The sec-
ond assumption implies that for 0+z+z0 u(z ,%)

"T(z)u(0,%) is a solution of the linear Schrödinger equation
iuz!u%%"0, which implies the following energy relation:

d
dz"#R

!R
!uk!% ,z "!2 d%"2 Im#u k!% ,z "

,uk

,%
!% ,z "&

#R

!R

.

Integrating the above equation over z we obtain

"
#R

!R
!uk!% ,z0"!2 d%#"

#R

!R
!uk!% ,0"!2 d%

""
0

z0
2 Im#u k!% ,z "

,uk

,%
!% ,z "&

#R

!R

dz .

But the left hand side can be estimated from

c0#2!R!1 "&k+"
#R

!R
!uk!z ,%"!2 dx

#"
#R

!R
!uk!% ,0"!2d%

""
0

z0
2 Im#u k!z ,%"

,uk

,%
!z ,%"&

#R

!R

dz

where

&k" sup
y!R1

"
y#1

y!1
!uk!2d% .

Integrating this inequality over R, we obtain

"
0

R0
#c0#2!R!1 "&k$dR

+2"
#R0

!R0"
0

z0
!uk!R ,z "!',uk

,%
!R ,z "'dz dR ,

where R0 is the solution of the equation c0#2(R!1)&k
"0. Therefore

C
&k

+2"
#R0

!R0"
0

z0
!uk!R ,z "! ',uk

,%
!R ,z "'dz dR

+2"
#*

!*"
0

z0
!uk!R ,z "! ',uk

,%
!R ,z "'dz dR

+2"
0

z0
!!uk!!L2(R) * ,un

,% *
L2(R)

dz+Cz0 .

Taking k→* so that &k→0 we obtain a contradiction.
Similarly, we can show that splitting does not occur. In-

deed, if it did, then taking umk
"vk!wk!hk , where hk is

small, we obtain

(H)!umk
""(H)!vk"!(H)!wk"!Rk ,

where Rk represents the terms that are vanishing as &→0.
This can be shown by applying the above argument. There-
fore using the subadditivity condition P-1!-2

$P-1
!P-2

,
1The general case with d(z) having a finite number of nondegen-
erate zeros can be reduced to the one we consider.
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we obtain a contradiction, as explained above, with the fact
that umk

is a minimizing sequence.

Negativity of the infimum

We construct a family u- satisfying the constraint
P(u-)"- so that (H)(u-)$0. We start with a Gaussian
ansatz

u!x ""Aex2/26, !A1"

which turns out to be a self-similar solution of the linear
Schrödinger equation

iut!d! t "uxx"0. !A2"

Indeed, substituting Eq. !A1" in Eq. !A2" we obtain

iȦ!d! t "
A
6

"0, i26̇#2d! t ""0.

Solving this system of ordinary differential equations, we
obtain

u!x ,t ""
A0!60

!60#i2D! t "
ex2/2[60#i2D(t)],

where Ḋ(t)"d(t) and D(0)"0. Now we evaluate the aver-
aged functional and the constraint over the self-similar solu-
tions obtained,

P!u """
#*

!*

!u!x ,t "!2 dx

"!A! t "!2"
#*

!*

ex2 Re[6(t)]/!6(t)!2 dx

"
!A! t "!2!6! t "!
!!Re#6! t "$!

!0"
!A0!2!60!

!!Re#6! t "$!
!0 , !A3"

where we have assumed that Re(60)$0. After straightfor-
ward calculations, we also obtain

Q!u """
0

1"
#*

!*

!ux!x ,t "!2 dx dt

"
!A! t "!2!6! t "!
!!Re#6! t "$!3

!0

2 "
-

2!Re#6! t "$! "
-

2!Re!60"!
,

where we have used Eq. !A3" and the time independence of
Q for the solutions of the linear Schrödinger equations. Fi-
nally, using Eq. !A3", we calculate

"
0

1"
#*

!*

!Tu!4 dx dt""
0

1"
#*

!*

!A! t "!4ex22 Re[6(t)]/!6(t)!2 dx dt

""
0

1 !A! t "!4!6! t "!
!2!Re#6! t "$!

!0 dt

"
-2

!20
"
0

1!!Re#6! t "$!
!6! t "! dt .

Now, we evaluate the averaged functional

(H)!u """
#*

!*"
0

1$ '!ux!2#
1
2 !T! t "u!4% dx dt

"
'-

2!Re!60"!
#

-2

2!20
"
0

1!!Re#6! t "$!
!6! t "! dt

"
-'

2!Re!60"! #1#
-!!Re!60"!3

'!20

'"
0

1 dt
!#Re!60"$

2!#Im!60"#2D! t "$2& .
Now it is easy to see that for any fixed '%0 and arbitrarily
small - we can take Im(60)"0 and sufficiently large
Re(60) so that the averaged functional will become nega-
tive, (H)(u)$0.
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